Skip to content
Snippets Groups Projects
Select Git revision
  • 2378bc09b91b0702fac7823828a614fd8016a29f
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

i2c-algo-pca.c

Blame
  • i2c-algo-pca.c 14.58 KiB
    /*
     *  i2c-algo-pca.c i2c driver algorithms for PCA9564 adapters
     *    Copyright (C) 2004 Arcom Control Systems
     *    Copyright (C) 2008 Pengutronix
     *
     *  This program is free software; you can redistribute it and/or modify
     *  it under the terms of the GNU General Public License as published by
     *  the Free Software Foundation; either version 2 of the License, or
     *  (at your option) any later version.
     *
     *  This program is distributed in the hope that it will be useful,
     *  but WITHOUT ANY WARRANTY; without even the implied warranty of
     *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     *  GNU General Public License for more details.
     *
     *  You should have received a copy of the GNU General Public License
     *  along with this program; if not, write to the Free Software
     *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
     */
    
    #include <linux/kernel.h>
    #include <linux/module.h>
    #include <linux/moduleparam.h>
    #include <linux/delay.h>
    #include <linux/jiffies.h>
    #include <linux/init.h>
    #include <linux/errno.h>
    #include <linux/i2c.h>
    #include <linux/i2c-algo-pca.h>
    
    #define DEB1(fmt, args...) do { if (i2c_debug >= 1)			\
    				 printk(KERN_DEBUG fmt, ## args); } while (0)
    #define DEB2(fmt, args...) do { if (i2c_debug >= 2)			\
    				 printk(KERN_DEBUG fmt, ## args); } while (0)
    #define DEB3(fmt, args...) do { if (i2c_debug >= 3)			\
    				 printk(KERN_DEBUG fmt, ## args); } while (0)
    
    static int i2c_debug;
    
    #define pca_outw(adap, reg, val) adap->write_byte(adap->data, reg, val)
    #define pca_inw(adap, reg) adap->read_byte(adap->data, reg)
    
    #define pca_status(adap) pca_inw(adap, I2C_PCA_STA)
    #define pca_clock(adap) adap->i2c_clock
    #define pca_set_con(adap, val) pca_outw(adap, I2C_PCA_CON, val)
    #define pca_get_con(adap) pca_inw(adap, I2C_PCA_CON)
    #define pca_wait(adap) adap->wait_for_completion(adap->data)
    #define pca_reset(adap) adap->reset_chip(adap->data)
    
    static void pca9665_reset(void *pd)
    {
    	struct i2c_algo_pca_data *adap = pd;
    	pca_outw(adap, I2C_PCA_INDPTR, I2C_PCA_IPRESET);
    	pca_outw(adap, I2C_PCA_IND, 0xA5);
    	pca_outw(adap, I2C_PCA_IND, 0x5A);
    }
    
    /*
     * Generate a start condition on the i2c bus.
     *
     * returns after the start condition has occurred
     */
    static int pca_start(struct i2c_algo_pca_data *adap)
    {
    	int sta = pca_get_con(adap);
    	DEB2("=== START\n");
    	sta |= I2C_PCA_CON_STA;
    	sta &= ~(I2C_PCA_CON_STO|I2C_PCA_CON_SI);
    	pca_set_con(adap, sta);
    	return pca_wait(adap);
    }
    
    /*
     * Generate a repeated start condition on the i2c bus
     *
     * return after the repeated start condition has occurred
     */
    static int pca_repeated_start(struct i2c_algo_pca_data *adap)
    {
    	int sta = pca_get_con(adap);
    	DEB2("=== REPEATED START\n");
    	sta |= I2C_PCA_CON_STA;
    	sta &= ~(I2C_PCA_CON_STO|I2C_PCA_CON_SI);
    	pca_set_con(adap, sta);
    	return pca_wait(adap);
    }
    
    /*
     * Generate a stop condition on the i2c bus
     *
     * returns after the stop condition has been generated
     *
     * STOPs do not generate an interrupt or set the SI flag, since the
     * part returns the idle state (0xf8). Hence we don't need to
     * pca_wait here.
     */
    static void pca_stop(struct i2c_algo_pca_data *adap)
    {
    	int sta = pca_get_con(adap);
    	DEB2("=== STOP\n");
    	sta |= I2C_PCA_CON_STO;
    	sta &= ~(I2C_PCA_CON_STA|I2C_PCA_CON_SI);
    	pca_set_con(adap, sta);
    }
    
    /*
     * Send the slave address and R/W bit
     *
     * returns after the address has been sent
     */
    static int pca_address(struct i2c_algo_pca_data *adap,
    			struct i2c_msg *msg)
    {
    	int sta = pca_get_con(adap);
    	int addr;
    
    	addr = ( (0x7f & msg->addr) << 1 );
    	if (msg->flags & I2C_M_RD )
    		addr |= 1;
    	DEB2("=== SLAVE ADDRESS %#04x+%c=%#04x\n",
    	     msg->addr, msg->flags & I2C_M_RD ? 'R' : 'W', addr);
    
    	pca_outw(adap, I2C_PCA_DAT, addr);
    
    	sta &= ~(I2C_PCA_CON_STO|I2C_PCA_CON_STA|I2C_PCA_CON_SI);
    	pca_set_con(adap, sta);
    
    	return pca_wait(adap);
    }
    
    /*
     * Transmit a byte.
     *
     * Returns after the byte has been transmitted
     */
    static int pca_tx_byte(struct i2c_algo_pca_data *adap,
    			__u8 b)
    {
    	int sta = pca_get_con(adap);
    	DEB2("=== WRITE %#04x\n", b);
    	pca_outw(adap, I2C_PCA_DAT, b);
    
    	sta &= ~(I2C_PCA_CON_STO|I2C_PCA_CON_STA|I2C_PCA_CON_SI);
    	pca_set_con(adap, sta);
    
    	return pca_wait(adap);
    }
    
    /*
     * Receive a byte
     *
     * returns immediately.
     */
    static void pca_rx_byte(struct i2c_algo_pca_data *adap,
    			__u8 *b, int ack)
    {
    	*b = pca_inw(adap, I2C_PCA_DAT);
    	DEB2("=== READ %#04x %s\n", *b, ack ? "ACK" : "NACK");
    }
    
    /*
     * Setup ACK or NACK for next received byte and wait for it to arrive.
     *
     * Returns after next byte has arrived.
     */
    static int pca_rx_ack(struct i2c_algo_pca_data *adap,
    		       int ack)
    {
    	int sta = pca_get_con(adap);
    
    	sta &= ~(I2C_PCA_CON_STO|I2C_PCA_CON_STA|I2C_PCA_CON_SI|I2C_PCA_CON_AA);
    
    	if ( ack )
    		sta |= I2C_PCA_CON_AA;
    
    	pca_set_con(adap, sta);
    	return pca_wait(adap);
    }
    
    static int pca_xfer(struct i2c_adapter *i2c_adap,
                        struct i2c_msg *msgs,
                        int num)
    {
            struct i2c_algo_pca_data *adap = i2c_adap->algo_data;
            struct i2c_msg *msg = NULL;
            int curmsg;
    	int numbytes = 0;
    	int state;
    	int ret;
    	int completed = 1;
    	unsigned long timeout = jiffies + i2c_adap->timeout;
    
    	while (pca_status(adap) != 0xf8) {
    		if (time_before(jiffies, timeout)) {
    			msleep(10);
    		} else {
    			dev_dbg(&i2c_adap->dev, "bus is not idle. status is "
    				"%#04x\n", state);
    			return -EAGAIN;
    		}
    	}
    
    	DEB1("{{{ XFER %d messages\n", num);
    
    	if (i2c_debug>=2) {
    		for (curmsg = 0; curmsg < num; curmsg++) {
    			int addr, i;
    			msg = &msgs[curmsg];
    
    			addr = (0x7f & msg->addr) ;
    
    			if (msg->flags & I2C_M_RD )
    				printk(KERN_INFO "    [%02d] RD %d bytes from %#02x [%#02x, ...]\n",
    				       curmsg, msg->len, addr, (addr<<1) | 1);
    			else {
    				printk(KERN_INFO "    [%02d] WR %d bytes to %#02x [%#02x%s",
    				       curmsg, msg->len, addr, addr<<1,
    				       msg->len == 0 ? "" : ", ");
    				for(i=0; i < msg->len; i++)
    					printk("%#04x%s", msg->buf[i], i == msg->len - 1 ? "" : ", ");
    				printk("]\n");
    			}
    		}
    	}
    
    	curmsg = 0;
    	ret = -EREMOTEIO;
    	while (curmsg < num) {
    		state = pca_status(adap);
    
    		DEB3("STATE is 0x%02x\n", state);
    		msg = &msgs[curmsg];
    
    		switch (state) {
    		case 0xf8: /* On reset or stop the bus is idle */
    			completed = pca_start(adap);
    			break;
    
    		case 0x08: /* A START condition has been transmitted */
    		case 0x10: /* A repeated start condition has been transmitted */
    			completed = pca_address(adap, msg);
    			break;
    
    		case 0x18: /* SLA+W has been transmitted; ACK has been received */
    		case 0x28: /* Data byte in I2CDAT has been transmitted; ACK has been received */
    			if (numbytes < msg->len) {
    				completed = pca_tx_byte(adap,
    							msg->buf[numbytes]);
    				numbytes++;
    				break;
    			}
    			curmsg++; numbytes = 0;
    			if (curmsg == num)
    				pca_stop(adap);
    			else
    				completed = pca_repeated_start(adap);
    			break;
    
    		case 0x20: /* SLA+W has been transmitted; NOT ACK has been received */
    			DEB2("NOT ACK received after SLA+W\n");
    			pca_stop(adap);
    			goto out;
    
    		case 0x40: /* SLA+R has been transmitted; ACK has been received */
    			completed = pca_rx_ack(adap, msg->len > 1);
    			break;
    
    		case 0x50: /* Data bytes has been received; ACK has been returned */
    			if (numbytes < msg->len) {
    				pca_rx_byte(adap, &msg->buf[numbytes], 1);
    				numbytes++;
    				completed = pca_rx_ack(adap,
    						       numbytes < msg->len - 1);
    				break;
    			}
    			curmsg++; numbytes = 0;
    			if (curmsg == num)
    				pca_stop(adap);
    			else
    				completed = pca_repeated_start(adap);
    			break;
    
    		case 0x48: /* SLA+R has been transmitted; NOT ACK has been received */
    			DEB2("NOT ACK received after SLA+R\n");
    			pca_stop(adap);
    			goto out;
    
    		case 0x30: /* Data byte in I2CDAT has been transmitted; NOT ACK has been received */
    			DEB2("NOT ACK received after data byte\n");
    			goto out;
    
    		case 0x38: /* Arbitration lost during SLA+W, SLA+R or data bytes */
    			DEB2("Arbitration lost\n");
    			goto out;
    
    		case 0x58: /* Data byte has been received; NOT ACK has been returned */
    			if ( numbytes == msg->len - 1 ) {
    				pca_rx_byte(adap, &msg->buf[numbytes], 0);
    				curmsg++; numbytes = 0;
    				if (curmsg == num)
    					pca_stop(adap);
    				else
    					completed = pca_repeated_start(adap);
    			} else {
    				DEB2("NOT ACK sent after data byte received. "
    				     "Not final byte. numbytes %d. len %d\n",
    				     numbytes, msg->len);
    				pca_stop(adap);
    				goto out;
    			}
    			break;
    		case 0x70: /* Bus error - SDA stuck low */
    			DEB2("BUS ERROR - SDA Stuck low\n");
    			pca_reset(adap);
    			goto out;
    		case 0x90: /* Bus error - SCL stuck low */
    			DEB2("BUS ERROR - SCL Stuck low\n");
    			pca_reset(adap);
    			goto out;
    		case 0x00: /* Bus error during master or slave mode due to illegal START or STOP condition */
    			DEB2("BUS ERROR - Illegal START or STOP\n");
    			pca_reset(adap);
    			goto out;
    		default:
    			dev_err(&i2c_adap->dev, "unhandled SIO state 0x%02x\n", state);
    			break;
    		}
    
    		if (!completed)
    			goto out;
    	}
    
    	ret = curmsg;
     out:
    	DEB1("}}} transfered %d/%d messages. "
    	     "status is %#04x. control is %#04x\n",
    	     curmsg, num, pca_status(adap),
    	     pca_get_con(adap));
    	return ret;
    }
    
    static u32 pca_func(struct i2c_adapter *adap)
    {
            return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
    }
    
    static const struct i2c_algorithm pca_algo = {
    	.master_xfer	= pca_xfer,
    	.functionality	= pca_func,
    };
    
    static unsigned int pca_probe_chip(struct i2c_adapter *adap)
    {
    	struct i2c_algo_pca_data *pca_data = adap->algo_data;
    	/* The trick here is to check if there is an indirect register
    	 * available. If there is one, we will read the value we first
    	 * wrote on I2C_PCA_IADR. Otherwise, we will read the last value
    	 * we wrote on I2C_PCA_ADR
    	 */
    	pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_IADR);
    	pca_outw(pca_data, I2C_PCA_IND, 0xAA);
    	pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_ITO);
    	pca_outw(pca_data, I2C_PCA_IND, 0x00);
    	pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_IADR);
    	if (pca_inw(pca_data, I2C_PCA_IND) == 0xAA) {
    		printk(KERN_INFO "%s: PCA9665 detected.\n", adap->name);
    		return I2C_PCA_CHIP_9665;
    	} else {
    		printk(KERN_INFO "%s: PCA9564 detected.\n", adap->name);
    		return I2C_PCA_CHIP_9564;
    	}
    }
    
    static int pca_init(struct i2c_adapter *adap)
    {
    	struct i2c_algo_pca_data *pca_data = adap->algo_data;
    
    	adap->algo = &pca_algo;
    
    	if (pca_probe_chip(adap) == I2C_PCA_CHIP_9564) {
    		static int freqs[] = {330, 288, 217, 146, 88, 59, 44, 36};
    		int clock;
    
    		if (pca_data->i2c_clock > 7) {
    			switch (pca_data->i2c_clock) {
    			case 330000:
    				pca_data->i2c_clock = I2C_PCA_CON_330kHz;
    				break;
    			case 288000:
    				pca_data->i2c_clock = I2C_PCA_CON_288kHz;
    				break;
    			case 217000:
    				pca_data->i2c_clock = I2C_PCA_CON_217kHz;
    				break;
    			case 146000:
    				pca_data->i2c_clock = I2C_PCA_CON_146kHz;
    				break;
    			case 88000:
    				pca_data->i2c_clock = I2C_PCA_CON_88kHz;
    				break;
    			case 59000:
    				pca_data->i2c_clock = I2C_PCA_CON_59kHz;
    				break;
    			case 44000:
    				pca_data->i2c_clock = I2C_PCA_CON_44kHz;
    				break;
    			case 36000:
    				pca_data->i2c_clock = I2C_PCA_CON_36kHz;
    				break;
    			default:
    				printk(KERN_WARNING
    					"%s: Invalid I2C clock speed selected."
    					" Using default 59kHz.\n", adap->name);
    			pca_data->i2c_clock = I2C_PCA_CON_59kHz;
    			}
    		} else {
    			printk(KERN_WARNING "%s: "
    				"Choosing the clock frequency based on "
    				"index is deprecated."
    				" Use the nominal frequency.\n", adap->name);
    		}
    
    		pca_reset(pca_data);
    
    		clock = pca_clock(pca_data);
    		printk(KERN_INFO "%s: Clock frequency is %dkHz\n",
    		     adap->name, freqs[clock]);
    
    		pca_set_con(pca_data, I2C_PCA_CON_ENSIO | clock);
    	} else {
    		int clock;
    		int mode;
    		int tlow, thi;
    		/* Values can be found on PCA9665 datasheet section 7.3.2.6 */
    		int min_tlow, min_thi;
    		/* These values are the maximum raise and fall values allowed
    		 * by the I2C operation mode (Standard, Fast or Fast+)
    		 * They are used (added) below to calculate the clock dividers
    		 * of PCA9665. Note that they are slightly different of the
    		 * real maximum, to allow the change on mode exactly on the
    		 * maximum clock rate for each mode
    		 */
    		int raise_fall_time;
    
    		struct i2c_algo_pca_data *pca_data = adap->algo_data;
    
    		/* Ignore the reset function from the module,
    		 * we can use the parallel bus reset
    		 */
    		pca_data->reset_chip = pca9665_reset;
    
    		if (pca_data->i2c_clock > 1265800) {
    			printk(KERN_WARNING "%s: I2C clock speed too high."
    				" Using 1265.8kHz.\n", adap->name);
    			pca_data->i2c_clock = 1265800;
    		}
    
    		if (pca_data->i2c_clock < 60300) {
    			printk(KERN_WARNING "%s: I2C clock speed too low."
    				" Using 60.3kHz.\n", adap->name);
    			pca_data->i2c_clock = 60300;
    		}
    
    		/* To avoid integer overflow, use clock/100 for calculations */
    		clock = pca_clock(pca_data) / 100;
    
    		if (pca_data->i2c_clock > 10000) {
    			mode = I2C_PCA_MODE_TURBO;
    			min_tlow = 14;
    			min_thi  = 5;
    			raise_fall_time = 22; /* Raise 11e-8s, Fall 11e-8s */
    		} else if (pca_data->i2c_clock > 4000) {
    			mode = I2C_PCA_MODE_FASTP;
    			min_tlow = 17;
    			min_thi  = 9;
    			raise_fall_time = 22; /* Raise 11e-8s, Fall 11e-8s */
    		} else if (pca_data->i2c_clock > 1000) {
    			mode = I2C_PCA_MODE_FAST;
    			min_tlow = 44;
    			min_thi  = 20;
    			raise_fall_time = 58; /* Raise 29e-8s, Fall 29e-8s */
    		} else {
    			mode = I2C_PCA_MODE_STD;
    			min_tlow = 157;
    			min_thi  = 134;
    			raise_fall_time = 127; /* Raise 29e-8s, Fall 98e-8s */
    		}
    
    		/* The minimum clock that respects the thi/tlow = 134/157 is
    		 * 64800 Hz. Below that, we have to fix the tlow to 255 and
    		 * calculate the thi factor.
    		 */
    		if (clock < 648) {
    			tlow = 255;
    			thi = 1000000 - clock * raise_fall_time;
    			thi /= (I2C_PCA_OSC_PER * clock) - tlow;
    		} else {
    			tlow = (1000000 - clock * raise_fall_time) * min_tlow;
    			tlow /= I2C_PCA_OSC_PER * clock * (min_thi + min_tlow);
    			thi = tlow * min_thi / min_tlow;
    		}
    
    		pca_reset(pca_data);
    
    		printk(KERN_INFO
    		     "%s: Clock frequency is %dHz\n", adap->name, clock * 100);
    
    		pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_IMODE);
    		pca_outw(pca_data, I2C_PCA_IND, mode);
    		pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_ISCLL);
    		pca_outw(pca_data, I2C_PCA_IND, tlow);
    		pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_ISCLH);
    		pca_outw(pca_data, I2C_PCA_IND, thi);
    
    		pca_set_con(pca_data, I2C_PCA_CON_ENSIO);
    	}
    	udelay(500); /* 500 us for oscilator to stabilise */
    
    	return 0;
    }
    
    /*
     * registering functions to load algorithms at runtime
     */
    int i2c_pca_add_bus(struct i2c_adapter *adap)
    {
    	int rval;
    
    	rval = pca_init(adap);
    	if (rval)
    		return rval;
    
    	return i2c_add_adapter(adap);
    }
    EXPORT_SYMBOL(i2c_pca_add_bus);
    
    int i2c_pca_add_numbered_bus(struct i2c_adapter *adap)
    {
    	int rval;
    
    	rval = pca_init(adap);
    	if (rval)
    		return rval;
    
    	return i2c_add_numbered_adapter(adap);
    }
    EXPORT_SYMBOL(i2c_pca_add_numbered_bus);
    
    MODULE_AUTHOR("Ian Campbell <icampbell@arcom.com>, "
    	"Wolfram Sang <w.sang@pengutronix.de>");
    MODULE_DESCRIPTION("I2C-Bus PCA9564/PCA9665 algorithm");
    MODULE_LICENSE("GPL");
    
    module_param(i2c_debug, int, 0);