Skip to content
Snippets Groups Projects
Select Git revision
  • 14d6d86c210aea1a83c19a8f6391ecabcbefed94
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

bpf_trace.c

Blame
  • bpf_trace.c 58.07 KiB
    // SPDX-License-Identifier: GPL-2.0
    /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
     * Copyright (c) 2016 Facebook
     */
    #include <linux/kernel.h>
    #include <linux/types.h>
    #include <linux/slab.h>
    #include <linux/bpf.h>
    #include <linux/bpf_perf_event.h>
    #include <linux/btf.h>
    #include <linux/filter.h>
    #include <linux/uaccess.h>
    #include <linux/ctype.h>
    #include <linux/kprobes.h>
    #include <linux/spinlock.h>
    #include <linux/syscalls.h>
    #include <linux/error-injection.h>
    #include <linux/btf_ids.h>
    
    #include <uapi/linux/bpf.h>
    #include <uapi/linux/btf.h>
    
    #include <asm/tlb.h>
    
    #include "trace_probe.h"
    #include "trace.h"
    
    #define CREATE_TRACE_POINTS
    #include "bpf_trace.h"
    
    #define bpf_event_rcu_dereference(p)					\
    	rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex))
    
    #ifdef CONFIG_MODULES
    struct bpf_trace_module {
    	struct module *module;
    	struct list_head list;
    };
    
    static LIST_HEAD(bpf_trace_modules);
    static DEFINE_MUTEX(bpf_module_mutex);
    
    static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
    {
    	struct bpf_raw_event_map *btp, *ret = NULL;
    	struct bpf_trace_module *btm;
    	unsigned int i;
    
    	mutex_lock(&bpf_module_mutex);
    	list_for_each_entry(btm, &bpf_trace_modules, list) {
    		for (i = 0; i < btm->module->num_bpf_raw_events; ++i) {
    			btp = &btm->module->bpf_raw_events[i];
    			if (!strcmp(btp->tp->name, name)) {
    				if (try_module_get(btm->module))
    					ret = btp;
    				goto out;
    			}
    		}
    	}
    out:
    	mutex_unlock(&bpf_module_mutex);
    	return ret;
    }
    #else
    static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
    {
    	return NULL;
    }
    #endif /* CONFIG_MODULES */
    
    u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
    u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
    
    static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
    				  u64 flags, const struct btf **btf,
    				  s32 *btf_id);
    
    /**
     * trace_call_bpf - invoke BPF program
     * @call: tracepoint event
     * @ctx: opaque context pointer
     *
     * kprobe handlers execute BPF programs via this helper.
     * Can be used from static tracepoints in the future.
     *
     * Return: BPF programs always return an integer which is interpreted by
     * kprobe handler as:
     * 0 - return from kprobe (event is filtered out)
     * 1 - store kprobe event into ring buffer
     * Other values are reserved and currently alias to 1
     */
    unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
    {
    	unsigned int ret;
    
    	if (in_nmi()) /* not supported yet */
    		return 1;
    
    	cant_sleep();
    
    	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
    		/*
    		 * since some bpf program is already running on this cpu,
    		 * don't call into another bpf program (same or different)
    		 * and don't send kprobe event into ring-buffer,
    		 * so return zero here
    		 */
    		ret = 0;
    		goto out;
    	}
    
    	/*
    	 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
    	 * to all call sites, we did a bpf_prog_array_valid() there to check
    	 * whether call->prog_array is empty or not, which is
    	 * a heurisitc to speed up execution.
    	 *
    	 * If bpf_prog_array_valid() fetched prog_array was
    	 * non-NULL, we go into trace_call_bpf() and do the actual
    	 * proper rcu_dereference() under RCU lock.
    	 * If it turns out that prog_array is NULL then, we bail out.
    	 * For the opposite, if the bpf_prog_array_valid() fetched pointer
    	 * was NULL, you'll skip the prog_array with the risk of missing
    	 * out of events when it was updated in between this and the
    	 * rcu_dereference() which is accepted risk.
    	 */
    	ret = BPF_PROG_RUN_ARRAY_CHECK(call->prog_array, ctx, BPF_PROG_RUN);
    
     out:
    	__this_cpu_dec(bpf_prog_active);
    
    	return ret;
    }
    
    #ifdef CONFIG_BPF_KPROBE_OVERRIDE
    BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc)
    {
    	regs_set_return_value(regs, rc);
    	override_function_with_return(regs);
    	return 0;
    }
    
    static const struct bpf_func_proto bpf_override_return_proto = {
    	.func		= bpf_override_return,
    	.gpl_only	= true,
    	.ret_type	= RET_INTEGER,
    	.arg1_type	= ARG_PTR_TO_CTX,
    	.arg2_type	= ARG_ANYTHING,
    };
    #endif
    
    static __always_inline int
    bpf_probe_read_user_common(void *dst, u32 size, const void __user *unsafe_ptr)
    {
    	int ret;
    
    	ret = copy_from_user_nofault(dst, unsafe_ptr, size);
    	if (unlikely(ret < 0))
    		memset(dst, 0, size);
    	return ret;
    }
    
    BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size,
    	   const void __user *, unsafe_ptr)
    {
    	return bpf_probe_read_user_common(dst, size, unsafe_ptr);
    }
    
    const struct bpf_func_proto bpf_probe_read_user_proto = {
    	.func		= bpf_probe_read_user,
    	.gpl_only	= true,
    	.ret_type	= RET_INTEGER,
    	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
    	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
    	.arg3_type	= ARG_ANYTHING,
    };
    
    static __always_inline int
    bpf_probe_read_user_str_common(void *dst, u32 size,
    			       const void __user *unsafe_ptr)
    {
    	int ret;
    
    	/*
    	 * NB: We rely on strncpy_from_user() not copying junk past the NUL
    	 * terminator into `dst`.
    	 *
    	 * strncpy_from_user() does long-sized strides in the fast path. If the
    	 * strncpy does not mask out the bytes after the NUL in `unsafe_ptr`,
    	 * then there could be junk after the NUL in `dst`. If user takes `dst`
    	 * and keys a hash map with it, then semantically identical strings can
    	 * occupy multiple entries in the map.
    	 */
    	ret = strncpy_from_user_nofault(dst, unsafe_ptr, size);
    	if (unlikely(ret < 0))
    		memset(dst, 0, size);
    	return ret;
    }
    
    BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size,
    	   const void __user *, unsafe_ptr)
    {
    	return bpf_probe_read_user_str_common(dst, size, unsafe_ptr);
    }
    
    const struct bpf_func_proto bpf_probe_read_user_str_proto = {
    	.func		= bpf_probe_read_user_str,
    	.gpl_only	= true,
    	.ret_type	= RET_INTEGER,
    	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
    	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
    	.arg3_type	= ARG_ANYTHING,
    };
    
    static __always_inline int
    bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr)
    {
    	int ret = security_locked_down(LOCKDOWN_BPF_READ);
    
    	if (unlikely(ret < 0))
    		goto fail;
    	ret = copy_from_kernel_nofault(dst, unsafe_ptr, size);
    	if (unlikely(ret < 0))
    		goto fail;
    	return ret;
    fail:
    	memset(dst, 0, size);
    	return ret;
    }
    
    BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size,
    	   const void *, unsafe_ptr)
    {
    	return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
    }
    
    const struct bpf_func_proto bpf_probe_read_kernel_proto = {
    	.func		= bpf_probe_read_kernel,
    	.gpl_only	= true,
    	.ret_type	= RET_INTEGER,
    	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
    	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
    	.arg3_type	= ARG_ANYTHING,
    };
    
    static __always_inline int
    bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr)
    {
    	int ret = security_locked_down(LOCKDOWN_BPF_READ);
    
    	if (unlikely(ret < 0))
    		goto fail;
    
    	/*
    	 * The strncpy_from_kernel_nofault() call will likely not fill the
    	 * entire buffer, but that's okay in this circumstance as we're probing
    	 * arbitrary memory anyway similar to bpf_probe_read_*() and might
    	 * as well probe the stack. Thus, memory is explicitly cleared
    	 * only in error case, so that improper users ignoring return
    	 * code altogether don't copy garbage; otherwise length of string
    	 * is returned that can be used for bpf_perf_event_output() et al.
    	 */
    	ret = strncpy_from_kernel_nofault(dst, unsafe_ptr, size);
    	if (unlikely(ret < 0))
    		goto fail;
    
    	return ret;
    fail:
    	memset(dst, 0, size);
    	return ret;
    }
    
    BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size,
    	   const void *, unsafe_ptr)
    {
    	return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
    }
    
    const struct bpf_func_proto bpf_probe_read_kernel_str_proto = {
    	.func		= bpf_probe_read_kernel_str,
    	.gpl_only	= true,
    	.ret_type	= RET_INTEGER,
    	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
    	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
    	.arg3_type	= ARG_ANYTHING,
    };
    
    #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
    BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size,
    	   const void *, unsafe_ptr)
    {
    	if ((unsigned long)unsafe_ptr < TASK_SIZE) {
    		return bpf_probe_read_user_common(dst, size,
    				(__force void __user *)unsafe_ptr);
    	}
    	return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
    }
    
    static const struct bpf_func_proto bpf_probe_read_compat_proto = {
    	.func		= bpf_probe_read_compat,
    	.gpl_only	= true,
    	.ret_type	= RET_INTEGER,
    	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
    	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
    	.arg3_type	= ARG_ANYTHING,
    };
    
    BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size,
    	   const void *, unsafe_ptr)
    {
    	if ((unsigned long)unsafe_ptr < TASK_SIZE) {
    		return bpf_probe_read_user_str_common(dst, size,
    				(__force void __user *)unsafe_ptr);
    	}
    	return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
    }
    
    static const struct bpf_func_proto bpf_probe_read_compat_str_proto = {
    	.func		= bpf_probe_read_compat_str,
    	.gpl_only	= true,
    	.ret_type	= RET_INTEGER,
    	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
    	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
    	.arg3_type	= ARG_ANYTHING,
    };
    #endif /* CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE */
    
    BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src,
    	   u32, size)
    {
    	/*
    	 * Ensure we're in user context which is safe for the helper to
    	 * run. This helper has no business in a kthread.
    	 *
    	 * access_ok() should prevent writing to non-user memory, but in
    	 * some situations (nommu, temporary switch, etc) access_ok() does
    	 * not provide enough validation, hence the check on KERNEL_DS.
    	 *
    	 * nmi_uaccess_okay() ensures the probe is not run in an interim
    	 * state, when the task or mm are switched. This is specifically
    	 * required to prevent the use of temporary mm.
    	 */
    
    	if (unlikely(in_interrupt() ||
    		     current->flags & (PF_KTHREAD | PF_EXITING)))
    		return -EPERM;
    	if (unlikely(uaccess_kernel()))
    		return -EPERM;
    	if (unlikely(!nmi_uaccess_okay()))
    		return -EPERM;
    
    	return copy_to_user_nofault(unsafe_ptr, src, size);
    }
    
    static const struct bpf_func_proto bpf_probe_write_user_proto = {
    	.func		= bpf_probe_write_user,
    	.gpl_only	= true,
    	.ret_type	= RET_INTEGER,
    	.arg1_type	= ARG_ANYTHING,
    	.arg2_type	= ARG_PTR_TO_MEM,
    	.arg3_type	= ARG_CONST_SIZE,
    };
    
    static const struct bpf_func_proto *bpf_get_probe_write_proto(void)
    {
    	if (!capable(CAP_SYS_ADMIN))
    		return NULL;
    
    	pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!",
    			    current->comm, task_pid_nr(current));
    
    	return &bpf_probe_write_user_proto;
    }
    
    static void bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype,
    		size_t bufsz)
    {
    	void __user *user_ptr = (__force void __user *)unsafe_ptr;
    
    	buf[0] = 0;
    
    	switch (fmt_ptype) {
    	case 's':
    #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
    		if ((unsigned long)unsafe_ptr < TASK_SIZE) {
    			strncpy_from_user_nofault(buf, user_ptr, bufsz);
    			break;
    		}
    		fallthrough;
    #endif
    	case 'k':
    		strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz);
    		break;
    	case 'u':
    		strncpy_from_user_nofault(buf, user_ptr, bufsz);
    		break;
    	}
    }
    
    static DEFINE_RAW_SPINLOCK(trace_printk_lock);
    
    #define BPF_TRACE_PRINTK_SIZE   1024
    
    static __printf(1, 0) int bpf_do_trace_printk(const char *fmt, ...)
    {
    	static char buf[BPF_TRACE_PRINTK_SIZE];
    	unsigned long flags;
    	va_list ap;
    	int ret;
    
    	raw_spin_lock_irqsave(&trace_printk_lock, flags);
    	va_start(ap, fmt);
    	ret = vsnprintf(buf, sizeof(buf), fmt, ap);
    	va_end(ap);
    	/* vsnprintf() will not append null for zero-length strings */
    	if (ret == 0)
    		buf[0] = '\0';
    	trace_bpf_trace_printk(buf);
    	raw_spin_unlock_irqrestore(&trace_printk_lock, flags);
    
    	return ret;
    }
    
    /*
     * Only limited trace_printk() conversion specifiers allowed:
     * %d %i %u %x %ld %li %lu %lx %lld %lli %llu %llx %p %pB %pks %pus %s
     */
    BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
    	   u64, arg2, u64, arg3)
    {
    	int i, mod[3] = {}, fmt_cnt = 0;
    	char buf[64], fmt_ptype;
    	void *unsafe_ptr = NULL;
    	bool str_seen = false;
    
    	/*
    	 * bpf_check()->check_func_arg()->check_stack_boundary()
    	 * guarantees that fmt points to bpf program stack,
    	 * fmt_size bytes of it were initialized and fmt_size > 0
    	 */
    	if (fmt[--fmt_size] != 0)
    		return -EINVAL;
    
    	/* check format string for allowed specifiers */
    	for (i = 0; i < fmt_size; i++) {
    		if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i]))
    			return -EINVAL;
    
    		if (fmt[i] != '%')
    			continue;
    
    		if (fmt_cnt >= 3)
    			return -EINVAL;
    
    		/* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */
    		i++;
    		if (fmt[i] == 'l') {
    			mod[fmt_cnt]++;
    			i++;
    		} else if (fmt[i] == 'p') {
    			mod[fmt_cnt]++;
    			if ((fmt[i + 1] == 'k' ||
    			     fmt[i + 1] == 'u') &&
    			    fmt[i + 2] == 's') {
    				fmt_ptype = fmt[i + 1];
    				i += 2;
    				goto fmt_str;
    			}
    
    			if (fmt[i + 1] == 'B') {
    				i++;
    				goto fmt_next;
    			}
    
    			/* disallow any further format extensions */
    			if (fmt[i + 1] != 0 &&
    			    !isspace(fmt[i + 1]) &&
    			    !ispunct(fmt[i + 1]))
    				return -EINVAL;
    
    			goto fmt_next;
    		} else if (fmt[i] == 's') {
    			mod[fmt_cnt]++;
    			fmt_ptype = fmt[i];
    fmt_str:
    			if (str_seen)
    				/* allow only one '%s' per fmt string */
    				return -EINVAL;
    			str_seen = true;
    
    			if (fmt[i + 1] != 0 &&
    			    !isspace(fmt[i + 1]) &&
    			    !ispunct(fmt[i + 1]))
    				return -EINVAL;
    
    			switch (fmt_cnt) {
    			case 0:
    				unsafe_ptr = (void *)(long)arg1;
    				arg1 = (long)buf;
    				break;
    			case 1:
    				unsafe_ptr = (void *)(long)arg2;
    				arg2 = (long)buf;
    				break;
    			case 2:
    				unsafe_ptr = (void *)(long)arg3;
    				arg3 = (long)buf;
    				break;
    			}
    
    			bpf_trace_copy_string(buf, unsafe_ptr, fmt_ptype,
    					sizeof(buf));
    			goto fmt_next;
    		}
    
    		if (fmt[i] == 'l') {
    			mod[fmt_cnt]++;
    			i++;
    		}
    
    		if (fmt[i] != 'i' && fmt[i] != 'd' &&
    		    fmt[i] != 'u' && fmt[i] != 'x')
    			return -EINVAL;
    fmt_next:
    		fmt_cnt++;
    	}
    
    /* Horrid workaround for getting va_list handling working with different
     * argument type combinations generically for 32 and 64 bit archs.
     */
    #define __BPF_TP_EMIT()	__BPF_ARG3_TP()
    #define __BPF_TP(...)							\
    	bpf_do_trace_printk(fmt, ##__VA_ARGS__)
    
    #define __BPF_ARG1_TP(...)						\
    	((mod[0] == 2 || (mod[0] == 1 && __BITS_PER_LONG == 64))	\
    	  ? __BPF_TP(arg1, ##__VA_ARGS__)				\
    	  : ((mod[0] == 1 || (mod[0] == 0 && __BITS_PER_LONG == 32))	\
    	      ? __BPF_TP((long)arg1, ##__VA_ARGS__)			\
    	      : __BPF_TP((u32)arg1, ##__VA_ARGS__)))
    
    #define __BPF_ARG2_TP(...)						\
    	((mod[1] == 2 || (mod[1] == 1 && __BITS_PER_LONG == 64))	\
    	  ? __BPF_ARG1_TP(arg2, ##__VA_ARGS__)				\
    	  : ((mod[1] == 1 || (mod[1] == 0 && __BITS_PER_LONG == 32))	\
    	      ? __BPF_ARG1_TP((long)arg2, ##__VA_ARGS__)		\
    	      : __BPF_ARG1_TP((u32)arg2, ##__VA_ARGS__)))
    
    #define __BPF_ARG3_TP(...)						\
    	((mod[2] == 2 || (mod[2] == 1 && __BITS_PER_LONG == 64))	\
    	  ? __BPF_ARG2_TP(arg3, ##__VA_ARGS__)				\
    	  : ((mod[2] == 1 || (mod[2] == 0 && __BITS_PER_LONG == 32))	\
    	      ? __BPF_ARG2_TP((long)arg3, ##__VA_ARGS__)		\
    	      : __BPF_ARG2_TP((u32)arg3, ##__VA_ARGS__)))
    
    	return __BPF_TP_EMIT();
    }
    
    static const struct bpf_func_proto bpf_trace_printk_proto = {
    	.func		= bpf_trace_printk,
    	.gpl_only	= true,
    	.ret_type	= RET_INTEGER,
    	.arg1_type	= ARG_PTR_TO_MEM,
    	.arg2_type	= ARG_CONST_SIZE,
    };
    
    const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
    {
    	/*
    	 * This program might be calling bpf_trace_printk,
    	 * so enable the associated bpf_trace/bpf_trace_printk event.
    	 * Repeat this each time as it is possible a user has
    	 * disabled bpf_trace_printk events.  By loading a program
    	 * calling bpf_trace_printk() however the user has expressed
    	 * the intent to see such events.
    	 */
    	if (trace_set_clr_event("bpf_trace", "bpf_trace_printk", 1))
    		pr_warn_ratelimited("could not enable bpf_trace_printk events");
    
    	return &bpf_trace_printk_proto;
    }
    
    #define MAX_SEQ_PRINTF_VARARGS		12
    #define MAX_SEQ_PRINTF_MAX_MEMCPY	6
    #define MAX_SEQ_PRINTF_STR_LEN		128
    
    struct bpf_seq_printf_buf {
    	char buf[MAX_SEQ_PRINTF_MAX_MEMCPY][MAX_SEQ_PRINTF_STR_LEN];
    };
    static DEFINE_PER_CPU(struct bpf_seq_printf_buf, bpf_seq_printf_buf);
    static DEFINE_PER_CPU(int, bpf_seq_printf_buf_used);
    
    BPF_CALL_5(bpf_seq_printf, struct seq_file *, m, char *, fmt, u32, fmt_size,
    	   const void *, data, u32, data_len)
    {
    	int err = -EINVAL, fmt_cnt = 0, memcpy_cnt = 0;
    	int i, buf_used, copy_size, num_args;
    	u64 params[MAX_SEQ_PRINTF_VARARGS];
    	struct bpf_seq_printf_buf *bufs;
    	const u64 *args = data;
    
    	buf_used = this_cpu_inc_return(bpf_seq_printf_buf_used);
    	if (WARN_ON_ONCE(buf_used > 1)) {
    		err = -EBUSY;
    		goto out;
    	}
    
    	bufs = this_cpu_ptr(&bpf_seq_printf_buf);
    
    	/*
    	 * bpf_check()->check_func_arg()->check_stack_boundary()
    	 * guarantees that fmt points to bpf program stack,
    	 * fmt_size bytes of it were initialized and fmt_size > 0
    	 */
    	if (fmt[--fmt_size] != 0)
    		goto out;
    
    	if (data_len & 7)
    		goto out;
    
    	for (i = 0; i < fmt_size; i++) {
    		if (fmt[i] == '%') {
    			if (fmt[i + 1] == '%')
    				i++;
    			else if (!data || !data_len)
    				goto out;
    		}
    	}
    
    	num_args = data_len / 8;
    
    	/* check format string for allowed specifiers */
    	for (i = 0; i < fmt_size; i++) {
    		/* only printable ascii for now. */
    		if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) {
    			err = -EINVAL;
    			goto out;
    		}
    
    		if (fmt[i] != '%')
    			continue;
    
    		if (fmt[i + 1] == '%') {
    			i++;
    			continue;
    		}
    
    		if (fmt_cnt >= MAX_SEQ_PRINTF_VARARGS) {
    			err = -E2BIG;
    			goto out;
    		}
    
    		if (fmt_cnt >= num_args) {
    			err = -EINVAL;
    			goto out;
    		}
    
    		/* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */
    		i++;
    
    		/* skip optional "[0 +-][num]" width formating field */
    		while (fmt[i] == '0' || fmt[i] == '+'  || fmt[i] == '-' ||
    		       fmt[i] == ' ')
    			i++;
    		if (fmt[i] >= '1' && fmt[i] <= '9') {
    			i++;
    			while (fmt[i] >= '0' && fmt[i] <= '9')
    				i++;
    		}
    
    		if (fmt[i] == 's') {
    			void *unsafe_ptr;
    
    			/* try our best to copy */
    			if (memcpy_cnt >= MAX_SEQ_PRINTF_MAX_MEMCPY) {
    				err = -E2BIG;
    				goto out;
    			}
    
    			unsafe_ptr = (void *)(long)args[fmt_cnt];
    			err = strncpy_from_kernel_nofault(bufs->buf[memcpy_cnt],
    					unsafe_ptr, MAX_SEQ_PRINTF_STR_LEN);
    			if (err < 0)
    				bufs->buf[memcpy_cnt][0] = '\0';
    			params[fmt_cnt] = (u64)(long)bufs->buf[memcpy_cnt];
    
    			fmt_cnt++;
    			memcpy_cnt++;
    			continue;
    		}
    
    		if (fmt[i] == 'p') {
    			if (fmt[i + 1] == 0 ||
    			    fmt[i + 1] == 'K' ||
    			    fmt[i + 1] == 'x' ||
    			    fmt[i + 1] == 'B') {
    				/* just kernel pointers */
    				params[fmt_cnt] = args[fmt_cnt];
    				fmt_cnt++;
    				continue;
    			}
    
    			/* only support "%pI4", "%pi4", "%pI6" and "%pi6". */
    			if (fmt[i + 1] != 'i' && fmt[i + 1] != 'I') {
    				err = -EINVAL;
    				goto out;
    			}
    			if (fmt[i + 2] != '4' && fmt[i + 2] != '6') {
    				err = -EINVAL;
    				goto out;
    			}
    
    			if (memcpy_cnt >= MAX_SEQ_PRINTF_MAX_MEMCPY) {
    				err = -E2BIG;
    				goto out;
    			}
    
    
    			copy_size = (fmt[i + 2] == '4') ? 4 : 16;
    
    			err = copy_from_kernel_nofault(bufs->buf[memcpy_cnt],
    						(void *) (long) args[fmt_cnt],
    						copy_size);
    			if (err < 0)
    				memset(bufs->buf[memcpy_cnt], 0, copy_size);
    			params[fmt_cnt] = (u64)(long)bufs->buf[memcpy_cnt];
    
    			i += 2;
    			fmt_cnt++;
    			memcpy_cnt++;
    			continue;
    		}
    
    		if (fmt[i] == 'l') {
    			i++;
    			if (fmt[i] == 'l')
    				i++;
    		}
    
    		if (fmt[i] != 'i' && fmt[i] != 'd' &&
    		    fmt[i] != 'u' && fmt[i] != 'x' &&
    		    fmt[i] != 'X') {
    			err = -EINVAL;
    			goto out;
    		}
    
    		params[fmt_cnt] = args[fmt_cnt];
    		fmt_cnt++;
    	}
    
    	/* Maximumly we can have MAX_SEQ_PRINTF_VARARGS parameter, just give
    	 * all of them to seq_printf().
    	 */
    	seq_printf(m, fmt, params[0], params[1], params[2], params[3],
    		   params[4], params[5], params[6], params[7], params[8],
    		   params[9], params[10], params[11]);
    
    	err = seq_has_overflowed(m) ? -EOVERFLOW : 0;
    out:
    	this_cpu_dec(bpf_seq_printf_buf_used);
    	return err;
    }
    
    BTF_ID_LIST_SINGLE(btf_seq_file_ids, struct, seq_file)
    
    static const struct bpf_func_proto bpf_seq_printf_proto = {
    	.func		= bpf_seq_printf,
    	.gpl_only	= true,
    	.ret_type	= RET_INTEGER,
    	.arg1_type	= ARG_PTR_TO_BTF_ID,
    	.arg1_btf_id	= &btf_seq_file_ids[0],
    	.arg2_type	= ARG_PTR_TO_MEM,
    	.arg3_type	= ARG_CONST_SIZE,
    	.arg4_type      = ARG_PTR_TO_MEM_OR_NULL,
    	.arg5_type      = ARG_CONST_SIZE_OR_ZERO,
    };
    
    BPF_CALL_3(bpf_seq_write, struct seq_file *, m, const void *, data, u32, len)
    {
    	return seq_write(m, data, len) ? -EOVERFLOW : 0;
    }
    
    static const struct bpf_func_proto bpf_seq_write_proto = {
    	.func		= bpf_seq_write,
    	.gpl_only	= true,
    	.ret_type	= RET_INTEGER,
    	.arg1_type	= ARG_PTR_TO_BTF_ID,
    	.arg1_btf_id	= &btf_seq_file_ids[0],
    	.arg2_type	= ARG_PTR_TO_MEM,
    	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
    };
    
    BPF_CALL_4(bpf_seq_printf_btf, struct seq_file *, m, struct btf_ptr *, ptr,
    	   u32, btf_ptr_size, u64, flags)
    {
    	const struct btf *btf;
    	s32 btf_id;
    	int ret;
    
    	ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
    	if (ret)
    		return ret;
    
    	return btf_type_seq_show_flags(btf, btf_id, ptr->ptr, m, flags);
    }
    
    static const struct bpf_func_proto bpf_seq_printf_btf_proto = {
    	.func		= bpf_seq_printf_btf,
    	.gpl_only	= true,
    	.ret_type	= RET_INTEGER,
    	.arg1_type	= ARG_PTR_TO_BTF_ID,
    	.arg1_btf_id	= &btf_seq_file_ids[0],
    	.arg2_type	= ARG_PTR_TO_MEM,
    	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
    	.arg4_type	= ARG_ANYTHING,
    };
    
    static __always_inline int
    get_map_perf_counter(struct bpf_map *map, u64 flags,
    		     u64 *value, u64 *enabled, u64 *running)
    {
    	struct bpf_array *array = container_of(map, struct bpf_array, map);
    	unsigned int cpu = smp_processor_id();
    	u64 index = flags & BPF_F_INDEX_MASK;
    	struct bpf_event_entry *ee;
    
    	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
    		return -EINVAL;
    	if (index == BPF_F_CURRENT_CPU)
    		index = cpu;
    	if (unlikely(index >= array->map.max_entries))
    		return -E2BIG;
    
    	ee = READ_ONCE(array->ptrs[index]);
    	if (!ee)
    		return -ENOENT;
    
    	return perf_event_read_local(ee->event, value, enabled, running);
    }
    
    BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
    {
    	u64 value = 0;
    	int err;
    
    	err = get_map_perf_counter(map, flags, &value, NULL, NULL);
    	/*
    	 * this api is ugly since we miss [-22..-2] range of valid
    	 * counter values, but that's uapi
    	 */
    	if (err)
    		return err;
    	return value;
    }
    
    static const struct bpf_func_proto bpf_perf_event_read_proto = {
    	.func		= bpf_perf_event_read,
    	.gpl_only	= true,
    	.ret_type	= RET_INTEGER,
    	.arg1_type	= ARG_CONST_MAP_PTR,
    	.arg2_type	= ARG_ANYTHING,
    };
    
    BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags,
    	   struct bpf_perf_event_value *, buf, u32, size)
    {
    	int err = -EINVAL;
    
    	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
    		goto clear;
    	err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled,
    				   &buf->running);
    	if (unlikely(err))
    		goto clear;
    	return 0;
    clear:
    	memset(buf, 0, size);
    	return err;
    }
    
    static const struct bpf_func_proto bpf_perf_event_read_value_proto = {
    	.func		= bpf_perf_event_read_value,
    	.gpl_only	= true,
    	.ret_type	= RET_INTEGER,
    	.arg1_type	= ARG_CONST_MAP_PTR,
    	.arg2_type	= ARG_ANYTHING,
    	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
    	.arg4_type	= ARG_CONST_SIZE,
    };
    
    static __always_inline u64
    __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
    			u64 flags, struct perf_sample_data *sd)
    {
    	struct bpf_array *array = container_of(map, struct bpf_array, map);
    	unsigned int cpu = smp_processor_id();
    	u64 index = flags & BPF_F_INDEX_MASK;
    	struct bpf_event_entry *ee;
    	struct perf_event *event;
    
    	if (index == BPF_F_CURRENT_CPU)
    		index = cpu;
    	if (unlikely(index >= array->map.max_entries))
    		return -E2BIG;
    
    	ee = READ_ONCE(array->ptrs[index]);
    	if (!ee)
    		return -ENOENT;
    
    	event = ee->event;
    	if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
    		     event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
    		return -EINVAL;
    
    	if (unlikely(event->oncpu != cpu))
    		return -EOPNOTSUPP;
    
    	return perf_event_output(event, sd, regs);
    }
    
    /*
     * Support executing tracepoints in normal, irq, and nmi context that each call
     * bpf_perf_event_output
     */
    struct bpf_trace_sample_data {
    	struct perf_sample_data sds[3];
    };
    
    static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds);
    static DEFINE_PER_CPU(int, bpf_trace_nest_level);
    BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
    	   u64, flags, void *, data, u64, size)
    {
    	struct bpf_trace_sample_data *sds = this_cpu_ptr(&bpf_trace_sds);
    	int nest_level = this_cpu_inc_return(bpf_trace_nest_level);
    	struct perf_raw_record raw = {
    		.frag = {
    			.size = size,
    			.data = data,
    		},
    	};
    	struct perf_sample_data *sd;
    	int err;
    
    	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) {
    		err = -EBUSY;
    		goto out;
    	}
    
    	sd = &sds->sds[nest_level - 1];
    
    	if (unlikely(flags & ~(BPF_F_INDEX_MASK))) {
    		err = -EINVAL;
    		goto out;
    	}
    
    	perf_sample_data_init(sd, 0, 0);
    	sd->raw = &raw;
    
    	err = __bpf_perf_event_output(regs, map, flags, sd);
    
    out:
    	this_cpu_dec(bpf_trace_nest_level);
    	return err;
    }
    
    static const struct bpf_func_proto bpf_perf_event_output_proto = {
    	.func		= bpf_perf_event_output,
    	.gpl_only	= true,
    	.ret_type	= RET_INTEGER,
    	.arg1_type	= ARG_PTR_TO_CTX,
    	.arg2_type	= ARG_CONST_MAP_PTR,
    	.arg3_type	= ARG_ANYTHING,
    	.arg4_type	= ARG_PTR_TO_MEM,
    	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
    };
    
    static DEFINE_PER_CPU(int, bpf_event_output_nest_level);
    struct bpf_nested_pt_regs {
    	struct pt_regs regs[3];
    };
    static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs);
    static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds);
    
    u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
    		     void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
    {
    	int nest_level = this_cpu_inc_return(bpf_event_output_nest_level);
    	struct perf_raw_frag frag = {
    		.copy		= ctx_copy,
    		.size		= ctx_size,
    		.data		= ctx,
    	};
    	struct perf_raw_record raw = {
    		.frag = {
    			{
    				.next	= ctx_size ? &frag : NULL,
    			},
    			.size	= meta_size,
    			.data	= meta,
    		},
    	};
    	struct perf_sample_data *sd;
    	struct pt_regs *regs;
    	u64 ret;
    
    	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) {
    		ret = -EBUSY;
    		goto out;
    	}
    	sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]);
    	regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]);
    
    	perf_fetch_caller_regs(regs);
    	perf_sample_data_init(sd, 0, 0);
    	sd->raw = &raw;
    
    	ret = __bpf_perf_event_output(regs, map, flags, sd);
    out:
    	this_cpu_dec(bpf_event_output_nest_level);
    	return ret;
    }
    
    BPF_CALL_0(bpf_get_current_task)
    {
    	return (long) current;
    }
    
    const struct bpf_func_proto bpf_get_current_task_proto = {
    	.func		= bpf_get_current_task,
    	.gpl_only	= true,
    	.ret_type	= RET_INTEGER,
    };
    
    BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
    {
    	struct bpf_array *array = container_of(map, struct bpf_array, map);
    	struct cgroup *cgrp;
    
    	if (unlikely(idx >= array->map.max_entries))
    		return -E2BIG;
    
    	cgrp = READ_ONCE(array->ptrs[idx]);
    	if (unlikely(!cgrp))
    		return -EAGAIN;
    
    	return task_under_cgroup_hierarchy(current, cgrp);
    }
    
    static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
    	.func           = bpf_current_task_under_cgroup,
    	.gpl_only       = false,
    	.ret_type       = RET_INTEGER,
    	.arg1_type      = ARG_CONST_MAP_PTR,
    	.arg2_type      = ARG_ANYTHING,
    };
    
    struct send_signal_irq_work {
    	struct irq_work irq_work;
    	struct task_struct *task;
    	u32 sig;
    	enum pid_type type;
    };
    
    static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work);
    
    static void do_bpf_send_signal(struct irq_work *entry)
    {
    	struct send_signal_irq_work *work;
    
    	work = container_of(entry, struct send_signal_irq_work, irq_work);
    	group_send_sig_info(work->sig, SEND_SIG_PRIV, work->task, work->type);
    }
    
    static int bpf_send_signal_common(u32 sig, enum pid_type type)
    {
    	struct send_signal_irq_work *work = NULL;
    
    	/* Similar to bpf_probe_write_user, task needs to be
    	 * in a sound condition and kernel memory access be
    	 * permitted in order to send signal to the current
    	 * task.
    	 */
    	if (unlikely(current->flags & (PF_KTHREAD | PF_EXITING)))
    		return -EPERM;
    	if (unlikely(uaccess_kernel()))
    		return -EPERM;
    	if (unlikely(!nmi_uaccess_okay()))
    		return -EPERM;
    
    	if (irqs_disabled()) {
    		/* Do an early check on signal validity. Otherwise,
    		 * the error is lost in deferred irq_work.
    		 */
    		if (unlikely(!valid_signal(sig)))
    			return -EINVAL;
    
    		work = this_cpu_ptr(&send_signal_work);
    		if (atomic_read(&work->irq_work.flags) & IRQ_WORK_BUSY)
    			return -EBUSY;
    
    		/* Add the current task, which is the target of sending signal,
    		 * to the irq_work. The current task may change when queued
    		 * irq works get executed.
    		 */
    		work->task = current;
    		work->sig = sig;
    		work->type = type;
    		irq_work_queue(&work->irq_work);
    		return 0;
    	}
    
    	return group_send_sig_info(sig, SEND_SIG_PRIV, current, type);
    }
    
    BPF_CALL_1(bpf_send_signal, u32, sig)
    {
    	return bpf_send_signal_common(sig, PIDTYPE_TGID);
    }
    
    static const struct bpf_func_proto bpf_send_signal_proto = {
    	.func		= bpf_send_signal,
    	.gpl_only	= false,
    	.ret_type	= RET_INTEGER,
    	.arg1_type	= ARG_ANYTHING,
    };
    
    BPF_CALL_1(bpf_send_signal_thread, u32, sig)
    {
    	return bpf_send_signal_common(sig, PIDTYPE_PID);
    }
    
    static const struct bpf_func_proto bpf_send_signal_thread_proto = {
    	.func		= bpf_send_signal_thread,
    	.gpl_only	= false,
    	.ret_type	= RET_INTEGER,
    	.arg1_type	= ARG_ANYTHING,
    };
    
    BPF_CALL_3(bpf_d_path, struct path *, path, char *, buf, u32, sz)
    {
    	long len;
    	char *p;
    
    	if (!sz)
    		return 0;
    
    	p = d_path(path, buf, sz);
    	if (IS_ERR(p)) {
    		len = PTR_ERR(p);
    	} else {
    		len = buf + sz - p;
    		memmove(buf, p, len);
    	}
    
    	return len;
    }
    
    BTF_SET_START(btf_allowlist_d_path)
    #ifdef CONFIG_SECURITY
    BTF_ID(func, security_file_permission)
    BTF_ID(func, security_inode_getattr)
    BTF_ID(func, security_file_open)
    #endif
    #ifdef CONFIG_SECURITY_PATH
    BTF_ID(func, security_path_truncate)
    #endif
    BTF_ID(func, vfs_truncate)
    BTF_ID(func, vfs_fallocate)
    BTF_ID(func, dentry_open)
    BTF_ID(func, vfs_getattr)
    BTF_ID(func, filp_close)
    BTF_SET_END(btf_allowlist_d_path)
    
    static bool bpf_d_path_allowed(const struct bpf_prog *prog)
    {
    	return btf_id_set_contains(&btf_allowlist_d_path, prog->aux->attach_btf_id);
    }
    
    BTF_ID_LIST_SINGLE(bpf_d_path_btf_ids, struct, path)
    
    static const struct bpf_func_proto bpf_d_path_proto = {
    	.func		= bpf_d_path,
    	.gpl_only	= false,
    	.ret_type	= RET_INTEGER,
    	.arg1_type	= ARG_PTR_TO_BTF_ID,
    	.arg1_btf_id	= &bpf_d_path_btf_ids[0],
    	.arg2_type	= ARG_PTR_TO_MEM,
    	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
    	.allowed	= bpf_d_path_allowed,
    };
    
    #define BTF_F_ALL	(BTF_F_COMPACT  | BTF_F_NONAME | \
    			 BTF_F_PTR_RAW | BTF_F_ZERO)
    
    static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
    				  u64 flags, const struct btf **btf,
    				  s32 *btf_id)
    {
    	const struct btf_type *t;
    
    	if (unlikely(flags & ~(BTF_F_ALL)))
    		return -EINVAL;
    
    	if (btf_ptr_size != sizeof(struct btf_ptr))
    		return -EINVAL;
    
    	*btf = bpf_get_btf_vmlinux();
    
    	if (IS_ERR_OR_NULL(*btf))
    		return IS_ERR(*btf) ? PTR_ERR(*btf) : -EINVAL;
    
    	if (ptr->type_id > 0)
    		*btf_id = ptr->type_id;
    	else
    		return -EINVAL;
    
    	if (*btf_id > 0)
    		t = btf_type_by_id(*btf, *btf_id);
    	if (*btf_id <= 0 || !t)
    		return -ENOENT;
    
    	return 0;
    }
    
    BPF_CALL_5(bpf_snprintf_btf, char *, str, u32, str_size, struct btf_ptr *, ptr,
    	   u32, btf_ptr_size, u64, flags)
    {
    	const struct btf *btf;
    	s32 btf_id;
    	int ret;
    
    	ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
    	if (ret)
    		return ret;
    
    	return btf_type_snprintf_show(btf, btf_id, ptr->ptr, str, str_size,
    				      flags);
    }
    
    const struct bpf_func_proto bpf_snprintf_btf_proto = {
    	.func		= bpf_snprintf_btf,
    	.gpl_only	= false,
    	.ret_type	= RET_INTEGER,
    	.arg1_type	= ARG_PTR_TO_MEM,
    	.arg2_type	= ARG_CONST_SIZE,
    	.arg3_type	= ARG_PTR_TO_MEM,
    	.arg4_type	= ARG_CONST_SIZE,
    	.arg5_type	= ARG_ANYTHING,
    };
    
    const struct bpf_func_proto *
    bpf_tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
    {
    	switch (func_id) {
    	case BPF_FUNC_map_lookup_elem:
    		return &bpf_map_lookup_elem_proto;
    	case BPF_FUNC_map_update_elem:
    		return &bpf_map_update_elem_proto;
    	case BPF_FUNC_map_delete_elem:
    		return &bpf_map_delete_elem_proto;
    	case BPF_FUNC_map_push_elem:
    		return &bpf_map_push_elem_proto;
    	case BPF_FUNC_map_pop_elem:
    		return &bpf_map_pop_elem_proto;
    	case BPF_FUNC_map_peek_elem:
    		return &bpf_map_peek_elem_proto;
    	case BPF_FUNC_ktime_get_ns:
    		return &bpf_ktime_get_ns_proto;
    	case BPF_FUNC_ktime_get_boot_ns:
    		return &bpf_ktime_get_boot_ns_proto;
    	case BPF_FUNC_tail_call:
    		return &bpf_tail_call_proto;
    	case BPF_FUNC_get_current_pid_tgid:
    		return &bpf_get_current_pid_tgid_proto;
    	case BPF_FUNC_get_current_task:
    		return &bpf_get_current_task_proto;
    	case BPF_FUNC_get_current_uid_gid:
    		return &bpf_get_current_uid_gid_proto;
    	case BPF_FUNC_get_current_comm:
    		return &bpf_get_current_comm_proto;
    	case BPF_FUNC_trace_printk:
    		return bpf_get_trace_printk_proto();
    	case BPF_FUNC_get_smp_processor_id:
    		return &bpf_get_smp_processor_id_proto;
    	case BPF_FUNC_get_numa_node_id:
    		return &bpf_get_numa_node_id_proto;
    	case BPF_FUNC_perf_event_read:
    		return &bpf_perf_event_read_proto;
    	case BPF_FUNC_probe_write_user:
    		return bpf_get_probe_write_proto();
    	case BPF_FUNC_current_task_under_cgroup:
    		return &bpf_current_task_under_cgroup_proto;
    	case BPF_FUNC_get_prandom_u32:
    		return &bpf_get_prandom_u32_proto;
    	case BPF_FUNC_probe_read_user:
    		return &bpf_probe_read_user_proto;
    	case BPF_FUNC_probe_read_kernel:
    		return &bpf_probe_read_kernel_proto;
    	case BPF_FUNC_probe_read_user_str:
    		return &bpf_probe_read_user_str_proto;
    	case BPF_FUNC_probe_read_kernel_str:
    		return &bpf_probe_read_kernel_str_proto;
    #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
    	case BPF_FUNC_probe_read:
    		return &bpf_probe_read_compat_proto;
    	case BPF_FUNC_probe_read_str:
    		return &bpf_probe_read_compat_str_proto;
    #endif
    #ifdef CONFIG_CGROUPS
    	case BPF_FUNC_get_current_cgroup_id:
    		return &bpf_get_current_cgroup_id_proto;
    #endif
    	case BPF_FUNC_send_signal:
    		return &bpf_send_signal_proto;
    	case BPF_FUNC_send_signal_thread:
    		return &bpf_send_signal_thread_proto;
    	case BPF_FUNC_perf_event_read_value:
    		return &bpf_perf_event_read_value_proto;
    	case BPF_FUNC_get_ns_current_pid_tgid:
    		return &bpf_get_ns_current_pid_tgid_proto;
    	case BPF_FUNC_ringbuf_output:
    		return &bpf_ringbuf_output_proto;
    	case BPF_FUNC_ringbuf_reserve:
    		return &bpf_ringbuf_reserve_proto;
    	case BPF_FUNC_ringbuf_submit:
    		return &bpf_ringbuf_submit_proto;
    	case BPF_FUNC_ringbuf_discard:
    		return &bpf_ringbuf_discard_proto;
    	case BPF_FUNC_ringbuf_query:
    		return &bpf_ringbuf_query_proto;
    	case BPF_FUNC_jiffies64:
    		return &bpf_jiffies64_proto;
    	case BPF_FUNC_get_task_stack:
    		return &bpf_get_task_stack_proto;
    	case BPF_FUNC_copy_from_user:
    		return prog->aux->sleepable ? &bpf_copy_from_user_proto : NULL;
    	case BPF_FUNC_snprintf_btf:
    		return &bpf_snprintf_btf_proto;
    	case BPF_FUNC_bpf_per_cpu_ptr:
    		return &bpf_per_cpu_ptr_proto;
    	case BPF_FUNC_bpf_this_cpu_ptr:
    		return &bpf_this_cpu_ptr_proto;
    	default:
    		return NULL;
    	}
    }
    
    static const struct bpf_func_proto *
    kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
    {
    	switch (func_id) {
    	case BPF_FUNC_perf_event_output:
    		return &bpf_perf_event_output_proto;
    	case BPF_FUNC_get_stackid:
    		return &bpf_get_stackid_proto;
    	case BPF_FUNC_get_stack:
    		return &bpf_get_stack_proto;
    #ifdef CONFIG_BPF_KPROBE_OVERRIDE
    	case BPF_FUNC_override_return:
    		return &bpf_override_return_proto;
    #endif
    	default:
    		return bpf_tracing_func_proto(func_id, prog);
    	}
    }
    
    /* bpf+kprobe programs can access fields of 'struct pt_regs' */
    static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
    					const struct bpf_prog *prog,
    					struct bpf_insn_access_aux *info)
    {
    	if (off < 0 || off >= sizeof(struct pt_regs))
    		return false;
    	if (type != BPF_READ)
    		return false;
    	if (off % size != 0)
    		return false;
    	/*
    	 * Assertion for 32 bit to make sure last 8 byte access
    	 * (BPF_DW) to the last 4 byte member is disallowed.
    	 */
    	if (off + size > sizeof(struct pt_regs))
    		return false;
    
    	return true;
    }
    
    const struct bpf_verifier_ops kprobe_verifier_ops = {
    	.get_func_proto  = kprobe_prog_func_proto,
    	.is_valid_access = kprobe_prog_is_valid_access,
    };
    
    const struct bpf_prog_ops kprobe_prog_ops = {
    };
    
    BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
    	   u64, flags, void *, data, u64, size)
    {
    	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
    
    	/*
    	 * r1 points to perf tracepoint buffer where first 8 bytes are hidden
    	 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
    	 * from there and call the same bpf_perf_event_output() helper inline.
    	 */
    	return ____bpf_perf_event_output(regs, map, flags, data, size);
    }
    
    static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
    	.func		= bpf_perf_event_output_tp,
    	.gpl_only	= true,
    	.ret_type	= RET_INTEGER,
    	.arg1_type	= ARG_PTR_TO_CTX,
    	.arg2_type	= ARG_CONST_MAP_PTR,
    	.arg3_type	= ARG_ANYTHING,
    	.arg4_type	= ARG_PTR_TO_MEM,
    	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
    };
    
    BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
    	   u64, flags)
    {
    	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
    
    	/*
    	 * Same comment as in bpf_perf_event_output_tp(), only that this time
    	 * the other helper's function body cannot be inlined due to being
    	 * external, thus we need to call raw helper function.
    	 */
    	return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
    			       flags, 0, 0);
    }
    
    static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
    	.func		= bpf_get_stackid_tp,
    	.gpl_only	= true,
    	.ret_type	= RET_INTEGER,
    	.arg1_type	= ARG_PTR_TO_CTX,
    	.arg2_type	= ARG_CONST_MAP_PTR,
    	.arg3_type	= ARG_ANYTHING,
    };
    
    BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size,
    	   u64, flags)
    {
    	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
    
    	return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
    			     (unsigned long) size, flags, 0);
    }
    
    static const struct bpf_func_proto bpf_get_stack_proto_tp = {
    	.func		= bpf_get_stack_tp,
    	.gpl_only	= true,
    	.ret_type	= RET_INTEGER,
    	.arg1_type	= ARG_PTR_TO_CTX,
    	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
    	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
    	.arg4_type	= ARG_ANYTHING,
    };
    
    static const struct bpf_func_proto *
    tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
    {
    	switch (func_id) {
    	case BPF_FUNC_perf_event_output:
    		return &bpf_perf_event_output_proto_tp;
    	case BPF_FUNC_get_stackid:
    		return &bpf_get_stackid_proto_tp;
    	case BPF_FUNC_get_stack:
    		return &bpf_get_stack_proto_tp;
    	default:
    		return bpf_tracing_func_proto(func_id, prog);
    	}
    }
    
    static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
    				    const struct bpf_prog *prog,
    				    struct bpf_insn_access_aux *info)
    {
    	if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
    		return false;
    	if (type != BPF_READ)
    		return false;
    	if (off % size != 0)
    		return false;
    
    	BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
    	return true;
    }
    
    const struct bpf_verifier_ops tracepoint_verifier_ops = {
    	.get_func_proto  = tp_prog_func_proto,
    	.is_valid_access = tp_prog_is_valid_access,
    };
    
    const struct bpf_prog_ops tracepoint_prog_ops = {
    };
    
    BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx,
    	   struct bpf_perf_event_value *, buf, u32, size)
    {
    	int err = -EINVAL;
    
    	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
    		goto clear;
    	err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled,
    				    &buf->running);
    	if (unlikely(err))
    		goto clear;
    	return 0;
    clear:
    	memset(buf, 0, size);
    	return err;
    }
    
    static const struct bpf_func_proto bpf_perf_prog_read_value_proto = {
             .func           = bpf_perf_prog_read_value,
             .gpl_only       = true,
             .ret_type       = RET_INTEGER,
             .arg1_type      = ARG_PTR_TO_CTX,
             .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
             .arg3_type      = ARG_CONST_SIZE,
    };
    
    BPF_CALL_4(bpf_read_branch_records, struct bpf_perf_event_data_kern *, ctx,
    	   void *, buf, u32, size, u64, flags)
    {
    #ifndef CONFIG_X86
    	return -ENOENT;
    #else
    	static const u32 br_entry_size = sizeof(struct perf_branch_entry);
    	struct perf_branch_stack *br_stack = ctx->data->br_stack;
    	u32 to_copy;
    
    	if (unlikely(flags & ~BPF_F_GET_BRANCH_RECORDS_SIZE))
    		return -EINVAL;
    
    	if (unlikely(!br_stack))
    		return -EINVAL;
    
    	if (flags & BPF_F_GET_BRANCH_RECORDS_SIZE)
    		return br_stack->nr * br_entry_size;
    
    	if (!buf || (size % br_entry_size != 0))
    		return -EINVAL;
    
    	to_copy = min_t(u32, br_stack->nr * br_entry_size, size);
    	memcpy(buf, br_stack->entries, to_copy);
    
    	return to_copy;
    #endif
    }
    
    static const struct bpf_func_proto bpf_read_branch_records_proto = {
    	.func           = bpf_read_branch_records,
    	.gpl_only       = true,
    	.ret_type       = RET_INTEGER,
    	.arg1_type      = ARG_PTR_TO_CTX,
    	.arg2_type      = ARG_PTR_TO_MEM_OR_NULL,
    	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
    	.arg4_type      = ARG_ANYTHING,
    };
    
    static const struct bpf_func_proto *
    pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
    {
    	switch (func_id) {
    	case BPF_FUNC_perf_event_output:
    		return &bpf_perf_event_output_proto_tp;
    	case BPF_FUNC_get_stackid:
    		return &bpf_get_stackid_proto_pe;
    	case BPF_FUNC_get_stack:
    		return &bpf_get_stack_proto_pe;
    	case BPF_FUNC_perf_prog_read_value:
    		return &bpf_perf_prog_read_value_proto;
    	case BPF_FUNC_read_branch_records:
    		return &bpf_read_branch_records_proto;
    	default:
    		return bpf_tracing_func_proto(func_id, prog);
    	}
    }
    
    /*
     * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp
     * to avoid potential recursive reuse issue when/if tracepoints are added
     * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack.
     *
     * Since raw tracepoints run despite bpf_prog_active, support concurrent usage
     * in normal, irq, and nmi context.
     */
    struct bpf_raw_tp_regs {
    	struct pt_regs regs[3];
    };
    static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs);
    static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level);
    static struct pt_regs *get_bpf_raw_tp_regs(void)
    {
    	struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs);
    	int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level);
    
    	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) {
    		this_cpu_dec(bpf_raw_tp_nest_level);
    		return ERR_PTR(-EBUSY);
    	}
    
    	return &tp_regs->regs[nest_level - 1];
    }
    
    static void put_bpf_raw_tp_regs(void)
    {
    	this_cpu_dec(bpf_raw_tp_nest_level);
    }
    
    BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args,
    	   struct bpf_map *, map, u64, flags, void *, data, u64, size)
    {
    	struct pt_regs *regs = get_bpf_raw_tp_regs();
    	int ret;
    
    	if (IS_ERR(regs))
    		return PTR_ERR(regs);
    
    	perf_fetch_caller_regs(regs);
    	ret = ____bpf_perf_event_output(regs, map, flags, data, size);
    
    	put_bpf_raw_tp_regs();
    	return ret;
    }
    
    static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = {
    	.func		= bpf_perf_event_output_raw_tp,
    	.gpl_only	= true,
    	.ret_type	= RET_INTEGER,
    	.arg1_type	= ARG_PTR_TO_CTX,
    	.arg2_type	= ARG_CONST_MAP_PTR,
    	.arg3_type	= ARG_ANYTHING,
    	.arg4_type	= ARG_PTR_TO_MEM,
    	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
    };
    
    extern const struct bpf_func_proto bpf_skb_output_proto;
    extern const struct bpf_func_proto bpf_xdp_output_proto;
    
    BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args,
    	   struct bpf_map *, map, u64, flags)
    {
    	struct pt_regs *regs = get_bpf_raw_tp_regs();
    	int ret;
    
    	if (IS_ERR(regs))
    		return PTR_ERR(regs);
    
    	perf_fetch_caller_regs(regs);
    	/* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */
    	ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map,
    			      flags, 0, 0);
    	put_bpf_raw_tp_regs();
    	return ret;
    }
    
    static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = {
    	.func		= bpf_get_stackid_raw_tp,
    	.gpl_only	= true,
    	.ret_type	= RET_INTEGER,
    	.arg1_type	= ARG_PTR_TO_CTX,
    	.arg2_type	= ARG_CONST_MAP_PTR,
    	.arg3_type	= ARG_ANYTHING,
    };
    
    BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args,
    	   void *, buf, u32, size, u64, flags)
    {
    	struct pt_regs *regs = get_bpf_raw_tp_regs();
    	int ret;
    
    	if (IS_ERR(regs))
    		return PTR_ERR(regs);
    
    	perf_fetch_caller_regs(regs);
    	ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf,
    			    (unsigned long) size, flags, 0);
    	put_bpf_raw_tp_regs();
    	return ret;
    }
    
    static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = {
    	.func		= bpf_get_stack_raw_tp,
    	.gpl_only	= true,
    	.ret_type	= RET_INTEGER,
    	.arg1_type	= ARG_PTR_TO_CTX,
    	.arg2_type	= ARG_PTR_TO_MEM,
    	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
    	.arg4_type	= ARG_ANYTHING,
    };
    
    static const struct bpf_func_proto *
    raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
    {
    	switch (func_id) {
    	case BPF_FUNC_perf_event_output:
    		return &bpf_perf_event_output_proto_raw_tp;
    	case BPF_FUNC_get_stackid:
    		return &bpf_get_stackid_proto_raw_tp;
    	case BPF_FUNC_get_stack:
    		return &bpf_get_stack_proto_raw_tp;
    	default:
    		return bpf_tracing_func_proto(func_id, prog);
    	}
    }
    
    const struct bpf_func_proto *
    tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
    {
    	switch (func_id) {
    #ifdef CONFIG_NET
    	case BPF_FUNC_skb_output:
    		return &bpf_skb_output_proto;
    	case BPF_FUNC_xdp_output:
    		return &bpf_xdp_output_proto;
    	case BPF_FUNC_skc_to_tcp6_sock:
    		return &bpf_skc_to_tcp6_sock_proto;
    	case BPF_FUNC_skc_to_tcp_sock:
    		return &bpf_skc_to_tcp_sock_proto;
    	case BPF_FUNC_skc_to_tcp_timewait_sock:
    		return &bpf_skc_to_tcp_timewait_sock_proto;
    	case BPF_FUNC_skc_to_tcp_request_sock:
    		return &bpf_skc_to_tcp_request_sock_proto;
    	case BPF_FUNC_skc_to_udp6_sock:
    		return &bpf_skc_to_udp6_sock_proto;
    #endif
    	case BPF_FUNC_seq_printf:
    		return prog->expected_attach_type == BPF_TRACE_ITER ?
    		       &bpf_seq_printf_proto :
    		       NULL;
    	case BPF_FUNC_seq_write:
    		return prog->expected_attach_type == BPF_TRACE_ITER ?
    		       &bpf_seq_write_proto :
    		       NULL;
    	case BPF_FUNC_seq_printf_btf:
    		return prog->expected_attach_type == BPF_TRACE_ITER ?
    		       &bpf_seq_printf_btf_proto :
    		       NULL;
    	case BPF_FUNC_d_path:
    		return &bpf_d_path_proto;
    	default:
    		return raw_tp_prog_func_proto(func_id, prog);
    	}
    }
    
    static bool raw_tp_prog_is_valid_access(int off, int size,
    					enum bpf_access_type type,
    					const struct bpf_prog *prog,
    					struct bpf_insn_access_aux *info)
    {
    	if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
    		return false;
    	if (type != BPF_READ)
    		return false;
    	if (off % size != 0)
    		return false;
    	return true;
    }
    
    static bool tracing_prog_is_valid_access(int off, int size,
    					 enum bpf_access_type type,
    					 const struct bpf_prog *prog,
    					 struct bpf_insn_access_aux *info)
    {
    	if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
    		return false;
    	if (type != BPF_READ)
    		return false;
    	if (off % size != 0)
    		return false;
    	return btf_ctx_access(off, size, type, prog, info);
    }
    
    int __weak bpf_prog_test_run_tracing(struct bpf_prog *prog,
    				     const union bpf_attr *kattr,
    				     union bpf_attr __user *uattr)
    {
    	return -ENOTSUPP;
    }
    
    const struct bpf_verifier_ops raw_tracepoint_verifier_ops = {
    	.get_func_proto  = raw_tp_prog_func_proto,
    	.is_valid_access = raw_tp_prog_is_valid_access,
    };
    
    const struct bpf_prog_ops raw_tracepoint_prog_ops = {
    #ifdef CONFIG_NET
    	.test_run = bpf_prog_test_run_raw_tp,
    #endif
    };
    
    const struct bpf_verifier_ops tracing_verifier_ops = {
    	.get_func_proto  = tracing_prog_func_proto,
    	.is_valid_access = tracing_prog_is_valid_access,
    };
    
    const struct bpf_prog_ops tracing_prog_ops = {
    	.test_run = bpf_prog_test_run_tracing,
    };
    
    static bool raw_tp_writable_prog_is_valid_access(int off, int size,
    						 enum bpf_access_type type,
    						 const struct bpf_prog *prog,
    						 struct bpf_insn_access_aux *info)
    {
    	if (off == 0) {
    		if (size != sizeof(u64) || type != BPF_READ)
    			return false;
    		info->reg_type = PTR_TO_TP_BUFFER;
    	}
    	return raw_tp_prog_is_valid_access(off, size, type, prog, info);
    }
    
    const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = {
    	.get_func_proto  = raw_tp_prog_func_proto,
    	.is_valid_access = raw_tp_writable_prog_is_valid_access,
    };
    
    const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = {
    };
    
    static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
    				    const struct bpf_prog *prog,
    				    struct bpf_insn_access_aux *info)
    {
    	const int size_u64 = sizeof(u64);
    
    	if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
    		return false;
    	if (type != BPF_READ)
    		return false;
    	if (off % size != 0) {
    		if (sizeof(unsigned long) != 4)
    			return false;
    		if (size != 8)
    			return false;
    		if (off % size != 4)
    			return false;
    	}
    
    	switch (off) {
    	case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
    		bpf_ctx_record_field_size(info, size_u64);
    		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
    			return false;
    		break;
    	case bpf_ctx_range(struct bpf_perf_event_data, addr):
    		bpf_ctx_record_field_size(info, size_u64);
    		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
    			return false;
    		break;
    	default:
    		if (size != sizeof(long))
    			return false;
    	}
    
    	return true;
    }
    
    static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
    				      const struct bpf_insn *si,
    				      struct bpf_insn *insn_buf,
    				      struct bpf_prog *prog, u32 *target_size)
    {
    	struct bpf_insn *insn = insn_buf;
    
    	switch (si->off) {
    	case offsetof(struct bpf_perf_event_data, sample_period):
    		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
    						       data), si->dst_reg, si->src_reg,
    				      offsetof(struct bpf_perf_event_data_kern, data));
    		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
    				      bpf_target_off(struct perf_sample_data, period, 8,
    						     target_size));
    		break;
    	case offsetof(struct bpf_perf_event_data, addr):
    		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
    						       data), si->dst_reg, si->src_reg,
    				      offsetof(struct bpf_perf_event_data_kern, data));
    		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
    				      bpf_target_off(struct perf_sample_data, addr, 8,
    						     target_size));
    		break;
    	default:
    		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
    						       regs), si->dst_reg, si->src_reg,
    				      offsetof(struct bpf_perf_event_data_kern, regs));
    		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
    				      si->off);
    		break;
    	}
    
    	return insn - insn_buf;
    }
    
    const struct bpf_verifier_ops perf_event_verifier_ops = {
    	.get_func_proto		= pe_prog_func_proto,
    	.is_valid_access	= pe_prog_is_valid_access,
    	.convert_ctx_access	= pe_prog_convert_ctx_access,
    };
    
    const struct bpf_prog_ops perf_event_prog_ops = {
    };
    
    static DEFINE_MUTEX(bpf_event_mutex);
    
    #define BPF_TRACE_MAX_PROGS 64
    
    int perf_event_attach_bpf_prog(struct perf_event *event,
    			       struct bpf_prog *prog)
    {
    	struct bpf_prog_array *old_array;
    	struct bpf_prog_array *new_array;
    	int ret = -EEXIST;
    
    	/*
    	 * Kprobe override only works if they are on the function entry,
    	 * and only if they are on the opt-in list.
    	 */
    	if (prog->kprobe_override &&
    	    (!trace_kprobe_on_func_entry(event->tp_event) ||
    	     !trace_kprobe_error_injectable(event->tp_event)))
    		return -EINVAL;
    
    	mutex_lock(&bpf_event_mutex);
    
    	if (event->prog)
    		goto unlock;
    
    	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
    	if (old_array &&
    	    bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) {
    		ret = -E2BIG;
    		goto unlock;
    	}
    
    	ret = bpf_prog_array_copy(old_array, NULL, prog, &new_array);
    	if (ret < 0)
    		goto unlock;
    
    	/* set the new array to event->tp_event and set event->prog */
    	event->prog = prog;
    	rcu_assign_pointer(event->tp_event->prog_array, new_array);
    	bpf_prog_array_free(old_array);
    
    unlock:
    	mutex_unlock(&bpf_event_mutex);
    	return ret;
    }
    
    void perf_event_detach_bpf_prog(struct perf_event *event)
    {
    	struct bpf_prog_array *old_array;
    	struct bpf_prog_array *new_array;
    	int ret;
    
    	mutex_lock(&bpf_event_mutex);
    
    	if (!event->prog)
    		goto unlock;
    
    	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
    	ret = bpf_prog_array_copy(old_array, event->prog, NULL, &new_array);
    	if (ret == -ENOENT)
    		goto unlock;
    	if (ret < 0) {
    		bpf_prog_array_delete_safe(old_array, event->prog);
    	} else {
    		rcu_assign_pointer(event->tp_event->prog_array, new_array);
    		bpf_prog_array_free(old_array);
    	}
    
    	bpf_prog_put(event->prog);
    	event->prog = NULL;
    
    unlock:
    	mutex_unlock(&bpf_event_mutex);
    }
    
    int perf_event_query_prog_array(struct perf_event *event, void __user *info)
    {
    	struct perf_event_query_bpf __user *uquery = info;
    	struct perf_event_query_bpf query = {};
    	struct bpf_prog_array *progs;
    	u32 *ids, prog_cnt, ids_len;
    	int ret;
    
    	if (!perfmon_capable())
    		return -EPERM;
    	if (event->attr.type != PERF_TYPE_TRACEPOINT)
    		return -EINVAL;
    	if (copy_from_user(&query, uquery, sizeof(query)))
    		return -EFAULT;
    
    	ids_len = query.ids_len;
    	if (ids_len > BPF_TRACE_MAX_PROGS)
    		return -E2BIG;
    	ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN);
    	if (!ids)
    		return -ENOMEM;
    	/*
    	 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which
    	 * is required when user only wants to check for uquery->prog_cnt.
    	 * There is no need to check for it since the case is handled
    	 * gracefully in bpf_prog_array_copy_info.
    	 */
    
    	mutex_lock(&bpf_event_mutex);
    	progs = bpf_event_rcu_dereference(event->tp_event->prog_array);
    	ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt);
    	mutex_unlock(&bpf_event_mutex);
    
    	if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) ||
    	    copy_to_user(uquery->ids, ids, ids_len * sizeof(u32)))
    		ret = -EFAULT;
    
    	kfree(ids);
    	return ret;
    }
    
    extern struct bpf_raw_event_map __start__bpf_raw_tp[];
    extern struct bpf_raw_event_map __stop__bpf_raw_tp[];
    
    struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name)
    {
    	struct bpf_raw_event_map *btp = __start__bpf_raw_tp;
    
    	for (; btp < __stop__bpf_raw_tp; btp++) {
    		if (!strcmp(btp->tp->name, name))
    			return btp;
    	}
    
    	return bpf_get_raw_tracepoint_module(name);
    }
    
    void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp)
    {
    	struct module *mod = __module_address((unsigned long)btp);
    
    	if (mod)
    		module_put(mod);
    }
    
    static __always_inline
    void __bpf_trace_run(struct bpf_prog *prog, u64 *args)
    {
    	cant_sleep();
    	rcu_read_lock();
    	(void) BPF_PROG_RUN(prog, args);
    	rcu_read_unlock();
    }
    
    #define UNPACK(...)			__VA_ARGS__
    #define REPEAT_1(FN, DL, X, ...)	FN(X)
    #define REPEAT_2(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__)
    #define REPEAT_3(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__)
    #define REPEAT_4(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__)
    #define REPEAT_5(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__)
    #define REPEAT_6(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__)
    #define REPEAT_7(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__)
    #define REPEAT_8(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__)
    #define REPEAT_9(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__)
    #define REPEAT_10(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__)
    #define REPEAT_11(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__)
    #define REPEAT_12(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__)
    #define REPEAT(X, FN, DL, ...)		REPEAT_##X(FN, DL, __VA_ARGS__)
    
    #define SARG(X)		u64 arg##X
    #define COPY(X)		args[X] = arg##X
    
    #define __DL_COM	(,)
    #define __DL_SEM	(;)
    
    #define __SEQ_0_11	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
    
    #define BPF_TRACE_DEFN_x(x)						\
    	void bpf_trace_run##x(struct bpf_prog *prog,			\
    			      REPEAT(x, SARG, __DL_COM, __SEQ_0_11))	\
    	{								\
    		u64 args[x];						\
    		REPEAT(x, COPY, __DL_SEM, __SEQ_0_11);			\
    		__bpf_trace_run(prog, args);				\
    	}								\
    	EXPORT_SYMBOL_GPL(bpf_trace_run##x)
    BPF_TRACE_DEFN_x(1);
    BPF_TRACE_DEFN_x(2);
    BPF_TRACE_DEFN_x(3);
    BPF_TRACE_DEFN_x(4);
    BPF_TRACE_DEFN_x(5);
    BPF_TRACE_DEFN_x(6);
    BPF_TRACE_DEFN_x(7);
    BPF_TRACE_DEFN_x(8);
    BPF_TRACE_DEFN_x(9);
    BPF_TRACE_DEFN_x(10);
    BPF_TRACE_DEFN_x(11);
    BPF_TRACE_DEFN_x(12);
    
    static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
    {
    	struct tracepoint *tp = btp->tp;
    
    	/*
    	 * check that program doesn't access arguments beyond what's
    	 * available in this tracepoint
    	 */
    	if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64))
    		return -EINVAL;
    
    	if (prog->aux->max_tp_access > btp->writable_size)
    		return -EINVAL;
    
    	return tracepoint_probe_register(tp, (void *)btp->bpf_func, prog);
    }
    
    int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
    {
    	return __bpf_probe_register(btp, prog);
    }
    
    int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
    {
    	return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog);
    }
    
    int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id,
    			    u32 *fd_type, const char **buf,
    			    u64 *probe_offset, u64 *probe_addr)
    {
    	bool is_tracepoint, is_syscall_tp;
    	struct bpf_prog *prog;
    	int flags, err = 0;
    
    	prog = event->prog;
    	if (!prog)
    		return -ENOENT;
    
    	/* not supporting BPF_PROG_TYPE_PERF_EVENT yet */
    	if (prog->type == BPF_PROG_TYPE_PERF_EVENT)
    		return -EOPNOTSUPP;
    
    	*prog_id = prog->aux->id;
    	flags = event->tp_event->flags;
    	is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT;
    	is_syscall_tp = is_syscall_trace_event(event->tp_event);
    
    	if (is_tracepoint || is_syscall_tp) {
    		*buf = is_tracepoint ? event->tp_event->tp->name
    				     : event->tp_event->name;
    		*fd_type = BPF_FD_TYPE_TRACEPOINT;
    		*probe_offset = 0x0;
    		*probe_addr = 0x0;
    	} else {
    		/* kprobe/uprobe */
    		err = -EOPNOTSUPP;
    #ifdef CONFIG_KPROBE_EVENTS
    		if (flags & TRACE_EVENT_FL_KPROBE)
    			err = bpf_get_kprobe_info(event, fd_type, buf,
    						  probe_offset, probe_addr,
    						  event->attr.type == PERF_TYPE_TRACEPOINT);
    #endif
    #ifdef CONFIG_UPROBE_EVENTS
    		if (flags & TRACE_EVENT_FL_UPROBE)
    			err = bpf_get_uprobe_info(event, fd_type, buf,
    						  probe_offset,
    						  event->attr.type == PERF_TYPE_TRACEPOINT);
    #endif
    	}
    
    	return err;
    }
    
    static int __init send_signal_irq_work_init(void)
    {
    	int cpu;
    	struct send_signal_irq_work *work;
    
    	for_each_possible_cpu(cpu) {
    		work = per_cpu_ptr(&send_signal_work, cpu);
    		init_irq_work(&work->irq_work, do_bpf_send_signal);
    	}
    	return 0;
    }
    
    subsys_initcall(send_signal_irq_work_init);
    
    #ifdef CONFIG_MODULES
    static int bpf_event_notify(struct notifier_block *nb, unsigned long op,
    			    void *module)
    {
    	struct bpf_trace_module *btm, *tmp;
    	struct module *mod = module;
    	int ret = 0;
    
    	if (mod->num_bpf_raw_events == 0 ||
    	    (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
    		goto out;
    
    	mutex_lock(&bpf_module_mutex);
    
    	switch (op) {
    	case MODULE_STATE_COMING:
    		btm = kzalloc(sizeof(*btm), GFP_KERNEL);
    		if (btm) {
    			btm->module = module;
    			list_add(&btm->list, &bpf_trace_modules);
    		} else {
    			ret = -ENOMEM;
    		}
    		break;
    	case MODULE_STATE_GOING:
    		list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) {
    			if (btm->module == module) {
    				list_del(&btm->list);
    				kfree(btm);
    				break;
    			}
    		}
    		break;
    	}
    
    	mutex_unlock(&bpf_module_mutex);
    
    out:
    	return notifier_from_errno(ret);
    }
    
    static struct notifier_block bpf_module_nb = {
    	.notifier_call = bpf_event_notify,
    };
    
    static int __init bpf_event_init(void)
    {
    	register_module_notifier(&bpf_module_nb);
    	return 0;
    }
    
    fs_initcall(bpf_event_init);
    #endif /* CONFIG_MODULES */