Skip to content
Snippets Groups Projects
Select Git revision
  • 221cc2d27ddc49b3e06d4637db02bf78e70c573c
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

extract-vmlinux

Blame
  • dumpstack.c 9.67 KiB
    /*
     *  Copyright (C) 1991, 1992  Linus Torvalds
     *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
     */
    #include <linux/kallsyms.h>
    #include <linux/kprobes.h>
    #include <linux/uaccess.h>
    #include <linux/utsname.h>
    #include <linux/hardirq.h>
    #include <linux/kdebug.h>
    #include <linux/module.h>
    #include <linux/ptrace.h>
    #include <linux/sched/debug.h>
    #include <linux/sched/task_stack.h>
    #include <linux/ftrace.h>
    #include <linux/kexec.h>
    #include <linux/bug.h>
    #include <linux/nmi.h>
    #include <linux/sysfs.h>
    
    #include <asm/cpu_entry_area.h>
    #include <asm/stacktrace.h>
    #include <asm/unwind.h>
    
    int panic_on_unrecovered_nmi;
    int panic_on_io_nmi;
    unsigned int code_bytes = 64;
    static int die_counter;
    
    bool in_task_stack(unsigned long *stack, struct task_struct *task,
    		   struct stack_info *info)
    {
    	unsigned long *begin = task_stack_page(task);
    	unsigned long *end   = task_stack_page(task) + THREAD_SIZE;
    
    	if (stack < begin || stack >= end)
    		return false;
    
    	info->type	= STACK_TYPE_TASK;
    	info->begin	= begin;
    	info->end	= end;
    	info->next_sp	= NULL;
    
    	return true;
    }
    
    bool in_entry_stack(unsigned long *stack, struct stack_info *info)
    {
    	struct entry_stack *ss = cpu_entry_stack(smp_processor_id());
    
    	void *begin = ss;
    	void *end = ss + 1;
    
    	if ((void *)stack < begin || (void *)stack >= end)
    		return false;
    
    	info->type	= STACK_TYPE_ENTRY;
    	info->begin	= begin;
    	info->end	= end;
    	info->next_sp	= NULL;
    
    	return true;
    }
    
    static void printk_stack_address(unsigned long address, int reliable,
    				 char *log_lvl)
    {
    	touch_nmi_watchdog();
    	printk("%s %s%pB\n", log_lvl, reliable ? "" : "? ", (void *)address);
    }
    
    void show_iret_regs(struct pt_regs *regs)
    {
    	printk(KERN_DEFAULT "RIP: %04x:%pS\n", (int)regs->cs, (void *)regs->ip);
    	printk(KERN_DEFAULT "RSP: %04x:%016lx EFLAGS: %08lx", (int)regs->ss,
    		regs->sp, regs->flags);
    }
    
    static void show_regs_if_on_stack(struct stack_info *info, struct pt_regs *regs,
    				  bool partial)
    {
    	/*
    	 * These on_stack() checks aren't strictly necessary: the unwind code
    	 * has already validated the 'regs' pointer.  The checks are done for
    	 * ordering reasons: if the registers are on the next stack, we don't
    	 * want to print them out yet.  Otherwise they'll be shown as part of
    	 * the wrong stack.  Later, when show_trace_log_lvl() switches to the
    	 * next stack, this function will be called again with the same regs so
    	 * they can be printed in the right context.
    	 */
    	if (!partial && on_stack(info, regs, sizeof(*regs))) {
    		__show_regs(regs, 0);
    
    	} else if (partial && on_stack(info, (void *)regs + IRET_FRAME_OFFSET,
    				       IRET_FRAME_SIZE)) {
    		/*
    		 * When an interrupt or exception occurs in entry code, the
    		 * full pt_regs might not have been saved yet.  In that case
    		 * just print the iret frame.
    		 */
    		show_iret_regs(regs);
    	}
    }
    
    void show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs,
    			unsigned long *stack, char *log_lvl)
    {
    	struct unwind_state state;
    	struct stack_info stack_info = {0};
    	unsigned long visit_mask = 0;
    	int graph_idx = 0;
    	bool partial = false;
    
    	printk("%sCall Trace:\n", log_lvl);
    
    	unwind_start(&state, task, regs, stack);
    	stack = stack ? : get_stack_pointer(task, regs);
    	regs = unwind_get_entry_regs(&state, &partial);
    
    	/*
    	 * Iterate through the stacks, starting with the current stack pointer.
    	 * Each stack has a pointer to the next one.
    	 *
    	 * x86-64 can have several stacks:
    	 * - task stack
    	 * - interrupt stack
    	 * - HW exception stacks (double fault, nmi, debug, mce)
    	 * - entry stack
    	 *
    	 * x86-32 can have up to four stacks:
    	 * - task stack
    	 * - softirq stack
    	 * - hardirq stack
    	 * - entry stack
    	 */
    	for ( ; stack; stack = PTR_ALIGN(stack_info.next_sp, sizeof(long))) {
    		const char *stack_name;
    
    		if (get_stack_info(stack, task, &stack_info, &visit_mask)) {
    			/*
    			 * We weren't on a valid stack.  It's possible that
    			 * we overflowed a valid stack into a guard page.
    			 * See if the next page up is valid so that we can
    			 * generate some kind of backtrace if this happens.
    			 */
    			stack = (unsigned long *)PAGE_ALIGN((unsigned long)stack);
    			if (get_stack_info(stack, task, &stack_info, &visit_mask))
    				break;
    		}
    
    		stack_name = stack_type_name(stack_info.type);
    		if (stack_name)
    			printk("%s <%s>\n", log_lvl, stack_name);
    
    		if (regs)
    			show_regs_if_on_stack(&stack_info, regs, partial);
    
    		/*
    		 * Scan the stack, printing any text addresses we find.  At the
    		 * same time, follow proper stack frames with the unwinder.
    		 *
    		 * Addresses found during the scan which are not reported by
    		 * the unwinder are considered to be additional clues which are
    		 * sometimes useful for debugging and are prefixed with '?'.
    		 * This also serves as a failsafe option in case the unwinder
    		 * goes off in the weeds.
    		 */
    		for (; stack < stack_info.end; stack++) {
    			unsigned long real_addr;
    			int reliable = 0;
    			unsigned long addr = READ_ONCE_NOCHECK(*stack);
    			unsigned long *ret_addr_p =
    				unwind_get_return_address_ptr(&state);
    
    			if (!__kernel_text_address(addr))
    				continue;
    
    			/*
    			 * Don't print regs->ip again if it was already printed
    			 * by show_regs_if_on_stack().
    			 */
    			if (regs && stack == &regs->ip)
    				goto next;
    
    			if (stack == ret_addr_p)
    				reliable = 1;
    
    			/*
    			 * When function graph tracing is enabled for a
    			 * function, its return address on the stack is
    			 * replaced with the address of an ftrace handler
    			 * (return_to_handler).  In that case, before printing
    			 * the "real" address, we want to print the handler
    			 * address as an "unreliable" hint that function graph
    			 * tracing was involved.
    			 */
    			real_addr = ftrace_graph_ret_addr(task, &graph_idx,
    							  addr, stack);
    			if (real_addr != addr)
    				printk_stack_address(addr, 0, log_lvl);
    			printk_stack_address(real_addr, reliable, log_lvl);
    
    			if (!reliable)
    				continue;
    
    next:
    			/*
    			 * Get the next frame from the unwinder.  No need to
    			 * check for an error: if anything goes wrong, the rest
    			 * of the addresses will just be printed as unreliable.
    			 */
    			unwind_next_frame(&state);
    
    			/* if the frame has entry regs, print them */
    			regs = unwind_get_entry_regs(&state, &partial);
    			if (regs)
    				show_regs_if_on_stack(&stack_info, regs, partial);
    		}
    
    		if (stack_name)
    			printk("%s </%s>\n", log_lvl, stack_name);
    	}
    }
    
    void show_stack(struct task_struct *task, unsigned long *sp)
    {
    	task = task ? : current;
    
    	/*
    	 * Stack frames below this one aren't interesting.  Don't show them
    	 * if we're printing for %current.
    	 */
    	if (!sp && task == current)
    		sp = get_stack_pointer(current, NULL);
    
    	show_trace_log_lvl(task, NULL, sp, KERN_DEFAULT);
    }
    
    void show_stack_regs(struct pt_regs *regs)
    {
    	show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT);
    }
    
    static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
    static int die_owner = -1;
    static unsigned int die_nest_count;
    
    unsigned long oops_begin(void)
    {
    	int cpu;
    	unsigned long flags;
    
    	oops_enter();
    
    	/* racy, but better than risking deadlock. */
    	raw_local_irq_save(flags);
    	cpu = smp_processor_id();
    	if (!arch_spin_trylock(&die_lock)) {
    		if (cpu == die_owner)
    			/* nested oops. should stop eventually */;
    		else
    			arch_spin_lock(&die_lock);
    	}
    	die_nest_count++;
    	die_owner = cpu;
    	console_verbose();
    	bust_spinlocks(1);
    	return flags;
    }
    EXPORT_SYMBOL_GPL(oops_begin);
    NOKPROBE_SYMBOL(oops_begin);
    
    void __noreturn rewind_stack_do_exit(int signr);
    
    void oops_end(unsigned long flags, struct pt_regs *regs, int signr)
    {
    	if (regs && kexec_should_crash(current))
    		crash_kexec(regs);
    
    	bust_spinlocks(0);
    	die_owner = -1;
    	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
    	die_nest_count--;
    	if (!die_nest_count)
    		/* Nest count reaches zero, release the lock. */
    		arch_spin_unlock(&die_lock);
    	raw_local_irq_restore(flags);
    	oops_exit();
    
    	if (!signr)
    		return;
    	if (in_interrupt())
    		panic("Fatal exception in interrupt");
    	if (panic_on_oops)
    		panic("Fatal exception");
    
    	/*
    	 * We're not going to return, but we might be on an IST stack or
    	 * have very little stack space left.  Rewind the stack and kill
    	 * the task.
    	 */
    	rewind_stack_do_exit(signr);
    }
    NOKPROBE_SYMBOL(oops_end);
    
    int __die(const char *str, struct pt_regs *regs, long err)
    {
    #ifdef CONFIG_X86_32
    	unsigned short ss;
    	unsigned long sp;
    #endif
    	printk(KERN_DEFAULT
    	       "%s: %04lx [#%d]%s%s%s%s%s\n", str, err & 0xffff, ++die_counter,
    	       IS_ENABLED(CONFIG_PREEMPT) ? " PREEMPT"         : "",
    	       IS_ENABLED(CONFIG_SMP)     ? " SMP"             : "",
    	       debug_pagealloc_enabled()  ? " DEBUG_PAGEALLOC" : "",
    	       IS_ENABLED(CONFIG_KASAN)   ? " KASAN"           : "",
    	       IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION) ?
    	       (boot_cpu_has(X86_FEATURE_PTI) ? " PTI" : " NOPTI") : "");
    
    	if (notify_die(DIE_OOPS, str, regs, err,
    			current->thread.trap_nr, SIGSEGV) == NOTIFY_STOP)
    		return 1;
    
    	print_modules();
    	show_regs(regs);
    #ifdef CONFIG_X86_32
    	if (user_mode(regs)) {
    		sp = regs->sp;
    		ss = regs->ss;
    	} else {
    		sp = kernel_stack_pointer(regs);
    		savesegment(ss, ss);
    	}
    	printk(KERN_EMERG "EIP: %pS SS:ESP: %04x:%08lx\n",
    	       (void *)regs->ip, ss, sp);
    #else
    	/* Executive summary in case the oops scrolled away */
    	printk(KERN_ALERT "RIP: %pS RSP: %016lx\n", (void *)regs->ip, regs->sp);
    #endif
    	return 0;
    }
    NOKPROBE_SYMBOL(__die);
    
    /*
     * This is gone through when something in the kernel has done something bad
     * and is about to be terminated:
     */
    void die(const char *str, struct pt_regs *regs, long err)
    {
    	unsigned long flags = oops_begin();
    	int sig = SIGSEGV;
    
    	if (__die(str, regs, err))
    		sig = 0;
    	oops_end(flags, regs, sig);
    }
    
    static int __init code_bytes_setup(char *s)
    {
    	ssize_t ret;
    	unsigned long val;
    
    	if (!s)
    		return -EINVAL;
    
    	ret = kstrtoul(s, 0, &val);
    	if (ret)
    		return ret;
    
    	code_bytes = val;
    	if (code_bytes > 8192)
    		code_bytes = 8192;
    
    	return 1;
    }
    __setup("code_bytes=", code_bytes_setup);