Skip to content
Snippets Groups Projects
Select Git revision
  • 127c8c5f0589cea2208c329bff7dcb36e375f46c
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

seccomp.c

Blame
  • sunhme.c 91.57 KiB
    /* sunhme.c: Sparc HME/BigMac 10/100baseT half/full duplex auto switching,
     *           auto carrier detecting ethernet driver.  Also known as the
     *           "Happy Meal Ethernet" found on SunSwift SBUS cards.
     *
     * Copyright (C) 1996, 1998, 1999, 2002, 2003,
    		 2006 David S. Miller (davem@davemloft.net)
     *
     * Changes :
     * 2000/11/11 Willy Tarreau <willy AT meta-x.org>
     *   - port to non-sparc architectures. Tested only on x86 and
     *     only currently works with QFE PCI cards.
     *   - ability to specify the MAC address at module load time by passing this
     *     argument : macaddr=0x00,0x10,0x20,0x30,0x40,0x50
     */
    
    #include <linux/module.h>
    #include <linux/kernel.h>
    #include <linux/types.h>
    #include <linux/fcntl.h>
    #include <linux/interrupt.h>
    #include <linux/ioport.h>
    #include <linux/in.h>
    #include <linux/slab.h>
    #include <linux/string.h>
    #include <linux/delay.h>
    #include <linux/init.h>
    #include <linux/ethtool.h>
    #include <linux/mii.h>
    #include <linux/crc32.h>
    #include <linux/random.h>
    #include <linux/errno.h>
    #include <linux/netdevice.h>
    #include <linux/etherdevice.h>
    #include <linux/skbuff.h>
    #include <linux/mm.h>
    #include <linux/bitops.h>
    
    #include <asm/system.h>
    #include <asm/io.h>
    #include <asm/dma.h>
    #include <asm/byteorder.h>
    
    #ifdef CONFIG_SPARC
    #include <asm/idprom.h>
    #include <asm/sbus.h>
    #include <asm/openprom.h>
    #include <asm/oplib.h>
    #include <asm/prom.h>
    #include <asm/auxio.h>
    #endif
    #include <asm/uaccess.h>
    
    #include <asm/pgtable.h>
    #include <asm/irq.h>
    
    #ifdef CONFIG_PCI
    #include <linux/pci.h>
    #endif
    
    #include "sunhme.h"
    
    #define DRV_NAME	"sunhme"
    #define DRV_VERSION	"3.00"
    #define DRV_RELDATE	"June 23, 2006"
    #define DRV_AUTHOR	"David S. Miller (davem@davemloft.net)"
    
    static char version[] =
    	DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " " DRV_AUTHOR "\n";
    
    MODULE_VERSION(DRV_VERSION);
    MODULE_AUTHOR(DRV_AUTHOR);
    MODULE_DESCRIPTION("Sun HappyMealEthernet(HME) 10/100baseT ethernet driver");
    MODULE_LICENSE("GPL");
    
    static int macaddr[6];
    
    /* accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */
    module_param_array(macaddr, int, NULL, 0);
    MODULE_PARM_DESC(macaddr, "Happy Meal MAC address to set");
    
    #ifdef CONFIG_SBUS
    static struct quattro *qfe_sbus_list;
    #endif
    
    #ifdef CONFIG_PCI
    static struct quattro *qfe_pci_list;
    #endif
    
    #undef HMEDEBUG
    #undef SXDEBUG
    #undef RXDEBUG
    #undef TXDEBUG
    #undef TXLOGGING
    
    #ifdef TXLOGGING
    struct hme_tx_logent {
    	unsigned int tstamp;
    	int tx_new, tx_old;
    	unsigned int action;
    #define TXLOG_ACTION_IRQ	0x01
    #define TXLOG_ACTION_TXMIT	0x02
    #define TXLOG_ACTION_TBUSY	0x04
    #define TXLOG_ACTION_NBUFS	0x08
    	unsigned int status;
    };
    #define TX_LOG_LEN	128
    static struct hme_tx_logent tx_log[TX_LOG_LEN];
    static int txlog_cur_entry;
    static __inline__ void tx_add_log(struct happy_meal *hp, unsigned int a, unsigned int s)
    {
    	struct hme_tx_logent *tlp;
    	unsigned long flags;
    
    	save_and_cli(flags);
    	tlp = &tx_log[txlog_cur_entry];
    	tlp->tstamp = (unsigned int)jiffies;
    	tlp->tx_new = hp->tx_new;
    	tlp->tx_old = hp->tx_old;
    	tlp->action = a;
    	tlp->status = s;
    	txlog_cur_entry = (txlog_cur_entry + 1) & (TX_LOG_LEN - 1);
    	restore_flags(flags);
    }
    static __inline__ void tx_dump_log(void)
    {
    	int i, this;
    
    	this = txlog_cur_entry;
    	for (i = 0; i < TX_LOG_LEN; i++) {
    		printk("TXLOG[%d]: j[%08x] tx[N(%d)O(%d)] action[%08x] stat[%08x]\n", i,
    		       tx_log[this].tstamp,
    		       tx_log[this].tx_new, tx_log[this].tx_old,
    		       tx_log[this].action, tx_log[this].status);
    		this = (this + 1) & (TX_LOG_LEN - 1);
    	}
    }
    static __inline__ void tx_dump_ring(struct happy_meal *hp)
    {
    	struct hmeal_init_block *hb = hp->happy_block;
    	struct happy_meal_txd *tp = &hb->happy_meal_txd[0];
    	int i;
    
    	for (i = 0; i < TX_RING_SIZE; i+=4) {
    		printk("TXD[%d..%d]: [%08x:%08x] [%08x:%08x] [%08x:%08x] [%08x:%08x]\n",
    		       i, i + 4,
    		       le32_to_cpu(tp[i].tx_flags), le32_to_cpu(tp[i].tx_addr),
    		       le32_to_cpu(tp[i + 1].tx_flags), le32_to_cpu(tp[i + 1].tx_addr),
    		       le32_to_cpu(tp[i + 2].tx_flags), le32_to_cpu(tp[i + 2].tx_addr),
    		       le32_to_cpu(tp[i + 3].tx_flags), le32_to_cpu(tp[i + 3].tx_addr));
    	}
    }
    #else
    #define tx_add_log(hp, a, s)		do { } while(0)
    #define tx_dump_log()			do { } while(0)
    #define tx_dump_ring(hp)		do { } while(0)
    #endif
    
    #ifdef HMEDEBUG
    #define HMD(x)  printk x
    #else
    #define HMD(x)
    #endif
    
    /* #define AUTO_SWITCH_DEBUG */
    
    #ifdef AUTO_SWITCH_DEBUG
    #define ASD(x)  printk x
    #else
    #define ASD(x)
    #endif
    
    #define DEFAULT_IPG0      16 /* For lance-mode only */
    #define DEFAULT_IPG1       8 /* For all modes */
    #define DEFAULT_IPG2       4 /* For all modes */
    #define DEFAULT_JAMSIZE    4 /* Toe jam */
    
    /* NOTE: In the descriptor writes one _must_ write the address
     *	 member _first_.  The card must not be allowed to see
     *	 the updated descriptor flags until the address is
     *	 correct.  I've added a write memory barrier between
     *	 the two stores so that I can sleep well at night... -DaveM
     */
    
    #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
    static void sbus_hme_write32(void __iomem *reg, u32 val)
    {
    	sbus_writel(val, reg);
    }
    
    static u32 sbus_hme_read32(void __iomem *reg)
    {
    	return sbus_readl(reg);
    }
    
    static void sbus_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr)
    {
    	rxd->rx_addr = addr;
    	wmb();
    	rxd->rx_flags = flags;
    }
    
    static void sbus_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr)
    {
    	txd->tx_addr = addr;
    	wmb();
    	txd->tx_flags = flags;
    }
    
    static u32 sbus_hme_read_desc32(u32 *p)
    {
    	return *p;
    }
    
    static void pci_hme_write32(void __iomem *reg, u32 val)
    {
    	writel(val, reg);
    }
    
    static u32 pci_hme_read32(void __iomem *reg)
    {
    	return readl(reg);
    }
    
    static void pci_hme_write_rxd(struct happy_meal_rxd *rxd, u32 flags, u32 addr)
    {
    	rxd->rx_addr = cpu_to_le32(addr);
    	wmb();
    	rxd->rx_flags = cpu_to_le32(flags);
    }
    
    static void pci_hme_write_txd(struct happy_meal_txd *txd, u32 flags, u32 addr)
    {
    	txd->tx_addr = cpu_to_le32(addr);
    	wmb();
    	txd->tx_flags = cpu_to_le32(flags);
    }
    
    static u32 pci_hme_read_desc32(u32 *p)
    {
    	return cpu_to_le32p(p);
    }
    
    #define hme_write32(__hp, __reg, __val) \
    	((__hp)->write32((__reg), (__val)))
    #define hme_read32(__hp, __reg) \
    	((__hp)->read32(__reg))
    #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
    	((__hp)->write_rxd((__rxd), (__flags), (__addr)))
    #define hme_write_txd(__hp, __txd, __flags, __addr) \
    	((__hp)->write_txd((__txd), (__flags), (__addr)))
    #define hme_read_desc32(__hp, __p) \
    	((__hp)->read_desc32(__p))
    #define hme_dma_map(__hp, __ptr, __size, __dir) \
    	((__hp)->dma_map((__hp)->happy_dev, (__ptr), (__size), (__dir)))
    #define hme_dma_unmap(__hp, __addr, __size, __dir) \
    	((__hp)->dma_unmap((__hp)->happy_dev, (__addr), (__size), (__dir)))
    #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
    	((__hp)->dma_sync_for_cpu((__hp)->happy_dev, (__addr), (__size), (__dir)))
    #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
    	((__hp)->dma_sync_for_device((__hp)->happy_dev, (__addr), (__size), (__dir)))
    #else
    #ifdef CONFIG_SBUS
    /* SBUS only compilation */
    #define hme_write32(__hp, __reg, __val) \
    	sbus_writel((__val), (__reg))
    #define hme_read32(__hp, __reg) \
    	sbus_readl(__reg)
    #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
    do {	(__rxd)->rx_addr = (__addr); \
    	wmb(); \
    	(__rxd)->rx_flags = (__flags); \
    } while(0)
    #define hme_write_txd(__hp, __txd, __flags, __addr) \
    do {	(__txd)->tx_addr = (__addr); \
    	wmb(); \
    	(__txd)->tx_flags = (__flags); \
    } while(0)
    #define hme_read_desc32(__hp, __p)	(*(__p))
    #define hme_dma_map(__hp, __ptr, __size, __dir) \
    	sbus_map_single((__hp)->happy_dev, (__ptr), (__size), (__dir))
    #define hme_dma_unmap(__hp, __addr, __size, __dir) \
    	sbus_unmap_single((__hp)->happy_dev, (__addr), (__size), (__dir))
    #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
    	sbus_dma_sync_single_for_cpu((__hp)->happy_dev, (__addr), (__size), (__dir))
    #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
    	sbus_dma_sync_single_for_device((__hp)->happy_dev, (__addr), (__size), (__dir))
    #else
    /* PCI only compilation */
    #define hme_write32(__hp, __reg, __val) \
    	writel((__val), (__reg))
    #define hme_read32(__hp, __reg) \
    	readl(__reg)
    #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
    do {	(__rxd)->rx_addr = cpu_to_le32(__addr); \
    	wmb(); \
    	(__rxd)->rx_flags = cpu_to_le32(__flags); \
    } while(0)
    #define hme_write_txd(__hp, __txd, __flags, __addr) \
    do {	(__txd)->tx_addr = cpu_to_le32(__addr); \
    	wmb(); \
    	(__txd)->tx_flags = cpu_to_le32(__flags); \
    } while(0)
    #define hme_read_desc32(__hp, __p)	cpu_to_le32p(__p)
    #define hme_dma_map(__hp, __ptr, __size, __dir) \
    	pci_map_single((__hp)->happy_dev, (__ptr), (__size), (__dir))
    #define hme_dma_unmap(__hp, __addr, __size, __dir) \
    	pci_unmap_single((__hp)->happy_dev, (__addr), (__size), (__dir))
    #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
    	pci_dma_sync_single_for_cpu((__hp)->happy_dev, (__addr), (__size), (__dir))
    #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
    	pci_dma_sync_single_for_device((__hp)->happy_dev, (__addr), (__size), (__dir))
    #endif
    #endif
    
    
    #ifdef SBUS_DMA_BIDIRECTIONAL
    #	define DMA_BIDIRECTIONAL	SBUS_DMA_BIDIRECTIONAL
    #else
    #	define DMA_BIDIRECTIONAL	0
    #endif
    
    #ifdef SBUS_DMA_FROMDEVICE
    #	define DMA_FROMDEVICE		SBUS_DMA_FROMDEVICE
    #else
    #	define DMA_TODEVICE		1
    #endif
    
    #ifdef SBUS_DMA_TODEVICE
    #	define DMA_TODEVICE		SBUS_DMA_TODEVICE
    #else
    #	define DMA_FROMDEVICE		2
    #endif
    
    
    /* Oh yes, the MIF BitBang is mighty fun to program.  BitBucket is more like it. */
    static void BB_PUT_BIT(struct happy_meal *hp, void __iomem *tregs, int bit)
    {
    	hme_write32(hp, tregs + TCVR_BBDATA, bit);
    	hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
    	hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
    }
    
    #if 0
    static u32 BB_GET_BIT(struct happy_meal *hp, void __iomem *tregs, int internal)
    {
    	u32 ret;
    
    	hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
    	hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
    	ret = hme_read32(hp, tregs + TCVR_CFG);
    	if (internal)
    		ret &= TCV_CFG_MDIO0;
    	else
    		ret &= TCV_CFG_MDIO1;
    
    	return ret;
    }
    #endif
    
    static u32 BB_GET_BIT2(struct happy_meal *hp, void __iomem *tregs, int internal)
    {
    	u32 retval;
    
    	hme_write32(hp, tregs + TCVR_BBCLOCK, 0);
    	udelay(1);
    	retval = hme_read32(hp, tregs + TCVR_CFG);
    	if (internal)
    		retval &= TCV_CFG_MDIO0;
    	else
    		retval &= TCV_CFG_MDIO1;
    	hme_write32(hp, tregs + TCVR_BBCLOCK, 1);
    
    	return retval;
    }
    
    #define TCVR_FAILURE      0x80000000     /* Impossible MIF read value */
    
    static int happy_meal_bb_read(struct happy_meal *hp,
    			      void __iomem *tregs, int reg)
    {
    	u32 tmp;
    	int retval = 0;
    	int i;
    
    	ASD(("happy_meal_bb_read: reg=%d ", reg));
    
    	/* Enable the MIF BitBang outputs. */
    	hme_write32(hp, tregs + TCVR_BBOENAB, 1);
    
    	/* Force BitBang into the idle state. */
    	for (i = 0; i < 32; i++)
    		BB_PUT_BIT(hp, tregs, 1);
    
    	/* Give it the read sequence. */
    	BB_PUT_BIT(hp, tregs, 0);
    	BB_PUT_BIT(hp, tregs, 1);
    	BB_PUT_BIT(hp, tregs, 1);
    	BB_PUT_BIT(hp, tregs, 0);
    
    	/* Give it the PHY address. */
    	tmp = hp->paddr & 0xff;
    	for (i = 4; i >= 0; i--)
    		BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
    
    	/* Tell it what register we want to read. */
    	tmp = (reg & 0xff);
    	for (i = 4; i >= 0; i--)
    		BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
    
    	/* Close down the MIF BitBang outputs. */
    	hme_write32(hp, tregs + TCVR_BBOENAB, 0);
    
    	/* Now read in the value. */
    	(void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
    	for (i = 15; i >= 0; i--)
    		retval |= BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
    	(void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
    	(void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
    	(void) BB_GET_BIT2(hp, tregs, (hp->tcvr_type == internal));
    	ASD(("value=%x\n", retval));
    	return retval;
    }
    
    static void happy_meal_bb_write(struct happy_meal *hp,
    				void __iomem *tregs, int reg,
    				unsigned short value)
    {
    	u32 tmp;
    	int i;
    
    	ASD(("happy_meal_bb_write: reg=%d value=%x\n", reg, value));
    
    	/* Enable the MIF BitBang outputs. */
    	hme_write32(hp, tregs + TCVR_BBOENAB, 1);
    
    	/* Force BitBang into the idle state. */
    	for (i = 0; i < 32; i++)
    		BB_PUT_BIT(hp, tregs, 1);
    
    	/* Give it write sequence. */
    	BB_PUT_BIT(hp, tregs, 0);
    	BB_PUT_BIT(hp, tregs, 1);
    	BB_PUT_BIT(hp, tregs, 0);
    	BB_PUT_BIT(hp, tregs, 1);
    
    	/* Give it the PHY address. */
    	tmp = (hp->paddr & 0xff);
    	for (i = 4; i >= 0; i--)
    		BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
    
    	/* Tell it what register we will be writing. */
    	tmp = (reg & 0xff);
    	for (i = 4; i >= 0; i--)
    		BB_PUT_BIT(hp, tregs, ((tmp >> i) & 1));
    
    	/* Tell it to become ready for the bits. */
    	BB_PUT_BIT(hp, tregs, 1);
    	BB_PUT_BIT(hp, tregs, 0);
    
    	for (i = 15; i >= 0; i--)
    		BB_PUT_BIT(hp, tregs, ((value >> i) & 1));
    
    	/* Close down the MIF BitBang outputs. */
    	hme_write32(hp, tregs + TCVR_BBOENAB, 0);
    }
    
    #define TCVR_READ_TRIES   16
    
    static int happy_meal_tcvr_read(struct happy_meal *hp,
    				void __iomem *tregs, int reg)
    {
    	int tries = TCVR_READ_TRIES;
    	int retval;
    
    	ASD(("happy_meal_tcvr_read: reg=0x%02x ", reg));
    	if (hp->tcvr_type == none) {
    		ASD(("no transceiver, value=TCVR_FAILURE\n"));
    		return TCVR_FAILURE;
    	}
    
    	if (!(hp->happy_flags & HFLAG_FENABLE)) {
    		ASD(("doing bit bang\n"));
    		return happy_meal_bb_read(hp, tregs, reg);
    	}
    
    	hme_write32(hp, tregs + TCVR_FRAME,
    		    (FRAME_READ | (hp->paddr << 23) | ((reg & 0xff) << 18)));
    	while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries)
    		udelay(20);
    	if (!tries) {
    		printk(KERN_ERR "happy meal: Aieee, transceiver MIF read bolixed\n");
    		return TCVR_FAILURE;
    	}
    	retval = hme_read32(hp, tregs + TCVR_FRAME) & 0xffff;
    	ASD(("value=%04x\n", retval));
    	return retval;
    }
    
    #define TCVR_WRITE_TRIES  16
    
    static void happy_meal_tcvr_write(struct happy_meal *hp,
    				  void __iomem *tregs, int reg,
    				  unsigned short value)
    {
    	int tries = TCVR_WRITE_TRIES;
    
    	ASD(("happy_meal_tcvr_write: reg=0x%02x value=%04x\n", reg, value));
    
    	/* Welcome to Sun Microsystems, can I take your order please? */
    	if (!(hp->happy_flags & HFLAG_FENABLE)) {
    		happy_meal_bb_write(hp, tregs, reg, value);
    		return;
    	}
    
    	/* Would you like fries with that? */
    	hme_write32(hp, tregs + TCVR_FRAME,
    		    (FRAME_WRITE | (hp->paddr << 23) |
    		     ((reg & 0xff) << 18) | (value & 0xffff)));
    	while (!(hme_read32(hp, tregs + TCVR_FRAME) & 0x10000) && --tries)
    		udelay(20);
    
    	/* Anything else? */
    	if (!tries)
    		printk(KERN_ERR "happy meal: Aieee, transceiver MIF write bolixed\n");
    
    	/* Fifty-two cents is your change, have a nice day. */
    }
    
    /* Auto negotiation.  The scheme is very simple.  We have a timer routine
     * that keeps watching the auto negotiation process as it progresses.
     * The DP83840 is first told to start doing it's thing, we set up the time
     * and place the timer state machine in it's initial state.
     *
     * Here the timer peeks at the DP83840 status registers at each click to see
     * if the auto negotiation has completed, we assume here that the DP83840 PHY
     * will time out at some point and just tell us what (didn't) happen.  For
     * complete coverage we only allow so many of the ticks at this level to run,
     * when this has expired we print a warning message and try another strategy.
     * This "other" strategy is to force the interface into various speed/duplex
     * configurations and we stop when we see a link-up condition before the
     * maximum number of "peek" ticks have occurred.
     *
     * Once a valid link status has been detected we configure the BigMAC and
     * the rest of the Happy Meal to speak the most efficient protocol we could
     * get a clean link for.  The priority for link configurations, highest first
     * is:
     *                 100 Base-T Full Duplex
     *                 100 Base-T Half Duplex
     *                 10 Base-T Full Duplex
     *                 10 Base-T Half Duplex
     *
     * We start a new timer now, after a successful auto negotiation status has
     * been detected.  This timer just waits for the link-up bit to get set in
     * the BMCR of the DP83840.  When this occurs we print a kernel log message
     * describing the link type in use and the fact that it is up.
     *
     * If a fatal error of some sort is signalled and detected in the interrupt
     * service routine, and the chip is reset, or the link is ifconfig'd down
     * and then back up, this entire process repeats itself all over again.
     */
    static int try_next_permutation(struct happy_meal *hp, void __iomem *tregs)
    {
    	hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
    
    	/* Downgrade from full to half duplex.  Only possible
    	 * via ethtool.
    	 */
    	if (hp->sw_bmcr & BMCR_FULLDPLX) {
    		hp->sw_bmcr &= ~(BMCR_FULLDPLX);
    		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
    		return 0;
    	}
    
    	/* Downgrade from 100 to 10. */
    	if (hp->sw_bmcr & BMCR_SPEED100) {
    		hp->sw_bmcr &= ~(BMCR_SPEED100);
    		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
    		return 0;
    	}
    
    	/* We've tried everything. */
    	return -1;
    }
    
    static void display_link_mode(struct happy_meal *hp, void __iomem *tregs)
    {
    	printk(KERN_INFO "%s: Link is up using ", hp->dev->name);
    	if (hp->tcvr_type == external)
    		printk("external ");
    	else
    		printk("internal ");
    	printk("transceiver at ");
    	hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
    	if (hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) {
    		if (hp->sw_lpa & LPA_100FULL)
    			printk("100Mb/s, Full Duplex.\n");
    		else
    			printk("100Mb/s, Half Duplex.\n");
    	} else {
    		if (hp->sw_lpa & LPA_10FULL)
    			printk("10Mb/s, Full Duplex.\n");
    		else
    			printk("10Mb/s, Half Duplex.\n");
    	}
    }
    
    static void display_forced_link_mode(struct happy_meal *hp, void __iomem *tregs)
    {
    	printk(KERN_INFO "%s: Link has been forced up using ", hp->dev->name);
    	if (hp->tcvr_type == external)
    		printk("external ");
    	else
    		printk("internal ");
    	printk("transceiver at ");
    	hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
    	if (hp->sw_bmcr & BMCR_SPEED100)
    		printk("100Mb/s, ");
    	else
    		printk("10Mb/s, ");
    	if (hp->sw_bmcr & BMCR_FULLDPLX)
    		printk("Full Duplex.\n");
    	else
    		printk("Half Duplex.\n");
    }
    
    static int set_happy_link_modes(struct happy_meal *hp, void __iomem *tregs)
    {
    	int full;
    
    	/* All we care about is making sure the bigmac tx_cfg has a
    	 * proper duplex setting.
    	 */
    	if (hp->timer_state == arbwait) {
    		hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
    		if (!(hp->sw_lpa & (LPA_10HALF | LPA_10FULL | LPA_100HALF | LPA_100FULL)))
    			goto no_response;
    		if (hp->sw_lpa & LPA_100FULL)
    			full = 1;
    		else if (hp->sw_lpa & LPA_100HALF)
    			full = 0;
    		else if (hp->sw_lpa & LPA_10FULL)
    			full = 1;
    		else
    			full = 0;
    	} else {
    		/* Forcing a link mode. */
    		hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
    		if (hp->sw_bmcr & BMCR_FULLDPLX)
    			full = 1;
    		else
    			full = 0;
    	}
    
    	/* Before changing other bits in the tx_cfg register, and in
    	 * general any of other the TX config registers too, you
    	 * must:
    	 * 1) Clear Enable
    	 * 2) Poll with reads until that bit reads back as zero
    	 * 3) Make TX configuration changes
    	 * 4) Set Enable once more
    	 */
    	hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
    		    hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) &
    		    ~(BIGMAC_TXCFG_ENABLE));
    	while (hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) & BIGMAC_TXCFG_ENABLE)
    		barrier();
    	if (full) {
    		hp->happy_flags |= HFLAG_FULL;
    		hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
    			    hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) |
    			    BIGMAC_TXCFG_FULLDPLX);
    	} else {
    		hp->happy_flags &= ~(HFLAG_FULL);
    		hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
    			    hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) &
    			    ~(BIGMAC_TXCFG_FULLDPLX));
    	}
    	hme_write32(hp, hp->bigmacregs + BMAC_TXCFG,
    		    hme_read32(hp, hp->bigmacregs + BMAC_TXCFG) |
    		    BIGMAC_TXCFG_ENABLE);
    	return 0;
    no_response:
    	return 1;
    }
    
    static int happy_meal_init(struct happy_meal *hp);
    
    static int is_lucent_phy(struct happy_meal *hp)
    {
    	void __iomem *tregs = hp->tcvregs;
    	unsigned short mr2, mr3;
    	int ret = 0;
    
    	mr2 = happy_meal_tcvr_read(hp, tregs, 2);
    	mr3 = happy_meal_tcvr_read(hp, tregs, 3);
    	if ((mr2 & 0xffff) == 0x0180 &&
    	    ((mr3 & 0xffff) >> 10) == 0x1d)
    		ret = 1;
    
    	return ret;
    }
    
    static void happy_meal_timer(unsigned long data)
    {
    	struct happy_meal *hp = (struct happy_meal *) data;
    	void __iomem *tregs = hp->tcvregs;
    	int restart_timer = 0;
    
    	spin_lock_irq(&hp->happy_lock);
    
    	hp->timer_ticks++;
    	switch(hp->timer_state) {
    	case arbwait:
    		/* Only allow for 5 ticks, thats 10 seconds and much too
    		 * long to wait for arbitration to complete.
    		 */
    		if (hp->timer_ticks >= 10) {
    			/* Enter force mode. */
    	do_force_mode:
    			hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
    			printk(KERN_NOTICE "%s: Auto-Negotiation unsuccessful, trying force link mode\n",
    			       hp->dev->name);
    			hp->sw_bmcr = BMCR_SPEED100;
    			happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
    
    			if (!is_lucent_phy(hp)) {
    				/* OK, seems we need do disable the transceiver for the first
    				 * tick to make sure we get an accurate link state at the
    				 * second tick.
    				 */
    				hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG);
    				hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
    				happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG, hp->sw_csconfig);
    			}
    			hp->timer_state = ltrywait;
    			hp->timer_ticks = 0;
    			restart_timer = 1;
    		} else {
    			/* Anything interesting happen? */
    			hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
    			if (hp->sw_bmsr & BMSR_ANEGCOMPLETE) {
    				int ret;
    
    				/* Just what we've been waiting for... */
    				ret = set_happy_link_modes(hp, tregs);
    				if (ret) {
    					/* Ooops, something bad happened, go to force
    					 * mode.
    					 *
    					 * XXX Broken hubs which don't support 802.3u
    					 * XXX auto-negotiation make this happen as well.
    					 */
    					goto do_force_mode;
    				}
    
    				/* Success, at least so far, advance our state engine. */
    				hp->timer_state = lupwait;
    				restart_timer = 1;
    			} else {
    				restart_timer = 1;
    			}
    		}
    		break;
    
    	case lupwait:
    		/* Auto negotiation was successful and we are awaiting a
    		 * link up status.  I have decided to let this timer run
    		 * forever until some sort of error is signalled, reporting
    		 * a message to the user at 10 second intervals.
    		 */
    		hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
    		if (hp->sw_bmsr & BMSR_LSTATUS) {
    			/* Wheee, it's up, display the link mode in use and put
    			 * the timer to sleep.
    			 */
    			display_link_mode(hp, tregs);
    			hp->timer_state = asleep;
    			restart_timer = 0;
    		} else {
    			if (hp->timer_ticks >= 10) {
    				printk(KERN_NOTICE "%s: Auto negotiation successful, link still "
    				       "not completely up.\n", hp->dev->name);
    				hp->timer_ticks = 0;
    				restart_timer = 1;
    			} else {
    				restart_timer = 1;
    			}
    		}
    		break;
    
    	case ltrywait:
    		/* Making the timeout here too long can make it take
    		 * annoyingly long to attempt all of the link mode
    		 * permutations, but then again this is essentially
    		 * error recovery code for the most part.
    		 */
    		hp->sw_bmsr = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
    		hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs, DP83840_CSCONFIG);
    		if (hp->timer_ticks == 1) {
    			if (!is_lucent_phy(hp)) {
    				/* Re-enable transceiver, we'll re-enable the transceiver next
    				 * tick, then check link state on the following tick.
    				 */
    				hp->sw_csconfig |= CSCONFIG_TCVDISAB;
    				happy_meal_tcvr_write(hp, tregs,
    						      DP83840_CSCONFIG, hp->sw_csconfig);
    			}
    			restart_timer = 1;
    			break;
    		}
    		if (hp->timer_ticks == 2) {
    			if (!is_lucent_phy(hp)) {
    				hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
    				happy_meal_tcvr_write(hp, tregs,
    						      DP83840_CSCONFIG, hp->sw_csconfig);
    			}
    			restart_timer = 1;
    			break;
    		}
    		if (hp->sw_bmsr & BMSR_LSTATUS) {
    			/* Force mode selection success. */
    			display_forced_link_mode(hp, tregs);
    			set_happy_link_modes(hp, tregs); /* XXX error? then what? */
    			hp->timer_state = asleep;
    			restart_timer = 0;
    		} else {
    			if (hp->timer_ticks >= 4) { /* 6 seconds or so... */
    				int ret;
    
    				ret = try_next_permutation(hp, tregs);
    				if (ret == -1) {
    					/* Aieee, tried them all, reset the
    					 * chip and try all over again.
    					 */
    
    					/* Let the user know... */
    					printk(KERN_NOTICE "%s: Link down, cable problem?\n",
    					       hp->dev->name);
    
    					ret = happy_meal_init(hp);
    					if (ret) {
    						/* ho hum... */
    						printk(KERN_ERR "%s: Error, cannot re-init the "
    						       "Happy Meal.\n", hp->dev->name);
    					}
    					goto out;
    				}
    				if (!is_lucent_phy(hp)) {
    					hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs,
    									       DP83840_CSCONFIG);
    					hp->sw_csconfig |= CSCONFIG_TCVDISAB;
    					happy_meal_tcvr_write(hp, tregs,
    							      DP83840_CSCONFIG, hp->sw_csconfig);
    				}
    				hp->timer_ticks = 0;
    				restart_timer = 1;
    			} else {
    				restart_timer = 1;
    			}
    		}
    		break;
    
    	case asleep:
    	default:
    		/* Can't happens.... */
    		printk(KERN_ERR "%s: Aieee, link timer is asleep but we got one anyways!\n",
    		       hp->dev->name);
    		restart_timer = 0;
    		hp->timer_ticks = 0;
    		hp->timer_state = asleep; /* foo on you */
    		break;
    	};
    
    	if (restart_timer) {
    		hp->happy_timer.expires = jiffies + ((12 * HZ)/10); /* 1.2 sec. */
    		add_timer(&hp->happy_timer);
    	}
    
    out:
    	spin_unlock_irq(&hp->happy_lock);
    }
    
    #define TX_RESET_TRIES     32
    #define RX_RESET_TRIES     32
    
    /* hp->happy_lock must be held */
    static void happy_meal_tx_reset(struct happy_meal *hp, void __iomem *bregs)
    {
    	int tries = TX_RESET_TRIES;
    
    	HMD(("happy_meal_tx_reset: reset, "));
    
    	/* Would you like to try our SMCC Delux? */
    	hme_write32(hp, bregs + BMAC_TXSWRESET, 0);
    	while ((hme_read32(hp, bregs + BMAC_TXSWRESET) & 1) && --tries)
    		udelay(20);
    
    	/* Lettuce, tomato, buggy hardware (no extra charge)? */
    	if (!tries)
    		printk(KERN_ERR "happy meal: Transceiver BigMac ATTACK!");
    
    	/* Take care. */
    	HMD(("done\n"));
    }
    
    /* hp->happy_lock must be held */
    static void happy_meal_rx_reset(struct happy_meal *hp, void __iomem *bregs)
    {
    	int tries = RX_RESET_TRIES;
    
    	HMD(("happy_meal_rx_reset: reset, "));
    
    	/* We have a special on GNU/Viking hardware bugs today. */
    	hme_write32(hp, bregs + BMAC_RXSWRESET, 0);
    	while ((hme_read32(hp, bregs + BMAC_RXSWRESET) & 1) && --tries)
    		udelay(20);
    
    	/* Will that be all? */
    	if (!tries)
    		printk(KERN_ERR "happy meal: Receiver BigMac ATTACK!");
    
    	/* Don't forget your vik_1137125_wa.  Have a nice day. */
    	HMD(("done\n"));
    }
    
    #define STOP_TRIES         16
    
    /* hp->happy_lock must be held */
    static void happy_meal_stop(struct happy_meal *hp, void __iomem *gregs)
    {
    	int tries = STOP_TRIES;
    
    	HMD(("happy_meal_stop: reset, "));
    
    	/* We're consolidating our STB products, it's your lucky day. */
    	hme_write32(hp, gregs + GREG_SWRESET, GREG_RESET_ALL);
    	while (hme_read32(hp, gregs + GREG_SWRESET) && --tries)
    		udelay(20);
    
    	/* Come back next week when we are "Sun Microelectronics". */
    	if (!tries)
    		printk(KERN_ERR "happy meal: Fry guys.");
    
    	/* Remember: "Different name, same old buggy as shit hardware." */
    	HMD(("done\n"));
    }
    
    /* hp->happy_lock must be held */
    static void happy_meal_get_counters(struct happy_meal *hp, void __iomem *bregs)
    {
    	struct net_device_stats *stats = &hp->net_stats;
    
    	stats->rx_crc_errors += hme_read32(hp, bregs + BMAC_RCRCECTR);
    	hme_write32(hp, bregs + BMAC_RCRCECTR, 0);
    
    	stats->rx_frame_errors += hme_read32(hp, bregs + BMAC_UNALECTR);
    	hme_write32(hp, bregs + BMAC_UNALECTR, 0);
    
    	stats->rx_length_errors += hme_read32(hp, bregs + BMAC_GLECTR);
    	hme_write32(hp, bregs + BMAC_GLECTR, 0);
    
    	stats->tx_aborted_errors += hme_read32(hp, bregs + BMAC_EXCTR);
    
    	stats->collisions +=
    		(hme_read32(hp, bregs + BMAC_EXCTR) +
    		 hme_read32(hp, bregs + BMAC_LTCTR));
    	hme_write32(hp, bregs + BMAC_EXCTR, 0);
    	hme_write32(hp, bregs + BMAC_LTCTR, 0);
    }
    
    /* hp->happy_lock must be held */
    static void happy_meal_poll_stop(struct happy_meal *hp, void __iomem *tregs)
    {
    	ASD(("happy_meal_poll_stop: "));
    
    	/* If polling disabled or not polling already, nothing to do. */
    	if ((hp->happy_flags & (HFLAG_POLLENABLE | HFLAG_POLL)) !=
    	   (HFLAG_POLLENABLE | HFLAG_POLL)) {
    		HMD(("not polling, return\n"));
    		return;
    	}
    
    	/* Shut up the MIF. */
    	ASD(("were polling, mif ints off, "));
    	hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
    
    	/* Turn off polling. */
    	ASD(("polling off, "));
    	hme_write32(hp, tregs + TCVR_CFG,
    		    hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_PENABLE));
    
    	/* We are no longer polling. */
    	hp->happy_flags &= ~(HFLAG_POLL);
    
    	/* Let the bits set. */
    	udelay(200);
    	ASD(("done\n"));
    }
    
    /* Only Sun can take such nice parts and fuck up the programming interface
     * like this.  Good job guys...
     */
    #define TCVR_RESET_TRIES       16 /* It should reset quickly        */
    #define TCVR_UNISOLATE_TRIES   32 /* Dis-isolation can take longer. */
    
    /* hp->happy_lock must be held */
    static int happy_meal_tcvr_reset(struct happy_meal *hp, void __iomem *tregs)
    {
    	u32 tconfig;
    	int result, tries = TCVR_RESET_TRIES;
    
    	tconfig = hme_read32(hp, tregs + TCVR_CFG);
    	ASD(("happy_meal_tcvr_reset: tcfg<%08lx> ", tconfig));
    	if (hp->tcvr_type == external) {
    		ASD(("external<"));
    		hme_write32(hp, tregs + TCVR_CFG, tconfig & ~(TCV_CFG_PSELECT));
    		hp->tcvr_type = internal;
    		hp->paddr = TCV_PADDR_ITX;
    		ASD(("ISOLATE,"));
    		happy_meal_tcvr_write(hp, tregs, MII_BMCR,
    				      (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE));
    		result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
    		if (result == TCVR_FAILURE) {
    			ASD(("phyread_fail>\n"));
    			return -1;
    		}
    		ASD(("phyread_ok,PSELECT>"));
    		hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT);
    		hp->tcvr_type = external;
    		hp->paddr = TCV_PADDR_ETX;
    	} else {
    		if (tconfig & TCV_CFG_MDIO1) {
    			ASD(("internal<PSELECT,"));
    			hme_write32(hp, tregs + TCVR_CFG, (tconfig | TCV_CFG_PSELECT));
    			ASD(("ISOLATE,"));
    			happy_meal_tcvr_write(hp, tregs, MII_BMCR,
    					      (BMCR_LOOPBACK|BMCR_PDOWN|BMCR_ISOLATE));
    			result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
    			if (result == TCVR_FAILURE) {
    				ASD(("phyread_fail>\n"));
    				return -1;
    			}
    			ASD(("phyread_ok,~PSELECT>"));
    			hme_write32(hp, tregs + TCVR_CFG, (tconfig & ~(TCV_CFG_PSELECT)));
    			hp->tcvr_type = internal;
    			hp->paddr = TCV_PADDR_ITX;
    		}
    	}
    
    	ASD(("BMCR_RESET "));
    	happy_meal_tcvr_write(hp, tregs, MII_BMCR, BMCR_RESET);
    
    	while (--tries) {
    		result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
    		if (result == TCVR_FAILURE)
    			return -1;
    		hp->sw_bmcr = result;
    		if (!(result & BMCR_RESET))
    			break;
    		udelay(20);
    	}
    	if (!tries) {
    		ASD(("BMCR RESET FAILED!\n"));
    		return -1;
    	}
    	ASD(("RESET_OK\n"));
    
    	/* Get fresh copies of the PHY registers. */
    	hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
    	hp->sw_physid1   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1);
    	hp->sw_physid2   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2);
    	hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
    
    	ASD(("UNISOLATE"));
    	hp->sw_bmcr &= ~(BMCR_ISOLATE);
    	happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
    
    	tries = TCVR_UNISOLATE_TRIES;
    	while (--tries) {
    		result = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
    		if (result == TCVR_FAILURE)
    			return -1;
    		if (!(result & BMCR_ISOLATE))
    			break;
    		udelay(20);
    	}
    	if (!tries) {
    		ASD((" FAILED!\n"));
    		return -1;
    	}
    	ASD((" SUCCESS and CSCONFIG_DFBYPASS\n"));
    	if (!is_lucent_phy(hp)) {
    		result = happy_meal_tcvr_read(hp, tregs,
    					      DP83840_CSCONFIG);
    		happy_meal_tcvr_write(hp, tregs,
    				      DP83840_CSCONFIG, (result | CSCONFIG_DFBYPASS));
    	}
    	return 0;
    }
    
    /* Figure out whether we have an internal or external transceiver.
     *
     * hp->happy_lock must be held
     */
    static void happy_meal_transceiver_check(struct happy_meal *hp, void __iomem *tregs)
    {
    	unsigned long tconfig = hme_read32(hp, tregs + TCVR_CFG);
    
    	ASD(("happy_meal_transceiver_check: tcfg=%08lx ", tconfig));
    	if (hp->happy_flags & HFLAG_POLL) {
    		/* If we are polling, we must stop to get the transceiver type. */
    		ASD(("<polling> "));
    		if (hp->tcvr_type == internal) {
    			if (tconfig & TCV_CFG_MDIO1) {
    				ASD(("<internal> <poll stop> "));
    				happy_meal_poll_stop(hp, tregs);
    				hp->paddr = TCV_PADDR_ETX;
    				hp->tcvr_type = external;
    				ASD(("<external>\n"));
    				tconfig &= ~(TCV_CFG_PENABLE);
    				tconfig |= TCV_CFG_PSELECT;
    				hme_write32(hp, tregs + TCVR_CFG, tconfig);
    			}
    		} else {
    			if (hp->tcvr_type == external) {
    				ASD(("<external> "));
    				if (!(hme_read32(hp, tregs + TCVR_STATUS) >> 16)) {
    					ASD(("<poll stop> "));
    					happy_meal_poll_stop(hp, tregs);
    					hp->paddr = TCV_PADDR_ITX;
    					hp->tcvr_type = internal;
    					ASD(("<internal>\n"));
    					hme_write32(hp, tregs + TCVR_CFG,
    						    hme_read32(hp, tregs + TCVR_CFG) &
    						    ~(TCV_CFG_PSELECT));
    				}
    				ASD(("\n"));
    			} else {
    				ASD(("<none>\n"));
    			}
    		}
    	} else {
    		u32 reread = hme_read32(hp, tregs + TCVR_CFG);
    
    		/* Else we can just work off of the MDIO bits. */
    		ASD(("<not polling> "));
    		if (reread & TCV_CFG_MDIO1) {
    			hme_write32(hp, tregs + TCVR_CFG, tconfig | TCV_CFG_PSELECT);
    			hp->paddr = TCV_PADDR_ETX;
    			hp->tcvr_type = external;
    			ASD(("<external>\n"));
    		} else {
    			if (reread & TCV_CFG_MDIO0) {
    				hme_write32(hp, tregs + TCVR_CFG,
    					    tconfig & ~(TCV_CFG_PSELECT));
    				hp->paddr = TCV_PADDR_ITX;
    				hp->tcvr_type = internal;
    				ASD(("<internal>\n"));
    			} else {
    				printk(KERN_ERR "happy meal: Transceiver and a coke please.");
    				hp->tcvr_type = none; /* Grrr... */
    				ASD(("<none>\n"));
    			}
    		}
    	}
    }
    
    /* The receive ring buffers are a bit tricky to get right.  Here goes...
     *
     * The buffers we dma into must be 64 byte aligned.  So we use a special
     * alloc_skb() routine for the happy meal to allocate 64 bytes more than
     * we really need.
     *
     * We use skb_reserve() to align the data block we get in the skb.  We
     * also program the etxregs->cfg register to use an offset of 2.  This
     * imperical constant plus the ethernet header size will always leave
     * us with a nicely aligned ip header once we pass things up to the
     * protocol layers.
     *
     * The numbers work out to:
     *
     *         Max ethernet frame size         1518
     *         Ethernet header size              14
     *         Happy Meal base offset             2
     *
     * Say a skb data area is at 0xf001b010, and its size alloced is
     * (ETH_FRAME_LEN + 64 + 2) = (1514 + 64 + 2) = 1580 bytes.
     *
     * First our alloc_skb() routine aligns the data base to a 64 byte
     * boundary.  We now have 0xf001b040 as our skb data address.  We
     * plug this into the receive descriptor address.
     *
     * Next, we skb_reserve() 2 bytes to account for the Happy Meal offset.
     * So now the data we will end up looking at starts at 0xf001b042.  When
     * the packet arrives, we will check out the size received and subtract
     * this from the skb->length.  Then we just pass the packet up to the
     * protocols as is, and allocate a new skb to replace this slot we have
     * just received from.
     *
     * The ethernet layer will strip the ether header from the front of the
     * skb we just sent to it, this leaves us with the ip header sitting
     * nicely aligned at 0xf001b050.  Also, for tcp and udp packets the
     * Happy Meal has even checksummed the tcp/udp data for us.  The 16
     * bit checksum is obtained from the low bits of the receive descriptor
     * flags, thus:
     *
     * 	skb->csum = rxd->rx_flags & 0xffff;
     * 	skb->ip_summed = CHECKSUM_COMPLETE;
     *
     * before sending off the skb to the protocols, and we are good as gold.
     */
    static void happy_meal_clean_rings(struct happy_meal *hp)
    {
    	int i;
    
    	for (i = 0; i < RX_RING_SIZE; i++) {
    		if (hp->rx_skbs[i] != NULL) {
    			struct sk_buff *skb = hp->rx_skbs[i];
    			struct happy_meal_rxd *rxd;
    			u32 dma_addr;
    
    			rxd = &hp->happy_block->happy_meal_rxd[i];
    			dma_addr = hme_read_desc32(hp, &rxd->rx_addr);
    			hme_dma_unmap(hp, dma_addr, RX_BUF_ALLOC_SIZE, DMA_FROMDEVICE);
    			dev_kfree_skb_any(skb);
    			hp->rx_skbs[i] = NULL;
    		}
    	}
    
    	for (i = 0; i < TX_RING_SIZE; i++) {
    		if (hp->tx_skbs[i] != NULL) {
    			struct sk_buff *skb = hp->tx_skbs[i];
    			struct happy_meal_txd *txd;
    			u32 dma_addr;
    			int frag;
    
    			hp->tx_skbs[i] = NULL;
    
    			for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
    				txd = &hp->happy_block->happy_meal_txd[i];
    				dma_addr = hme_read_desc32(hp, &txd->tx_addr);
    				hme_dma_unmap(hp, dma_addr,
    					      (hme_read_desc32(hp, &txd->tx_flags)
    					       & TXFLAG_SIZE),
    					      DMA_TODEVICE);
    
    				if (frag != skb_shinfo(skb)->nr_frags)
    					i++;
    			}
    
    			dev_kfree_skb_any(skb);
    		}
    	}
    }
    
    /* hp->happy_lock must be held */
    static void happy_meal_init_rings(struct happy_meal *hp)
    {
    	struct hmeal_init_block *hb = hp->happy_block;
    	struct net_device *dev = hp->dev;
    	int i;
    
    	HMD(("happy_meal_init_rings: counters to zero, "));
    	hp->rx_new = hp->rx_old = hp->tx_new = hp->tx_old = 0;
    
    	/* Free any skippy bufs left around in the rings. */
    	HMD(("clean, "));
    	happy_meal_clean_rings(hp);
    
    	/* Now get new skippy bufs for the receive ring. */
    	HMD(("init rxring, "));
    	for (i = 0; i < RX_RING_SIZE; i++) {
    		struct sk_buff *skb;
    
    		skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
    		if (!skb) {
    			hme_write_rxd(hp, &hb->happy_meal_rxd[i], 0, 0);
    			continue;
    		}
    		hp->rx_skbs[i] = skb;
    		skb->dev = dev;
    
    		/* Because we reserve afterwards. */
    		skb_put(skb, (ETH_FRAME_LEN + RX_OFFSET));
    		hme_write_rxd(hp, &hb->happy_meal_rxd[i],
    			      (RXFLAG_OWN | ((RX_BUF_ALLOC_SIZE - RX_OFFSET) << 16)),
    			      hme_dma_map(hp, skb->data, RX_BUF_ALLOC_SIZE, DMA_FROMDEVICE));
    		skb_reserve(skb, RX_OFFSET);
    	}
    
    	HMD(("init txring, "));
    	for (i = 0; i < TX_RING_SIZE; i++)
    		hme_write_txd(hp, &hb->happy_meal_txd[i], 0, 0);
    
    	HMD(("done\n"));
    }
    
    /* hp->happy_lock must be held */
    static void happy_meal_begin_auto_negotiation(struct happy_meal *hp,
    					      void __iomem *tregs,
    					      struct ethtool_cmd *ep)
    {
    	int timeout;
    
    	/* Read all of the registers we are interested in now. */
    	hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
    	hp->sw_bmcr      = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
    	hp->sw_physid1   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID1);
    	hp->sw_physid2   = happy_meal_tcvr_read(hp, tregs, MII_PHYSID2);
    
    	/* XXX Check BMSR_ANEGCAPABLE, should not be necessary though. */
    
    	hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
    	if (ep == NULL || ep->autoneg == AUTONEG_ENABLE) {
    		/* Advertise everything we can support. */
    		if (hp->sw_bmsr & BMSR_10HALF)
    			hp->sw_advertise |= (ADVERTISE_10HALF);
    		else
    			hp->sw_advertise &= ~(ADVERTISE_10HALF);
    
    		if (hp->sw_bmsr & BMSR_10FULL)
    			hp->sw_advertise |= (ADVERTISE_10FULL);
    		else
    			hp->sw_advertise &= ~(ADVERTISE_10FULL);
    		if (hp->sw_bmsr & BMSR_100HALF)
    			hp->sw_advertise |= (ADVERTISE_100HALF);
    		else
    			hp->sw_advertise &= ~(ADVERTISE_100HALF);
    		if (hp->sw_bmsr & BMSR_100FULL)
    			hp->sw_advertise |= (ADVERTISE_100FULL);
    		else
    			hp->sw_advertise &= ~(ADVERTISE_100FULL);
    		happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise);
    
    		/* XXX Currently no Happy Meal cards I know off support 100BaseT4,
    		 * XXX and this is because the DP83840 does not support it, changes
    		 * XXX would need to be made to the tx/rx logic in the driver as well
    		 * XXX so I completely skip checking for it in the BMSR for now.
    		 */
    
    #ifdef AUTO_SWITCH_DEBUG
    		ASD(("%s: Advertising [ ", hp->dev->name));
    		if (hp->sw_advertise & ADVERTISE_10HALF)
    			ASD(("10H "));
    		if (hp->sw_advertise & ADVERTISE_10FULL)
    			ASD(("10F "));
    		if (hp->sw_advertise & ADVERTISE_100HALF)
    			ASD(("100H "));
    		if (hp->sw_advertise & ADVERTISE_100FULL)
    			ASD(("100F "));
    #endif
    
    		/* Enable Auto-Negotiation, this is usually on already... */
    		hp->sw_bmcr |= BMCR_ANENABLE;
    		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
    
    		/* Restart it to make sure it is going. */
    		hp->sw_bmcr |= BMCR_ANRESTART;
    		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
    
    		/* BMCR_ANRESTART self clears when the process has begun. */
    
    		timeout = 64;  /* More than enough. */
    		while (--timeout) {
    			hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
    			if (!(hp->sw_bmcr & BMCR_ANRESTART))
    				break; /* got it. */
    			udelay(10);
    		}
    		if (!timeout) {
    			printk(KERN_ERR "%s: Happy Meal would not start auto negotiation "
    			       "BMCR=0x%04x\n", hp->dev->name, hp->sw_bmcr);
    			printk(KERN_NOTICE "%s: Performing force link detection.\n",
    			       hp->dev->name);
    			goto force_link;
    		} else {
    			hp->timer_state = arbwait;
    		}
    	} else {
    force_link:
    		/* Force the link up, trying first a particular mode.
    		 * Either we are here at the request of ethtool or
    		 * because the Happy Meal would not start to autoneg.
    		 */
    
    		/* Disable auto-negotiation in BMCR, enable the duplex and
    		 * speed setting, init the timer state machine, and fire it off.
    		 */
    		if (ep == NULL || ep->autoneg == AUTONEG_ENABLE) {
    			hp->sw_bmcr = BMCR_SPEED100;
    		} else {
    			if (ep->speed == SPEED_100)
    				hp->sw_bmcr = BMCR_SPEED100;
    			else
    				hp->sw_bmcr = 0;
    			if (ep->duplex == DUPLEX_FULL)
    				hp->sw_bmcr |= BMCR_FULLDPLX;
    		}
    		happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
    
    		if (!is_lucent_phy(hp)) {
    			/* OK, seems we need do disable the transceiver for the first
    			 * tick to make sure we get an accurate link state at the
    			 * second tick.
    			 */
    			hp->sw_csconfig = happy_meal_tcvr_read(hp, tregs,
    							       DP83840_CSCONFIG);
    			hp->sw_csconfig &= ~(CSCONFIG_TCVDISAB);
    			happy_meal_tcvr_write(hp, tregs, DP83840_CSCONFIG,
    					      hp->sw_csconfig);
    		}
    		hp->timer_state = ltrywait;
    	}
    
    	hp->timer_ticks = 0;
    	hp->happy_timer.expires = jiffies + (12 * HZ)/10;  /* 1.2 sec. */
    	hp->happy_timer.data = (unsigned long) hp;
    	hp->happy_timer.function = &happy_meal_timer;
    	add_timer(&hp->happy_timer);
    }
    
    /* hp->happy_lock must be held */
    static int happy_meal_init(struct happy_meal *hp)
    {
    	void __iomem *gregs        = hp->gregs;
    	void __iomem *etxregs      = hp->etxregs;
    	void __iomem *erxregs      = hp->erxregs;
    	void __iomem *bregs        = hp->bigmacregs;
    	void __iomem *tregs        = hp->tcvregs;
    	u32 regtmp, rxcfg;
    	unsigned char *e = &hp->dev->dev_addr[0];
    
    	/* If auto-negotiation timer is running, kill it. */
    	del_timer(&hp->happy_timer);
    
    	HMD(("happy_meal_init: happy_flags[%08x] ",
    	     hp->happy_flags));
    	if (!(hp->happy_flags & HFLAG_INIT)) {
    		HMD(("set HFLAG_INIT, "));
    		hp->happy_flags |= HFLAG_INIT;
    		happy_meal_get_counters(hp, bregs);
    	}
    
    	/* Stop polling. */
    	HMD(("to happy_meal_poll_stop\n"));
    	happy_meal_poll_stop(hp, tregs);
    
    	/* Stop transmitter and receiver. */
    	HMD(("happy_meal_init: to happy_meal_stop\n"));
    	happy_meal_stop(hp, gregs);
    
    	/* Alloc and reset the tx/rx descriptor chains. */
    	HMD(("happy_meal_init: to happy_meal_init_rings\n"));
    	happy_meal_init_rings(hp);
    
    	/* Shut up the MIF. */
    	HMD(("happy_meal_init: Disable all MIF irqs (old[%08x]), ",
    	     hme_read32(hp, tregs + TCVR_IMASK)));
    	hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
    
    	/* See if we can enable the MIF frame on this card to speak to the DP83840. */
    	if (hp->happy_flags & HFLAG_FENABLE) {
    		HMD(("use frame old[%08x], ",
    		     hme_read32(hp, tregs + TCVR_CFG)));
    		hme_write32(hp, tregs + TCVR_CFG,
    			    hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE));
    	} else {
    		HMD(("use bitbang old[%08x], ",
    		     hme_read32(hp, tregs + TCVR_CFG)));
    		hme_write32(hp, tregs + TCVR_CFG,
    			    hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE);
    	}
    
    	/* Check the state of the transceiver. */
    	HMD(("to happy_meal_transceiver_check\n"));
    	happy_meal_transceiver_check(hp, tregs);
    
    	/* Put the Big Mac into a sane state. */
    	HMD(("happy_meal_init: "));
    	switch(hp->tcvr_type) {
    	case none:
    		/* Cannot operate if we don't know the transceiver type! */
    		HMD(("AAIEEE no transceiver type, EAGAIN"));
    		return -EAGAIN;
    
    	case internal:
    		/* Using the MII buffers. */
    		HMD(("internal, using MII, "));
    		hme_write32(hp, bregs + BMAC_XIFCFG, 0);
    		break;
    
    	case external:
    		/* Not using the MII, disable it. */
    		HMD(("external, disable MII, "));
    		hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB);
    		break;
    	};
    
    	if (happy_meal_tcvr_reset(hp, tregs))
    		return -EAGAIN;
    
    	/* Reset the Happy Meal Big Mac transceiver and the receiver. */
    	HMD(("tx/rx reset, "));
    	happy_meal_tx_reset(hp, bregs);
    	happy_meal_rx_reset(hp, bregs);
    
    	/* Set jam size and inter-packet gaps to reasonable defaults. */
    	HMD(("jsize/ipg1/ipg2, "));
    	hme_write32(hp, bregs + BMAC_JSIZE, DEFAULT_JAMSIZE);
    	hme_write32(hp, bregs + BMAC_IGAP1, DEFAULT_IPG1);
    	hme_write32(hp, bregs + BMAC_IGAP2, DEFAULT_IPG2);
    
    	/* Load up the MAC address and random seed. */
    	HMD(("rseed/macaddr, "));
    
    	/* The docs recommend to use the 10LSB of our MAC here. */
    	hme_write32(hp, bregs + BMAC_RSEED, ((e[5] | e[4]<<8)&0x3ff));
    
    	hme_write32(hp, bregs + BMAC_MACADDR2, ((e[4] << 8) | e[5]));
    	hme_write32(hp, bregs + BMAC_MACADDR1, ((e[2] << 8) | e[3]));
    	hme_write32(hp, bregs + BMAC_MACADDR0, ((e[0] << 8) | e[1]));
    
    	HMD(("htable, "));
    	if ((hp->dev->flags & IFF_ALLMULTI) ||
    	    (hp->dev->mc_count > 64)) {
    		hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff);
    		hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff);
    		hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff);
    		hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff);
    	} else if ((hp->dev->flags & IFF_PROMISC) == 0) {
    		u16 hash_table[4];
    		struct dev_mc_list *dmi = hp->dev->mc_list;
    		char *addrs;
    		int i;
    		u32 crc;
    
    		for (i = 0; i < 4; i++)
    			hash_table[i] = 0;
    
    		for (i = 0; i < hp->dev->mc_count; i++) {
    			addrs = dmi->dmi_addr;
    			dmi = dmi->next;
    
    			if (!(*addrs & 1))
    				continue;
    
    			crc = ether_crc_le(6, addrs);
    			crc >>= 26;
    			hash_table[crc >> 4] |= 1 << (crc & 0xf);
    		}
    		hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]);
    		hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]);
    		hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]);
    		hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]);
    	} else {
    		hme_write32(hp, bregs + BMAC_HTABLE3, 0);
    		hme_write32(hp, bregs + BMAC_HTABLE2, 0);
    		hme_write32(hp, bregs + BMAC_HTABLE1, 0);
    		hme_write32(hp, bregs + BMAC_HTABLE0, 0);
    	}
    
    	/* Set the RX and TX ring ptrs. */
    	HMD(("ring ptrs rxr[%08x] txr[%08x]\n",
    	     ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)),
    	     ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0))));
    	hme_write32(hp, erxregs + ERX_RING,
    		    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)));
    	hme_write32(hp, etxregs + ETX_RING,
    		    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_txd, 0)));
    
    	/* Parity issues in the ERX unit of some HME revisions can cause some
    	 * registers to not be written unless their parity is even.  Detect such
    	 * lost writes and simply rewrite with a low bit set (which will be ignored
    	 * since the rxring needs to be 2K aligned).
    	 */
    	if (hme_read32(hp, erxregs + ERX_RING) !=
    	    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0)))
    		hme_write32(hp, erxregs + ERX_RING,
    			    ((__u32)hp->hblock_dvma + hblock_offset(happy_meal_rxd, 0))
    			    | 0x4);
    
    	/* Set the supported burst sizes. */
    	HMD(("happy_meal_init: old[%08x] bursts<",
    	     hme_read32(hp, gregs + GREG_CFG)));
    
    #ifndef CONFIG_SPARC
    	/* It is always PCI and can handle 64byte bursts. */
    	hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST64);
    #else
    	if ((hp->happy_bursts & DMA_BURST64) &&
    	    ((hp->happy_flags & HFLAG_PCI) != 0
    #ifdef CONFIG_SBUS
    	     || sbus_can_burst64(hp->happy_dev)
    #endif
    	     || 0)) {
    		u32 gcfg = GREG_CFG_BURST64;
    
    		/* I have no idea if I should set the extended
    		 * transfer mode bit for Cheerio, so for now I
    		 * do not.  -DaveM
    		 */
    #ifdef CONFIG_SBUS
    		if ((hp->happy_flags & HFLAG_PCI) == 0 &&
    		    sbus_can_dma_64bit(hp->happy_dev)) {
    			sbus_set_sbus64(hp->happy_dev,
    					hp->happy_bursts);
    			gcfg |= GREG_CFG_64BIT;
    		}
    #endif
    
    		HMD(("64>"));
    		hme_write32(hp, gregs + GREG_CFG, gcfg);
    	} else if (hp->happy_bursts & DMA_BURST32) {
    		HMD(("32>"));
    		hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST32);
    	} else if (hp->happy_bursts & DMA_BURST16) {
    		HMD(("16>"));
    		hme_write32(hp, gregs + GREG_CFG, GREG_CFG_BURST16);
    	} else {
    		HMD(("XXX>"));
    		hme_write32(hp, gregs + GREG_CFG, 0);
    	}
    #endif /* CONFIG_SPARC */
    
    	/* Turn off interrupts we do not want to hear. */
    	HMD((", enable global interrupts, "));
    	hme_write32(hp, gregs + GREG_IMASK,
    		    (GREG_IMASK_GOTFRAME | GREG_IMASK_RCNTEXP |
    		     GREG_IMASK_SENTFRAME | GREG_IMASK_TXPERR));
    
    	/* Set the transmit ring buffer size. */
    	HMD(("tx rsize=%d oreg[%08x], ", (int)TX_RING_SIZE,
    	     hme_read32(hp, etxregs + ETX_RSIZE)));
    	hme_write32(hp, etxregs + ETX_RSIZE, (TX_RING_SIZE >> ETX_RSIZE_SHIFT) - 1);
    
    	/* Enable transmitter DVMA. */
    	HMD(("tx dma enable old[%08x], ",
    	     hme_read32(hp, etxregs + ETX_CFG)));
    	hme_write32(hp, etxregs + ETX_CFG,
    		    hme_read32(hp, etxregs + ETX_CFG) | ETX_CFG_DMAENABLE);
    
    	/* This chip really rots, for the receiver sometimes when you
    	 * write to its control registers not all the bits get there
    	 * properly.  I cannot think of a sane way to provide complete
    	 * coverage for this hardware bug yet.
    	 */
    	HMD(("erx regs bug old[%08x]\n",
    	     hme_read32(hp, erxregs + ERX_CFG)));
    	hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET));
    	regtmp = hme_read32(hp, erxregs + ERX_CFG);
    	hme_write32(hp, erxregs + ERX_CFG, ERX_CFG_DEFAULT(RX_OFFSET));
    	if (hme_read32(hp, erxregs + ERX_CFG) != ERX_CFG_DEFAULT(RX_OFFSET)) {
    		printk(KERN_ERR "happy meal: Eieee, rx config register gets greasy fries.\n");
    		printk(KERN_ERR "happy meal: Trying to set %08x, reread gives %08x\n",
    		       ERX_CFG_DEFAULT(RX_OFFSET), regtmp);
    		/* XXX Should return failure here... */
    	}
    
    	/* Enable Big Mac hash table filter. */
    	HMD(("happy_meal_init: enable hash rx_cfg_old[%08x], ",
    	     hme_read32(hp, bregs + BMAC_RXCFG)));
    	rxcfg = BIGMAC_RXCFG_HENABLE | BIGMAC_RXCFG_REJME;
    	if (hp->dev->flags & IFF_PROMISC)
    		rxcfg |= BIGMAC_RXCFG_PMISC;
    	hme_write32(hp, bregs + BMAC_RXCFG, rxcfg);
    
    	/* Let the bits settle in the chip. */
    	udelay(10);
    
    	/* Ok, configure the Big Mac transmitter. */
    	HMD(("BIGMAC init, "));
    	regtmp = 0;
    	if (hp->happy_flags & HFLAG_FULL)
    		regtmp |= BIGMAC_TXCFG_FULLDPLX;
    
    	/* Don't turn on the "don't give up" bit for now.  It could cause hme
    	 * to deadlock with the PHY if a Jabber occurs.
    	 */
    	hme_write32(hp, bregs + BMAC_TXCFG, regtmp /*| BIGMAC_TXCFG_DGIVEUP*/);
    
    	/* Give up after 16 TX attempts. */
    	hme_write32(hp, bregs + BMAC_ALIMIT, 16);
    
    	/* Enable the output drivers no matter what. */
    	regtmp = BIGMAC_XCFG_ODENABLE;
    
    	/* If card can do lance mode, enable it. */
    	if (hp->happy_flags & HFLAG_LANCE)
    		regtmp |= (DEFAULT_IPG0 << 5) | BIGMAC_XCFG_LANCE;
    
    	/* Disable the MII buffers if using external transceiver. */
    	if (hp->tcvr_type == external)
    		regtmp |= BIGMAC_XCFG_MIIDISAB;
    
    	HMD(("XIF config old[%08x], ",
    	     hme_read32(hp, bregs + BMAC_XIFCFG)));
    	hme_write32(hp, bregs + BMAC_XIFCFG, regtmp);
    
    	/* Start things up. */
    	HMD(("tx old[%08x] and rx [%08x] ON!\n",
    	     hme_read32(hp, bregs + BMAC_TXCFG),
    	     hme_read32(hp, bregs + BMAC_RXCFG)));
    	hme_write32(hp, bregs + BMAC_TXCFG,
    		    hme_read32(hp, bregs + BMAC_TXCFG) | BIGMAC_TXCFG_ENABLE);
    	hme_write32(hp, bregs + BMAC_RXCFG,
    		    hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_ENABLE);
    
    	/* Get the autonegotiation started, and the watch timer ticking. */
    	happy_meal_begin_auto_negotiation(hp, tregs, NULL);
    
    	/* Success. */
    	return 0;
    }
    
    /* hp->happy_lock must be held */
    static void happy_meal_set_initial_advertisement(struct happy_meal *hp)
    {
    	void __iomem *tregs	= hp->tcvregs;
    	void __iomem *bregs	= hp->bigmacregs;
    	void __iomem *gregs	= hp->gregs;
    
    	happy_meal_stop(hp, gregs);
    	hme_write32(hp, tregs + TCVR_IMASK, 0xffff);
    	if (hp->happy_flags & HFLAG_FENABLE)
    		hme_write32(hp, tregs + TCVR_CFG,
    			    hme_read32(hp, tregs + TCVR_CFG) & ~(TCV_CFG_BENABLE));
    	else
    		hme_write32(hp, tregs + TCVR_CFG,
    			    hme_read32(hp, tregs + TCVR_CFG) | TCV_CFG_BENABLE);
    	happy_meal_transceiver_check(hp, tregs);
    	switch(hp->tcvr_type) {
    	case none:
    		return;
    	case internal:
    		hme_write32(hp, bregs + BMAC_XIFCFG, 0);
    		break;
    	case external:
    		hme_write32(hp, bregs + BMAC_XIFCFG, BIGMAC_XCFG_MIIDISAB);
    		break;
    	};
    	if (happy_meal_tcvr_reset(hp, tregs))
    		return;
    
    	/* Latch PHY registers as of now. */
    	hp->sw_bmsr      = happy_meal_tcvr_read(hp, tregs, MII_BMSR);
    	hp->sw_advertise = happy_meal_tcvr_read(hp, tregs, MII_ADVERTISE);
    
    	/* Advertise everything we can support. */
    	if (hp->sw_bmsr & BMSR_10HALF)
    		hp->sw_advertise |= (ADVERTISE_10HALF);
    	else
    		hp->sw_advertise &= ~(ADVERTISE_10HALF);
    
    	if (hp->sw_bmsr & BMSR_10FULL)
    		hp->sw_advertise |= (ADVERTISE_10FULL);
    	else
    		hp->sw_advertise &= ~(ADVERTISE_10FULL);
    	if (hp->sw_bmsr & BMSR_100HALF)
    		hp->sw_advertise |= (ADVERTISE_100HALF);
    	else
    		hp->sw_advertise &= ~(ADVERTISE_100HALF);
    	if (hp->sw_bmsr & BMSR_100FULL)
    		hp->sw_advertise |= (ADVERTISE_100FULL);
    	else
    		hp->sw_advertise &= ~(ADVERTISE_100FULL);
    
    	/* Update the PHY advertisement register. */
    	happy_meal_tcvr_write(hp, tregs, MII_ADVERTISE, hp->sw_advertise);
    }
    
    /* Once status is latched (by happy_meal_interrupt) it is cleared by
     * the hardware, so we cannot re-read it and get a correct value.
     *
     * hp->happy_lock must be held
     */
    static int happy_meal_is_not_so_happy(struct happy_meal *hp, u32 status)
    {
    	int reset = 0;
    
    	/* Only print messages for non-counter related interrupts. */
    	if (status & (GREG_STAT_STSTERR | GREG_STAT_TFIFO_UND |
    		      GREG_STAT_MAXPKTERR | GREG_STAT_RXERR |
    		      GREG_STAT_RXPERR | GREG_STAT_RXTERR | GREG_STAT_EOPERR |
    		      GREG_STAT_MIFIRQ | GREG_STAT_TXEACK | GREG_STAT_TXLERR |
    		      GREG_STAT_TXPERR | GREG_STAT_TXTERR | GREG_STAT_SLVERR |
    		      GREG_STAT_SLVPERR))
    		printk(KERN_ERR "%s: Error interrupt for happy meal, status = %08x\n",
    		       hp->dev->name, status);
    
    	if (status & GREG_STAT_RFIFOVF) {
    		/* Receive FIFO overflow is harmless and the hardware will take
    		   care of it, just some packets are lost. Who cares. */
    		printk(KERN_DEBUG "%s: Happy Meal receive FIFO overflow.\n", hp->dev->name);
    	}
    
    	if (status & GREG_STAT_STSTERR) {
    		/* BigMAC SQE link test failed. */
    		printk(KERN_ERR "%s: Happy Meal BigMAC SQE test failed.\n", hp->dev->name);
    		reset = 1;
    	}
    
    	if (status & GREG_STAT_TFIFO_UND) {
    		/* Transmit FIFO underrun, again DMA error likely. */
    		printk(KERN_ERR "%s: Happy Meal transmitter FIFO underrun, DMA error.\n",
    		       hp->dev->name);
    		reset = 1;
    	}
    
    	if (status & GREG_STAT_MAXPKTERR) {
    		/* Driver error, tried to transmit something larger
    		 * than ethernet max mtu.
    		 */
    		printk(KERN_ERR "%s: Happy Meal MAX Packet size error.\n", hp->dev->name);
    		reset = 1;
    	}
    
    	if (status & GREG_STAT_NORXD) {
    		/* This is harmless, it just means the system is
    		 * quite loaded and the incoming packet rate was
    		 * faster than the interrupt handler could keep up
    		 * with.
    		 */
    		printk(KERN_INFO "%s: Happy Meal out of receive "
    		       "descriptors, packet dropped.\n",
    		       hp->dev->name);
    	}
    
    	if (status & (GREG_STAT_RXERR|GREG_STAT_RXPERR|GREG_STAT_RXTERR)) {
    		/* All sorts of DMA receive errors. */
    		printk(KERN_ERR "%s: Happy Meal rx DMA errors [ ", hp->dev->name);
    		if (status & GREG_STAT_RXERR)
    			printk("GenericError ");
    		if (status & GREG_STAT_RXPERR)
    			printk("ParityError ");
    		if (status & GREG_STAT_RXTERR)
    			printk("RxTagBotch ");
    		printk("]\n");
    		reset = 1;
    	}
    
    	if (status & GREG_STAT_EOPERR) {
    		/* Driver bug, didn't set EOP bit in tx descriptor given
    		 * to the happy meal.
    		 */
    		printk(KERN_ERR "%s: EOP not set in happy meal transmit descriptor!\n",
    		       hp->dev->name);
    		reset = 1;
    	}
    
    	if (status & GREG_STAT_MIFIRQ) {
    		/* MIF signalled an interrupt, were we polling it? */
    		printk(KERN_ERR "%s: Happy Meal MIF interrupt.\n", hp->dev->name);
    	}
    
    	if (status &
    	    (GREG_STAT_TXEACK|GREG_STAT_TXLERR|GREG_STAT_TXPERR|GREG_STAT_TXTERR)) {
    		/* All sorts of transmit DMA errors. */
    		printk(KERN_ERR "%s: Happy Meal tx DMA errors [ ", hp->dev->name);
    		if (status & GREG_STAT_TXEACK)
    			printk("GenericError ");
    		if (status & GREG_STAT_TXLERR)
    			printk("LateError ");
    		if (status & GREG_STAT_TXPERR)
    			printk("ParityErro ");
    		if (status & GREG_STAT_TXTERR)
    			printk("TagBotch ");
    		printk("]\n");
    		reset = 1;
    	}
    
    	if (status & (GREG_STAT_SLVERR|GREG_STAT_SLVPERR)) {
    		/* Bus or parity error when cpu accessed happy meal registers
    		 * or it's internal FIFO's.  Should never see this.
    		 */
    		printk(KERN_ERR "%s: Happy Meal register access SBUS slave (%s) error.\n",
    		       hp->dev->name,
    		       (status & GREG_STAT_SLVPERR) ? "parity" : "generic");
    		reset = 1;
    	}
    
    	if (reset) {
    		printk(KERN_NOTICE "%s: Resetting...\n", hp->dev->name);
    		happy_meal_init(hp);
    		return 1;
    	}
    	return 0;
    }
    
    /* hp->happy_lock must be held */
    static void happy_meal_mif_interrupt(struct happy_meal *hp)
    {
    	void __iomem *tregs = hp->tcvregs;
    
    	printk(KERN_INFO "%s: Link status change.\n", hp->dev->name);
    	hp->sw_bmcr = happy_meal_tcvr_read(hp, tregs, MII_BMCR);
    	hp->sw_lpa = happy_meal_tcvr_read(hp, tregs, MII_LPA);
    
    	/* Use the fastest transmission protocol possible. */
    	if (hp->sw_lpa & LPA_100FULL) {
    		printk(KERN_INFO "%s: Switching to 100Mbps at full duplex.", hp->dev->name);
    		hp->sw_bmcr |= (BMCR_FULLDPLX | BMCR_SPEED100);
    	} else if (hp->sw_lpa & LPA_100HALF) {
    		printk(KERN_INFO "%s: Switching to 100MBps at half duplex.", hp->dev->name);
    		hp->sw_bmcr |= BMCR_SPEED100;
    	} else if (hp->sw_lpa & LPA_10FULL) {
    		printk(KERN_INFO "%s: Switching to 10MBps at full duplex.", hp->dev->name);
    		hp->sw_bmcr |= BMCR_FULLDPLX;
    	} else {
    		printk(KERN_INFO "%s: Using 10Mbps at half duplex.", hp->dev->name);
    	}
    	happy_meal_tcvr_write(hp, tregs, MII_BMCR, hp->sw_bmcr);
    
    	/* Finally stop polling and shut up the MIF. */
    	happy_meal_poll_stop(hp, tregs);
    }
    
    #ifdef TXDEBUG
    #define TXD(x) printk x
    #else
    #define TXD(x)
    #endif
    
    /* hp->happy_lock must be held */
    static void happy_meal_tx(struct happy_meal *hp)
    {
    	struct happy_meal_txd *txbase = &hp->happy_block->happy_meal_txd[0];
    	struct happy_meal_txd *this;
    	struct net_device *dev = hp->dev;
    	int elem;
    
    	elem = hp->tx_old;
    	TXD(("TX<"));
    	while (elem != hp->tx_new) {
    		struct sk_buff *skb;
    		u32 flags, dma_addr, dma_len;
    		int frag;
    
    		TXD(("[%d]", elem));
    		this = &txbase[elem];
    		flags = hme_read_desc32(hp, &this->tx_flags);
    		if (flags & TXFLAG_OWN)
    			break;
    		skb = hp->tx_skbs[elem];
    		if (skb_shinfo(skb)->nr_frags) {
    			int last;
    
    			last = elem + skb_shinfo(skb)->nr_frags;
    			last &= (TX_RING_SIZE - 1);
    			flags = hme_read_desc32(hp, &txbase[last].tx_flags);
    			if (flags & TXFLAG_OWN)
    				break;
    		}
    		hp->tx_skbs[elem] = NULL;
    		hp->net_stats.tx_bytes += skb->len;
    
    		for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
    			dma_addr = hme_read_desc32(hp, &this->tx_addr);
    			dma_len = hme_read_desc32(hp, &this->tx_flags);
    
    			dma_len &= TXFLAG_SIZE;
    			hme_dma_unmap(hp, dma_addr, dma_len, DMA_TODEVICE);
    
    			elem = NEXT_TX(elem);
    			this = &txbase[elem];
    		}
    
    		dev_kfree_skb_irq(skb);
    		hp->net_stats.tx_packets++;
    	}
    	hp->tx_old = elem;
    	TXD((">"));
    
    	if (netif_queue_stopped(dev) &&
    	    TX_BUFFS_AVAIL(hp) > (MAX_SKB_FRAGS + 1))
    		netif_wake_queue(dev);
    }
    
    #ifdef RXDEBUG
    #define RXD(x) printk x
    #else
    #define RXD(x)
    #endif
    
    /* Originally I used to handle the allocation failure by just giving back just
     * that one ring buffer to the happy meal.  Problem is that usually when that
     * condition is triggered, the happy meal expects you to do something reasonable
     * with all of the packets it has DMA'd in.  So now I just drop the entire
     * ring when we cannot get a new skb and give them all back to the happy meal,
     * maybe things will be "happier" now.
     *
     * hp->happy_lock must be held
     */
    static void happy_meal_rx(struct happy_meal *hp, struct net_device *dev)
    {
    	struct happy_meal_rxd *rxbase = &hp->happy_block->happy_meal_rxd[0];
    	struct happy_meal_rxd *this;
    	int elem = hp->rx_new, drops = 0;
    	u32 flags;
    
    	RXD(("RX<"));
    	this = &rxbase[elem];
    	while (!((flags = hme_read_desc32(hp, &this->rx_flags)) & RXFLAG_OWN)) {
    		struct sk_buff *skb;
    		int len = flags >> 16;
    		u16 csum = flags & RXFLAG_CSUM;
    		u32 dma_addr = hme_read_desc32(hp, &this->rx_addr);
    
    		RXD(("[%d ", elem));
    
    		/* Check for errors. */
    		if ((len < ETH_ZLEN) || (flags & RXFLAG_OVERFLOW)) {
    			RXD(("ERR(%08x)]", flags));
    			hp->net_stats.rx_errors++;
    			if (len < ETH_ZLEN)
    				hp->net_stats.rx_length_errors++;
    			if (len & (RXFLAG_OVERFLOW >> 16)) {
    				hp->net_stats.rx_over_errors++;
    				hp->net_stats.rx_fifo_errors++;
    			}
    
    			/* Return it to the Happy meal. */
    	drop_it:
    			hp->net_stats.rx_dropped++;
    			hme_write_rxd(hp, this,
    				      (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
    				      dma_addr);
    			goto next;
    		}
    		skb = hp->rx_skbs[elem];
    		if (len > RX_COPY_THRESHOLD) {
    			struct sk_buff *new_skb;
    
    			/* Now refill the entry, if we can. */
    			new_skb = happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
    			if (new_skb == NULL) {
    				drops++;
    				goto drop_it;
    			}
    			hme_dma_unmap(hp, dma_addr, RX_BUF_ALLOC_SIZE, DMA_FROMDEVICE);
    			hp->rx_skbs[elem] = new_skb;
    			new_skb->dev = dev;
    			skb_put(new_skb, (ETH_FRAME_LEN + RX_OFFSET));
    			hme_write_rxd(hp, this,
    				      (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
    				      hme_dma_map(hp, new_skb->data, RX_BUF_ALLOC_SIZE, DMA_FROMDEVICE));
    			skb_reserve(new_skb, RX_OFFSET);
    
    			/* Trim the original skb for the netif. */
    			skb_trim(skb, len);
    		} else {
    			struct sk_buff *copy_skb = dev_alloc_skb(len + 2);
    
    			if (copy_skb == NULL) {
    				drops++;
    				goto drop_it;
    			}
    
    			skb_reserve(copy_skb, 2);
    			skb_put(copy_skb, len);
    			hme_dma_sync_for_cpu(hp, dma_addr, len, DMA_FROMDEVICE);
    			skb_copy_from_linear_data(skb, copy_skb->data, len);
    			hme_dma_sync_for_device(hp, dma_addr, len, DMA_FROMDEVICE);
    
    			/* Reuse original ring buffer. */
    			hme_write_rxd(hp, this,
    				      (RXFLAG_OWN|((RX_BUF_ALLOC_SIZE-RX_OFFSET)<<16)),
    				      dma_addr);
    
    			skb = copy_skb;
    		}
    
    		/* This card is _fucking_ hot... */
    		skb->csum = ntohs(csum ^ 0xffff);
    		skb->ip_summed = CHECKSUM_COMPLETE;
    
    		RXD(("len=%d csum=%4x]", len, csum));
    		skb->protocol = eth_type_trans(skb, dev);
    		netif_rx(skb);
    
    		dev->last_rx = jiffies;
    		hp->net_stats.rx_packets++;
    		hp->net_stats.rx_bytes += len;
    	next:
    		elem = NEXT_RX(elem);
    		this = &rxbase[elem];
    	}
    	hp->rx_new = elem;
    	if (drops)
    		printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n", hp->dev->name);
    	RXD((">"));
    }
    
    static irqreturn_t happy_meal_interrupt(int irq, void *dev_id)
    {
    	struct net_device *dev = dev_id;
    	struct happy_meal *hp  = netdev_priv(dev);
    	u32 happy_status       = hme_read32(hp, hp->gregs + GREG_STAT);
    
    	HMD(("happy_meal_interrupt: status=%08x ", happy_status));
    
    	spin_lock(&hp->happy_lock);
    
    	if (happy_status & GREG_STAT_ERRORS) {
    		HMD(("ERRORS "));
    		if (happy_meal_is_not_so_happy(hp, /* un- */ happy_status))
    			goto out;
    	}
    
    	if (happy_status & GREG_STAT_MIFIRQ) {
    		HMD(("MIFIRQ "));
    		happy_meal_mif_interrupt(hp);
    	}
    
    	if (happy_status & GREG_STAT_TXALL) {
    		HMD(("TXALL "));
    		happy_meal_tx(hp);
    	}
    
    	if (happy_status & GREG_STAT_RXTOHOST) {
    		HMD(("RXTOHOST "));
    		happy_meal_rx(hp, dev);
    	}
    
    	HMD(("done\n"));
    out:
    	spin_unlock(&hp->happy_lock);
    
    	return IRQ_HANDLED;
    }
    
    #ifdef CONFIG_SBUS
    static irqreturn_t quattro_sbus_interrupt(int irq, void *cookie)
    {
    	struct quattro *qp = (struct quattro *) cookie;
    	int i;
    
    	for (i = 0; i < 4; i++) {
    		struct net_device *dev = qp->happy_meals[i];
    		struct happy_meal *hp  = dev->priv;
    		u32 happy_status       = hme_read32(hp, hp->gregs + GREG_STAT);
    
    		HMD(("quattro_interrupt: status=%08x ", happy_status));
    
    		if (!(happy_status & (GREG_STAT_ERRORS |
    				      GREG_STAT_MIFIRQ |
    				      GREG_STAT_TXALL |
    				      GREG_STAT_RXTOHOST)))
    			continue;
    
    		spin_lock(&hp->happy_lock);
    
    		if (happy_status & GREG_STAT_ERRORS) {
    			HMD(("ERRORS "));
    			if (happy_meal_is_not_so_happy(hp, happy_status))
    				goto next;
    		}
    
    		if (happy_status & GREG_STAT_MIFIRQ) {
    			HMD(("MIFIRQ "));
    			happy_meal_mif_interrupt(hp);
    		}
    
    		if (happy_status & GREG_STAT_TXALL) {
    			HMD(("TXALL "));
    			happy_meal_tx(hp);
    		}
    
    		if (happy_status & GREG_STAT_RXTOHOST) {
    			HMD(("RXTOHOST "));
    			happy_meal_rx(hp, dev);
    		}
    
    	next:
    		spin_unlock(&hp->happy_lock);
    	}
    	HMD(("done\n"));
    
    	return IRQ_HANDLED;
    }
    #endif
    
    static int happy_meal_open(struct net_device *dev)
    {
    	struct happy_meal *hp = dev->priv;
    	int res;
    
    	HMD(("happy_meal_open: "));
    
    	/* On SBUS Quattro QFE cards, all hme interrupts are concentrated
    	 * into a single source which we register handling at probe time.
    	 */
    	if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO) {
    		if (request_irq(dev->irq, &happy_meal_interrupt,
    				IRQF_SHARED, dev->name, (void *)dev)) {
    			HMD(("EAGAIN\n"));
    			printk(KERN_ERR "happy_meal(SBUS): Can't order irq %d to go.\n",
    			       dev->irq);
    
    			return -EAGAIN;
    		}
    	}
    
    	HMD(("to happy_meal_init\n"));
    
    	spin_lock_irq(&hp->happy_lock);
    	res = happy_meal_init(hp);
    	spin_unlock_irq(&hp->happy_lock);
    
    	if (res && ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO))
    		free_irq(dev->irq, dev);
    	return res;
    }
    
    static int happy_meal_close(struct net_device *dev)
    {
    	struct happy_meal *hp = dev->priv;
    
    	spin_lock_irq(&hp->happy_lock);
    	happy_meal_stop(hp, hp->gregs);
    	happy_meal_clean_rings(hp);
    
    	/* If auto-negotiation timer is running, kill it. */
    	del_timer(&hp->happy_timer);
    
    	spin_unlock_irq(&hp->happy_lock);
    
    	/* On Quattro QFE cards, all hme interrupts are concentrated
    	 * into a single source which we register handling at probe
    	 * time and never unregister.
    	 */
    	if ((hp->happy_flags & (HFLAG_QUATTRO|HFLAG_PCI)) != HFLAG_QUATTRO)
    		free_irq(dev->irq, dev);
    
    	return 0;
    }
    
    #ifdef SXDEBUG
    #define SXD(x) printk x
    #else
    #define SXD(x)
    #endif
    
    static void happy_meal_tx_timeout(struct net_device *dev)
    {
    	struct happy_meal *hp = dev->priv;
    
    	printk (KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
    	tx_dump_log();
    	printk (KERN_ERR "%s: Happy Status %08x TX[%08x:%08x]\n", dev->name,
    		hme_read32(hp, hp->gregs + GREG_STAT),
    		hme_read32(hp, hp->etxregs + ETX_CFG),
    		hme_read32(hp, hp->bigmacregs + BMAC_TXCFG));
    
    	spin_lock_irq(&hp->happy_lock);
    	happy_meal_init(hp);
    	spin_unlock_irq(&hp->happy_lock);
    
    	netif_wake_queue(dev);
    }
    
    static int happy_meal_start_xmit(struct sk_buff *skb, struct net_device *dev)
    {
    	struct happy_meal *hp = dev->priv;
     	int entry;
     	u32 tx_flags;
    
    	tx_flags = TXFLAG_OWN;
    	if (skb->ip_summed == CHECKSUM_PARTIAL) {
    		const u32 csum_start_off = skb_transport_offset(skb);
    		const u32 csum_stuff_off = csum_start_off + skb->csum_offset;
    
    		tx_flags = (TXFLAG_OWN | TXFLAG_CSENABLE |
    			    ((csum_start_off << 14) & TXFLAG_CSBUFBEGIN) |
    			    ((csum_stuff_off << 20) & TXFLAG_CSLOCATION));
    	}
    
    	spin_lock_irq(&hp->happy_lock);
    
     	if (TX_BUFFS_AVAIL(hp) <= (skb_shinfo(skb)->nr_frags + 1)) {
    		netif_stop_queue(dev);
    		spin_unlock_irq(&hp->happy_lock);
    		printk(KERN_ERR "%s: BUG! Tx Ring full when queue awake!\n",
    		       dev->name);
    		return 1;
    	}
    
    	entry = hp->tx_new;
    	SXD(("SX<l[%d]e[%d]>", len, entry));
    	hp->tx_skbs[entry] = skb;
    
    	if (skb_shinfo(skb)->nr_frags == 0) {
    		u32 mapping, len;
    
    		len = skb->len;
    		mapping = hme_dma_map(hp, skb->data, len, DMA_TODEVICE);
    		tx_flags |= (TXFLAG_SOP | TXFLAG_EOP);
    		hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry],
    			      (tx_flags | (len & TXFLAG_SIZE)),
    			      mapping);
    		entry = NEXT_TX(entry);
    	} else {
    		u32 first_len, first_mapping;
    		int frag, first_entry = entry;
    
    		/* We must give this initial chunk to the device last.
    		 * Otherwise we could race with the device.
    		 */
    		first_len = skb_headlen(skb);
    		first_mapping = hme_dma_map(hp, skb->data, first_len, DMA_TODEVICE);
    		entry = NEXT_TX(entry);
    
    		for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
    			skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
    			u32 len, mapping, this_txflags;
    
    			len = this_frag->size;
    			mapping = hme_dma_map(hp,
    					      ((void *) page_address(this_frag->page) +
    					       this_frag->page_offset),
    					      len, DMA_TODEVICE);
    			this_txflags = tx_flags;
    			if (frag == skb_shinfo(skb)->nr_frags - 1)
    				this_txflags |= TXFLAG_EOP;
    			hme_write_txd(hp, &hp->happy_block->happy_meal_txd[entry],
    				      (this_txflags | (len & TXFLAG_SIZE)),
    				      mapping);
    			entry = NEXT_TX(entry);
    		}
    		hme_write_txd(hp, &hp->happy_block->happy_meal_txd[first_entry],
    			      (tx_flags | TXFLAG_SOP | (first_len & TXFLAG_SIZE)),
    			      first_mapping);
    	}
    
    	hp->tx_new = entry;
    
    	if (TX_BUFFS_AVAIL(hp) <= (MAX_SKB_FRAGS + 1))
    		netif_stop_queue(dev);
    
    	/* Get it going. */
    	hme_write32(hp, hp->etxregs + ETX_PENDING, ETX_TP_DMAWAKEUP);
    
    	spin_unlock_irq(&hp->happy_lock);
    
    	dev->trans_start = jiffies;
    
    	tx_add_log(hp, TXLOG_ACTION_TXMIT, 0);
    	return 0;
    }
    
    static struct net_device_stats *happy_meal_get_stats(struct net_device *dev)
    {
    	struct happy_meal *hp = dev->priv;
    
    	spin_lock_irq(&hp->happy_lock);
    	happy_meal_get_counters(hp, hp->bigmacregs);
    	spin_unlock_irq(&hp->happy_lock);
    
    	return &hp->net_stats;
    }
    
    static void happy_meal_set_multicast(struct net_device *dev)
    {
    	struct happy_meal *hp = dev->priv;
    	void __iomem *bregs = hp->bigmacregs;
    	struct dev_mc_list *dmi = dev->mc_list;
    	char *addrs;
    	int i;
    	u32 crc;
    
    	spin_lock_irq(&hp->happy_lock);
    
    	netif_stop_queue(dev);
    
    	if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 64)) {
    		hme_write32(hp, bregs + BMAC_HTABLE0, 0xffff);
    		hme_write32(hp, bregs + BMAC_HTABLE1, 0xffff);
    		hme_write32(hp, bregs + BMAC_HTABLE2, 0xffff);
    		hme_write32(hp, bregs + BMAC_HTABLE3, 0xffff);
    	} else if (dev->flags & IFF_PROMISC) {
    		hme_write32(hp, bregs + BMAC_RXCFG,
    			    hme_read32(hp, bregs + BMAC_RXCFG) | BIGMAC_RXCFG_PMISC);
    	} else {
    		u16 hash_table[4];
    
    		for (i = 0; i < 4; i++)
    			hash_table[i] = 0;
    
    		for (i = 0; i < dev->mc_count; i++) {
    			addrs = dmi->dmi_addr;
    			dmi = dmi->next;
    
    			if (!(*addrs & 1))
    				continue;
    
    			crc = ether_crc_le(6, addrs);
    			crc >>= 26;
    			hash_table[crc >> 4] |= 1 << (crc & 0xf);
    		}
    		hme_write32(hp, bregs + BMAC_HTABLE0, hash_table[0]);
    		hme_write32(hp, bregs + BMAC_HTABLE1, hash_table[1]);
    		hme_write32(hp, bregs + BMAC_HTABLE2, hash_table[2]);
    		hme_write32(hp, bregs + BMAC_HTABLE3, hash_table[3]);
    	}
    
    	netif_wake_queue(dev);
    
    	spin_unlock_irq(&hp->happy_lock);
    }
    
    /* Ethtool support... */
    static int hme_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
    {
    	struct happy_meal *hp = dev->priv;
    
    	cmd->supported =
    		(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
    		 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
    		 SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_MII);
    
    	/* XXX hardcoded stuff for now */
    	cmd->port = PORT_TP; /* XXX no MII support */
    	cmd->transceiver = XCVR_INTERNAL; /* XXX no external xcvr support */
    	cmd->phy_address = 0; /* XXX fixed PHYAD */
    
    	/* Record PHY settings. */
    	spin_lock_irq(&hp->happy_lock);
    	hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR);
    	hp->sw_lpa = happy_meal_tcvr_read(hp, hp->tcvregs, MII_LPA);
    	spin_unlock_irq(&hp->happy_lock);
    
    	if (hp->sw_bmcr & BMCR_ANENABLE) {
    		cmd->autoneg = AUTONEG_ENABLE;
    		cmd->speed =
    			(hp->sw_lpa & (LPA_100HALF | LPA_100FULL)) ?
    			SPEED_100 : SPEED_10;
    		if (cmd->speed == SPEED_100)
    			cmd->duplex =
    				(hp->sw_lpa & (LPA_100FULL)) ?
    				DUPLEX_FULL : DUPLEX_HALF;
    		else
    			cmd->duplex =
    				(hp->sw_lpa & (LPA_10FULL)) ?
    				DUPLEX_FULL : DUPLEX_HALF;
    	} else {
    		cmd->autoneg = AUTONEG_DISABLE;
    		cmd->speed =
    			(hp->sw_bmcr & BMCR_SPEED100) ?
    			SPEED_100 : SPEED_10;
    		cmd->duplex =
    			(hp->sw_bmcr & BMCR_FULLDPLX) ?
    			DUPLEX_FULL : DUPLEX_HALF;
    	}
    	return 0;
    }
    
    static int hme_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
    {
    	struct happy_meal *hp = dev->priv;
    
    	/* Verify the settings we care about. */
    	if (cmd->autoneg != AUTONEG_ENABLE &&
    	    cmd->autoneg != AUTONEG_DISABLE)
    		return -EINVAL;
    	if (cmd->autoneg == AUTONEG_DISABLE &&
    	    ((cmd->speed != SPEED_100 &&
    	      cmd->speed != SPEED_10) ||
    	     (cmd->duplex != DUPLEX_HALF &&
    	      cmd->duplex != DUPLEX_FULL)))
    		return -EINVAL;
    
    	/* Ok, do it to it. */
    	spin_lock_irq(&hp->happy_lock);
    	del_timer(&hp->happy_timer);
    	happy_meal_begin_auto_negotiation(hp, hp->tcvregs, cmd);
    	spin_unlock_irq(&hp->happy_lock);
    
    	return 0;
    }
    
    static void hme_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
    {
    	struct happy_meal *hp = dev->priv;
    
    	strcpy(info->driver, "sunhme");
    	strcpy(info->version, "2.02");
    	if (hp->happy_flags & HFLAG_PCI) {
    		struct pci_dev *pdev = hp->happy_dev;
    		strcpy(info->bus_info, pci_name(pdev));
    	}
    #ifdef CONFIG_SBUS
    	else {
    		struct sbus_dev *sdev = hp->happy_dev;
    		sprintf(info->bus_info, "SBUS:%d",
    			sdev->slot);
    	}
    #endif
    }
    
    static u32 hme_get_link(struct net_device *dev)
    {
    	struct happy_meal *hp = dev->priv;
    
    	spin_lock_irq(&hp->happy_lock);
    	hp->sw_bmcr = happy_meal_tcvr_read(hp, hp->tcvregs, MII_BMCR);
    	spin_unlock_irq(&hp->happy_lock);
    
    	return (hp->sw_bmsr & BMSR_LSTATUS);
    }
    
    static const struct ethtool_ops hme_ethtool_ops = {
    	.get_settings		= hme_get_settings,
    	.set_settings		= hme_set_settings,
    	.get_drvinfo		= hme_get_drvinfo,
    	.get_link		= hme_get_link,
    };
    
    static int hme_version_printed;
    
    #ifdef CONFIG_SBUS
    void __devinit quattro_get_ranges(struct quattro *qp)
    {
    	struct sbus_dev *sdev = qp->quattro_dev;
    	int err;
    
    	err = prom_getproperty(sdev->prom_node,
    			       "ranges",
    			       (char *)&qp->ranges[0],
    			       sizeof(qp->ranges));
    	if (err == 0 || err == -1) {
    		qp->nranges = 0;
    		return;
    	}
    	qp->nranges = (err / sizeof(struct linux_prom_ranges));
    }
    
    static void __devinit quattro_apply_ranges(struct quattro *qp, struct happy_meal *hp)
    {
    	struct sbus_dev *sdev = hp->happy_dev;
    	int rng;
    
    	for (rng = 0; rng < qp->nranges; rng++) {
    		struct linux_prom_ranges *rngp = &qp->ranges[rng];
    		int reg;
    
    		for (reg = 0; reg < 5; reg++) {
    			if (sdev->reg_addrs[reg].which_io ==
    			    rngp->ot_child_space)
    				break;
    		}
    		if (reg == 5)
    			continue;
    
    		sdev->reg_addrs[reg].which_io = rngp->ot_parent_space;
    		sdev->reg_addrs[reg].phys_addr += rngp->ot_parent_base;
    	}
    }
    
    /* Given a happy meal sbus device, find it's quattro parent.
     * If none exist, allocate and return a new one.
     *
     * Return NULL on failure.
     */
    static struct quattro * __devinit quattro_sbus_find(struct sbus_dev *goal_sdev)
    {
    	struct sbus_dev *sdev;
    	struct quattro *qp;
    	int i;
    
    	for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
    		for (i = 0, sdev = qp->quattro_dev;
    		     (sdev != NULL) && (i < 4);
    		     sdev = sdev->next, i++) {
    			if (sdev == goal_sdev)
    				return qp;
    		}
    	}
    
    	qp = kmalloc(sizeof(struct quattro), GFP_KERNEL);
    	if (qp != NULL) {
    		int i;
    
    		for (i = 0; i < 4; i++)
    			qp->happy_meals[i] = NULL;
    
    		qp->quattro_dev = goal_sdev;
    		qp->next = qfe_sbus_list;
    		qfe_sbus_list = qp;
    		quattro_get_ranges(qp);
    	}
    	return qp;
    }
    
    /* After all quattro cards have been probed, we call these functions
     * to register the IRQ handlers.
     */
    static void __init quattro_sbus_register_irqs(void)
    {
    	struct quattro *qp;
    
    	for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
    		struct sbus_dev *sdev = qp->quattro_dev;
    		int err;
    
    		err = request_irq(sdev->irqs[0],
    				  quattro_sbus_interrupt,
    				  IRQF_SHARED, "Quattro",
    				  qp);
    		if (err != 0) {
    			printk(KERN_ERR "Quattro: Fatal IRQ registery error %d.\n", err);
    			panic("QFE request irq");
    		}
    	}
    }
    
    static void quattro_sbus_free_irqs(void)
    {
    	struct quattro *qp;
    
    	for (qp = qfe_sbus_list; qp != NULL; qp = qp->next) {
    		struct sbus_dev *sdev = qp->quattro_dev;
    
    		free_irq(sdev->irqs[0], qp);
    	}
    }
    #endif /* CONFIG_SBUS */
    
    #ifdef CONFIG_PCI
    static struct quattro * __devinit quattro_pci_find(struct pci_dev *pdev)
    {
    	struct pci_dev *bdev = pdev->bus->self;
    	struct quattro *qp;
    
    	if (!bdev) return NULL;
    	for (qp = qfe_pci_list; qp != NULL; qp = qp->next) {
    		struct pci_dev *qpdev = qp->quattro_dev;
    
    		if (qpdev == bdev)
    			return qp;
    	}
    	qp = kmalloc(sizeof(struct quattro), GFP_KERNEL);
    	if (qp != NULL) {
    		int i;
    
    		for (i = 0; i < 4; i++)
    			qp->happy_meals[i] = NULL;
    
    		qp->quattro_dev = bdev;
    		qp->next = qfe_pci_list;
    		qfe_pci_list = qp;
    
    		/* No range tricks necessary on PCI. */
    		qp->nranges = 0;
    	}
    	return qp;
    }
    #endif /* CONFIG_PCI */
    
    #ifdef CONFIG_SBUS
    static int __devinit happy_meal_sbus_probe_one(struct sbus_dev *sdev, int is_qfe)
    {
    	struct device_node *dp = sdev->ofdev.node;
    	struct quattro *qp = NULL;
    	struct happy_meal *hp;
    	struct net_device *dev;
    	int i, qfe_slot = -1;
    	int err = -ENODEV;
    	DECLARE_MAC_BUF(mac);
    
    	if (is_qfe) {
    		qp = quattro_sbus_find(sdev);
    		if (qp == NULL)
    			goto err_out;
    		for (qfe_slot = 0; qfe_slot < 4; qfe_slot++)
    			if (qp->happy_meals[qfe_slot] == NULL)
    				break;
    		if (qfe_slot == 4)
    			goto err_out;
    	}
    
    	err = -ENOMEM;
    	dev = alloc_etherdev(sizeof(struct happy_meal));
    	if (!dev)
    		goto err_out;
    	SET_NETDEV_DEV(dev, &sdev->ofdev.dev);
    
    	if (hme_version_printed++ == 0)
    		printk(KERN_INFO "%s", version);
    
    	/* If user did not specify a MAC address specifically, use
    	 * the Quattro local-mac-address property...
    	 */
    	for (i = 0; i < 6; i++) {
    		if (macaddr[i] != 0)
    			break;
    	}
    	if (i < 6) { /* a mac address was given */
    		for (i = 0; i < 6; i++)
    			dev->dev_addr[i] = macaddr[i];
    		macaddr[5]++;
    	} else {
    		const unsigned char *addr;
    		int len;
    
    		addr = of_get_property(dp, "local-mac-address", &len);
    
    		if (qfe_slot != -1 && addr && len == 6)
    			memcpy(dev->dev_addr, addr, 6);
    		else
    			memcpy(dev->dev_addr, idprom->id_ethaddr, 6);
    	}
    
    	hp = dev->priv;
    
    	hp->happy_dev = sdev;
    
    	spin_lock_init(&hp->happy_lock);
    
    	err = -ENODEV;
    	if (sdev->num_registers != 5) {
    		printk(KERN_ERR "happymeal: Device needs 5 regs, has %d.\n",
    		       sdev->num_registers);
    		goto err_out_free_netdev;
    	}
    
    	if (qp != NULL) {
    		hp->qfe_parent = qp;
    		hp->qfe_ent = qfe_slot;
    		qp->happy_meals[qfe_slot] = dev;
    		quattro_apply_ranges(qp, hp);
    	}
    
    	hp->gregs = sbus_ioremap(&sdev->resource[0], 0,
    				 GREG_REG_SIZE, "HME Global Regs");
    	if (!hp->gregs) {
    		printk(KERN_ERR "happymeal: Cannot map global registers.\n");
    		goto err_out_free_netdev;
    	}
    
    	hp->etxregs = sbus_ioremap(&sdev->resource[1], 0,
    				   ETX_REG_SIZE, "HME TX Regs");
    	if (!hp->etxregs) {
    		printk(KERN_ERR "happymeal: Cannot map MAC TX registers.\n");
    		goto err_out_iounmap;
    	}
    
    	hp->erxregs = sbus_ioremap(&sdev->resource[2], 0,
    				   ERX_REG_SIZE, "HME RX Regs");
    	if (!hp->erxregs) {
    		printk(KERN_ERR "happymeal: Cannot map MAC RX registers.\n");
    		goto err_out_iounmap;
    	}
    
    	hp->bigmacregs = sbus_ioremap(&sdev->resource[3], 0,
    				      BMAC_REG_SIZE, "HME BIGMAC Regs");
    	if (!hp->bigmacregs) {
    		printk(KERN_ERR "happymeal: Cannot map BIGMAC registers.\n");
    		goto err_out_iounmap;
    	}
    
    	hp->tcvregs = sbus_ioremap(&sdev->resource[4], 0,
    				   TCVR_REG_SIZE, "HME Tranceiver Regs");
    	if (!hp->tcvregs) {
    		printk(KERN_ERR "happymeal: Cannot map TCVR registers.\n");
    		goto err_out_iounmap;
    	}
    
    	hp->hm_revision = of_getintprop_default(dp, "hm-rev", 0xff);
    	if (hp->hm_revision == 0xff)
    		hp->hm_revision = 0xa0;
    
    	/* Now enable the feature flags we can. */
    	if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21)
    		hp->happy_flags = HFLAG_20_21;
    	else if (hp->hm_revision != 0xa0)
    		hp->happy_flags = HFLAG_NOT_A0;
    
    	if (qp != NULL)
    		hp->happy_flags |= HFLAG_QUATTRO;
    
    	/* Get the supported DVMA burst sizes from our Happy SBUS. */
    	hp->happy_bursts = of_getintprop_default(sdev->bus->ofdev.node,
    						 "burst-sizes", 0x00);
    
    	hp->happy_block = sbus_alloc_consistent(hp->happy_dev,
    						PAGE_SIZE,
    						&hp->hblock_dvma);
    	err = -ENOMEM;
    	if (!hp->happy_block) {
    		printk(KERN_ERR "happymeal: Cannot allocate descriptors.\n");
    		goto err_out_iounmap;
    	}
    
    	/* Force check of the link first time we are brought up. */
    	hp->linkcheck = 0;
    
    	/* Force timer state to 'asleep' with count of zero. */
    	hp->timer_state = asleep;
    	hp->timer_ticks = 0;
    
    	init_timer(&hp->happy_timer);
    
    	hp->dev = dev;
    	dev->open = &happy_meal_open;
    	dev->stop = &happy_meal_close;
    	dev->hard_start_xmit = &happy_meal_start_xmit;
    	dev->get_stats = &happy_meal_get_stats;
    	dev->set_multicast_list = &happy_meal_set_multicast;
    	dev->tx_timeout = &happy_meal_tx_timeout;
    	dev->watchdog_timeo = 5*HZ;
    	dev->ethtool_ops = &hme_ethtool_ops;
    
    	/* Happy Meal can do it all... except VLAN. */
    	dev->features |= NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_VLAN_CHALLENGED;
    
    	dev->irq = sdev->irqs[0];
    
    #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
    	/* Hook up PCI register/dma accessors. */
    	hp->read_desc32 = sbus_hme_read_desc32;
    	hp->write_txd = sbus_hme_write_txd;
    	hp->write_rxd = sbus_hme_write_rxd;
    	hp->dma_map = (u32 (*)(void *, void *, long, int))sbus_map_single;
    	hp->dma_unmap = (void (*)(void *, u32, long, int))sbus_unmap_single;
    	hp->dma_sync_for_cpu = (void (*)(void *, u32, long, int))
    		sbus_dma_sync_single_for_cpu;
    	hp->dma_sync_for_device = (void (*)(void *, u32, long, int))
    		sbus_dma_sync_single_for_device;
    	hp->read32 = sbus_hme_read32;
    	hp->write32 = sbus_hme_write32;
    #endif
    
    	/* Grrr, Happy Meal comes up by default not advertising
    	 * full duplex 100baseT capabilities, fix this.
    	 */
    	spin_lock_irq(&hp->happy_lock);
    	happy_meal_set_initial_advertisement(hp);
    	spin_unlock_irq(&hp->happy_lock);
    
    	if (register_netdev(hp->dev)) {
    		printk(KERN_ERR "happymeal: Cannot register net device, "
    		       "aborting.\n");
    		goto err_out_free_consistent;
    	}
    
    	dev_set_drvdata(&sdev->ofdev.dev, hp);
    
    	if (qfe_slot != -1)
    		printk(KERN_INFO "%s: Quattro HME slot %d (SBUS) 10/100baseT Ethernet ",
    		       dev->name, qfe_slot);
    	else
    		printk(KERN_INFO "%s: HAPPY MEAL (SBUS) 10/100baseT Ethernet ",
    		       dev->name);
    
    	printk("%s\n", print_mac(mac, dev->dev_addr));
    
    	return 0;
    
    err_out_free_consistent:
    	sbus_free_consistent(hp->happy_dev,
    			     PAGE_SIZE,
    			     hp->happy_block,
    			     hp->hblock_dvma);
    
    err_out_iounmap:
    	if (hp->gregs)
    		sbus_iounmap(hp->gregs, GREG_REG_SIZE);
    	if (hp->etxregs)
    		sbus_iounmap(hp->etxregs, ETX_REG_SIZE);
    	if (hp->erxregs)
    		sbus_iounmap(hp->erxregs, ERX_REG_SIZE);
    	if (hp->bigmacregs)
    		sbus_iounmap(hp->bigmacregs, BMAC_REG_SIZE);
    	if (hp->tcvregs)
    		sbus_iounmap(hp->tcvregs, TCVR_REG_SIZE);
    
    err_out_free_netdev:
    	free_netdev(dev);
    
    err_out:
    	return err;
    }
    #endif
    
    #ifdef CONFIG_PCI
    #ifndef CONFIG_SPARC
    static int is_quattro_p(struct pci_dev *pdev)
    {
    	struct pci_dev *busdev = pdev->bus->self;
    	struct list_head *tmp;
    	int n_hmes;
    
    	if (busdev == NULL ||
    	    busdev->vendor != PCI_VENDOR_ID_DEC ||
    	    busdev->device != PCI_DEVICE_ID_DEC_21153)
    		return 0;
    
    	n_hmes = 0;
    	tmp = pdev->bus->devices.next;
    	while (tmp != &pdev->bus->devices) {
    		struct pci_dev *this_pdev = pci_dev_b(tmp);
    
    		if (this_pdev->vendor == PCI_VENDOR_ID_SUN &&
    		    this_pdev->device == PCI_DEVICE_ID_SUN_HAPPYMEAL)
    			n_hmes++;
    
    		tmp = tmp->next;
    	}
    
    	if (n_hmes != 4)
    		return 0;
    
    	return 1;
    }
    
    /* Fetch MAC address from vital product data of PCI ROM. */
    static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, int index, unsigned char *dev_addr)
    {
    	int this_offset;
    
    	for (this_offset = 0x20; this_offset < len; this_offset++) {
    		void __iomem *p = rom_base + this_offset;
    
    		if (readb(p + 0) != 0x90 ||
    		    readb(p + 1) != 0x00 ||
    		    readb(p + 2) != 0x09 ||
    		    readb(p + 3) != 0x4e ||
    		    readb(p + 4) != 0x41 ||
    		    readb(p + 5) != 0x06)
    			continue;
    
    		this_offset += 6;
    		p += 6;
    
    		if (index == 0) {
    			int i;
    
    			for (i = 0; i < 6; i++)
    				dev_addr[i] = readb(p + i);
    			return 1;
    		}
    		index--;
    	}
    	return 0;
    }
    
    static void get_hme_mac_nonsparc(struct pci_dev *pdev, unsigned char *dev_addr)
    {
    	size_t size;
    	void __iomem *p = pci_map_rom(pdev, &size);
    
    	if (p) {
    		int index = 0;
    		int found;
    
    		if (is_quattro_p(pdev))
    			index = PCI_SLOT(pdev->devfn);
    
    		found = readb(p) == 0x55 &&
    			readb(p + 1) == 0xaa &&
    			find_eth_addr_in_vpd(p, (64 * 1024), index, dev_addr);
    		pci_unmap_rom(pdev, p);
    		if (found)
    			return;
    	}
    
    	/* Sun MAC prefix then 3 random bytes. */
    	dev_addr[0] = 0x08;
    	dev_addr[1] = 0x00;
    	dev_addr[2] = 0x20;
    	get_random_bytes(&dev_addr[3], 3);
    	return;
    }
    #endif /* !(CONFIG_SPARC) */
    
    static int __devinit happy_meal_pci_probe(struct pci_dev *pdev,
    					  const struct pci_device_id *ent)
    {
    	struct quattro *qp = NULL;
    #ifdef CONFIG_SPARC
    	struct device_node *dp;
    #endif
    	struct happy_meal *hp;
    	struct net_device *dev;
    	void __iomem *hpreg_base;
    	unsigned long hpreg_res;
    	int i, qfe_slot = -1;
    	char prom_name[64];
    	int err;
    	DECLARE_MAC_BUF(mac);
    
    	/* Now make sure pci_dev cookie is there. */
    #ifdef CONFIG_SPARC
    	dp = pci_device_to_OF_node(pdev);
    	strcpy(prom_name, dp->name);
    #else
    	if (is_quattro_p(pdev))
    		strcpy(prom_name, "SUNW,qfe");
    	else
    		strcpy(prom_name, "SUNW,hme");
    #endif
    
    	err = -ENODEV;
    
    	if (pci_enable_device(pdev))
    		goto err_out;
    	pci_set_master(pdev);
    
    	if (!strcmp(prom_name, "SUNW,qfe") || !strcmp(prom_name, "qfe")) {
    		qp = quattro_pci_find(pdev);
    		if (qp == NULL)
    			goto err_out;
    		for (qfe_slot = 0; qfe_slot < 4; qfe_slot++)
    			if (qp->happy_meals[qfe_slot] == NULL)
    				break;
    		if (qfe_slot == 4)
    			goto err_out;
    	}
    
    	dev = alloc_etherdev(sizeof(struct happy_meal));
    	err = -ENOMEM;
    	if (!dev)
    		goto err_out;
    	SET_NETDEV_DEV(dev, &pdev->dev);
    
    	if (hme_version_printed++ == 0)
    		printk(KERN_INFO "%s", version);
    
    	dev->base_addr = (long) pdev;
    
    	hp = (struct happy_meal *)dev->priv;
    	memset(hp, 0, sizeof(*hp));
    
    	hp->happy_dev = pdev;
    
    	spin_lock_init(&hp->happy_lock);
    
    	if (qp != NULL) {
    		hp->qfe_parent = qp;
    		hp->qfe_ent = qfe_slot;
    		qp->happy_meals[qfe_slot] = dev;
    	}
    
    	hpreg_res = pci_resource_start(pdev, 0);
    	err = -ENODEV;
    	if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
    		printk(KERN_ERR "happymeal(PCI): Cannot find proper PCI device base address.\n");
    		goto err_out_clear_quattro;
    	}
    	if (pci_request_regions(pdev, DRV_NAME)) {
    		printk(KERN_ERR "happymeal(PCI): Cannot obtain PCI resources, "
    		       "aborting.\n");
    		goto err_out_clear_quattro;
    	}
    
    	if ((hpreg_base = ioremap(hpreg_res, 0x8000)) == 0) {
    		printk(KERN_ERR "happymeal(PCI): Unable to remap card memory.\n");
    		goto err_out_free_res;
    	}
    
    	for (i = 0; i < 6; i++) {
    		if (macaddr[i] != 0)
    			break;
    	}
    	if (i < 6) { /* a mac address was given */
    		for (i = 0; i < 6; i++)
    			dev->dev_addr[i] = macaddr[i];
    		macaddr[5]++;
    	} else {
    #ifdef CONFIG_SPARC
    		const unsigned char *addr;
    		int len;
    
    		if (qfe_slot != -1 &&
    		    (addr = of_get_property(dp,
    					    "local-mac-address", &len)) != NULL
    		    && len == 6) {
    			memcpy(dev->dev_addr, addr, 6);
    		} else {
    			memcpy(dev->dev_addr, idprom->id_ethaddr, 6);
    		}
    #else
    		get_hme_mac_nonsparc(pdev, &dev->dev_addr[0]);
    #endif
    	}
    
    	/* Layout registers. */
    	hp->gregs      = (hpreg_base + 0x0000UL);
    	hp->etxregs    = (hpreg_base + 0x2000UL);
    	hp->erxregs    = (hpreg_base + 0x4000UL);
    	hp->bigmacregs = (hpreg_base + 0x6000UL);
    	hp->tcvregs    = (hpreg_base + 0x7000UL);
    
    #ifdef CONFIG_SPARC
    	hp->hm_revision = of_getintprop_default(dp, "hm-rev", 0xff);
    	if (hp->hm_revision == 0xff)
    		hp->hm_revision = 0xc0 | (pdev->revision & 0x0f);
    #else
    	/* works with this on non-sparc hosts */
    	hp->hm_revision = 0x20;
    #endif
    
    	/* Now enable the feature flags we can. */
    	if (hp->hm_revision == 0x20 || hp->hm_revision == 0x21)
    		hp->happy_flags = HFLAG_20_21;
    	else if (hp->hm_revision != 0xa0 && hp->hm_revision != 0xc0)
    		hp->happy_flags = HFLAG_NOT_A0;
    
    	if (qp != NULL)
    		hp->happy_flags |= HFLAG_QUATTRO;
    
    	/* And of course, indicate this is PCI. */
    	hp->happy_flags |= HFLAG_PCI;
    
    #ifdef CONFIG_SPARC
    	/* Assume PCI happy meals can handle all burst sizes. */
    	hp->happy_bursts = DMA_BURSTBITS;
    #endif
    
    	hp->happy_block = (struct hmeal_init_block *)
    		pci_alloc_consistent(pdev, PAGE_SIZE, &hp->hblock_dvma);
    
    	err = -ENODEV;
    	if (!hp->happy_block) {
    		printk(KERN_ERR "happymeal(PCI): Cannot get hme init block.\n");
    		goto err_out_iounmap;
    	}
    
    	hp->linkcheck = 0;
    	hp->timer_state = asleep;
    	hp->timer_ticks = 0;
    
    	init_timer(&hp->happy_timer);
    
    	hp->dev = dev;
    	dev->open = &happy_meal_open;
    	dev->stop = &happy_meal_close;
    	dev->hard_start_xmit = &happy_meal_start_xmit;
    	dev->get_stats = &happy_meal_get_stats;
    	dev->set_multicast_list = &happy_meal_set_multicast;
    	dev->tx_timeout = &happy_meal_tx_timeout;
    	dev->watchdog_timeo = 5*HZ;
    	dev->ethtool_ops = &hme_ethtool_ops;
    	dev->irq = pdev->irq;
    	dev->dma = 0;
    
    	/* Happy Meal can do it all... except VLAN. */
    	dev->features |= NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_VLAN_CHALLENGED;
    
    #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
    	/* Hook up PCI register/dma accessors. */
    	hp->read_desc32 = pci_hme_read_desc32;
    	hp->write_txd = pci_hme_write_txd;
    	hp->write_rxd = pci_hme_write_rxd;
    	hp->dma_map = (u32 (*)(void *, void *, long, int))pci_map_single;
    	hp->dma_unmap = (void (*)(void *, u32, long, int))pci_unmap_single;
    	hp->dma_sync_for_cpu = (void (*)(void *, u32, long, int))
    		pci_dma_sync_single_for_cpu;
    	hp->dma_sync_for_device = (void (*)(void *, u32, long, int))
    		pci_dma_sync_single_for_device;
    	hp->read32 = pci_hme_read32;
    	hp->write32 = pci_hme_write32;
    #endif
    
    	/* Grrr, Happy Meal comes up by default not advertising
    	 * full duplex 100baseT capabilities, fix this.
    	 */
    	spin_lock_irq(&hp->happy_lock);
    	happy_meal_set_initial_advertisement(hp);
    	spin_unlock_irq(&hp->happy_lock);
    
    	if (register_netdev(hp->dev)) {
    		printk(KERN_ERR "happymeal(PCI): Cannot register net device, "
    		       "aborting.\n");
    		goto err_out_iounmap;
    	}
    
    	dev_set_drvdata(&pdev->dev, hp);
    
    	if (!qfe_slot) {
    		struct pci_dev *qpdev = qp->quattro_dev;
    
    		prom_name[0] = 0;
    		if (!strncmp(dev->name, "eth", 3)) {
    			int i = simple_strtoul(dev->name + 3, NULL, 10);
    			sprintf(prom_name, "-%d", i + 3);
    		}
    		printk(KERN_INFO "%s%s: Quattro HME (PCI/CheerIO) 10/100baseT Ethernet ", dev->name, prom_name);
    		if (qpdev->vendor == PCI_VENDOR_ID_DEC &&
    		    qpdev->device == PCI_DEVICE_ID_DEC_21153)
    			printk("DEC 21153 PCI Bridge\n");
    		else
    			printk("unknown bridge %04x.%04x\n",
    				qpdev->vendor, qpdev->device);
    	}
    
    	if (qfe_slot != -1)
    		printk(KERN_INFO "%s: Quattro HME slot %d (PCI/CheerIO) 10/100baseT Ethernet ",
    		       dev->name, qfe_slot);
    	else
    		printk(KERN_INFO "%s: HAPPY MEAL (PCI/CheerIO) 10/100BaseT Ethernet ",
    		       dev->name);
    
    	printk("%s\n", print_mac(mac, dev->dev_addr));
    
    	return 0;
    
    err_out_iounmap:
    	iounmap(hp->gregs);
    
    err_out_free_res:
    	pci_release_regions(pdev);
    
    err_out_clear_quattro:
    	if (qp != NULL)
    		qp->happy_meals[qfe_slot] = NULL;
    
    	free_netdev(dev);
    
    err_out:
    	return err;
    }
    
    static void __devexit happy_meal_pci_remove(struct pci_dev *pdev)
    {
    	struct happy_meal *hp = dev_get_drvdata(&pdev->dev);
    	struct net_device *net_dev = hp->dev;
    
    	unregister_netdev(net_dev);
    
    	pci_free_consistent(hp->happy_dev,
    			    PAGE_SIZE,
    			    hp->happy_block,
    			    hp->hblock_dvma);
    	iounmap(hp->gregs);
    	pci_release_regions(hp->happy_dev);
    
    	free_netdev(net_dev);
    
    	dev_set_drvdata(&pdev->dev, NULL);
    }
    
    static struct pci_device_id happymeal_pci_ids[] = {
    	{ PCI_DEVICE(PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_HAPPYMEAL) },
    	{ }			/* Terminating entry */
    };
    
    MODULE_DEVICE_TABLE(pci, happymeal_pci_ids);
    
    static struct pci_driver hme_pci_driver = {
    	.name		= "hme",
    	.id_table	= happymeal_pci_ids,
    	.probe		= happy_meal_pci_probe,
    	.remove		= __devexit_p(happy_meal_pci_remove),
    };
    
    static int __init happy_meal_pci_init(void)
    {
    	return pci_register_driver(&hme_pci_driver);
    }
    
    static void happy_meal_pci_exit(void)
    {
    	pci_unregister_driver(&hme_pci_driver);
    
    	while (qfe_pci_list) {
    		struct quattro *qfe = qfe_pci_list;
    		struct quattro *next = qfe->next;
    
    		kfree(qfe);
    
    		qfe_pci_list = next;
    	}
    }
    
    #endif
    
    #ifdef CONFIG_SBUS
    static int __devinit hme_sbus_probe(struct of_device *dev, const struct of_device_id *match)
    {
    	struct sbus_dev *sdev = to_sbus_device(&dev->dev);
    	struct device_node *dp = dev->node;
    	const char *model = of_get_property(dp, "model", NULL);
    	int is_qfe = (match->data != NULL);
    
    	if (!is_qfe && model && !strcmp(model, "SUNW,sbus-qfe"))
    		is_qfe = 1;
    
    	return happy_meal_sbus_probe_one(sdev, is_qfe);
    }
    
    static int __devexit hme_sbus_remove(struct of_device *dev)
    {
    	struct happy_meal *hp = dev_get_drvdata(&dev->dev);
    	struct net_device *net_dev = hp->dev;
    
    	unregister_netdev(net_dev);
    
    	/* XXX qfe parent interrupt... */
    
    	sbus_iounmap(hp->gregs, GREG_REG_SIZE);
    	sbus_iounmap(hp->etxregs, ETX_REG_SIZE);
    	sbus_iounmap(hp->erxregs, ERX_REG_SIZE);
    	sbus_iounmap(hp->bigmacregs, BMAC_REG_SIZE);
    	sbus_iounmap(hp->tcvregs, TCVR_REG_SIZE);
    	sbus_free_consistent(hp->happy_dev,
    			     PAGE_SIZE,
    			     hp->happy_block,
    			     hp->hblock_dvma);
    
    	free_netdev(net_dev);
    
    	dev_set_drvdata(&dev->dev, NULL);
    
    	return 0;
    }
    
    static struct of_device_id hme_sbus_match[] = {
    	{
    		.name = "SUNW,hme",
    	},
    	{
    		.name = "SUNW,qfe",
    		.data = (void *) 1,
    	},
    	{
    		.name = "qfe",
    		.data = (void *) 1,
    	},
    	{},
    };
    
    MODULE_DEVICE_TABLE(of, hme_sbus_match);
    
    static struct of_platform_driver hme_sbus_driver = {
    	.name		= "hme",
    	.match_table	= hme_sbus_match,
    	.probe		= hme_sbus_probe,
    	.remove		= __devexit_p(hme_sbus_remove),
    };
    
    static int __init happy_meal_sbus_init(void)
    {
    	int err;
    
    	err = of_register_driver(&hme_sbus_driver, &sbus_bus_type);
    	if (!err)
    		quattro_sbus_register_irqs();
    
    	return err;
    }
    
    static void happy_meal_sbus_exit(void)
    {
    	of_unregister_driver(&hme_sbus_driver);
    	quattro_sbus_free_irqs();
    
    	while (qfe_sbus_list) {
    		struct quattro *qfe = qfe_sbus_list;
    		struct quattro *next = qfe->next;
    
    		kfree(qfe);
    
    		qfe_sbus_list = next;
    	}
    }
    #endif
    
    static int __init happy_meal_probe(void)
    {
    	int err = 0;
    
    #ifdef CONFIG_SBUS
    	err = happy_meal_sbus_init();
    #endif
    #ifdef CONFIG_PCI
    	if (!err) {
    		err = happy_meal_pci_init();
    #ifdef CONFIG_SBUS
    		if (err)
    			happy_meal_sbus_exit();
    #endif
    	}
    #endif
    
    	return err;
    }
    
    
    static void __exit happy_meal_exit(void)
    {
    #ifdef CONFIG_SBUS
    	happy_meal_sbus_exit();
    #endif
    #ifdef CONFIG_PCI
    	happy_meal_pci_exit();
    #endif
    }
    
    module_init(happy_meal_probe);
    module_exit(happy_meal_exit);