Skip to content
Snippets Groups Projects
Select Git revision
  • 0f0746589e4be071a8f890b2035c97c30c7a4e16
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

swap_state.c

Blame
  • user avatar
    Minchan Kim authored and Linus Torvalds committed
    The add_to_swap aims to allocate swap_space(ie, swap slot and swapcache)
    so if it fails due to lack of space in case of THP or something(hdd swap
    but tries THP swapout) *caller* rather than add_to_swap itself should
    split the THP page and retry it with base page which is more natural.
    
    Link: http://lkml.kernel.org/r/20170515112522.32457-4-ying.huang@intel.com
    
    
    Signed-off-by: default avatarMinchan Kim <minchan@kernel.org>
    Signed-off-by: default avatar"Huang, Ying" <ying.huang@intel.com>
    Acked-by: default avatarJohannes Weiner <hannes@cmpxchg.org>
    Cc: Andrea Arcangeli <aarcange@redhat.com>
    Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com>
    Cc: Hugh Dickins <hughd@google.com>
    Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
    Cc: Michal Hocko <mhocko@kernel.org>
    Cc: Rik van Riel <riel@redhat.com>
    Cc: Shaohua Li <shli@kernel.org>
    Cc: Tejun Heo <tj@kernel.org>
    Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
    Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
    0f074658
    History
    swap_state.c 14.77 KiB
    /*
     *  linux/mm/swap_state.c
     *
     *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
     *  Swap reorganised 29.12.95, Stephen Tweedie
     *
     *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
     */
    #include <linux/mm.h>
    #include <linux/gfp.h>
    #include <linux/kernel_stat.h>
    #include <linux/swap.h>
    #include <linux/swapops.h>
    #include <linux/init.h>
    #include <linux/pagemap.h>
    #include <linux/backing-dev.h>
    #include <linux/blkdev.h>
    #include <linux/pagevec.h>
    #include <linux/migrate.h>
    #include <linux/vmalloc.h>
    #include <linux/swap_slots.h>
    #include <linux/huge_mm.h>
    
    #include <asm/pgtable.h>
    
    /*
     * swapper_space is a fiction, retained to simplify the path through
     * vmscan's shrink_page_list.
     */
    static const struct address_space_operations swap_aops = {
    	.writepage	= swap_writepage,
    	.set_page_dirty	= swap_set_page_dirty,
    #ifdef CONFIG_MIGRATION
    	.migratepage	= migrate_page,
    #endif
    };
    
    struct address_space *swapper_spaces[MAX_SWAPFILES];
    static unsigned int nr_swapper_spaces[MAX_SWAPFILES];
    
    #define INC_CACHE_INFO(x)	do { swap_cache_info.x++; } while (0)
    #define ADD_CACHE_INFO(x, nr)	do { swap_cache_info.x += (nr); } while (0)
    
    static struct {
    	unsigned long add_total;
    	unsigned long del_total;
    	unsigned long find_success;
    	unsigned long find_total;
    } swap_cache_info;
    
    unsigned long total_swapcache_pages(void)
    {
    	unsigned int i, j, nr;
    	unsigned long ret = 0;
    	struct address_space *spaces;
    
    	rcu_read_lock();
    	for (i = 0; i < MAX_SWAPFILES; i++) {
    		/*
    		 * The corresponding entries in nr_swapper_spaces and
    		 * swapper_spaces will be reused only after at least
    		 * one grace period.  So it is impossible for them
    		 * belongs to different usage.
    		 */
    		nr = nr_swapper_spaces[i];
    		spaces = rcu_dereference(swapper_spaces[i]);
    		if (!nr || !spaces)
    			continue;
    		for (j = 0; j < nr; j++)
    			ret += spaces[j].nrpages;
    	}
    	rcu_read_unlock();
    	return ret;
    }
    
    static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
    
    void show_swap_cache_info(void)
    {
    	printk("%lu pages in swap cache\n", total_swapcache_pages());
    	printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
    		swap_cache_info.add_total, swap_cache_info.del_total,
    		swap_cache_info.find_success, swap_cache_info.find_total);
    	printk("Free swap  = %ldkB\n",
    		get_nr_swap_pages() << (PAGE_SHIFT - 10));
    	printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
    }
    
    /*
     * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
     * but sets SwapCache flag and private instead of mapping and index.
     */
    int __add_to_swap_cache(struct page *page, swp_entry_t entry)
    {
    	int error, i, nr = hpage_nr_pages(page);
    	struct address_space *address_space;
    	pgoff_t idx = swp_offset(entry);
    
    	VM_BUG_ON_PAGE(!PageLocked(page), page);
    	VM_BUG_ON_PAGE(PageSwapCache(page), page);
    	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
    
    	page_ref_add(page, nr);
    	SetPageSwapCache(page);
    
    	address_space = swap_address_space(entry);
    	spin_lock_irq(&address_space->tree_lock);
    	for (i = 0; i < nr; i++) {
    		set_page_private(page + i, entry.val + i);
    		error = radix_tree_insert(&address_space->page_tree,
    					  idx + i, page + i);
    		if (unlikely(error))
    			break;
    	}
    	if (likely(!error)) {
    		address_space->nrpages += nr;
    		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
    		ADD_CACHE_INFO(add_total, nr);
    	} else {
    		/*
    		 * Only the context which have set SWAP_HAS_CACHE flag
    		 * would call add_to_swap_cache().
    		 * So add_to_swap_cache() doesn't returns -EEXIST.
    		 */
    		VM_BUG_ON(error == -EEXIST);
    		set_page_private(page + i, 0UL);
    		while (i--) {
    			radix_tree_delete(&address_space->page_tree, idx + i);
    			set_page_private(page + i, 0UL);
    		}
    		ClearPageSwapCache(page);
    		page_ref_sub(page, nr);
    	}
    	spin_unlock_irq(&address_space->tree_lock);
    
    	return error;
    }
    
    
    int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
    {
    	int error;
    
    	error = radix_tree_maybe_preload_order(gfp_mask, compound_order(page));
    	if (!error) {
    		error = __add_to_swap_cache(page, entry);
    		radix_tree_preload_end();
    	}
    	return error;
    }
    
    /*
     * This must be called only on pages that have
     * been verified to be in the swap cache.
     */
    void __delete_from_swap_cache(struct page *page)
    {
    	struct address_space *address_space;
    	int i, nr = hpage_nr_pages(page);
    	swp_entry_t entry;
    	pgoff_t idx;
    
    	VM_BUG_ON_PAGE(!PageLocked(page), page);
    	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
    	VM_BUG_ON_PAGE(PageWriteback(page), page);
    
    	entry.val = page_private(page);
    	address_space = swap_address_space(entry);
    	idx = swp_offset(entry);
    	for (i = 0; i < nr; i++) {
    		radix_tree_delete(&address_space->page_tree, idx + i);
    		set_page_private(page + i, 0);
    	}
    	ClearPageSwapCache(page);
    	address_space->nrpages -= nr;
    	__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
    	ADD_CACHE_INFO(del_total, nr);
    }
    
    /**
     * add_to_swap - allocate swap space for a page
     * @page: page we want to move to swap
     *
     * Allocate swap space for the page and add the page to the
     * swap cache.  Caller needs to hold the page lock. 
     */
    int add_to_swap(struct page *page)
    {
    	swp_entry_t entry;
    	int err;
    
    	VM_BUG_ON_PAGE(!PageLocked(page), page);
    	VM_BUG_ON_PAGE(!PageUptodate(page), page);
    
    	entry = get_swap_page(page);
    	if (!entry.val)
    		return 0;
    
    	if (mem_cgroup_try_charge_swap(page, entry))
    		goto fail;
    
    	/*
    	 * Radix-tree node allocations from PF_MEMALLOC contexts could
    	 * completely exhaust the page allocator. __GFP_NOMEMALLOC
    	 * stops emergency reserves from being allocated.
    	 *
    	 * TODO: this could cause a theoretical memory reclaim
    	 * deadlock in the swap out path.
    	 */
    	/*
    	 * Add it to the swap cache.
    	 */
    	err = add_to_swap_cache(page, entry,
    			__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
    	/* -ENOMEM radix-tree allocation failure */
    	if (err)
    		/*
    		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
    		 * clear SWAP_HAS_CACHE flag.
    		 */
    		goto fail;
    
    	return 1;
    
    fail:
    	put_swap_page(page, entry);
    	return 0;
    }
    
    /*
     * This must be called only on pages that have
     * been verified to be in the swap cache and locked.
     * It will never put the page into the free list,
     * the caller has a reference on the page.
     */
    void delete_from_swap_cache(struct page *page)
    {
    	swp_entry_t entry;
    	struct address_space *address_space;
    
    	entry.val = page_private(page);
    
    	address_space = swap_address_space(entry);
    	spin_lock_irq(&address_space->tree_lock);
    	__delete_from_swap_cache(page);
    	spin_unlock_irq(&address_space->tree_lock);
    
    	put_swap_page(page, entry);
    	page_ref_sub(page, hpage_nr_pages(page));
    }
    
    /* 
     * If we are the only user, then try to free up the swap cache. 
     * 
     * Its ok to check for PageSwapCache without the page lock
     * here because we are going to recheck again inside
     * try_to_free_swap() _with_ the lock.
     * 					- Marcelo
     */
    static inline void free_swap_cache(struct page *page)
    {
    	if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
    		try_to_free_swap(page);
    		unlock_page(page);
    	}
    }
    
    /* 
     * Perform a free_page(), also freeing any swap cache associated with
     * this page if it is the last user of the page.
     */
    void free_page_and_swap_cache(struct page *page)
    {
    	free_swap_cache(page);
    	if (!is_huge_zero_page(page))
    		put_page(page);
    }
    
    /*
     * Passed an array of pages, drop them all from swapcache and then release
     * them.  They are removed from the LRU and freed if this is their last use.
     */
    void free_pages_and_swap_cache(struct page **pages, int nr)
    {
    	struct page **pagep = pages;
    	int i;
    
    	lru_add_drain();
    	for (i = 0; i < nr; i++)
    		free_swap_cache(pagep[i]);
    	release_pages(pagep, nr, false);
    }
    
    /*
     * Lookup a swap entry in the swap cache. A found page will be returned
     * unlocked and with its refcount incremented - we rely on the kernel
     * lock getting page table operations atomic even if we drop the page
     * lock before returning.
     */
    struct page * lookup_swap_cache(swp_entry_t entry)
    {
    	struct page *page;
    
    	page = find_get_page(swap_address_space(entry), swp_offset(entry));
    
    	if (page && likely(!PageTransCompound(page))) {
    		INC_CACHE_INFO(find_success);
    		if (TestClearPageReadahead(page))
    			atomic_inc(&swapin_readahead_hits);
    	}
    
    	INC_CACHE_INFO(find_total);
    	return page;
    }
    
    struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
    			struct vm_area_struct *vma, unsigned long addr,
    			bool *new_page_allocated)
    {
    	struct page *found_page, *new_page = NULL;
    	struct address_space *swapper_space = swap_address_space(entry);
    	int err;
    	*new_page_allocated = false;
    
    	do {
    		/*
    		 * First check the swap cache.  Since this is normally
    		 * called after lookup_swap_cache() failed, re-calling
    		 * that would confuse statistics.
    		 */
    		found_page = find_get_page(swapper_space, swp_offset(entry));
    		if (found_page)
    			break;
    
    		/*
    		 * Just skip read ahead for unused swap slot.
    		 * During swap_off when swap_slot_cache is disabled,
    		 * we have to handle the race between putting
    		 * swap entry in swap cache and marking swap slot
    		 * as SWAP_HAS_CACHE.  That's done in later part of code or
    		 * else swap_off will be aborted if we return NULL.
    		 */
    		if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
    			break;
    
    		/*
    		 * Get a new page to read into from swap.
    		 */
    		if (!new_page) {
    			new_page = alloc_page_vma(gfp_mask, vma, addr);
    			if (!new_page)
    				break;		/* Out of memory */
    		}
    
    		/*
    		 * call radix_tree_preload() while we can wait.
    		 */
    		err = radix_tree_maybe_preload(gfp_mask & GFP_KERNEL);
    		if (err)
    			break;
    
    		/*
    		 * Swap entry may have been freed since our caller observed it.
    		 */
    		err = swapcache_prepare(entry);
    		if (err == -EEXIST) {
    			radix_tree_preload_end();
    			/*
    			 * We might race against get_swap_page() and stumble
    			 * across a SWAP_HAS_CACHE swap_map entry whose page
    			 * has not been brought into the swapcache yet.
    			 */
    			cond_resched();
    			continue;
    		}
    		if (err) {		/* swp entry is obsolete ? */
    			radix_tree_preload_end();
    			break;
    		}
    
    		/* May fail (-ENOMEM) if radix-tree node allocation failed. */
    		__SetPageLocked(new_page);
    		__SetPageSwapBacked(new_page);
    		err = __add_to_swap_cache(new_page, entry);
    		if (likely(!err)) {
    			radix_tree_preload_end();
    			/*
    			 * Initiate read into locked page and return.
    			 */
    			lru_cache_add_anon(new_page);
    			*new_page_allocated = true;
    			return new_page;
    		}
    		radix_tree_preload_end();
    		__ClearPageLocked(new_page);
    		/*
    		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
    		 * clear SWAP_HAS_CACHE flag.
    		 */
    		put_swap_page(new_page, entry);
    	} while (err != -ENOMEM);
    
    	if (new_page)
    		put_page(new_page);
    	return found_page;
    }
    
    /*
     * Locate a page of swap in physical memory, reserving swap cache space
     * and reading the disk if it is not already cached.
     * A failure return means that either the page allocation failed or that
     * the swap entry is no longer in use.
     */
    struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
    			struct vm_area_struct *vma, unsigned long addr)
    {
    	bool page_was_allocated;
    	struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
    			vma, addr, &page_was_allocated);
    
    	if (page_was_allocated)
    		swap_readpage(retpage);
    
    	return retpage;
    }
    
    static unsigned long swapin_nr_pages(unsigned long offset)
    {
    	static unsigned long prev_offset;
    	unsigned int pages, max_pages, last_ra;
    	static atomic_t last_readahead_pages;
    
    	max_pages = 1 << READ_ONCE(page_cluster);
    	if (max_pages <= 1)
    		return 1;
    
    	/*
    	 * This heuristic has been found to work well on both sequential and
    	 * random loads, swapping to hard disk or to SSD: please don't ask
    	 * what the "+ 2" means, it just happens to work well, that's all.
    	 */
    	pages = atomic_xchg(&swapin_readahead_hits, 0) + 2;
    	if (pages == 2) {
    		/*
    		 * We can have no readahead hits to judge by: but must not get
    		 * stuck here forever, so check for an adjacent offset instead
    		 * (and don't even bother to check whether swap type is same).
    		 */
    		if (offset != prev_offset + 1 && offset != prev_offset - 1)
    			pages = 1;
    		prev_offset = offset;
    	} else {
    		unsigned int roundup = 4;
    		while (roundup < pages)
    			roundup <<= 1;
    		pages = roundup;
    	}
    
    	if (pages > max_pages)
    		pages = max_pages;
    
    	/* Don't shrink readahead too fast */
    	last_ra = atomic_read(&last_readahead_pages) / 2;
    	if (pages < last_ra)
    		pages = last_ra;
    	atomic_set(&last_readahead_pages, pages);
    
    	return pages;
    }
    
    /**
     * swapin_readahead - swap in pages in hope we need them soon
     * @entry: swap entry of this memory
     * @gfp_mask: memory allocation flags
     * @vma: user vma this address belongs to
     * @addr: target address for mempolicy
     *
     * Returns the struct page for entry and addr, after queueing swapin.
     *
     * Primitive swap readahead code. We simply read an aligned block of
     * (1 << page_cluster) entries in the swap area. This method is chosen
     * because it doesn't cost us any seek time.  We also make sure to queue
     * the 'original' request together with the readahead ones...
     *
     * This has been extended to use the NUMA policies from the mm triggering
     * the readahead.
     *
     * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
     */
    struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
    			struct vm_area_struct *vma, unsigned long addr)
    {
    	struct page *page;
    	unsigned long entry_offset = swp_offset(entry);
    	unsigned long offset = entry_offset;
    	unsigned long start_offset, end_offset;
    	unsigned long mask;
    	struct blk_plug plug;
    
    	mask = swapin_nr_pages(offset) - 1;
    	if (!mask)
    		goto skip;
    
    	/* Read a page_cluster sized and aligned cluster around offset. */
    	start_offset = offset & ~mask;
    	end_offset = offset | mask;
    	if (!start_offset)	/* First page is swap header. */
    		start_offset++;
    
    	blk_start_plug(&plug);
    	for (offset = start_offset; offset <= end_offset ; offset++) {
    		/* Ok, do the async read-ahead now */
    		page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
    						gfp_mask, vma, addr);
    		if (!page)
    			continue;
    		if (offset != entry_offset && likely(!PageTransCompound(page)))
    			SetPageReadahead(page);
    		put_page(page);
    	}
    	blk_finish_plug(&plug);
    
    	lru_add_drain();	/* Push any new pages onto the LRU now */
    skip:
    	return read_swap_cache_async(entry, gfp_mask, vma, addr);
    }
    
    int init_swap_address_space(unsigned int type, unsigned long nr_pages)
    {
    	struct address_space *spaces, *space;
    	unsigned int i, nr;
    
    	nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
    	spaces = kvzalloc(sizeof(struct address_space) * nr, GFP_KERNEL);
    	if (!spaces)
    		return -ENOMEM;
    	for (i = 0; i < nr; i++) {
    		space = spaces + i;
    		INIT_RADIX_TREE(&space->page_tree, GFP_ATOMIC|__GFP_NOWARN);
    		atomic_set(&space->i_mmap_writable, 0);
    		space->a_ops = &swap_aops;
    		/* swap cache doesn't use writeback related tags */
    		mapping_set_no_writeback_tags(space);
    		spin_lock_init(&space->tree_lock);
    	}
    	nr_swapper_spaces[type] = nr;
    	rcu_assign_pointer(swapper_spaces[type], spaces);
    
    	return 0;
    }
    
    void exit_swap_address_space(unsigned int type)
    {
    	struct address_space *spaces;
    
    	spaces = swapper_spaces[type];
    	nr_swapper_spaces[type] = 0;
    	rcu_assign_pointer(swapper_spaces[type], NULL);
    	synchronize_rcu();
    	kvfree(spaces);
    }