Skip to content
Snippets Groups Projects
Select Git revision
  • 127c8c5f0589cea2208c329bff7dcb36e375f46c
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

padata.c

Blame
  • padata.c 27.99 KiB
    // SPDX-License-Identifier: GPL-2.0
    /*
     * padata.c - generic interface to process data streams in parallel
     *
     * See Documentation/core-api/padata.rst for more information.
     *
     * Copyright (C) 2008, 2009 secunet Security Networks AG
     * Copyright (C) 2008, 2009 Steffen Klassert <steffen.klassert@secunet.com>
     *
     * Copyright (c) 2020 Oracle and/or its affiliates.
     * Author: Daniel Jordan <daniel.m.jordan@oracle.com>
     *
     * This program is free software; you can redistribute it and/or modify it
     * under the terms and conditions of the GNU General Public License,
     * version 2, as published by the Free Software Foundation.
     *
     * This program is distributed in the hope it will be useful, but WITHOUT
     * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
     * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
     * more details.
     *
     * You should have received a copy of the GNU General Public License along with
     * this program; if not, write to the Free Software Foundation, Inc.,
     * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
     */
    
    #include <linux/completion.h>
    #include <linux/export.h>
    #include <linux/cpumask.h>
    #include <linux/err.h>
    #include <linux/cpu.h>
    #include <linux/padata.h>
    #include <linux/mutex.h>
    #include <linux/sched.h>
    #include <linux/slab.h>
    #include <linux/sysfs.h>
    #include <linux/rcupdate.h>
    
    #define	PADATA_WORK_ONSTACK	1	/* Work's memory is on stack */
    
    struct padata_work {
    	struct work_struct	pw_work;
    	struct list_head	pw_list;  /* padata_free_works linkage */
    	void			*pw_data;
    };
    
    static DEFINE_SPINLOCK(padata_works_lock);
    static struct padata_work *padata_works;
    static LIST_HEAD(padata_free_works);
    
    struct padata_mt_job_state {
    	spinlock_t		lock;
    	struct completion	completion;
    	struct padata_mt_job	*job;
    	int			nworks;
    	int			nworks_fini;
    	unsigned long		chunk_size;
    };
    
    static void padata_free_pd(struct parallel_data *pd);
    static void __init padata_mt_helper(struct work_struct *work);
    
    static int padata_index_to_cpu(struct parallel_data *pd, int cpu_index)
    {
    	int cpu, target_cpu;
    
    	target_cpu = cpumask_first(pd->cpumask.pcpu);
    	for (cpu = 0; cpu < cpu_index; cpu++)
    		target_cpu = cpumask_next(target_cpu, pd->cpumask.pcpu);
    
    	return target_cpu;
    }
    
    static int padata_cpu_hash(struct parallel_data *pd, unsigned int seq_nr)
    {
    	/*
    	 * Hash the sequence numbers to the cpus by taking
    	 * seq_nr mod. number of cpus in use.
    	 */
    	int cpu_index = seq_nr % cpumask_weight(pd->cpumask.pcpu);
    
    	return padata_index_to_cpu(pd, cpu_index);
    }
    
    static struct padata_work *padata_work_alloc(void)
    {
    	struct padata_work *pw;
    
    	lockdep_assert_held(&padata_works_lock);
    
    	if (list_empty(&padata_free_works))
    		return NULL;	/* No more work items allowed to be queued. */
    
    	pw = list_first_entry(&padata_free_works, struct padata_work, pw_list);
    	list_del(&pw->pw_list);
    	return pw;
    }
    
    static void padata_work_init(struct padata_work *pw, work_func_t work_fn,
    			     void *data, int flags)
    {
    	if (flags & PADATA_WORK_ONSTACK)
    		INIT_WORK_ONSTACK(&pw->pw_work, work_fn);
    	else
    		INIT_WORK(&pw->pw_work, work_fn);
    	pw->pw_data = data;
    }
    
    static int __init padata_work_alloc_mt(int nworks, void *data,
    				       struct list_head *head)
    {
    	int i;
    
    	spin_lock(&padata_works_lock);
    	/* Start at 1 because the current task participates in the job. */
    	for (i = 1; i < nworks; ++i) {
    		struct padata_work *pw = padata_work_alloc();
    
    		if (!pw)
    			break;
    		padata_work_init(pw, padata_mt_helper, data, 0);
    		list_add(&pw->pw_list, head);
    	}
    	spin_unlock(&padata_works_lock);
    
    	return i;
    }
    
    static void padata_work_free(struct padata_work *pw)
    {
    	lockdep_assert_held(&padata_works_lock);
    	list_add(&pw->pw_list, &padata_free_works);
    }
    
    static void __init padata_works_free(struct list_head *works)
    {
    	struct padata_work *cur, *next;
    
    	if (list_empty(works))
    		return;
    
    	spin_lock(&padata_works_lock);
    	list_for_each_entry_safe(cur, next, works, pw_list) {
    		list_del(&cur->pw_list);
    		padata_work_free(cur);
    	}
    	spin_unlock(&padata_works_lock);
    }
    
    static void padata_parallel_worker(struct work_struct *parallel_work)
    {
    	struct padata_work *pw = container_of(parallel_work, struct padata_work,
    					      pw_work);
    	struct padata_priv *padata = pw->pw_data;
    
    	local_bh_disable();
    	padata->parallel(padata);
    	spin_lock(&padata_works_lock);
    	padata_work_free(pw);
    	spin_unlock(&padata_works_lock);
    	local_bh_enable();
    }
    
    /**
     * padata_do_parallel - padata parallelization function
     *
     * @ps: padatashell
     * @padata: object to be parallelized
     * @cb_cpu: pointer to the CPU that the serialization callback function should
     *          run on.  If it's not in the serial cpumask of @pinst
     *          (i.e. cpumask.cbcpu), this function selects a fallback CPU and if
     *          none found, returns -EINVAL.
     *
     * The parallelization callback function will run with BHs off.
     * Note: Every object which is parallelized by padata_do_parallel
     * must be seen by padata_do_serial.
     *
     * Return: 0 on success or else negative error code.
     */
    int padata_do_parallel(struct padata_shell *ps,
    		       struct padata_priv *padata, int *cb_cpu)
    {
    	struct padata_instance *pinst = ps->pinst;
    	int i, cpu, cpu_index, err;
    	struct parallel_data *pd;
    	struct padata_work *pw;
    
    	rcu_read_lock_bh();
    
    	pd = rcu_dereference_bh(ps->pd);
    
    	err = -EINVAL;
    	if (!(pinst->flags & PADATA_INIT) || pinst->flags & PADATA_INVALID)
    		goto out;
    
    	if (!cpumask_test_cpu(*cb_cpu, pd->cpumask.cbcpu)) {
    		if (!cpumask_weight(pd->cpumask.cbcpu))
    			goto out;
    
    		/* Select an alternate fallback CPU and notify the caller. */
    		cpu_index = *cb_cpu % cpumask_weight(pd->cpumask.cbcpu);
    
    		cpu = cpumask_first(pd->cpumask.cbcpu);
    		for (i = 0; i < cpu_index; i++)
    			cpu = cpumask_next(cpu, pd->cpumask.cbcpu);
    
    		*cb_cpu = cpu;
    	}
    
    	err =  -EBUSY;
    	if ((pinst->flags & PADATA_RESET))
    		goto out;
    
    	atomic_inc(&pd->refcnt);
    	padata->pd = pd;
    	padata->cb_cpu = *cb_cpu;
    
    	spin_lock(&padata_works_lock);
    	padata->seq_nr = ++pd->seq_nr;
    	pw = padata_work_alloc();
    	spin_unlock(&padata_works_lock);
    
    	rcu_read_unlock_bh();
    
    	if (pw) {
    		padata_work_init(pw, padata_parallel_worker, padata, 0);
    		queue_work(pinst->parallel_wq, &pw->pw_work);
    	} else {
    		/* Maximum works limit exceeded, run in the current task. */
    		padata->parallel(padata);
    	}
    
    	return 0;
    out:
    	rcu_read_unlock_bh();
    
    	return err;
    }
    EXPORT_SYMBOL(padata_do_parallel);
    
    /*
     * padata_find_next - Find the next object that needs serialization.
     *
     * Return:
     * * A pointer to the control struct of the next object that needs
     *   serialization, if present in one of the percpu reorder queues.
     * * NULL, if the next object that needs serialization will
     *   be parallel processed by another cpu and is not yet present in
     *   the cpu's reorder queue.
     */
    static struct padata_priv *padata_find_next(struct parallel_data *pd,
    					    bool remove_object)
    {
    	struct padata_priv *padata;
    	struct padata_list *reorder;
    	int cpu = pd->cpu;
    
    	reorder = per_cpu_ptr(pd->reorder_list, cpu);
    
    	spin_lock(&reorder->lock);
    	if (list_empty(&reorder->list)) {
    		spin_unlock(&reorder->lock);
    		return NULL;
    	}
    
    	padata = list_entry(reorder->list.next, struct padata_priv, list);
    
    	/*
    	 * Checks the rare case where two or more parallel jobs have hashed to
    	 * the same CPU and one of the later ones finishes first.
    	 */
    	if (padata->seq_nr != pd->processed) {
    		spin_unlock(&reorder->lock);
    		return NULL;
    	}
    
    	if (remove_object) {
    		list_del_init(&padata->list);
    		++pd->processed;
    		pd->cpu = cpumask_next_wrap(cpu, pd->cpumask.pcpu, -1, false);
    	}
    
    	spin_unlock(&reorder->lock);
    	return padata;
    }
    
    static void padata_reorder(struct parallel_data *pd)
    {
    	struct padata_instance *pinst = pd->ps->pinst;
    	int cb_cpu;
    	struct padata_priv *padata;
    	struct padata_serial_queue *squeue;
    	struct padata_list *reorder;
    
    	/*
    	 * We need to ensure that only one cpu can work on dequeueing of
    	 * the reorder queue the time. Calculating in which percpu reorder
    	 * queue the next object will arrive takes some time. A spinlock
    	 * would be highly contended. Also it is not clear in which order
    	 * the objects arrive to the reorder queues. So a cpu could wait to
    	 * get the lock just to notice that there is nothing to do at the
    	 * moment. Therefore we use a trylock and let the holder of the lock
    	 * care for all the objects enqueued during the holdtime of the lock.
    	 */
    	if (!spin_trylock_bh(&pd->lock))
    		return;
    
    	while (1) {
    		padata = padata_find_next(pd, true);
    
    		/*
    		 * If the next object that needs serialization is parallel
    		 * processed by another cpu and is still on it's way to the
    		 * cpu's reorder queue, nothing to do for now.
    		 */
    		if (!padata)
    			break;
    
    		cb_cpu = padata->cb_cpu;
    		squeue = per_cpu_ptr(pd->squeue, cb_cpu);
    
    		spin_lock(&squeue->serial.lock);
    		list_add_tail(&padata->list, &squeue->serial.list);
    		spin_unlock(&squeue->serial.lock);
    
    		queue_work_on(cb_cpu, pinst->serial_wq, &squeue->work);
    	}
    
    	spin_unlock_bh(&pd->lock);
    
    	/*
    	 * The next object that needs serialization might have arrived to
    	 * the reorder queues in the meantime.
    	 *
    	 * Ensure reorder queue is read after pd->lock is dropped so we see
    	 * new objects from another task in padata_do_serial.  Pairs with
    	 * smp_mb in padata_do_serial.
    	 */
    	smp_mb();
    
    	reorder = per_cpu_ptr(pd->reorder_list, pd->cpu);
    	if (!list_empty(&reorder->list) && padata_find_next(pd, false))
    		queue_work(pinst->serial_wq, &pd->reorder_work);
    }
    
    static void invoke_padata_reorder(struct work_struct *work)
    {
    	struct parallel_data *pd;
    
    	local_bh_disable();
    	pd = container_of(work, struct parallel_data, reorder_work);
    	padata_reorder(pd);
    	local_bh_enable();
    }
    
    static void padata_serial_worker(struct work_struct *serial_work)
    {
    	struct padata_serial_queue *squeue;
    	struct parallel_data *pd;
    	LIST_HEAD(local_list);
    	int cnt;
    
    	local_bh_disable();
    	squeue = container_of(serial_work, struct padata_serial_queue, work);
    	pd = squeue->pd;
    
    	spin_lock(&squeue->serial.lock);
    	list_replace_init(&squeue->serial.list, &local_list);
    	spin_unlock(&squeue->serial.lock);
    
    	cnt = 0;
    
    	while (!list_empty(&local_list)) {
    		struct padata_priv *padata;
    
    		padata = list_entry(local_list.next,
    				    struct padata_priv, list);
    
    		list_del_init(&padata->list);
    
    		padata->serial(padata);
    		cnt++;
    	}
    	local_bh_enable();
    
    	if (atomic_sub_and_test(cnt, &pd->refcnt))
    		padata_free_pd(pd);
    }
    
    /**
     * padata_do_serial - padata serialization function
     *
     * @padata: object to be serialized.
     *
     * padata_do_serial must be called for every parallelized object.
     * The serialization callback function will run with BHs off.
     */
    void padata_do_serial(struct padata_priv *padata)
    {
    	struct parallel_data *pd = padata->pd;
    	int hashed_cpu = padata_cpu_hash(pd, padata->seq_nr);
    	struct padata_list *reorder = per_cpu_ptr(pd->reorder_list, hashed_cpu);
    	struct padata_priv *cur;
    
    	spin_lock(&reorder->lock);
    	/* Sort in ascending order of sequence number. */
    	list_for_each_entry_reverse(cur, &reorder->list, list)
    		if (cur->seq_nr < padata->seq_nr)
    			break;
    	list_add(&padata->list, &cur->list);
    	spin_unlock(&reorder->lock);
    
    	/*
    	 * Ensure the addition to the reorder list is ordered correctly
    	 * with the trylock of pd->lock in padata_reorder.  Pairs with smp_mb
    	 * in padata_reorder.
    	 */
    	smp_mb();
    
    	padata_reorder(pd);
    }
    EXPORT_SYMBOL(padata_do_serial);
    
    static int padata_setup_cpumasks(struct padata_instance *pinst)
    {
    	struct workqueue_attrs *attrs;
    	int err;
    
    	attrs = alloc_workqueue_attrs();
    	if (!attrs)
    		return -ENOMEM;
    
    	/* Restrict parallel_wq workers to pd->cpumask.pcpu. */
    	cpumask_copy(attrs->cpumask, pinst->cpumask.pcpu);
    	err = apply_workqueue_attrs(pinst->parallel_wq, attrs);
    	free_workqueue_attrs(attrs);
    
    	return err;
    }
    
    static void __init padata_mt_helper(struct work_struct *w)
    {
    	struct padata_work *pw = container_of(w, struct padata_work, pw_work);
    	struct padata_mt_job_state *ps = pw->pw_data;
    	struct padata_mt_job *job = ps->job;
    	bool done;
    
    	spin_lock(&ps->lock);
    
    	while (job->size > 0) {
    		unsigned long start, size, end;
    
    		start = job->start;
    		/* So end is chunk size aligned if enough work remains. */
    		size = roundup(start + 1, ps->chunk_size) - start;
    		size = min(size, job->size);
    		end = start + size;
    
    		job->start = end;
    		job->size -= size;
    
    		spin_unlock(&ps->lock);
    		job->thread_fn(start, end, job->fn_arg);
    		spin_lock(&ps->lock);
    	}
    
    	++ps->nworks_fini;
    	done = (ps->nworks_fini == ps->nworks);
    	spin_unlock(&ps->lock);
    
    	if (done)
    		complete(&ps->completion);
    }
    
    /**
     * padata_do_multithreaded - run a multithreaded job
     * @job: Description of the job.
     *
     * See the definition of struct padata_mt_job for more details.
     */
    void __init padata_do_multithreaded(struct padata_mt_job *job)
    {
    	/* In case threads finish at different times. */
    	static const unsigned long load_balance_factor = 4;
    	struct padata_work my_work, *pw;
    	struct padata_mt_job_state ps;
    	LIST_HEAD(works);
    	int nworks;
    
    	if (job->size == 0)
    		return;
    
    	/* Ensure at least one thread when size < min_chunk. */
    	nworks = max(job->size / job->min_chunk, 1ul);
    	nworks = min(nworks, job->max_threads);
    
    	if (nworks == 1) {
    		/* Single thread, no coordination needed, cut to the chase. */
    		job->thread_fn(job->start, job->start + job->size, job->fn_arg);
    		return;
    	}
    
    	spin_lock_init(&ps.lock);
    	init_completion(&ps.completion);
    	ps.job	       = job;
    	ps.nworks      = padata_work_alloc_mt(nworks, &ps, &works);
    	ps.nworks_fini = 0;
    
    	/*
    	 * Chunk size is the amount of work a helper does per call to the
    	 * thread function.  Load balance large jobs between threads by
    	 * increasing the number of chunks, guarantee at least the minimum
    	 * chunk size from the caller, and honor the caller's alignment.
    	 */
    	ps.chunk_size = job->size / (ps.nworks * load_balance_factor);
    	ps.chunk_size = max(ps.chunk_size, job->min_chunk);
    	ps.chunk_size = roundup(ps.chunk_size, job->align);
    
    	list_for_each_entry(pw, &works, pw_list)
    		queue_work(system_unbound_wq, &pw->pw_work);
    
    	/* Use the current thread, which saves starting a workqueue worker. */
    	padata_work_init(&my_work, padata_mt_helper, &ps, PADATA_WORK_ONSTACK);
    	padata_mt_helper(&my_work.pw_work);
    
    	/* Wait for all the helpers to finish. */
    	wait_for_completion(&ps.completion);
    
    	destroy_work_on_stack(&my_work.pw_work);
    	padata_works_free(&works);
    }
    
    static void __padata_list_init(struct padata_list *pd_list)
    {
    	INIT_LIST_HEAD(&pd_list->list);
    	spin_lock_init(&pd_list->lock);
    }
    
    /* Initialize all percpu queues used by serial workers */
    static void padata_init_squeues(struct parallel_data *pd)
    {
    	int cpu;
    	struct padata_serial_queue *squeue;
    
    	for_each_cpu(cpu, pd->cpumask.cbcpu) {
    		squeue = per_cpu_ptr(pd->squeue, cpu);
    		squeue->pd = pd;
    		__padata_list_init(&squeue->serial);
    		INIT_WORK(&squeue->work, padata_serial_worker);
    	}
    }
    
    /* Initialize per-CPU reorder lists */
    static void padata_init_reorder_list(struct parallel_data *pd)
    {
    	int cpu;
    	struct padata_list *list;
    
    	for_each_cpu(cpu, pd->cpumask.pcpu) {
    		list = per_cpu_ptr(pd->reorder_list, cpu);
    		__padata_list_init(list);
    	}
    }
    
    /* Allocate and initialize the internal cpumask dependend resources. */
    static struct parallel_data *padata_alloc_pd(struct padata_shell *ps)
    {
    	struct padata_instance *pinst = ps->pinst;
    	struct parallel_data *pd;
    
    	pd = kzalloc(sizeof(struct parallel_data), GFP_KERNEL);
    	if (!pd)
    		goto err;
    
    	pd->reorder_list = alloc_percpu(struct padata_list);
    	if (!pd->reorder_list)
    		goto err_free_pd;
    
    	pd->squeue = alloc_percpu(struct padata_serial_queue);
    	if (!pd->squeue)
    		goto err_free_reorder_list;
    
    	pd->ps = ps;
    
    	if (!alloc_cpumask_var(&pd->cpumask.pcpu, GFP_KERNEL))
    		goto err_free_squeue;
    	if (!alloc_cpumask_var(&pd->cpumask.cbcpu, GFP_KERNEL))
    		goto err_free_pcpu;
    
    	cpumask_and(pd->cpumask.pcpu, pinst->cpumask.pcpu, cpu_online_mask);
    	cpumask_and(pd->cpumask.cbcpu, pinst->cpumask.cbcpu, cpu_online_mask);
    
    	padata_init_reorder_list(pd);
    	padata_init_squeues(pd);
    	pd->seq_nr = -1;
    	atomic_set(&pd->refcnt, 1);
    	spin_lock_init(&pd->lock);
    	pd->cpu = cpumask_first(pd->cpumask.pcpu);
    	INIT_WORK(&pd->reorder_work, invoke_padata_reorder);
    
    	return pd;
    
    err_free_pcpu:
    	free_cpumask_var(pd->cpumask.pcpu);
    err_free_squeue:
    	free_percpu(pd->squeue);
    err_free_reorder_list:
    	free_percpu(pd->reorder_list);
    err_free_pd:
    	kfree(pd);
    err:
    	return NULL;
    }
    
    static void padata_free_pd(struct parallel_data *pd)
    {
    	free_cpumask_var(pd->cpumask.pcpu);
    	free_cpumask_var(pd->cpumask.cbcpu);
    	free_percpu(pd->reorder_list);
    	free_percpu(pd->squeue);
    	kfree(pd);
    }
    
    static void __padata_start(struct padata_instance *pinst)
    {
    	pinst->flags |= PADATA_INIT;
    }
    
    static void __padata_stop(struct padata_instance *pinst)
    {
    	if (!(pinst->flags & PADATA_INIT))
    		return;
    
    	pinst->flags &= ~PADATA_INIT;
    
    	synchronize_rcu();
    }
    
    /* Replace the internal control structure with a new one. */
    static int padata_replace_one(struct padata_shell *ps)
    {
    	struct parallel_data *pd_new;
    
    	pd_new = padata_alloc_pd(ps);
    	if (!pd_new)
    		return -ENOMEM;
    
    	ps->opd = rcu_dereference_protected(ps->pd, 1);
    	rcu_assign_pointer(ps->pd, pd_new);
    
    	return 0;
    }
    
    static int padata_replace(struct padata_instance *pinst)
    {
    	struct padata_shell *ps;
    	int err = 0;
    
    	pinst->flags |= PADATA_RESET;
    
    	list_for_each_entry(ps, &pinst->pslist, list) {
    		err = padata_replace_one(ps);
    		if (err)
    			break;
    	}
    
    	synchronize_rcu();
    
    	list_for_each_entry_continue_reverse(ps, &pinst->pslist, list)
    		if (atomic_dec_and_test(&ps->opd->refcnt))
    			padata_free_pd(ps->opd);
    
    	pinst->flags &= ~PADATA_RESET;
    
    	return err;
    }
    
    /* If cpumask contains no active cpu, we mark the instance as invalid. */
    static bool padata_validate_cpumask(struct padata_instance *pinst,
    				    const struct cpumask *cpumask)
    {
    	if (!cpumask_intersects(cpumask, cpu_online_mask)) {
    		pinst->flags |= PADATA_INVALID;
    		return false;
    	}
    
    	pinst->flags &= ~PADATA_INVALID;
    	return true;
    }
    
    static int __padata_set_cpumasks(struct padata_instance *pinst,
    				 cpumask_var_t pcpumask,
    				 cpumask_var_t cbcpumask)
    {
    	int valid;
    	int err;
    
    	valid = padata_validate_cpumask(pinst, pcpumask);
    	if (!valid) {
    		__padata_stop(pinst);
    		goto out_replace;
    	}
    
    	valid = padata_validate_cpumask(pinst, cbcpumask);
    	if (!valid)
    		__padata_stop(pinst);
    
    out_replace:
    	cpumask_copy(pinst->cpumask.pcpu, pcpumask);
    	cpumask_copy(pinst->cpumask.cbcpu, cbcpumask);
    
    	err = padata_setup_cpumasks(pinst) ?: padata_replace(pinst);
    
    	if (valid)
    		__padata_start(pinst);
    
    	return err;
    }
    
    /**
     * padata_set_cpumask - Sets specified by @cpumask_type cpumask to the value
     *                      equivalent to @cpumask.
     * @pinst: padata instance
     * @cpumask_type: PADATA_CPU_SERIAL or PADATA_CPU_PARALLEL corresponding
     *                to parallel and serial cpumasks respectively.
     * @cpumask: the cpumask to use
     *
     * Return: 0 on success or negative error code
     */
    int padata_set_cpumask(struct padata_instance *pinst, int cpumask_type,
    		       cpumask_var_t cpumask)
    {
    	struct cpumask *serial_mask, *parallel_mask;
    	int err = -EINVAL;
    
    	get_online_cpus();
    	mutex_lock(&pinst->lock);
    
    	switch (cpumask_type) {
    	case PADATA_CPU_PARALLEL:
    		serial_mask = pinst->cpumask.cbcpu;
    		parallel_mask = cpumask;
    		break;
    	case PADATA_CPU_SERIAL:
    		parallel_mask = pinst->cpumask.pcpu;
    		serial_mask = cpumask;
    		break;
    	default:
    		 goto out;
    	}
    
    	err =  __padata_set_cpumasks(pinst, parallel_mask, serial_mask);
    
    out:
    	mutex_unlock(&pinst->lock);
    	put_online_cpus();
    
    	return err;
    }
    EXPORT_SYMBOL(padata_set_cpumask);
    
    #ifdef CONFIG_HOTPLUG_CPU
    
    static int __padata_add_cpu(struct padata_instance *pinst, int cpu)
    {
    	int err = 0;
    
    	if (cpumask_test_cpu(cpu, cpu_online_mask)) {
    		err = padata_replace(pinst);
    
    		if (padata_validate_cpumask(pinst, pinst->cpumask.pcpu) &&
    		    padata_validate_cpumask(pinst, pinst->cpumask.cbcpu))
    			__padata_start(pinst);
    	}
    
    	return err;
    }
    
    static int __padata_remove_cpu(struct padata_instance *pinst, int cpu)
    {
    	int err = 0;
    
    	if (!cpumask_test_cpu(cpu, cpu_online_mask)) {
    		if (!padata_validate_cpumask(pinst, pinst->cpumask.pcpu) ||
    		    !padata_validate_cpumask(pinst, pinst->cpumask.cbcpu))
    			__padata_stop(pinst);
    
    		err = padata_replace(pinst);
    	}
    
    	return err;
    }
    
    static inline int pinst_has_cpu(struct padata_instance *pinst, int cpu)
    {
    	return cpumask_test_cpu(cpu, pinst->cpumask.pcpu) ||
    		cpumask_test_cpu(cpu, pinst->cpumask.cbcpu);
    }
    
    static int padata_cpu_online(unsigned int cpu, struct hlist_node *node)
    {
    	struct padata_instance *pinst;
    	int ret;
    
    	pinst = hlist_entry_safe(node, struct padata_instance, cpu_online_node);
    	if (!pinst_has_cpu(pinst, cpu))
    		return 0;
    
    	mutex_lock(&pinst->lock);
    	ret = __padata_add_cpu(pinst, cpu);
    	mutex_unlock(&pinst->lock);
    	return ret;
    }
    
    static int padata_cpu_dead(unsigned int cpu, struct hlist_node *node)
    {
    	struct padata_instance *pinst;
    	int ret;
    
    	pinst = hlist_entry_safe(node, struct padata_instance, cpu_dead_node);
    	if (!pinst_has_cpu(pinst, cpu))
    		return 0;
    
    	mutex_lock(&pinst->lock);
    	ret = __padata_remove_cpu(pinst, cpu);
    	mutex_unlock(&pinst->lock);
    	return ret;
    }
    
    static enum cpuhp_state hp_online;
    #endif
    
    static void __padata_free(struct padata_instance *pinst)
    {
    #ifdef CONFIG_HOTPLUG_CPU
    	cpuhp_state_remove_instance_nocalls(CPUHP_PADATA_DEAD,
    					    &pinst->cpu_dead_node);
    	cpuhp_state_remove_instance_nocalls(hp_online, &pinst->cpu_online_node);
    #endif
    
    	WARN_ON(!list_empty(&pinst->pslist));
    
    	free_cpumask_var(pinst->cpumask.pcpu);
    	free_cpumask_var(pinst->cpumask.cbcpu);
    	destroy_workqueue(pinst->serial_wq);
    	destroy_workqueue(pinst->parallel_wq);
    	kfree(pinst);
    }
    
    #define kobj2pinst(_kobj)					\
    	container_of(_kobj, struct padata_instance, kobj)
    #define attr2pentry(_attr)					\
    	container_of(_attr, struct padata_sysfs_entry, attr)
    
    static void padata_sysfs_release(struct kobject *kobj)
    {
    	struct padata_instance *pinst = kobj2pinst(kobj);
    	__padata_free(pinst);
    }
    
    struct padata_sysfs_entry {
    	struct attribute attr;
    	ssize_t (*show)(struct padata_instance *, struct attribute *, char *);
    	ssize_t (*store)(struct padata_instance *, struct attribute *,
    			 const char *, size_t);
    };
    
    static ssize_t show_cpumask(struct padata_instance *pinst,
    			    struct attribute *attr,  char *buf)
    {
    	struct cpumask *cpumask;
    	ssize_t len;
    
    	mutex_lock(&pinst->lock);
    	if (!strcmp(attr->name, "serial_cpumask"))
    		cpumask = pinst->cpumask.cbcpu;
    	else
    		cpumask = pinst->cpumask.pcpu;
    
    	len = snprintf(buf, PAGE_SIZE, "%*pb\n",
    		       nr_cpu_ids, cpumask_bits(cpumask));
    	mutex_unlock(&pinst->lock);
    	return len < PAGE_SIZE ? len : -EINVAL;
    }
    
    static ssize_t store_cpumask(struct padata_instance *pinst,
    			     struct attribute *attr,
    			     const char *buf, size_t count)
    {
    	cpumask_var_t new_cpumask;
    	ssize_t ret;
    	int mask_type;
    
    	if (!alloc_cpumask_var(&new_cpumask, GFP_KERNEL))
    		return -ENOMEM;
    
    	ret = bitmap_parse(buf, count, cpumask_bits(new_cpumask),
    			   nr_cpumask_bits);
    	if (ret < 0)
    		goto out;
    
    	mask_type = !strcmp(attr->name, "serial_cpumask") ?
    		PADATA_CPU_SERIAL : PADATA_CPU_PARALLEL;
    	ret = padata_set_cpumask(pinst, mask_type, new_cpumask);
    	if (!ret)
    		ret = count;
    
    out:
    	free_cpumask_var(new_cpumask);
    	return ret;
    }
    
    #define PADATA_ATTR_RW(_name, _show_name, _store_name)		\
    	static struct padata_sysfs_entry _name##_attr =		\
    		__ATTR(_name, 0644, _show_name, _store_name)
    #define PADATA_ATTR_RO(_name, _show_name)		\
    	static struct padata_sysfs_entry _name##_attr = \
    		__ATTR(_name, 0400, _show_name, NULL)
    
    PADATA_ATTR_RW(serial_cpumask, show_cpumask, store_cpumask);
    PADATA_ATTR_RW(parallel_cpumask, show_cpumask, store_cpumask);
    
    /*
     * Padata sysfs provides the following objects:
     * serial_cpumask   [RW] - cpumask for serial workers
     * parallel_cpumask [RW] - cpumask for parallel workers
     */
    static struct attribute *padata_default_attrs[] = {
    	&serial_cpumask_attr.attr,
    	&parallel_cpumask_attr.attr,
    	NULL,
    };
    ATTRIBUTE_GROUPS(padata_default);
    
    static ssize_t padata_sysfs_show(struct kobject *kobj,
    				 struct attribute *attr, char *buf)
    {
    	struct padata_instance *pinst;
    	struct padata_sysfs_entry *pentry;
    	ssize_t ret = -EIO;
    
    	pinst = kobj2pinst(kobj);
    	pentry = attr2pentry(attr);
    	if (pentry->show)
    		ret = pentry->show(pinst, attr, buf);
    
    	return ret;
    }
    
    static ssize_t padata_sysfs_store(struct kobject *kobj, struct attribute *attr,
    				  const char *buf, size_t count)
    {
    	struct padata_instance *pinst;
    	struct padata_sysfs_entry *pentry;
    	ssize_t ret = -EIO;
    
    	pinst = kobj2pinst(kobj);
    	pentry = attr2pentry(attr);
    	if (pentry->show)
    		ret = pentry->store(pinst, attr, buf, count);
    
    	return ret;
    }
    
    static const struct sysfs_ops padata_sysfs_ops = {
    	.show = padata_sysfs_show,
    	.store = padata_sysfs_store,
    };
    
    static struct kobj_type padata_attr_type = {
    	.sysfs_ops = &padata_sysfs_ops,
    	.default_groups = padata_default_groups,
    	.release = padata_sysfs_release,
    };
    
    /**
     * padata_alloc - allocate and initialize a padata instance
     * @name: used to identify the instance
     *
     * Return: new instance on success, NULL on error
     */
    struct padata_instance *padata_alloc(const char *name)
    {
    	struct padata_instance *pinst;
    
    	pinst = kzalloc(sizeof(struct padata_instance), GFP_KERNEL);
    	if (!pinst)
    		goto err;
    
    	pinst->parallel_wq = alloc_workqueue("%s_parallel", WQ_UNBOUND, 0,
    					     name);
    	if (!pinst->parallel_wq)
    		goto err_free_inst;
    
    	get_online_cpus();
    
    	pinst->serial_wq = alloc_workqueue("%s_serial", WQ_MEM_RECLAIM |
    					   WQ_CPU_INTENSIVE, 1, name);
    	if (!pinst->serial_wq)
    		goto err_put_cpus;
    
    	if (!alloc_cpumask_var(&pinst->cpumask.pcpu, GFP_KERNEL))
    		goto err_free_serial_wq;
    	if (!alloc_cpumask_var(&pinst->cpumask.cbcpu, GFP_KERNEL)) {
    		free_cpumask_var(pinst->cpumask.pcpu);
    		goto err_free_serial_wq;
    	}
    
    	INIT_LIST_HEAD(&pinst->pslist);
    
    	cpumask_copy(pinst->cpumask.pcpu, cpu_possible_mask);
    	cpumask_copy(pinst->cpumask.cbcpu, cpu_possible_mask);
    
    	if (padata_setup_cpumasks(pinst))
    		goto err_free_masks;
    
    	__padata_start(pinst);
    
    	kobject_init(&pinst->kobj, &padata_attr_type);
    	mutex_init(&pinst->lock);
    
    #ifdef CONFIG_HOTPLUG_CPU
    	cpuhp_state_add_instance_nocalls_cpuslocked(hp_online,
    						    &pinst->cpu_online_node);
    	cpuhp_state_add_instance_nocalls_cpuslocked(CPUHP_PADATA_DEAD,
    						    &pinst->cpu_dead_node);
    #endif
    
    	put_online_cpus();
    
    	return pinst;
    
    err_free_masks:
    	free_cpumask_var(pinst->cpumask.pcpu);
    	free_cpumask_var(pinst->cpumask.cbcpu);
    err_free_serial_wq:
    	destroy_workqueue(pinst->serial_wq);
    err_put_cpus:
    	put_online_cpus();
    	destroy_workqueue(pinst->parallel_wq);
    err_free_inst:
    	kfree(pinst);
    err:
    	return NULL;
    }
    EXPORT_SYMBOL(padata_alloc);
    
    /**
     * padata_free - free a padata instance
     *
     * @pinst: padata instance to free
     */
    void padata_free(struct padata_instance *pinst)
    {
    	kobject_put(&pinst->kobj);
    }
    EXPORT_SYMBOL(padata_free);
    
    /**
     * padata_alloc_shell - Allocate and initialize padata shell.
     *
     * @pinst: Parent padata_instance object.
     *
     * Return: new shell on success, NULL on error
     */
    struct padata_shell *padata_alloc_shell(struct padata_instance *pinst)
    {
    	struct parallel_data *pd;
    	struct padata_shell *ps;
    
    	ps = kzalloc(sizeof(*ps), GFP_KERNEL);
    	if (!ps)
    		goto out;
    
    	ps->pinst = pinst;
    
    	get_online_cpus();
    	pd = padata_alloc_pd(ps);
    	put_online_cpus();
    
    	if (!pd)
    		goto out_free_ps;
    
    	mutex_lock(&pinst->lock);
    	RCU_INIT_POINTER(ps->pd, pd);
    	list_add(&ps->list, &pinst->pslist);
    	mutex_unlock(&pinst->lock);
    
    	return ps;
    
    out_free_ps:
    	kfree(ps);
    out:
    	return NULL;
    }
    EXPORT_SYMBOL(padata_alloc_shell);
    
    /**
     * padata_free_shell - free a padata shell
     *
     * @ps: padata shell to free
     */
    void padata_free_shell(struct padata_shell *ps)
    {
    	if (!ps)
    		return;
    
    	mutex_lock(&ps->pinst->lock);
    	list_del(&ps->list);
    	padata_free_pd(rcu_dereference_protected(ps->pd, 1));
    	mutex_unlock(&ps->pinst->lock);
    
    	kfree(ps);
    }
    EXPORT_SYMBOL(padata_free_shell);
    
    void __init padata_init(void)
    {
    	unsigned int i, possible_cpus;
    #ifdef CONFIG_HOTPLUG_CPU
    	int ret;
    
    	ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "padata:online",
    				      padata_cpu_online, NULL);
    	if (ret < 0)
    		goto err;
    	hp_online = ret;
    
    	ret = cpuhp_setup_state_multi(CPUHP_PADATA_DEAD, "padata:dead",
    				      NULL, padata_cpu_dead);
    	if (ret < 0)
    		goto remove_online_state;
    #endif
    
    	possible_cpus = num_possible_cpus();
    	padata_works = kmalloc_array(possible_cpus, sizeof(struct padata_work),
    				     GFP_KERNEL);
    	if (!padata_works)
    		goto remove_dead_state;
    
    	for (i = 0; i < possible_cpus; ++i)
    		list_add(&padata_works[i].pw_list, &padata_free_works);
    
    	return;
    
    remove_dead_state:
    #ifdef CONFIG_HOTPLUG_CPU
    	cpuhp_remove_multi_state(CPUHP_PADATA_DEAD);
    remove_online_state:
    	cpuhp_remove_multi_state(hp_online);
    err:
    #endif
    	pr_warn("padata: initialization failed\n");
    }