Skip to content
Snippets Groups Projects
Select Git revision
  • 10ea18f0deb2372417c8e5be4d2ec79de1f65c4b
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

file2alias.c

Blame
  • dmapool.c 12.66 KiB
    /*
     * DMA Pool allocator
     *
     * Copyright 2001 David Brownell
     * Copyright 2007 Intel Corporation
     *   Author: Matthew Wilcox <willy@linux.intel.com>
     *
     * This software may be redistributed and/or modified under the terms of
     * the GNU General Public License ("GPL") version 2 as published by the
     * Free Software Foundation.
     *
     * This allocator returns small blocks of a given size which are DMA-able by
     * the given device.  It uses the dma_alloc_coherent page allocator to get
     * new pages, then splits them up into blocks of the required size.
     * Many older drivers still have their own code to do this.
     *
     * The current design of this allocator is fairly simple.  The pool is
     * represented by the 'struct dma_pool' which keeps a doubly-linked list of
     * allocated pages.  Each page in the page_list is split into blocks of at
     * least 'size' bytes.  Free blocks are tracked in an unsorted singly-linked
     * list of free blocks within the page.  Used blocks aren't tracked, but we
     * keep a count of how many are currently allocated from each page.
     */
    
    #include <linux/device.h>
    #include <linux/dma-mapping.h>
    #include <linux/dmapool.h>
    #include <linux/kernel.h>
    #include <linux/list.h>
    #include <linux/module.h>
    #include <linux/mutex.h>
    #include <linux/poison.h>
    #include <linux/sched.h>
    #include <linux/slab.h>
    #include <linux/spinlock.h>
    #include <linux/string.h>
    #include <linux/types.h>
    #include <linux/wait.h>
    
    struct dma_pool {		/* the pool */
    	struct list_head page_list;
    	spinlock_t lock;
    	size_t size;
    	struct device *dev;
    	size_t allocation;
    	char name[32];
    	wait_queue_head_t waitq;
    	struct list_head pools;
    };
    
    struct dma_page {		/* cacheable header for 'allocation' bytes */
    	struct list_head page_list;
    	void *vaddr;
    	dma_addr_t dma;
    	unsigned int in_use;
    	unsigned int offset;
    };
    
    #define	POOL_TIMEOUT_JIFFIES	((100 /* msec */ * HZ) / 1000)
    
    static DEFINE_MUTEX(pools_lock);
    
    static ssize_t
    show_pools(struct device *dev, struct device_attribute *attr, char *buf)
    {
    	unsigned temp;
    	unsigned size;
    	char *next;
    	struct dma_page *page;
    	struct dma_pool *pool;
    
    	next = buf;
    	size = PAGE_SIZE;
    
    	temp = scnprintf(next, size, "poolinfo - 0.1\n");
    	size -= temp;
    	next += temp;
    
    	mutex_lock(&pools_lock);
    	list_for_each_entry(pool, &dev->dma_pools, pools) {
    		unsigned pages = 0;
    		unsigned blocks = 0;
    
    		list_for_each_entry(page, &pool->page_list, page_list) {
    			pages++;
    			blocks += page->in_use;
    		}
    
    		/* per-pool info, no real statistics yet */
    		temp = scnprintf(next, size, "%-16s %4u %4Zu %4Zu %2u\n",
    				 pool->name, blocks,
    				 pages * (pool->allocation / pool->size),
    				 pool->size, pages);
    		size -= temp;
    		next += temp;
    	}
    	mutex_unlock(&pools_lock);
    
    	return PAGE_SIZE - size;
    }
    
    static DEVICE_ATTR(pools, S_IRUGO, show_pools, NULL);
    
    /**
     * dma_pool_create - Creates a pool of consistent memory blocks, for dma.
     * @name: name of pool, for diagnostics
     * @dev: device that will be doing the DMA
     * @size: size of the blocks in this pool.
     * @align: alignment requirement for blocks; must be a power of two
     * @allocation: returned blocks won't cross this boundary (or zero)
     * Context: !in_interrupt()
     *
     * Returns a dma allocation pool with the requested characteristics, or
     * null if one can't be created.  Given one of these pools, dma_pool_alloc()
     * may be used to allocate memory.  Such memory will all have "consistent"
     * DMA mappings, accessible by the device and its driver without using
     * cache flushing primitives.  The actual size of blocks allocated may be
     * larger than requested because of alignment.
     *
     * If allocation is nonzero, objects returned from dma_pool_alloc() won't
     * cross that size boundary.  This is useful for devices which have
     * addressing restrictions on individual DMA transfers, such as not crossing
     * boundaries of 4KBytes.
     */
    struct dma_pool *dma_pool_create(const char *name, struct device *dev,
    				 size_t size, size_t align, size_t allocation)
    {
    	struct dma_pool *retval;
    
    	if (align == 0) {
    		align = 1;
    	} else if (align & (align - 1)) {
    		return NULL;
    	}
    
    	if (size == 0) {
    		return NULL;
    	} else if (size < 4) {
    		size = 4;
    	}
    
    	if ((size % align) != 0)
    		size = ALIGN(size, align);
    
    	if (allocation == 0) {
    		if (PAGE_SIZE < size)
    			allocation = size;
    		else
    			allocation = PAGE_SIZE;
    		/* FIXME: round up for less fragmentation */
    	} else if (allocation < size)
    		return NULL;
    
    	if (!
    	    (retval =
    	     kmalloc_node(sizeof *retval, GFP_KERNEL, dev_to_node(dev))))
    		return retval;
    
    	strlcpy(retval->name, name, sizeof retval->name);
    
    	retval->dev = dev;
    
    	INIT_LIST_HEAD(&retval->page_list);
    	spin_lock_init(&retval->lock);
    	retval->size = size;
    	retval->allocation = allocation;
    	init_waitqueue_head(&retval->waitq);
    
    	if (dev) {
    		int ret;
    
    		mutex_lock(&pools_lock);
    		if (list_empty(&dev->dma_pools))
    			ret = device_create_file(dev, &dev_attr_pools);
    		else
    			ret = 0;
    		/* note:  not currently insisting "name" be unique */
    		if (!ret)
    			list_add(&retval->pools, &dev->dma_pools);
    		else {
    			kfree(retval);
    			retval = NULL;
    		}
    		mutex_unlock(&pools_lock);
    	} else
    		INIT_LIST_HEAD(&retval->pools);
    
    	return retval;
    }
    EXPORT_SYMBOL(dma_pool_create);
    
    static void pool_initialise_page(struct dma_pool *pool, struct dma_page *page)
    {
    	unsigned int offset = 0;
    
    	do {
    		unsigned int next = offset + pool->size;
    		if (unlikely((next + pool->size) >= pool->allocation))
    			next = pool->allocation;
    		*(int *)(page->vaddr + offset) = next;
    		offset = next;
    	} while (offset < pool->allocation);
    }
    
    static struct dma_page *pool_alloc_page(struct dma_pool *pool, gfp_t mem_flags)
    {
    	struct dma_page *page;
    
    	page = kmalloc(sizeof(*page), mem_flags);
    	if (!page)
    		return NULL;
    	page->vaddr = dma_alloc_coherent(pool->dev, pool->allocation,
    					 &page->dma, mem_flags);
    	if (page->vaddr) {
    #ifdef	CONFIG_DEBUG_SLAB
    		memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
    #endif
    		pool_initialise_page(pool, page);
    		list_add(&page->page_list, &pool->page_list);
    		page->in_use = 0;
    		page->offset = 0;
    	} else {
    		kfree(page);
    		page = NULL;
    	}
    	return page;
    }
    
    static inline int is_page_busy(struct dma_page *page)
    {
    	return page->in_use != 0;
    }
    
    static void pool_free_page(struct dma_pool *pool, struct dma_page *page)
    {
    	dma_addr_t dma = page->dma;
    
    #ifdef	CONFIG_DEBUG_SLAB
    	memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
    #endif
    	dma_free_coherent(pool->dev, pool->allocation, page->vaddr, dma);
    	list_del(&page->page_list);
    	kfree(page);
    }
    
    /**
     * dma_pool_destroy - destroys a pool of dma memory blocks.
     * @pool: dma pool that will be destroyed
     * Context: !in_interrupt()
     *
     * Caller guarantees that no more memory from the pool is in use,
     * and that nothing will try to use the pool after this call.
     */
    void dma_pool_destroy(struct dma_pool *pool)
    {
    	mutex_lock(&pools_lock);
    	list_del(&pool->pools);
    	if (pool->dev && list_empty(&pool->dev->dma_pools))
    		device_remove_file(pool->dev, &dev_attr_pools);
    	mutex_unlock(&pools_lock);
    
    	while (!list_empty(&pool->page_list)) {
    		struct dma_page *page;
    		page = list_entry(pool->page_list.next,
    				  struct dma_page, page_list);
    		if (is_page_busy(page)) {
    			if (pool->dev)
    				dev_err(pool->dev,
    					"dma_pool_destroy %s, %p busy\n",
    					pool->name, page->vaddr);
    			else
    				printk(KERN_ERR
    				       "dma_pool_destroy %s, %p busy\n",
    				       pool->name, page->vaddr);
    			/* leak the still-in-use consistent memory */
    			list_del(&page->page_list);
    			kfree(page);
    		} else
    			pool_free_page(pool, page);
    	}
    
    	kfree(pool);
    }
    EXPORT_SYMBOL(dma_pool_destroy);
    
    /**
     * dma_pool_alloc - get a block of consistent memory
     * @pool: dma pool that will produce the block
     * @mem_flags: GFP_* bitmask
     * @handle: pointer to dma address of block
     *
     * This returns the kernel virtual address of a currently unused block,
     * and reports its dma address through the handle.
     * If such a memory block can't be allocated, %NULL is returned.
     */
    void *dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags,
    		     dma_addr_t *handle)
    {
    	unsigned long flags;
    	struct dma_page *page;
    	size_t offset;
    	void *retval;
    
    	spin_lock_irqsave(&pool->lock, flags);
     restart:
    	list_for_each_entry(page, &pool->page_list, page_list) {
    		if (page->offset < pool->allocation)
    			goto ready;
    	}
    	page = pool_alloc_page(pool, GFP_ATOMIC);
    	if (!page) {
    		if (mem_flags & __GFP_WAIT) {
    			DECLARE_WAITQUEUE(wait, current);
    
    			__set_current_state(TASK_INTERRUPTIBLE);
    			__add_wait_queue(&pool->waitq, &wait);
    			spin_unlock_irqrestore(&pool->lock, flags);
    
    			schedule_timeout(POOL_TIMEOUT_JIFFIES);
    
    			spin_lock_irqsave(&pool->lock, flags);
    			__remove_wait_queue(&pool->waitq, &wait);
    			goto restart;
    		}
    		retval = NULL;
    		goto done;
    	}
    
     ready:
    	page->in_use++;
    	offset = page->offset;
    	page->offset = *(int *)(page->vaddr + offset);
    	retval = offset + page->vaddr;
    	*handle = offset + page->dma;
    #ifdef	CONFIG_DEBUG_SLAB
    	memset(retval, POOL_POISON_ALLOCATED, pool->size);
    #endif
     done:
    	spin_unlock_irqrestore(&pool->lock, flags);
    	return retval;
    }
    EXPORT_SYMBOL(dma_pool_alloc);
    
    static struct dma_page *pool_find_page(struct dma_pool *pool, dma_addr_t dma)
    {
    	unsigned long flags;
    	struct dma_page *page;
    
    	spin_lock_irqsave(&pool->lock, flags);
    	list_for_each_entry(page, &pool->page_list, page_list) {
    		if (dma < page->dma)
    			continue;
    		if (dma < (page->dma + pool->allocation))
    			goto done;
    	}
    	page = NULL;
     done:
    	spin_unlock_irqrestore(&pool->lock, flags);
    	return page;
    }
    
    /**
     * dma_pool_free - put block back into dma pool
     * @pool: the dma pool holding the block
     * @vaddr: virtual address of block
     * @dma: dma address of block
     *
     * Caller promises neither device nor driver will again touch this block
     * unless it is first re-allocated.
     */
    void dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma)
    {
    	struct dma_page *page;
    	unsigned long flags;
    	unsigned int offset;
    
    	page = pool_find_page(pool, dma);
    	if (!page) {
    		if (pool->dev)
    			dev_err(pool->dev,
    				"dma_pool_free %s, %p/%lx (bad dma)\n",
    				pool->name, vaddr, (unsigned long)dma);
    		else
    			printk(KERN_ERR "dma_pool_free %s, %p/%lx (bad dma)\n",
    			       pool->name, vaddr, (unsigned long)dma);
    		return;
    	}
    
    	offset = vaddr - page->vaddr;
    #ifdef	CONFIG_DEBUG_SLAB
    	if ((dma - page->dma) != offset) {
    		if (pool->dev)
    			dev_err(pool->dev,
    				"dma_pool_free %s, %p (bad vaddr)/%Lx\n",
    				pool->name, vaddr, (unsigned long long)dma);
    		else
    			printk(KERN_ERR
    			       "dma_pool_free %s, %p (bad vaddr)/%Lx\n",
    			       pool->name, vaddr, (unsigned long long)dma);
    		return;
    	}
    	{
    		unsigned int chain = page->offset;
    		while (chain < pool->allocation) {
    			if (chain != offset) {
    				chain = *(int *)(page->vaddr + chain);
    				continue;
    			}
    			if (pool->dev)
    				dev_err(pool->dev, "dma_pool_free %s, dma %Lx "
    					"already free\n", pool->name,
    					(unsigned long long)dma);
    			else
    				printk(KERN_ERR "dma_pool_free %s, dma %Lx "
    					"already free\n", pool->name,
    					(unsigned long long)dma);
    			return;
    		}
    	}
    	memset(vaddr, POOL_POISON_FREED, pool->size);
    #endif
    
    	spin_lock_irqsave(&pool->lock, flags);
    	page->in_use--;
    	*(int *)vaddr = page->offset;
    	page->offset = offset;
    	if (waitqueue_active(&pool->waitq))
    		wake_up_locked(&pool->waitq);
    	/*
    	 * Resist a temptation to do
    	 *    if (!is_page_busy(page)) pool_free_page(pool, page);
    	 * Better have a few empty pages hang around.
    	 */
    	spin_unlock_irqrestore(&pool->lock, flags);
    }
    EXPORT_SYMBOL(dma_pool_free);
    
    /*
     * Managed DMA pool
     */
    static void dmam_pool_release(struct device *dev, void *res)
    {
    	struct dma_pool *pool = *(struct dma_pool **)res;
    
    	dma_pool_destroy(pool);
    }
    
    static int dmam_pool_match(struct device *dev, void *res, void *match_data)
    {
    	return *(struct dma_pool **)res == match_data;
    }
    
    /**
     * dmam_pool_create - Managed dma_pool_create()
     * @name: name of pool, for diagnostics
     * @dev: device that will be doing the DMA
     * @size: size of the blocks in this pool.
     * @align: alignment requirement for blocks; must be a power of two
     * @allocation: returned blocks won't cross this boundary (or zero)
     *
     * Managed dma_pool_create().  DMA pool created with this function is
     * automatically destroyed on driver detach.
     */
    struct dma_pool *dmam_pool_create(const char *name, struct device *dev,
    				  size_t size, size_t align, size_t allocation)
    {
    	struct dma_pool **ptr, *pool;
    
    	ptr = devres_alloc(dmam_pool_release, sizeof(*ptr), GFP_KERNEL);
    	if (!ptr)
    		return NULL;
    
    	pool = *ptr = dma_pool_create(name, dev, size, align, allocation);
    	if (pool)
    		devres_add(dev, ptr);
    	else
    		devres_free(ptr);
    
    	return pool;
    }
    EXPORT_SYMBOL(dmam_pool_create);
    
    /**
     * dmam_pool_destroy - Managed dma_pool_destroy()
     * @pool: dma pool that will be destroyed
     *
     * Managed dma_pool_destroy().
     */
    void dmam_pool_destroy(struct dma_pool *pool)
    {
    	struct device *dev = pool->dev;
    
    	dma_pool_destroy(pool);
    	WARN_ON(devres_destroy(dev, dmam_pool_release, dmam_pool_match, pool));
    }
    EXPORT_SYMBOL(dmam_pool_destroy);