Skip to content
Snippets Groups Projects
Select Git revision
  • 221cc2d27ddc49b3e06d4637db02bf78e70c573c
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

namespace.pl

Blame
  • occlusionquery.cpp 16.42 KiB
    /*
    * Vulkan Example - Using occlusion query for visibility testing
    *
    * Copyright (C) 2016 by Sascha Willems - www.saschawillems.de
    *
    * This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
    */
    
    #include "vulkanexamplebase.h"
    #include "VulkanglTFModel.h"
    
    #define VERTEX_BUFFER_BIND_ID 0
    #define ENABLE_VALIDATION false
    
    class VulkanExample : public VulkanExampleBase
    {
    public:
    
    	struct {
    		vkglTF::Model teapot;
    		vkglTF::Model plane;
    		vkglTF::Model sphere;
    	} models;
    
    	struct {
    		vks::Buffer occluder;
    		vks::Buffer teapot;
    		vks::Buffer sphere;
    	} uniformBuffers;
    
    	struct UBOVS {
    		glm::mat4 projection;
    		glm::mat4 view;
    		glm::mat4 model;
    		glm::vec4 color = glm::vec4(0.0f);
    		glm::vec4 lightPos = glm::vec4(10.0f, -10.0f, 10.0f, 1.0f);
    		float visible;
    	} uboVS;
    
    	struct {
    		VkPipeline solid;
    		VkPipeline occluder;
    		// Pipeline with basic shaders used for occlusion pass
    		VkPipeline simple;
    	} pipelines;
    
    	struct {
    		VkDescriptorSet teapot;
    		VkDescriptorSet sphere;
    	} descriptorSets;
    
    	VkPipelineLayout pipelineLayout;
    	VkDescriptorSet descriptorSet;
    	VkDescriptorSetLayout descriptorSetLayout;
    
    	// Pool that stores all occlusion queries
    	VkQueryPool queryPool;
    
    	// Passed query samples
    	uint64_t passedSamples[2] = { 1,1 };
    
    	VulkanExample() : VulkanExampleBase(ENABLE_VALIDATION)
    	{
    		title = "Occlusion queries";
    		camera.type = Camera::CameraType::lookat;
    		camera.setPosition(glm::vec3(0.0f, 0.0f, -7.5f));
    		camera.setRotation(glm::vec3(0.0f, -123.75f, 0.0f));
    		camera.setRotationSpeed(0.5f);
    		camera.setPerspective(60.0f, (float)width / (float)height, 1.0f, 256.0f);
    	}
    
    	~VulkanExample()
    	{
    		// Clean up used Vulkan resources
    		// Note : Inherited destructor cleans up resources stored in base class
    		vkDestroyPipeline(device, pipelines.solid, nullptr);
    		vkDestroyPipeline(device, pipelines.occluder, nullptr);
    		vkDestroyPipeline(device, pipelines.simple, nullptr);
    
    		vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
    		vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
    
    		vkDestroyQueryPool(device, queryPool, nullptr);
    
    		uniformBuffers.occluder.destroy();
    		uniformBuffers.sphere.destroy();
    		uniformBuffers.teapot.destroy();
    	}
    
    	// Create a query pool for storing the occlusion query result
    	void setupQueryPool()
    	{
    		VkQueryPoolCreateInfo queryPoolInfo = {};
    		queryPoolInfo.sType = VK_STRUCTURE_TYPE_QUERY_POOL_CREATE_INFO;
    		queryPoolInfo.queryType = VK_QUERY_TYPE_OCCLUSION;
    		queryPoolInfo.queryCount = 2;
    		VK_CHECK_RESULT(vkCreateQueryPool(device, &queryPoolInfo, NULL, &queryPool));
    	}
    
    	// Retrieves the results of the occlusion queries submitted to the command buffer
    	void getQueryResults()
    	{
    		// We use vkGetQueryResults to copy the results into a host visible buffer
    		vkGetQueryPoolResults(
    			device,
    			queryPool,
    			0,
    			2,
    			sizeof(passedSamples),
    			passedSamples,
    			sizeof(uint64_t),
    			// Store results a 64 bit values and wait until the results have been finished
    			// If you don't want to wait, you can use VK_QUERY_RESULT_WITH_AVAILABILITY_BIT
    			// which also returns the state of the result (ready) in the result
    			VK_QUERY_RESULT_64_BIT | VK_QUERY_RESULT_WAIT_BIT);
    	}
    
    	void buildCommandBuffers()
    	{
    		VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
    
    		VkClearValue clearValues[2];
    		clearValues[0].color = defaultClearColor;
    		clearValues[1].depthStencil = { 1.0f, 0 };
    
    		VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
    		renderPassBeginInfo.renderPass = renderPass;
    		renderPassBeginInfo.renderArea.offset.x = 0;
    		renderPassBeginInfo.renderArea.offset.y = 0;
    		renderPassBeginInfo.renderArea.extent.width = width;
    		renderPassBeginInfo.renderArea.extent.height = height;
    		renderPassBeginInfo.clearValueCount = 2;
    		renderPassBeginInfo.pClearValues = clearValues;
    
    		for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
    		{
    			// Set target frame buffer
    			renderPassBeginInfo.framebuffer = frameBuffers[i];
    
    			VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
    
    			// Reset query pool
    			// Must be done outside of render pass
    			vkCmdResetQueryPool(drawCmdBuffers[i], queryPool, 0, 2);
    
    			vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
    
    			VkViewport viewport = vks::initializers::viewport(
    				(float)width,
    				(float)height,
    				0.0f,
    				1.0f);
    			vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
    
    			VkRect2D scissor = vks::initializers::rect2D(
    				width,
    				height,
    				0,
    				0);
    			vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
    
    			VkDeviceSize offsets[1] = { 0 };
    
    			glm::mat4 modelMatrix = glm::mat4(1.0f);
    
    			// Occlusion pass
    			vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.simple);
    
    			// Occluder first
    			vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL);
    			models.plane.draw(drawCmdBuffers[i]);
    
    			// Teapot
    			vkCmdBeginQuery(drawCmdBuffers[i], queryPool, 0, VK_FLAGS_NONE);
    			vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.teapot, 0, NULL);
    			models.teapot.draw(drawCmdBuffers[i]);
    			vkCmdEndQuery(drawCmdBuffers[i], queryPool, 0);
    
    			// Sphere
    			vkCmdBeginQuery(drawCmdBuffers[i], queryPool, 1, VK_FLAGS_NONE);
    			vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.sphere, 0, NULL);
    			models.sphere.draw(drawCmdBuffers[i]);
    			vkCmdEndQuery(drawCmdBuffers[i], queryPool, 1);
    
    			// Visible pass
    			// Clear color and depth attachments
    			VkClearAttachment clearAttachments[2] = {};
    
    			clearAttachments[0].aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
    			clearAttachments[0].clearValue.color = defaultClearColor;
    			clearAttachments[0].colorAttachment = 0;
    
    			clearAttachments[1].aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
    			clearAttachments[1].clearValue.depthStencil = { 1.0f, 0 };
    
    			VkClearRect clearRect = {};
    			clearRect.layerCount = 1;
    			clearRect.rect.offset = { 0, 0 };
    			clearRect.rect.extent = { width, height };
    
    			vkCmdClearAttachments(
    				drawCmdBuffers[i],
    				2,
    				clearAttachments,
    				1,
    				&clearRect);
    
    			vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.solid);
    
    			// Teapot
    			vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.teapot, 0, NULL);
    			models.teapot.draw(drawCmdBuffers[i]);
    
    			// Sphere
    			vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSets.sphere, 0, NULL);
    			models.sphere.draw(drawCmdBuffers[i]);
    
    			// Occluder
    			vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelines.occluder);
    			vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 0, NULL);
    			models.plane.draw(drawCmdBuffers[i]);
    
    			drawUI(drawCmdBuffers[i]);
    
    			vkCmdEndRenderPass(drawCmdBuffers[i]);
    
    			VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
    		}
    	}
    
    	void draw()
    	{
    		updateUniformBuffers();
    		VulkanExampleBase::prepareFrame();
    
    		submitInfo.commandBufferCount = 1;
    		submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
    		VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
    
    		// Read query results for displaying in next frame
    		getQueryResults();
    
    		VulkanExampleBase::submitFrame();
    	}
    
    	void loadAssets()
    	{
    		const uint32_t glTFLoadingFlags = vkglTF::FileLoadingFlags::PreTransformVertices | vkglTF::FileLoadingFlags::PreMultiplyVertexColors | vkglTF::FileLoadingFlags::FlipY;
    		models.plane.loadFromFile(getAssetPath() + "models/plane_z.gltf", vulkanDevice, queue, glTFLoadingFlags);
    		models.teapot.loadFromFile(getAssetPath() + "models/teapot.gltf", vulkanDevice, queue, glTFLoadingFlags);
    		models.sphere.loadFromFile(getAssetPath() + "models/sphere.gltf", vulkanDevice, queue, glTFLoadingFlags);
    	}
    
    	void setupDescriptorPool()
    	{
    		std::vector<VkDescriptorPoolSize> poolSizes =
    		{
    			// One uniform buffer block for each mesh
    			vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 3)
    		};
    
    		VkDescriptorPoolCreateInfo descriptorPoolInfo =
    			vks::initializers::descriptorPoolCreateInfo(
    				poolSizes.size(),
    				poolSizes.data(),
    				3);
    
    		VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
    	}
    
    	void setupDescriptorSetLayout()
    	{
    		std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings =
    		{
    			// Binding 0 : Vertex shader uniform buffer
    			vks::initializers::descriptorSetLayoutBinding(
    				VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
    				VK_SHADER_STAGE_VERTEX_BIT,
    				0)
    		};
    
    		VkDescriptorSetLayoutCreateInfo descriptorLayout =
    			vks::initializers::descriptorSetLayoutCreateInfo(
    				setLayoutBindings.data(),
    				setLayoutBindings.size());
    
    		VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
    
    		VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo =
    			vks::initializers::pipelineLayoutCreateInfo(
    				&descriptorSetLayout,
    				1);
    
    		VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pPipelineLayoutCreateInfo, nullptr, &pipelineLayout));
    	}
    
    	void setupDescriptorSets()
    	{
    		VkDescriptorSetAllocateInfo allocInfo =
    			vks::initializers::descriptorSetAllocateInfo(
    				descriptorPool,
    				&descriptorSetLayout,
    				1);
    
    		// Occluder (plane)
    		VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
    
    		std::vector<VkWriteDescriptorSet> writeDescriptorSets =
    		{
    			// Binding 0 : Vertex shader uniform buffer
    			vks::initializers::writeDescriptorSet(
    				descriptorSet,
    				VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
    				0,
    				&uniformBuffers.occluder.descriptor)
    		};
    
    		vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
    
    		// Teapot
    		VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.teapot));
    		writeDescriptorSets[0].dstSet = descriptorSets.teapot;
    		writeDescriptorSets[0].pBufferInfo = &uniformBuffers.teapot.descriptor;
    		vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
    
    		// Sphere
    		VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSets.sphere));
    		writeDescriptorSets[0].dstSet = descriptorSets.sphere;
    		writeDescriptorSets[0].pBufferInfo = &uniformBuffers.sphere.descriptor;
    		vkUpdateDescriptorSets(device, writeDescriptorSets.size(), writeDescriptorSets.data(), 0, NULL);
    	}
    
    	void preparePipelines()
    	{
    		VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
    		VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
    		VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
    		VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
    		VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
    		VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
    		VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
    		std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
    		VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables);
    		std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
    
    		VkGraphicsPipelineCreateInfo pipelineCI = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass, 0);
    		pipelineCI.pInputAssemblyState = &inputAssemblyState;
    		pipelineCI.pRasterizationState = &rasterizationState;
    		pipelineCI.pColorBlendState = &colorBlendState;
    		pipelineCI.pMultisampleState = &multisampleState;
    		pipelineCI.pViewportState = &viewportState;
    		pipelineCI.pDepthStencilState = &depthStencilState;
    		pipelineCI.pDynamicState = &dynamicState;
    		pipelineCI.stageCount = shaderStages.size();
    		pipelineCI.pStages = shaderStages.data();
    		pipelineCI.pVertexInputState = vkglTF::Vertex::getPipelineVertexInputState({ vkglTF::VertexComponent::Position, vkglTF::VertexComponent::Normal, vkglTF::VertexComponent::Color });;
    
    		// Solid rendering pipeline
    		shaderStages[0] = loadShader(getShadersPath() + "occlusionquery/mesh.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
    		shaderStages[1] = loadShader(getShadersPath() + "occlusionquery/mesh.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
    		VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.solid));
    
    		// Basic pipeline for coloring occluded objects
    		shaderStages[0] = loadShader(getShadersPath() + "occlusionquery/simple.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
    		shaderStages[1] = loadShader(getShadersPath() + "occlusionquery/simple.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
    		rasterizationState.cullMode = VK_CULL_MODE_NONE;
    		VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.simple));
    
    		// Visual pipeline for the occluder
    		shaderStages[0] = loadShader(getShadersPath() + "occlusionquery/occluder.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
    		shaderStages[1] = loadShader(getShadersPath() + "occlusionquery/occluder.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
    		// Enable blending
    		blendAttachmentState.blendEnable = VK_TRUE;
    		blendAttachmentState.colorBlendOp = VK_BLEND_OP_ADD;
    		blendAttachmentState.srcColorBlendFactor = VK_BLEND_FACTOR_SRC_COLOR;
    		blendAttachmentState.dstColorBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR;
    		VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCI, nullptr, &pipelines.occluder));
    	}
    
    	// Prepare and initialize uniform buffer containing shader uniforms
    	void prepareUniformBuffers()
    	{
    		// Vertex shader uniform buffer block
    		VK_CHECK_RESULT(vulkanDevice->createBuffer(
    			VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
    			VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
    			&uniformBuffers.occluder,
    			sizeof(uboVS)));
    
    		// Teapot
    		VK_CHECK_RESULT(vulkanDevice->createBuffer(
    			VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
    			VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
    			&uniformBuffers.teapot,
    			sizeof(uboVS)));
    
    		// Sphere
    		VK_CHECK_RESULT(vulkanDevice->createBuffer(
    			VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
    			VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
    			&uniformBuffers.sphere,
    			sizeof(uboVS)));
    
    		// Map persistent
    		VK_CHECK_RESULT(uniformBuffers.occluder.map());
    		VK_CHECK_RESULT(uniformBuffers.teapot.map());
    		VK_CHECK_RESULT(uniformBuffers.sphere.map());
    
    		updateUniformBuffers();
    	}
    
    	void updateUniformBuffers()
    	{
    		uboVS.projection = camera.matrices.perspective;
    		uboVS.view = camera.matrices.view;
    
    		uint8_t *pData;
    		// Occluder
    		uboVS.visible = 1.0f;
    		uboVS.model = glm::scale(glm::mat4(1.0f), glm::vec3(6.0f));
    		uboVS.color = glm::vec4(0.0f, 0.0f, 1.0f, 0.5f);
    		memcpy(uniformBuffers.occluder.mapped, &uboVS, sizeof(uboVS));
    
    		// Teapot
    		// Toggle color depending on visibility
    		uboVS.visible = (passedSamples[0] > 0) ? 1.0f : 0.0f;
    		uboVS.model = glm::translate(glm::mat4(1.0f), glm::vec3(0.0f, 0.0f, -3.0f));
    		uboVS.color = glm::vec4(1.0f, 0.0f, 0.0f, 1.0f);
    		memcpy(uniformBuffers.teapot.mapped, &uboVS, sizeof(uboVS));
    
    		// Sphere
    		// Toggle color depending on visibility
    		uboVS.visible = (passedSamples[1] > 0) ? 1.0f : 0.0f;
    		uboVS.model = glm::translate(glm::mat4(1.0f), glm::vec3(0.0f, 0.0f, 3.0f));
    		uboVS.color = glm::vec4(0.0f, 1.0f, 0.0f, 1.0f);
    		memcpy(uniformBuffers.sphere.mapped, &uboVS, sizeof(uboVS));
    	}
    
    	void prepare()
    	{
    		VulkanExampleBase::prepare();
    		loadAssets();
    		setupQueryPool();
    		prepareUniformBuffers();
    		setupDescriptorSetLayout();
    		preparePipelines();
    		setupDescriptorPool();
    		setupDescriptorSets();
    		buildCommandBuffers();
    		prepared = true;
    	}
    
    	virtual void render()
    	{
    		if (!prepared)
    			return;
    		draw();
    	}
    
    	virtual void OnUpdateUIOverlay(vks::UIOverlay *overlay)
    	{
    		if (overlay->header("Occlusion query results")) {
    			overlay->text("Teapot: %d samples passed", passedSamples[0]);
    			overlay->text("Sphere: %d samples passed", passedSamples[1]);
    		}
    	}
    
    };
    
    VULKAN_EXAMPLE_MAIN()