Skip to content
Snippets Groups Projects
Select Git revision
  • 11abf0c5a021af683b8fe12b0d30fb1226d60e0f
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

i915_request.c

Blame
  • posix-cpu-timers.c 37.78 KiB
    // SPDX-License-Identifier: GPL-2.0
    /*
     * Implement CPU time clocks for the POSIX clock interface.
     */
    
    #include <linux/sched/signal.h>
    #include <linux/sched/cputime.h>
    #include <linux/posix-timers.h>
    #include <linux/errno.h>
    #include <linux/math64.h>
    #include <linux/uaccess.h>
    #include <linux/kernel_stat.h>
    #include <trace/events/timer.h>
    #include <linux/tick.h>
    #include <linux/workqueue.h>
    #include <linux/compat.h>
    #include <linux/sched/deadline.h>
    
    #include "posix-timers.h"
    
    static void posix_cpu_timer_rearm(struct k_itimer *timer);
    
    void posix_cputimers_group_init(struct posix_cputimers *pct, u64 cpu_limit)
    {
    	posix_cputimers_init(pct);
    	if (cpu_limit != RLIM_INFINITY) {
    		pct->bases[CPUCLOCK_PROF].nextevt = cpu_limit * NSEC_PER_SEC;
    		pct->timers_active = true;
    	}
    }
    
    /*
     * Called after updating RLIMIT_CPU to run cpu timer and update
     * tsk->signal->posix_cputimers.bases[clock].nextevt expiration cache if
     * necessary. Needs siglock protection since other code may update the
     * expiration cache as well.
     */
    void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
    {
    	u64 nsecs = rlim_new * NSEC_PER_SEC;
    
    	spin_lock_irq(&task->sighand->siglock);
    	set_process_cpu_timer(task, CPUCLOCK_PROF, &nsecs, NULL);
    	spin_unlock_irq(&task->sighand->siglock);
    }
    
    /*
     * Functions for validating access to tasks.
     */
    static struct task_struct *lookup_task(const pid_t pid, bool thread,
    				       bool gettime)
    {
    	struct task_struct *p;
    
    	/*
    	 * If the encoded PID is 0, then the timer is targeted at current
    	 * or the process to which current belongs.
    	 */
    	if (!pid)
    		return thread ? current : current->group_leader;
    
    	p = find_task_by_vpid(pid);
    	if (!p)
    		return p;
    
    	if (thread)
    		return same_thread_group(p, current) ? p : NULL;
    
    	if (gettime) {
    		/*
    		 * For clock_gettime(PROCESS) the task does not need to be
    		 * the actual group leader. tsk->sighand gives
    		 * access to the group's clock.
    		 *
    		 * Timers need the group leader because they take a
    		 * reference on it and store the task pointer until the
    		 * timer is destroyed.
    		 */
    		return (p == current || thread_group_leader(p)) ? p : NULL;
    	}
    
    	/*
    	 * For processes require that p is group leader.
    	 */
    	return has_group_leader_pid(p) ? p : NULL;
    }
    
    static struct task_struct *__get_task_for_clock(const clockid_t clock,
    						bool getref, bool gettime)
    {
    	const bool thread = !!CPUCLOCK_PERTHREAD(clock);
    	const pid_t pid = CPUCLOCK_PID(clock);
    	struct task_struct *p;
    
    	if (CPUCLOCK_WHICH(clock) >= CPUCLOCK_MAX)
    		return NULL;
    
    	rcu_read_lock();
    	p = lookup_task(pid, thread, gettime);
    	if (p && getref)
    		get_task_struct(p);
    	rcu_read_unlock();
    	return p;
    }
    
    static inline struct task_struct *get_task_for_clock(const clockid_t clock)
    {
    	return __get_task_for_clock(clock, true, false);
    }
    
    static inline struct task_struct *get_task_for_clock_get(const clockid_t clock)
    {
    	return __get_task_for_clock(clock, true, true);
    }
    
    static inline int validate_clock_permissions(const clockid_t clock)
    {
    	return __get_task_for_clock(clock, false, false) ? 0 : -EINVAL;
    }
    
    /*
     * Update expiry time from increment, and increase overrun count,
     * given the current clock sample.
     */
    static u64 bump_cpu_timer(struct k_itimer *timer, u64 now)
    {
    	u64 delta, incr, expires = timer->it.cpu.node.expires;
    	int i;
    
    	if (!timer->it_interval)
    		return expires;
    
    	if (now < expires)
    		return expires;
    
    	incr = timer->it_interval;
    	delta = now + incr - expires;
    
    	/* Don't use (incr*2 < delta), incr*2 might overflow. */
    	for (i = 0; incr < delta - incr; i++)
    		incr = incr << 1;
    
    	for (; i >= 0; incr >>= 1, i--) {
    		if (delta < incr)
    			continue;
    
    		timer->it.cpu.node.expires += incr;
    		timer->it_overrun += 1LL << i;
    		delta -= incr;
    	}
    	return timer->it.cpu.node.expires;
    }
    
    /* Check whether all cache entries contain U64_MAX, i.e. eternal expiry time */
    static inline bool expiry_cache_is_inactive(const struct posix_cputimers *pct)
    {
    	return !(~pct->bases[CPUCLOCK_PROF].nextevt |
    		 ~pct->bases[CPUCLOCK_VIRT].nextevt |
    		 ~pct->bases[CPUCLOCK_SCHED].nextevt);
    }
    
    static int
    posix_cpu_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
    {
    	int error = validate_clock_permissions(which_clock);
    
    	if (!error) {
    		tp->tv_sec = 0;
    		tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
    		if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
    			/*
    			 * If sched_clock is using a cycle counter, we
    			 * don't have any idea of its true resolution
    			 * exported, but it is much more than 1s/HZ.
    			 */
    			tp->tv_nsec = 1;
    		}
    	}
    	return error;
    }
    
    static int
    posix_cpu_clock_set(const clockid_t clock, const struct timespec64 *tp)
    {
    	int error = validate_clock_permissions(clock);
    
    	/*
    	 * You can never reset a CPU clock, but we check for other errors
    	 * in the call before failing with EPERM.
    	 */
    	return error ? : -EPERM;
    }
    
    /*
     * Sample a per-thread clock for the given task. clkid is validated.
     */
    static u64 cpu_clock_sample(const clockid_t clkid, struct task_struct *p)
    {
    	u64 utime, stime;
    
    	if (clkid == CPUCLOCK_SCHED)
    		return task_sched_runtime(p);
    
    	task_cputime(p, &utime, &stime);
    
    	switch (clkid) {
    	case CPUCLOCK_PROF:
    		return utime + stime;
    	case CPUCLOCK_VIRT:
    		return utime;
    	default:
    		WARN_ON_ONCE(1);
    	}
    	return 0;
    }
    
    static inline void store_samples(u64 *samples, u64 stime, u64 utime, u64 rtime)
    {
    	samples[CPUCLOCK_PROF] = stime + utime;
    	samples[CPUCLOCK_VIRT] = utime;
    	samples[CPUCLOCK_SCHED] = rtime;
    }
    
    static void task_sample_cputime(struct task_struct *p, u64 *samples)
    {
    	u64 stime, utime;
    
    	task_cputime(p, &utime, &stime);
    	store_samples(samples, stime, utime, p->se.sum_exec_runtime);
    }
    
    static void proc_sample_cputime_atomic(struct task_cputime_atomic *at,
    				       u64 *samples)
    {
    	u64 stime, utime, rtime;
    
    	utime = atomic64_read(&at->utime);
    	stime = atomic64_read(&at->stime);
    	rtime = atomic64_read(&at->sum_exec_runtime);
    	store_samples(samples, stime, utime, rtime);
    }
    
    /*
     * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
     * to avoid race conditions with concurrent updates to cputime.
     */
    static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime)
    {
    	u64 curr_cputime;
    retry:
    	curr_cputime = atomic64_read(cputime);
    	if (sum_cputime > curr_cputime) {
    		if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime)
    			goto retry;
    	}
    }
    
    static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic,
    			      struct task_cputime *sum)
    {
    	__update_gt_cputime(&cputime_atomic->utime, sum->utime);
    	__update_gt_cputime(&cputime_atomic->stime, sum->stime);
    	__update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime);
    }
    
    /**
     * thread_group_sample_cputime - Sample cputime for a given task
     * @tsk:	Task for which cputime needs to be started
     * @samples:	Storage for time samples
     *
     * Called from sys_getitimer() to calculate the expiry time of an active
     * timer. That means group cputime accounting is already active. Called
     * with task sighand lock held.
     *
     * Updates @times with an uptodate sample of the thread group cputimes.
     */
    void thread_group_sample_cputime(struct task_struct *tsk, u64 *samples)
    {
    	struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
    	struct posix_cputimers *pct = &tsk->signal->posix_cputimers;
    
    	WARN_ON_ONCE(!pct->timers_active);
    
    	proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
    }
    
    /**
     * thread_group_start_cputime - Start cputime and return a sample
     * @tsk:	Task for which cputime needs to be started
     * @samples:	Storage for time samples
     *
     * The thread group cputime accouting is avoided when there are no posix
     * CPU timers armed. Before starting a timer it's required to check whether
     * the time accounting is active. If not, a full update of the atomic
     * accounting store needs to be done and the accounting enabled.
     *
     * Updates @times with an uptodate sample of the thread group cputimes.
     */
    static void thread_group_start_cputime(struct task_struct *tsk, u64 *samples)
    {
    	struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
    	struct posix_cputimers *pct = &tsk->signal->posix_cputimers;
    
    	/* Check if cputimer isn't running. This is accessed without locking. */
    	if (!READ_ONCE(pct->timers_active)) {
    		struct task_cputime sum;
    
    		/*
    		 * The POSIX timer interface allows for absolute time expiry
    		 * values through the TIMER_ABSTIME flag, therefore we have
    		 * to synchronize the timer to the clock every time we start it.
    		 */
    		thread_group_cputime(tsk, &sum);
    		update_gt_cputime(&cputimer->cputime_atomic, &sum);
    
    		/*
    		 * We're setting timers_active without a lock. Ensure this
    		 * only gets written to in one operation. We set it after
    		 * update_gt_cputime() as a small optimization, but
    		 * barriers are not required because update_gt_cputime()
    		 * can handle concurrent updates.
    		 */
    		WRITE_ONCE(pct->timers_active, true);
    	}
    	proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
    }
    
    static void __thread_group_cputime(struct task_struct *tsk, u64 *samples)
    {
    	struct task_cputime ct;
    
    	thread_group_cputime(tsk, &ct);
    	store_samples(samples, ct.stime, ct.utime, ct.sum_exec_runtime);
    }
    
    /*
     * Sample a process (thread group) clock for the given task clkid. If the
     * group's cputime accounting is already enabled, read the atomic
     * store. Otherwise a full update is required.  Task's sighand lock must be
     * held to protect the task traversal on a full update. clkid is already
     * validated.
     */
    static u64 cpu_clock_sample_group(const clockid_t clkid, struct task_struct *p,
    				  bool start)
    {
    	struct thread_group_cputimer *cputimer = &p->signal->cputimer;
    	struct posix_cputimers *pct = &p->signal->posix_cputimers;
    	u64 samples[CPUCLOCK_MAX];
    
    	if (!READ_ONCE(pct->timers_active)) {
    		if (start)
    			thread_group_start_cputime(p, samples);
    		else
    			__thread_group_cputime(p, samples);
    	} else {
    		proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
    	}
    
    	return samples[clkid];
    }
    
    static int posix_cpu_clock_get(const clockid_t clock, struct timespec64 *tp)
    {
    	const clockid_t clkid = CPUCLOCK_WHICH(clock);
    	struct task_struct *tsk;
    	u64 t;
    
    	tsk = get_task_for_clock_get(clock);
    	if (!tsk)
    		return -EINVAL;
    
    	if (CPUCLOCK_PERTHREAD(clock))
    		t = cpu_clock_sample(clkid, tsk);
    	else
    		t = cpu_clock_sample_group(clkid, tsk, false);
    	put_task_struct(tsk);
    
    	*tp = ns_to_timespec64(t);
    	return 0;
    }
    
    /*
     * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
     * This is called from sys_timer_create() and do_cpu_nanosleep() with the
     * new timer already all-zeros initialized.
     */
    static int posix_cpu_timer_create(struct k_itimer *new_timer)
    {
    	struct task_struct *p = get_task_for_clock(new_timer->it_clock);
    
    	if (!p)
    		return -EINVAL;
    
    	new_timer->kclock = &clock_posix_cpu;
    	timerqueue_init(&new_timer->it.cpu.node);
    	new_timer->it.cpu.task = p;
    	return 0;
    }
    
    /*
     * Clean up a CPU-clock timer that is about to be destroyed.
     * This is called from timer deletion with the timer already locked.
     * If we return TIMER_RETRY, it's necessary to release the timer's lock
     * and try again.  (This happens when the timer is in the middle of firing.)
     */
    static int posix_cpu_timer_del(struct k_itimer *timer)
    {
    	struct cpu_timer *ctmr = &timer->it.cpu;
    	struct task_struct *p = ctmr->task;
    	struct sighand_struct *sighand;
    	unsigned long flags;
    	int ret = 0;
    
    	if (WARN_ON_ONCE(!p))
    		return -EINVAL;
    
    	/*
    	 * Protect against sighand release/switch in exit/exec and process/
    	 * thread timer list entry concurrent read/writes.
    	 */
    	sighand = lock_task_sighand(p, &flags);
    	if (unlikely(sighand == NULL)) {
    		/*
    		 * This raced with the reaping of the task. The exit cleanup
    		 * should have removed this timer from the timer queue.
    		 */
    		WARN_ON_ONCE(ctmr->head || timerqueue_node_queued(&ctmr->node));
    	} else {
    		if (timer->it.cpu.firing)
    			ret = TIMER_RETRY;
    		else
    			cpu_timer_dequeue(ctmr);
    
    		unlock_task_sighand(p, &flags);
    	}
    
    	if (!ret)
    		put_task_struct(p);
    
    	return ret;
    }
    
    static void cleanup_timerqueue(struct timerqueue_head *head)
    {
    	struct timerqueue_node *node;
    	struct cpu_timer *ctmr;
    
    	while ((node = timerqueue_getnext(head))) {
    		timerqueue_del(head, node);
    		ctmr = container_of(node, struct cpu_timer, node);
    		ctmr->head = NULL;
    	}
    }
    
    /*
     * Clean out CPU timers which are still armed when a thread exits. The
     * timers are only removed from the list. No other updates are done. The
     * corresponding posix timers are still accessible, but cannot be rearmed.
     *
     * This must be called with the siglock held.
     */
    static void cleanup_timers(struct posix_cputimers *pct)
    {
    	cleanup_timerqueue(&pct->bases[CPUCLOCK_PROF].tqhead);
    	cleanup_timerqueue(&pct->bases[CPUCLOCK_VIRT].tqhead);
    	cleanup_timerqueue(&pct->bases[CPUCLOCK_SCHED].tqhead);
    }
    
    /*
     * These are both called with the siglock held, when the current thread
     * is being reaped.  When the final (leader) thread in the group is reaped,
     * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
     */
    void posix_cpu_timers_exit(struct task_struct *tsk)
    {
    	cleanup_timers(&tsk->posix_cputimers);
    }
    void posix_cpu_timers_exit_group(struct task_struct *tsk)
    {
    	cleanup_timers(&tsk->signal->posix_cputimers);
    }
    
    /*
     * Insert the timer on the appropriate list before any timers that
     * expire later.  This must be called with the sighand lock held.
     */
    static void arm_timer(struct k_itimer *timer)
    {
    	int clkidx = CPUCLOCK_WHICH(timer->it_clock);
    	struct cpu_timer *ctmr = &timer->it.cpu;
    	u64 newexp = cpu_timer_getexpires(ctmr);
    	struct task_struct *p = ctmr->task;
    	struct posix_cputimer_base *base;
    
    	if (CPUCLOCK_PERTHREAD(timer->it_clock))
    		base = p->posix_cputimers.bases + clkidx;
    	else
    		base = p->signal->posix_cputimers.bases + clkidx;
    
    	if (!cpu_timer_enqueue(&base->tqhead, ctmr))
    		return;
    
    	/*
    	 * We are the new earliest-expiring POSIX 1.b timer, hence
    	 * need to update expiration cache. Take into account that
    	 * for process timers we share expiration cache with itimers
    	 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
    	 */
    	if (newexp < base->nextevt)
    		base->nextevt = newexp;
    
    	if (CPUCLOCK_PERTHREAD(timer->it_clock))
    		tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER);
    	else
    		tick_dep_set_signal(p->signal, TICK_DEP_BIT_POSIX_TIMER);
    }
    
    /*
     * The timer is locked, fire it and arrange for its reload.
     */
    static void cpu_timer_fire(struct k_itimer *timer)
    {
    	struct cpu_timer *ctmr = &timer->it.cpu;
    
    	if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
    		/*
    		 * User don't want any signal.
    		 */
    		cpu_timer_setexpires(ctmr, 0);
    	} else if (unlikely(timer->sigq == NULL)) {
    		/*
    		 * This a special case for clock_nanosleep,
    		 * not a normal timer from sys_timer_create.
    		 */
    		wake_up_process(timer->it_process);
    		cpu_timer_setexpires(ctmr, 0);
    	} else if (!timer->it_interval) {
    		/*
    		 * One-shot timer.  Clear it as soon as it's fired.
    		 */
    		posix_timer_event(timer, 0);
    		cpu_timer_setexpires(ctmr, 0);
    	} else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
    		/*
    		 * The signal did not get queued because the signal
    		 * was ignored, so we won't get any callback to
    		 * reload the timer.  But we need to keep it
    		 * ticking in case the signal is deliverable next time.
    		 */
    		posix_cpu_timer_rearm(timer);
    		++timer->it_requeue_pending;
    	}
    }
    
    /*
     * Guts of sys_timer_settime for CPU timers.
     * This is called with the timer locked and interrupts disabled.
     * If we return TIMER_RETRY, it's necessary to release the timer's lock
     * and try again.  (This happens when the timer is in the middle of firing.)
     */
    static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
    			       struct itimerspec64 *new, struct itimerspec64 *old)
    {
    	clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
    	u64 old_expires, new_expires, old_incr, val;
    	struct cpu_timer *ctmr = &timer->it.cpu;
    	struct task_struct *p = ctmr->task;
    	struct sighand_struct *sighand;
    	unsigned long flags;
    	int ret = 0;
    
    	if (WARN_ON_ONCE(!p))
    		return -EINVAL;
    
    	/*
    	 * Use the to_ktime conversion because that clamps the maximum
    	 * value to KTIME_MAX and avoid multiplication overflows.
    	 */
    	new_expires = ktime_to_ns(timespec64_to_ktime(new->it_value));
    
    	/*
    	 * Protect against sighand release/switch in exit/exec and p->cpu_timers
    	 * and p->signal->cpu_timers read/write in arm_timer()
    	 */
    	sighand = lock_task_sighand(p, &flags);
    	/*
    	 * If p has just been reaped, we can no
    	 * longer get any information about it at all.
    	 */
    	if (unlikely(sighand == NULL))
    		return -ESRCH;
    
    	/*
    	 * Disarm any old timer after extracting its expiry time.
    	 */
    	old_incr = timer->it_interval;
    	old_expires = cpu_timer_getexpires(ctmr);
    
    	if (unlikely(timer->it.cpu.firing)) {
    		timer->it.cpu.firing = -1;
    		ret = TIMER_RETRY;
    	} else {
    		cpu_timer_dequeue(ctmr);
    	}
    
    	/*
    	 * We need to sample the current value to convert the new
    	 * value from to relative and absolute, and to convert the
    	 * old value from absolute to relative.  To set a process
    	 * timer, we need a sample to balance the thread expiry
    	 * times (in arm_timer).  With an absolute time, we must
    	 * check if it's already passed.  In short, we need a sample.
    	 */
    	if (CPUCLOCK_PERTHREAD(timer->it_clock))
    		val = cpu_clock_sample(clkid, p);
    	else
    		val = cpu_clock_sample_group(clkid, p, true);
    
    	if (old) {
    		if (old_expires == 0) {
    			old->it_value.tv_sec = 0;
    			old->it_value.tv_nsec = 0;
    		} else {
    			/*
    			 * Update the timer in case it has overrun already.
    			 * If it has, we'll report it as having overrun and
    			 * with the next reloaded timer already ticking,
    			 * though we are swallowing that pending
    			 * notification here to install the new setting.
    			 */
    			u64 exp = bump_cpu_timer(timer, val);
    
    			if (val < exp) {
    				old_expires = exp - val;
    				old->it_value = ns_to_timespec64(old_expires);
    			} else {
    				old->it_value.tv_nsec = 1;
    				old->it_value.tv_sec = 0;
    			}
    		}
    	}
    
    	if (unlikely(ret)) {
    		/*
    		 * We are colliding with the timer actually firing.
    		 * Punt after filling in the timer's old value, and
    		 * disable this firing since we are already reporting
    		 * it as an overrun (thanks to bump_cpu_timer above).
    		 */
    		unlock_task_sighand(p, &flags);
    		goto out;
    	}
    
    	if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) {
    		new_expires += val;
    	}
    
    	/*
    	 * Install the new expiry time (or zero).
    	 * For a timer with no notification action, we don't actually
    	 * arm the timer (we'll just fake it for timer_gettime).
    	 */
    	cpu_timer_setexpires(ctmr, new_expires);
    	if (new_expires != 0 && val < new_expires) {
    		arm_timer(timer);
    	}
    
    	unlock_task_sighand(p, &flags);
    	/*
    	 * Install the new reload setting, and
    	 * set up the signal and overrun bookkeeping.
    	 */
    	timer->it_interval = timespec64_to_ktime(new->it_interval);
    
    	/*
    	 * This acts as a modification timestamp for the timer,
    	 * so any automatic reload attempt will punt on seeing
    	 * that we have reset the timer manually.
    	 */
    	timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
    		~REQUEUE_PENDING;
    	timer->it_overrun_last = 0;
    	timer->it_overrun = -1;
    
    	if (new_expires != 0 && !(val < new_expires)) {
    		/*
    		 * The designated time already passed, so we notify
    		 * immediately, even if the thread never runs to
    		 * accumulate more time on this clock.
    		 */
    		cpu_timer_fire(timer);
    	}
    
    	ret = 0;
     out:
    	if (old)
    		old->it_interval = ns_to_timespec64(old_incr);
    
    	return ret;
    }
    
    static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp)
    {
    	clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
    	struct cpu_timer *ctmr = &timer->it.cpu;
    	u64 now, expires = cpu_timer_getexpires(ctmr);
    	struct task_struct *p = ctmr->task;
    
    	if (WARN_ON_ONCE(!p))
    		return;
    
    	/*
    	 * Easy part: convert the reload time.
    	 */
    	itp->it_interval = ktime_to_timespec64(timer->it_interval);
    
    	if (!expires)
    		return;
    
    	/*
    	 * Sample the clock to take the difference with the expiry time.
    	 */
    	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
    		now = cpu_clock_sample(clkid, p);
    	} else {
    		struct sighand_struct *sighand;
    		unsigned long flags;
    
    		/*
    		 * Protect against sighand release/switch in exit/exec and
    		 * also make timer sampling safe if it ends up calling
    		 * thread_group_cputime().
    		 */
    		sighand = lock_task_sighand(p, &flags);
    		if (unlikely(sighand == NULL)) {
    			/*
    			 * The process has been reaped.
    			 * We can't even collect a sample any more.
    			 * Disarm the timer, nothing else to do.
    			 */
    			cpu_timer_setexpires(ctmr, 0);
    			return;
    		} else {
    			now = cpu_clock_sample_group(clkid, p, false);
    			unlock_task_sighand(p, &flags);
    		}
    	}
    
    	if (now < expires) {
    		itp->it_value = ns_to_timespec64(expires - now);
    	} else {
    		/*
    		 * The timer should have expired already, but the firing
    		 * hasn't taken place yet.  Say it's just about to expire.
    		 */
    		itp->it_value.tv_nsec = 1;
    		itp->it_value.tv_sec = 0;
    	}
    }
    
    #define MAX_COLLECTED	20
    
    static u64 collect_timerqueue(struct timerqueue_head *head,
    			      struct list_head *firing, u64 now)
    {
    	struct timerqueue_node *next;
    	int i = 0;
    
    	while ((next = timerqueue_getnext(head))) {
    		struct cpu_timer *ctmr;
    		u64 expires;
    
    		ctmr = container_of(next, struct cpu_timer, node);
    		expires = cpu_timer_getexpires(ctmr);
    		/* Limit the number of timers to expire at once */
    		if (++i == MAX_COLLECTED || now < expires)
    			return expires;
    
    		ctmr->firing = 1;
    		cpu_timer_dequeue(ctmr);
    		list_add_tail(&ctmr->elist, firing);
    	}
    
    	return U64_MAX;
    }
    
    static void collect_posix_cputimers(struct posix_cputimers *pct, u64 *samples,
    				    struct list_head *firing)
    {
    	struct posix_cputimer_base *base = pct->bases;
    	int i;
    
    	for (i = 0; i < CPUCLOCK_MAX; i++, base++) {
    		base->nextevt = collect_timerqueue(&base->tqhead, firing,
    						    samples[i]);
    	}
    }
    
    static inline void check_dl_overrun(struct task_struct *tsk)
    {
    	if (tsk->dl.dl_overrun) {
    		tsk->dl.dl_overrun = 0;
    		__group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
    	}
    }
    
    static bool check_rlimit(u64 time, u64 limit, int signo, bool rt, bool hard)
    {
    	if (time < limit)
    		return false;
    
    	if (print_fatal_signals) {
    		pr_info("%s Watchdog Timeout (%s): %s[%d]\n",
    			rt ? "RT" : "CPU", hard ? "hard" : "soft",
    			current->comm, task_pid_nr(current));
    	}
    	__group_send_sig_info(signo, SEND_SIG_PRIV, current);
    	return true;
    }
    
    /*
     * Check for any per-thread CPU timers that have fired and move them off
     * the tsk->cpu_timers[N] list onto the firing list.  Here we update the
     * tsk->it_*_expires values to reflect the remaining thread CPU timers.
     */
    static void check_thread_timers(struct task_struct *tsk,
    				struct list_head *firing)
    {
    	struct posix_cputimers *pct = &tsk->posix_cputimers;
    	u64 samples[CPUCLOCK_MAX];
    	unsigned long soft;
    
    	if (dl_task(tsk))
    		check_dl_overrun(tsk);
    
    	if (expiry_cache_is_inactive(pct))
    		return;
    
    	task_sample_cputime(tsk, samples);
    	collect_posix_cputimers(pct, samples, firing);
    
    	/*
    	 * Check for the special case thread timers.
    	 */
    	soft = task_rlimit(tsk, RLIMIT_RTTIME);
    	if (soft != RLIM_INFINITY) {
    		/* Task RT timeout is accounted in jiffies. RTTIME is usec */
    		unsigned long rttime = tsk->rt.timeout * (USEC_PER_SEC / HZ);
    		unsigned long hard = task_rlimit_max(tsk, RLIMIT_RTTIME);
    
    		/* At the hard limit, send SIGKILL. No further action. */
    		if (hard != RLIM_INFINITY &&
    		    check_rlimit(rttime, hard, SIGKILL, true, true))
    			return;
    
    		/* At the soft limit, send a SIGXCPU every second */
    		if (check_rlimit(rttime, soft, SIGXCPU, true, false)) {
    			soft += USEC_PER_SEC;
    			tsk->signal->rlim[RLIMIT_RTTIME].rlim_cur = soft;
    		}
    	}
    
    	if (expiry_cache_is_inactive(pct))
    		tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER);
    }
    
    static inline void stop_process_timers(struct signal_struct *sig)
    {
    	struct posix_cputimers *pct = &sig->posix_cputimers;
    
    	/* Turn off the active flag. This is done without locking. */
    	WRITE_ONCE(pct->timers_active, false);
    	tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER);
    }
    
    static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
    			     u64 *expires, u64 cur_time, int signo)
    {
    	if (!it->expires)
    		return;
    
    	if (cur_time >= it->expires) {
    		if (it->incr)
    			it->expires += it->incr;
    		else
    			it->expires = 0;
    
    		trace_itimer_expire(signo == SIGPROF ?
    				    ITIMER_PROF : ITIMER_VIRTUAL,
    				    task_tgid(tsk), cur_time);
    		__group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
    	}
    
    	if (it->expires && it->expires < *expires)
    		*expires = it->expires;
    }
    
    /*
     * Check for any per-thread CPU timers that have fired and move them
     * off the tsk->*_timers list onto the firing list.  Per-thread timers
     * have already been taken off.
     */
    static void check_process_timers(struct task_struct *tsk,
    				 struct list_head *firing)
    {
    	struct signal_struct *const sig = tsk->signal;
    	struct posix_cputimers *pct = &sig->posix_cputimers;
    	u64 samples[CPUCLOCK_MAX];
    	unsigned long soft;
    
    	/*
    	 * If there are no active process wide timers (POSIX 1.b, itimers,
    	 * RLIMIT_CPU) nothing to check. Also skip the process wide timer
    	 * processing when there is already another task handling them.
    	 */
    	if (!READ_ONCE(pct->timers_active) || pct->expiry_active)
    		return;
    
    	/*
    	 * Signify that a thread is checking for process timers.
    	 * Write access to this field is protected by the sighand lock.
    	 */
    	pct->expiry_active = true;
    
    	/*
    	 * Collect the current process totals. Group accounting is active
    	 * so the sample can be taken directly.
    	 */
    	proc_sample_cputime_atomic(&sig->cputimer.cputime_atomic, samples);
    	collect_posix_cputimers(pct, samples, firing);
    
    	/*
    	 * Check for the special case process timers.
    	 */
    	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF],
    			 &pct->bases[CPUCLOCK_PROF].nextevt,
    			 samples[CPUCLOCK_PROF], SIGPROF);
    	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT],
    			 &pct->bases[CPUCLOCK_VIRT].nextevt,
    			 samples[CPUCLOCK_VIRT], SIGVTALRM);
    
    	soft = task_rlimit(tsk, RLIMIT_CPU);
    	if (soft != RLIM_INFINITY) {
    		/* RLIMIT_CPU is in seconds. Samples are nanoseconds */
    		unsigned long hard = task_rlimit_max(tsk, RLIMIT_CPU);
    		u64 ptime = samples[CPUCLOCK_PROF];
    		u64 softns = (u64)soft * NSEC_PER_SEC;
    		u64 hardns = (u64)hard * NSEC_PER_SEC;
    
    		/* At the hard limit, send SIGKILL. No further action. */
    		if (hard != RLIM_INFINITY &&
    		    check_rlimit(ptime, hardns, SIGKILL, false, true))
    			return;
    
    		/* At the soft limit, send a SIGXCPU every second */
    		if (check_rlimit(ptime, softns, SIGXCPU, false, false)) {
    			sig->rlim[RLIMIT_CPU].rlim_cur = soft + 1;
    			softns += NSEC_PER_SEC;
    		}
    
    		/* Update the expiry cache */
    		if (softns < pct->bases[CPUCLOCK_PROF].nextevt)
    			pct->bases[CPUCLOCK_PROF].nextevt = softns;
    	}
    
    	if (expiry_cache_is_inactive(pct))
    		stop_process_timers(sig);
    
    	pct->expiry_active = false;
    }
    
    /*
     * This is called from the signal code (via posixtimer_rearm)
     * when the last timer signal was delivered and we have to reload the timer.
     */
    static void posix_cpu_timer_rearm(struct k_itimer *timer)
    {
    	clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
    	struct cpu_timer *ctmr = &timer->it.cpu;
    	struct task_struct *p = ctmr->task;
    	struct sighand_struct *sighand;
    	unsigned long flags;
    	u64 now;
    
    	if (WARN_ON_ONCE(!p))
    		return;
    
    	/*
    	 * Fetch the current sample and update the timer's expiry time.
    	 */
    	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
    		now = cpu_clock_sample(clkid, p);
    		bump_cpu_timer(timer, now);
    		if (unlikely(p->exit_state))
    			return;
    
    		/* Protect timer list r/w in arm_timer() */
    		sighand = lock_task_sighand(p, &flags);
    		if (!sighand)
    			return;
    	} else {
    		/*
    		 * Protect arm_timer() and timer sampling in case of call to
    		 * thread_group_cputime().
    		 */
    		sighand = lock_task_sighand(p, &flags);
    		if (unlikely(sighand == NULL)) {
    			/*
    			 * The process has been reaped.
    			 * We can't even collect a sample any more.
    			 */
    			cpu_timer_setexpires(ctmr, 0);
    			return;
    		} else if (unlikely(p->exit_state) && thread_group_empty(p)) {
    			/* If the process is dying, no need to rearm */
    			goto unlock;
    		}
    		now = cpu_clock_sample_group(clkid, p, true);
    		bump_cpu_timer(timer, now);
    		/* Leave the sighand locked for the call below.  */
    	}
    
    	/*
    	 * Now re-arm for the new expiry time.
    	 */
    	arm_timer(timer);
    unlock:
    	unlock_task_sighand(p, &flags);
    }
    
    /**
     * task_cputimers_expired - Check whether posix CPU timers are expired
     *
     * @samples:	Array of current samples for the CPUCLOCK clocks
     * @pct:	Pointer to a posix_cputimers container
     *
     * Returns true if any member of @samples is greater than the corresponding
     * member of @pct->bases[CLK].nextevt. False otherwise
     */
    static inline bool
    task_cputimers_expired(const u64 *samples, struct posix_cputimers *pct)
    {
    	int i;
    
    	for (i = 0; i < CPUCLOCK_MAX; i++) {
    		if (samples[i] >= pct->bases[i].nextevt)
    			return true;
    	}
    	return false;
    }
    
    /**
     * fastpath_timer_check - POSIX CPU timers fast path.
     *
     * @tsk:	The task (thread) being checked.
     *
     * Check the task and thread group timers.  If both are zero (there are no
     * timers set) return false.  Otherwise snapshot the task and thread group
     * timers and compare them with the corresponding expiration times.  Return
     * true if a timer has expired, else return false.
     */
    static inline bool fastpath_timer_check(struct task_struct *tsk)
    {
    	struct posix_cputimers *pct = &tsk->posix_cputimers;
    	struct signal_struct *sig;
    
    	if (!expiry_cache_is_inactive(pct)) {
    		u64 samples[CPUCLOCK_MAX];
    
    		task_sample_cputime(tsk, samples);
    		if (task_cputimers_expired(samples, pct))
    			return true;
    	}
    
    	sig = tsk->signal;
    	pct = &sig->posix_cputimers;
    	/*
    	 * Check if thread group timers expired when timers are active and
    	 * no other thread in the group is already handling expiry for
    	 * thread group cputimers. These fields are read without the
    	 * sighand lock. However, this is fine because this is meant to be
    	 * a fastpath heuristic to determine whether we should try to
    	 * acquire the sighand lock to handle timer expiry.
    	 *
    	 * In the worst case scenario, if concurrently timers_active is set
    	 * or expiry_active is cleared, but the current thread doesn't see
    	 * the change yet, the timer checks are delayed until the next
    	 * thread in the group gets a scheduler interrupt to handle the
    	 * timer. This isn't an issue in practice because these types of
    	 * delays with signals actually getting sent are expected.
    	 */
    	if (READ_ONCE(pct->timers_active) && !READ_ONCE(pct->expiry_active)) {
    		u64 samples[CPUCLOCK_MAX];
    
    		proc_sample_cputime_atomic(&sig->cputimer.cputime_atomic,
    					   samples);
    
    		if (task_cputimers_expired(samples, pct))
    			return true;
    	}
    
    	if (dl_task(tsk) && tsk->dl.dl_overrun)
    		return true;
    
    	return false;
    }
    
    /*
     * This is called from the timer interrupt handler.  The irq handler has
     * already updated our counts.  We need to check if any timers fire now.
     * Interrupts are disabled.
     */
    void run_posix_cpu_timers(void)
    {
    	struct task_struct *tsk = current;
    	struct k_itimer *timer, *next;
    	unsigned long flags;
    	LIST_HEAD(firing);
    
    	lockdep_assert_irqs_disabled();
    
    	/*
    	 * The fast path checks that there are no expired thread or thread
    	 * group timers.  If that's so, just return.
    	 */
    	if (!fastpath_timer_check(tsk))
    		return;
    
    	if (!lock_task_sighand(tsk, &flags))
    		return;
    	/*
    	 * Here we take off tsk->signal->cpu_timers[N] and
    	 * tsk->cpu_timers[N] all the timers that are firing, and
    	 * put them on the firing list.
    	 */
    	check_thread_timers(tsk, &firing);
    
    	check_process_timers(tsk, &firing);
    
    	/*
    	 * We must release these locks before taking any timer's lock.
    	 * There is a potential race with timer deletion here, as the
    	 * siglock now protects our private firing list.  We have set
    	 * the firing flag in each timer, so that a deletion attempt
    	 * that gets the timer lock before we do will give it up and
    	 * spin until we've taken care of that timer below.
    	 */
    	unlock_task_sighand(tsk, &flags);
    
    	/*
    	 * Now that all the timers on our list have the firing flag,
    	 * no one will touch their list entries but us.  We'll take
    	 * each timer's lock before clearing its firing flag, so no
    	 * timer call will interfere.
    	 */
    	list_for_each_entry_safe(timer, next, &firing, it.cpu.elist) {
    		int cpu_firing;
    
    		spin_lock(&timer->it_lock);
    		list_del_init(&timer->it.cpu.elist);
    		cpu_firing = timer->it.cpu.firing;
    		timer->it.cpu.firing = 0;
    		/*
    		 * The firing flag is -1 if we collided with a reset
    		 * of the timer, which already reported this
    		 * almost-firing as an overrun.  So don't generate an event.
    		 */
    		if (likely(cpu_firing >= 0))
    			cpu_timer_fire(timer);
    		spin_unlock(&timer->it_lock);
    	}
    }
    
    /*
     * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
     * The tsk->sighand->siglock must be held by the caller.
     */
    void set_process_cpu_timer(struct task_struct *tsk, unsigned int clkid,
    			   u64 *newval, u64 *oldval)
    {
    	u64 now, *nextevt;
    
    	if (WARN_ON_ONCE(clkid >= CPUCLOCK_SCHED))
    		return;
    
    	nextevt = &tsk->signal->posix_cputimers.bases[clkid].nextevt;
    	now = cpu_clock_sample_group(clkid, tsk, true);
    
    	if (oldval) {
    		/*
    		 * We are setting itimer. The *oldval is absolute and we update
    		 * it to be relative, *newval argument is relative and we update
    		 * it to be absolute.
    		 */
    		if (*oldval) {
    			if (*oldval <= now) {
    				/* Just about to fire. */
    				*oldval = TICK_NSEC;
    			} else {
    				*oldval -= now;
    			}
    		}
    
    		if (!*newval)
    			return;
    		*newval += now;
    	}
    
    	/*
    	 * Update expiration cache if this is the earliest timer. CPUCLOCK_PROF
    	 * expiry cache is also used by RLIMIT_CPU!.
    	 */
    	if (*newval < *nextevt)
    		*nextevt = *newval;
    
    	tick_dep_set_signal(tsk->signal, TICK_DEP_BIT_POSIX_TIMER);
    }
    
    static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
    			    const struct timespec64 *rqtp)
    {
    	struct itimerspec64 it;
    	struct k_itimer timer;
    	u64 expires;
    	int error;
    
    	/*
    	 * Set up a temporary timer and then wait for it to go off.
    	 */
    	memset(&timer, 0, sizeof timer);
    	spin_lock_init(&timer.it_lock);
    	timer.it_clock = which_clock;
    	timer.it_overrun = -1;
    	error = posix_cpu_timer_create(&timer);
    	timer.it_process = current;
    
    	if (!error) {
    		static struct itimerspec64 zero_it;
    		struct restart_block *restart;
    
    		memset(&it, 0, sizeof(it));
    		it.it_value = *rqtp;
    
    		spin_lock_irq(&timer.it_lock);
    		error = posix_cpu_timer_set(&timer, flags, &it, NULL);
    		if (error) {
    			spin_unlock_irq(&timer.it_lock);
    			return error;
    		}
    
    		while (!signal_pending(current)) {
    			if (!cpu_timer_getexpires(&timer.it.cpu)) {
    				/*
    				 * Our timer fired and was reset, below
    				 * deletion can not fail.
    				 */
    				posix_cpu_timer_del(&timer);
    				spin_unlock_irq(&timer.it_lock);
    				return 0;
    			}
    
    			/*
    			 * Block until cpu_timer_fire (or a signal) wakes us.
    			 */
    			__set_current_state(TASK_INTERRUPTIBLE);
    			spin_unlock_irq(&timer.it_lock);
    			schedule();
    			spin_lock_irq(&timer.it_lock);
    		}
    
    		/*
    		 * We were interrupted by a signal.
    		 */
    		expires = cpu_timer_getexpires(&timer.it.cpu);
    		error = posix_cpu_timer_set(&timer, 0, &zero_it, &it);
    		if (!error) {
    			/*
    			 * Timer is now unarmed, deletion can not fail.
    			 */
    			posix_cpu_timer_del(&timer);
    		}
    		spin_unlock_irq(&timer.it_lock);
    
    		while (error == TIMER_RETRY) {
    			/*
    			 * We need to handle case when timer was or is in the
    			 * middle of firing. In other cases we already freed
    			 * resources.
    			 */
    			spin_lock_irq(&timer.it_lock);
    			error = posix_cpu_timer_del(&timer);
    			spin_unlock_irq(&timer.it_lock);
    		}
    
    		if ((it.it_value.tv_sec | it.it_value.tv_nsec) == 0) {
    			/*
    			 * It actually did fire already.
    			 */
    			return 0;
    		}
    
    		error = -ERESTART_RESTARTBLOCK;
    		/*
    		 * Report back to the user the time still remaining.
    		 */
    		restart = &current->restart_block;
    		restart->nanosleep.expires = expires;
    		if (restart->nanosleep.type != TT_NONE)
    			error = nanosleep_copyout(restart, &it.it_value);
    	}
    
    	return error;
    }
    
    static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
    
    static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
    			    const struct timespec64 *rqtp)
    {
    	struct restart_block *restart_block = &current->restart_block;
    	int error;
    
    	/*
    	 * Diagnose required errors first.
    	 */
    	if (CPUCLOCK_PERTHREAD(which_clock) &&
    	    (CPUCLOCK_PID(which_clock) == 0 ||
    	     CPUCLOCK_PID(which_clock) == task_pid_vnr(current)))
    		return -EINVAL;
    
    	error = do_cpu_nanosleep(which_clock, flags, rqtp);
    
    	if (error == -ERESTART_RESTARTBLOCK) {
    
    		if (flags & TIMER_ABSTIME)
    			return -ERESTARTNOHAND;
    
    		restart_block->fn = posix_cpu_nsleep_restart;
    		restart_block->nanosleep.clockid = which_clock;
    	}
    	return error;
    }
    
    static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
    {
    	clockid_t which_clock = restart_block->nanosleep.clockid;
    	struct timespec64 t;
    
    	t = ns_to_timespec64(restart_block->nanosleep.expires);
    
    	return do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t);
    }
    
    #define PROCESS_CLOCK	make_process_cpuclock(0, CPUCLOCK_SCHED)
    #define THREAD_CLOCK	make_thread_cpuclock(0, CPUCLOCK_SCHED)
    
    static int process_cpu_clock_getres(const clockid_t which_clock,
    				    struct timespec64 *tp)
    {
    	return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
    }
    static int process_cpu_clock_get(const clockid_t which_clock,
    				 struct timespec64 *tp)
    {
    	return posix_cpu_clock_get(PROCESS_CLOCK, tp);
    }
    static int process_cpu_timer_create(struct k_itimer *timer)
    {
    	timer->it_clock = PROCESS_CLOCK;
    	return posix_cpu_timer_create(timer);
    }
    static int process_cpu_nsleep(const clockid_t which_clock, int flags,
    			      const struct timespec64 *rqtp)
    {
    	return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp);
    }
    static int thread_cpu_clock_getres(const clockid_t which_clock,
    				   struct timespec64 *tp)
    {
    	return posix_cpu_clock_getres(THREAD_CLOCK, tp);
    }
    static int thread_cpu_clock_get(const clockid_t which_clock,
    				struct timespec64 *tp)
    {
    	return posix_cpu_clock_get(THREAD_CLOCK, tp);
    }
    static int thread_cpu_timer_create(struct k_itimer *timer)
    {
    	timer->it_clock = THREAD_CLOCK;
    	return posix_cpu_timer_create(timer);
    }
    
    const struct k_clock clock_posix_cpu = {
    	.clock_getres	= posix_cpu_clock_getres,
    	.clock_set	= posix_cpu_clock_set,
    	.clock_get	= posix_cpu_clock_get,
    	.timer_create	= posix_cpu_timer_create,
    	.nsleep		= posix_cpu_nsleep,
    	.timer_set	= posix_cpu_timer_set,
    	.timer_del	= posix_cpu_timer_del,
    	.timer_get	= posix_cpu_timer_get,
    	.timer_rearm	= posix_cpu_timer_rearm,
    };
    
    const struct k_clock clock_process = {
    	.clock_getres	= process_cpu_clock_getres,
    	.clock_get	= process_cpu_clock_get,
    	.timer_create	= process_cpu_timer_create,
    	.nsleep		= process_cpu_nsleep,
    };
    
    const struct k_clock clock_thread = {
    	.clock_getres	= thread_cpu_clock_getres,
    	.clock_get	= thread_cpu_clock_get,
    	.timer_create	= thread_cpu_timer_create,
    };