Skip to content
Snippets Groups Projects
Select Git revision
  • 2e3c8736820bf72a8ad10721c7e31d36d4fa7790
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

mesh.c

Blame
    • Luis Carlos Cobo's avatar
      2e3c8736
      mac80211: support functions for mesh · 2e3c8736
      Luis Carlos Cobo authored
      
      The two important features coded in mesh.c are:
      
      Recently Multicast Cache: in on-demand HWMP, multicast traffic is retransmitted
      by every receiving node. Even though a mesh TTL counter avoids infinite loops,
      it is also necessary to avoid traffic explosion by keeping a cache of multicast
      mesh frame that have been received recently. With this feature, maximum number
      of retransmissions of a multicast frame for the case of N nodes within the range
      of each other would be N. Without it, the maximum number of retransmissions
      would be in the order of N^(MESH_TTL - 1).
      
      Code to support mesh tables.
      
      Signed-off-by: default avatarLuis Carlos Cobo <luisca@cozybit.com>
      Signed-off-by: default avatarJohannes Berg <johannes@sipsolutions.net>
      Signed-off-by: default avatarJohn W. Linville <linville@tuxdriver.com>
      2e3c8736
      History
      mac80211: support functions for mesh
      Luis Carlos Cobo authored
      
      The two important features coded in mesh.c are:
      
      Recently Multicast Cache: in on-demand HWMP, multicast traffic is retransmitted
      by every receiving node. Even though a mesh TTL counter avoids infinite loops,
      it is also necessary to avoid traffic explosion by keeping a cache of multicast
      mesh frame that have been received recently. With this feature, maximum number
      of retransmissions of a multicast frame for the case of N nodes within the range
      of each other would be N. Without it, the maximum number of retransmissions
      would be in the order of N^(MESH_TTL - 1).
      
      Code to support mesh tables.
      
      Signed-off-by: default avatarLuis Carlos Cobo <luisca@cozybit.com>
      Signed-off-by: default avatarJohannes Berg <johannes@sipsolutions.net>
      Signed-off-by: default avatarJohn W. Linville <linville@tuxdriver.com>
    main.c 23.42 KiB
    /* QLogic qedr NIC Driver
     * Copyright (c) 2015-2016  QLogic Corporation
     *
     * This software is available to you under a choice of one of two
     * licenses.  You may choose to be licensed under the terms of the GNU
     * General Public License (GPL) Version 2, available from the file
     * COPYING in the main directory of this source tree, or the
     * OpenIB.org BSD license below:
     *
     *     Redistribution and use in source and binary forms, with or
     *     without modification, are permitted provided that the following
     *     conditions are met:
     *
     *      - Redistributions of source code must retain the above
     *        copyright notice, this list of conditions and the following
     *        disclaimer.
     *
     *      - Redistributions in binary form must reproduce the above
     *        copyright notice, this list of conditions and the following
     *        disclaimer in the documentation and /or other materials
     *        provided with the distribution.
     *
     * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
     * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
     * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
     * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
     * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
     * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
     * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
     * SOFTWARE.
     */
    #include <linux/module.h>
    #include <rdma/ib_verbs.h>
    #include <rdma/ib_addr.h>
    #include <rdma/ib_user_verbs.h>
    #include <linux/netdevice.h>
    #include <linux/iommu.h>
    #include <net/addrconf.h>
    #include <linux/qed/qede_roce.h>
    #include <linux/qed/qed_chain.h>
    #include <linux/qed/qed_if.h>
    #include "qedr.h"
    #include "verbs.h"
    #include <rdma/qedr-abi.h>
    
    MODULE_DESCRIPTION("QLogic 40G/100G ROCE Driver");
    MODULE_AUTHOR("QLogic Corporation");
    MODULE_LICENSE("Dual BSD/GPL");
    MODULE_VERSION(QEDR_MODULE_VERSION);
    
    #define QEDR_WQ_MULTIPLIER_DFT	(3)
    
    void qedr_ib_dispatch_event(struct qedr_dev *dev, u8 port_num,
    			    enum ib_event_type type)
    {
    	struct ib_event ibev;
    
    	ibev.device = &dev->ibdev;
    	ibev.element.port_num = port_num;
    	ibev.event = type;
    
    	ib_dispatch_event(&ibev);
    }
    
    static enum rdma_link_layer qedr_link_layer(struct ib_device *device,
    					    u8 port_num)
    {
    	return IB_LINK_LAYER_ETHERNET;
    }
    
    static void qedr_get_dev_fw_str(struct ib_device *ibdev, char *str,
    				size_t str_len)
    {
    	struct qedr_dev *qedr = get_qedr_dev(ibdev);
    	u32 fw_ver = (u32)qedr->attr.fw_ver;
    
    	snprintf(str, str_len, "%d. %d. %d. %d",
    		 (fw_ver >> 24) & 0xFF, (fw_ver >> 16) & 0xFF,
    		 (fw_ver >> 8) & 0xFF, fw_ver & 0xFF);
    }
    
    static struct net_device *qedr_get_netdev(struct ib_device *dev, u8 port_num)
    {
    	struct qedr_dev *qdev;
    
    	qdev = get_qedr_dev(dev);
    	dev_hold(qdev->ndev);
    
    	/* The HW vendor's device driver must guarantee
    	 * that this function returns NULL before the net device reaches
    	 * NETDEV_UNREGISTER_FINAL state.
    	 */
    	return qdev->ndev;
    }
    
    static int qedr_register_device(struct qedr_dev *dev)
    {
    	strlcpy(dev->ibdev.name, "qedr%d", IB_DEVICE_NAME_MAX);
    
    	dev->ibdev.node_guid = dev->attr.node_guid;
    	memcpy(dev->ibdev.node_desc, QEDR_NODE_DESC, sizeof(QEDR_NODE_DESC));
    	dev->ibdev.owner = THIS_MODULE;
    	dev->ibdev.uverbs_abi_ver = QEDR_ABI_VERSION;
    
    	dev->ibdev.uverbs_cmd_mask = QEDR_UVERBS(GET_CONTEXT) |
    				     QEDR_UVERBS(QUERY_DEVICE) |
    				     QEDR_UVERBS(QUERY_PORT) |
    				     QEDR_UVERBS(ALLOC_PD) |
    				     QEDR_UVERBS(DEALLOC_PD) |
    				     QEDR_UVERBS(CREATE_COMP_CHANNEL) |
    				     QEDR_UVERBS(CREATE_CQ) |
    				     QEDR_UVERBS(RESIZE_CQ) |
    				     QEDR_UVERBS(DESTROY_CQ) |
    				     QEDR_UVERBS(REQ_NOTIFY_CQ) |
    				     QEDR_UVERBS(CREATE_QP) |
    				     QEDR_UVERBS(MODIFY_QP) |
    				     QEDR_UVERBS(QUERY_QP) |
    				     QEDR_UVERBS(DESTROY_QP) |
    				     QEDR_UVERBS(REG_MR) |
    				     QEDR_UVERBS(DEREG_MR) |
    				     QEDR_UVERBS(POLL_CQ) |
    				     QEDR_UVERBS(POST_SEND) |
    				     QEDR_UVERBS(POST_RECV);
    
    	dev->ibdev.phys_port_cnt = 1;
    	dev->ibdev.num_comp_vectors = dev->num_cnq;
    	dev->ibdev.node_type = RDMA_NODE_IB_CA;
    
    	dev->ibdev.query_device = qedr_query_device;
    	dev->ibdev.query_port = qedr_query_port;
    	dev->ibdev.modify_port = qedr_modify_port;
    
    	dev->ibdev.query_gid = qedr_query_gid;
    	dev->ibdev.add_gid = qedr_add_gid;
    	dev->ibdev.del_gid = qedr_del_gid;
    
    	dev->ibdev.alloc_ucontext = qedr_alloc_ucontext;
    	dev->ibdev.dealloc_ucontext = qedr_dealloc_ucontext;
    	dev->ibdev.mmap = qedr_mmap;
    
    	dev->ibdev.alloc_pd = qedr_alloc_pd;
    	dev->ibdev.dealloc_pd = qedr_dealloc_pd;
    
    	dev->ibdev.create_cq = qedr_create_cq;
    	dev->ibdev.destroy_cq = qedr_destroy_cq;
    	dev->ibdev.resize_cq = qedr_resize_cq;
    	dev->ibdev.req_notify_cq = qedr_arm_cq;
    
    	dev->ibdev.create_qp = qedr_create_qp;
    	dev->ibdev.modify_qp = qedr_modify_qp;
    	dev->ibdev.query_qp = qedr_query_qp;
    	dev->ibdev.destroy_qp = qedr_destroy_qp;
    
    	dev->ibdev.query_pkey = qedr_query_pkey;
    
    	dev->ibdev.create_ah = qedr_create_ah;
    	dev->ibdev.destroy_ah = qedr_destroy_ah;
    
    	dev->ibdev.get_dma_mr = qedr_get_dma_mr;
    	dev->ibdev.dereg_mr = qedr_dereg_mr;
    	dev->ibdev.reg_user_mr = qedr_reg_user_mr;
    	dev->ibdev.alloc_mr = qedr_alloc_mr;
    	dev->ibdev.map_mr_sg = qedr_map_mr_sg;
    
    	dev->ibdev.poll_cq = qedr_poll_cq;
    	dev->ibdev.post_send = qedr_post_send;
    	dev->ibdev.post_recv = qedr_post_recv;
    
    	dev->ibdev.process_mad = qedr_process_mad;
    	dev->ibdev.get_port_immutable = qedr_port_immutable;
    	dev->ibdev.get_netdev = qedr_get_netdev;
    
    	dev->ibdev.dma_device = &dev->pdev->dev;
    
    	dev->ibdev.get_link_layer = qedr_link_layer;
    	dev->ibdev.get_dev_fw_str = qedr_get_dev_fw_str;
    
    	return ib_register_device(&dev->ibdev, NULL);
    }
    
    /* This function allocates fast-path status block memory */
    static int qedr_alloc_mem_sb(struct qedr_dev *dev,
    			     struct qed_sb_info *sb_info, u16 sb_id)
    {
    	struct status_block *sb_virt;
    	dma_addr_t sb_phys;
    	int rc;
    
    	sb_virt = dma_alloc_coherent(&dev->pdev->dev,
    				     sizeof(*sb_virt), &sb_phys, GFP_KERNEL);
    	if (!sb_virt)
    		return -ENOMEM;
    
    	rc = dev->ops->common->sb_init(dev->cdev, sb_info,
    				       sb_virt, sb_phys, sb_id,
    				       QED_SB_TYPE_CNQ);
    	if (rc) {
    		pr_err("Status block initialization failed\n");
    		dma_free_coherent(&dev->pdev->dev, sizeof(*sb_virt),
    				  sb_virt, sb_phys);
    		return rc;
    	}
    
    	return 0;
    }
    
    static void qedr_free_mem_sb(struct qedr_dev *dev,
    			     struct qed_sb_info *sb_info, int sb_id)
    {
    	if (sb_info->sb_virt) {
    		dev->ops->common->sb_release(dev->cdev, sb_info, sb_id);
    		dma_free_coherent(&dev->pdev->dev, sizeof(*sb_info->sb_virt),
    				  (void *)sb_info->sb_virt, sb_info->sb_phys);
    	}
    }
    
    static void qedr_free_resources(struct qedr_dev *dev)
    {
    	int i;
    
    	for (i = 0; i < dev->num_cnq; i++) {
    		qedr_free_mem_sb(dev, &dev->sb_array[i], dev->sb_start + i);
    		dev->ops->common->chain_free(dev->cdev, &dev->cnq_array[i].pbl);
    	}
    
    	kfree(dev->cnq_array);
    	kfree(dev->sb_array);
    	kfree(dev->sgid_tbl);
    }
    
    static int qedr_alloc_resources(struct qedr_dev *dev)
    {
    	struct qedr_cnq *cnq;
    	__le16 *cons_pi;
    	u16 n_entries;
    	int i, rc;
    
    	dev->sgid_tbl = kzalloc(sizeof(union ib_gid) *
    				QEDR_MAX_SGID, GFP_KERNEL);
    	if (!dev->sgid_tbl)
    		return -ENOMEM;
    
    	spin_lock_init(&dev->sgid_lock);
    
    	/* Allocate Status blocks for CNQ */
    	dev->sb_array = kcalloc(dev->num_cnq, sizeof(*dev->sb_array),
    				GFP_KERNEL);
    	if (!dev->sb_array) {
    		rc = -ENOMEM;
    		goto err1;
    	}
    
    	dev->cnq_array = kcalloc(dev->num_cnq,
    				 sizeof(*dev->cnq_array), GFP_KERNEL);
    	if (!dev->cnq_array) {
    		rc = -ENOMEM;
    		goto err2;
    	}
    
    	dev->sb_start = dev->ops->rdma_get_start_sb(dev->cdev);
    
    	/* Allocate CNQ PBLs */
    	n_entries = min_t(u32, QED_RDMA_MAX_CNQ_SIZE, QEDR_ROCE_MAX_CNQ_SIZE);
    	for (i = 0; i < dev->num_cnq; i++) {
    		cnq = &dev->cnq_array[i];
    
    		rc = qedr_alloc_mem_sb(dev, &dev->sb_array[i],
    				       dev->sb_start + i);
    		if (rc)
    			goto err3;
    
    		rc = dev->ops->common->chain_alloc(dev->cdev,
    						   QED_CHAIN_USE_TO_CONSUME,
    						   QED_CHAIN_MODE_PBL,
    						   QED_CHAIN_CNT_TYPE_U16,
    						   n_entries,
    						   sizeof(struct regpair *),
    						   &cnq->pbl);
    		if (rc)
    			goto err4;
    
    		cnq->dev = dev;
    		cnq->sb = &dev->sb_array[i];
    		cons_pi = dev->sb_array[i].sb_virt->pi_array;
    		cnq->hw_cons_ptr = &cons_pi[QED_ROCE_PROTOCOL_INDEX];
    		cnq->index = i;
    		sprintf(cnq->name, "qedr%d@pci:%s", i, pci_name(dev->pdev));
    
    		DP_DEBUG(dev, QEDR_MSG_INIT, "cnq[%d].cons=%d\n",
    			 i, qed_chain_get_cons_idx(&cnq->pbl));
    	}
    
    	return 0;
    err4:
    	qedr_free_mem_sb(dev, &dev->sb_array[i], dev->sb_start + i);
    err3:
    	for (--i; i >= 0; i--) {
    		dev->ops->common->chain_free(dev->cdev, &dev->cnq_array[i].pbl);
    		qedr_free_mem_sb(dev, &dev->sb_array[i], dev->sb_start + i);
    	}
    	kfree(dev->cnq_array);
    err2:
    	kfree(dev->sb_array);
    err1:
    	kfree(dev->sgid_tbl);
    	return rc;
    }
    
    /* QEDR sysfs interface */
    static ssize_t show_rev(struct device *device, struct device_attribute *attr,
    			char *buf)
    {
    	struct qedr_dev *dev = dev_get_drvdata(device);
    
    	return scnprintf(buf, PAGE_SIZE, "0x%x\n", dev->pdev->vendor);
    }
    
    static ssize_t show_hca_type(struct device *device,
    			     struct device_attribute *attr, char *buf)
    {
    	return scnprintf(buf, PAGE_SIZE, "%s\n", "HCA_TYPE_TO_SET");
    }
    
    static DEVICE_ATTR(hw_rev, S_IRUGO, show_rev, NULL);
    static DEVICE_ATTR(hca_type, S_IRUGO, show_hca_type, NULL);
    
    static struct device_attribute *qedr_attributes[] = {
    	&dev_attr_hw_rev,
    	&dev_attr_hca_type
    };
    
    static void qedr_remove_sysfiles(struct qedr_dev *dev)
    {
    	int i;
    
    	for (i = 0; i < ARRAY_SIZE(qedr_attributes); i++)
    		device_remove_file(&dev->ibdev.dev, qedr_attributes[i]);
    }
    
    static void qedr_pci_set_atomic(struct qedr_dev *dev, struct pci_dev *pdev)
    {
    	struct pci_dev *bridge;
    	u32 val;
    
    	dev->atomic_cap = IB_ATOMIC_NONE;
    
    	bridge = pdev->bus->self;
    	if (!bridge)
    		return;
    
    	/* Check whether we are connected directly or via a switch */
    	while (bridge && bridge->bus->parent) {
    		DP_DEBUG(dev, QEDR_MSG_INIT,
    			 "Device is not connected directly to root. bridge->bus->number=%d primary=%d\n",
    			 bridge->bus->number, bridge->bus->primary);
    		/* Need to check Atomic Op Routing Supported all the way to
    		 * root complex.
    		 */
    		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &val);
    		if (!(val & PCI_EXP_DEVCAP2_ATOMIC_ROUTE)) {
    			pcie_capability_clear_word(pdev,
    						   PCI_EXP_DEVCTL2,
    						   PCI_EXP_DEVCTL2_ATOMIC_REQ);
    			return;
    		}
    		bridge = bridge->bus->parent->self;
    	}
    	bridge = pdev->bus->self;
    
    	/* according to bridge capability */
    	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &val);
    	if (val & PCI_EXP_DEVCAP2_ATOMIC_COMP64) {
    		pcie_capability_set_word(pdev, PCI_EXP_DEVCTL2,
    					 PCI_EXP_DEVCTL2_ATOMIC_REQ);
    		dev->atomic_cap = IB_ATOMIC_GLOB;
    	} else {
    		pcie_capability_clear_word(pdev, PCI_EXP_DEVCTL2,
    					   PCI_EXP_DEVCTL2_ATOMIC_REQ);
    	}
    }
    
    static const struct qed_rdma_ops *qed_ops;
    
    #define HILO_U64(hi, lo)		((((u64)(hi)) << 32) + (lo))
    
    static irqreturn_t qedr_irq_handler(int irq, void *handle)
    {
    	u16 hw_comp_cons, sw_comp_cons;
    	struct qedr_cnq *cnq = handle;
    	struct regpair *cq_handle;
    	struct qedr_cq *cq;
    
    	qed_sb_ack(cnq->sb, IGU_INT_DISABLE, 0);
    
    	qed_sb_update_sb_idx(cnq->sb);
    
    	hw_comp_cons = le16_to_cpu(*cnq->hw_cons_ptr);
    	sw_comp_cons = qed_chain_get_cons_idx(&cnq->pbl);
    
    	/* Align protocol-index and chain reads */
    	rmb();
    
    	while (sw_comp_cons != hw_comp_cons) {
    		cq_handle = (struct regpair *)qed_chain_consume(&cnq->pbl);
    		cq = (struct qedr_cq *)(uintptr_t)HILO_U64(cq_handle->hi,
    				cq_handle->lo);
    
    		if (cq == NULL) {
    			DP_ERR(cnq->dev,
    			       "Received NULL CQ cq_handle->hi=%d cq_handle->lo=%d sw_comp_cons=%d hw_comp_cons=%d\n",
    			       cq_handle->hi, cq_handle->lo, sw_comp_cons,
    			       hw_comp_cons);
    
    			break;
    		}
    
    		if (cq->sig != QEDR_CQ_MAGIC_NUMBER) {
    			DP_ERR(cnq->dev,
    			       "Problem with cq signature, cq_handle->hi=%d ch_handle->lo=%d cq=%p\n",
    			       cq_handle->hi, cq_handle->lo, cq);
    			break;
    		}
    
    		cq->arm_flags = 0;
    
    		if (cq->ibcq.comp_handler)
    			(*cq->ibcq.comp_handler)
    				(&cq->ibcq, cq->ibcq.cq_context);
    
    		sw_comp_cons = qed_chain_get_cons_idx(&cnq->pbl);
    
    		cnq->n_comp++;
    
    	}
    
    	qed_ops->rdma_cnq_prod_update(cnq->dev->rdma_ctx, cnq->index,
    				      sw_comp_cons);
    
    	qed_sb_ack(cnq->sb, IGU_INT_ENABLE, 1);
    
    	return IRQ_HANDLED;
    }
    
    static void qedr_sync_free_irqs(struct qedr_dev *dev)
    {
    	u32 vector;
    	int i;
    
    	for (i = 0; i < dev->int_info.used_cnt; i++) {
    		if (dev->int_info.msix_cnt) {
    			vector = dev->int_info.msix[i * dev->num_hwfns].vector;
    			synchronize_irq(vector);
    			free_irq(vector, &dev->cnq_array[i]);
    		}
    	}
    
    	dev->int_info.used_cnt = 0;
    }
    
    static int qedr_req_msix_irqs(struct qedr_dev *dev)
    {
    	int i, rc = 0;
    
    	if (dev->num_cnq > dev->int_info.msix_cnt) {
    		DP_ERR(dev,
    		       "Interrupt mismatch: %d CNQ queues > %d MSI-x vectors\n",
    		       dev->num_cnq, dev->int_info.msix_cnt);
    		return -EINVAL;
    	}
    
    	for (i = 0; i < dev->num_cnq; i++) {
    		rc = request_irq(dev->int_info.msix[i * dev->num_hwfns].vector,
    				 qedr_irq_handler, 0, dev->cnq_array[i].name,
    				 &dev->cnq_array[i]);
    		if (rc) {
    			DP_ERR(dev, "Request cnq %d irq failed\n", i);
    			qedr_sync_free_irqs(dev);
    		} else {
    			DP_DEBUG(dev, QEDR_MSG_INIT,
    				 "Requested cnq irq for %s [entry %d]. Cookie is at %p\n",
    				 dev->cnq_array[i].name, i,
    				 &dev->cnq_array[i]);
    			dev->int_info.used_cnt++;
    		}
    	}
    
    	return rc;
    }
    
    static int qedr_setup_irqs(struct qedr_dev *dev)
    {
    	int rc;
    
    	DP_DEBUG(dev, QEDR_MSG_INIT, "qedr_setup_irqs\n");
    
    	/* Learn Interrupt configuration */
    	rc = dev->ops->rdma_set_rdma_int(dev->cdev, dev->num_cnq);
    	if (rc < 0)
    		return rc;
    
    	rc = dev->ops->rdma_get_rdma_int(dev->cdev, &dev->int_info);
    	if (rc) {
    		DP_DEBUG(dev, QEDR_MSG_INIT, "get_rdma_int failed\n");
    		return rc;
    	}
    
    	if (dev->int_info.msix_cnt) {
    		DP_DEBUG(dev, QEDR_MSG_INIT, "rdma msix_cnt = %d\n",
    			 dev->int_info.msix_cnt);
    		rc = qedr_req_msix_irqs(dev);
    		if (rc)
    			return rc;
    	}
    
    	DP_DEBUG(dev, QEDR_MSG_INIT, "qedr_setup_irqs succeeded\n");
    
    	return 0;
    }
    
    static int qedr_set_device_attr(struct qedr_dev *dev)
    {
    	struct qed_rdma_device *qed_attr;
    	struct qedr_device_attr *attr;
    	u32 page_size;
    
    	/* Part 1 - query core capabilities */
    	qed_attr = dev->ops->rdma_query_device(dev->rdma_ctx);
    
    	/* Part 2 - check capabilities */
    	page_size = ~dev->attr.page_size_caps + 1;
    	if (page_size > PAGE_SIZE) {
    		DP_ERR(dev,
    		       "Kernel PAGE_SIZE is %ld which is smaller than minimum page size (%d) required by qedr\n",
    		       PAGE_SIZE, page_size);
    		return -ENODEV;
    	}
    
    	/* Part 3 - copy and update capabilities */
    	attr = &dev->attr;
    	attr->vendor_id = qed_attr->vendor_id;
    	attr->vendor_part_id = qed_attr->vendor_part_id;
    	attr->hw_ver = qed_attr->hw_ver;
    	attr->fw_ver = qed_attr->fw_ver;
    	attr->node_guid = qed_attr->node_guid;
    	attr->sys_image_guid = qed_attr->sys_image_guid;
    	attr->max_cnq = qed_attr->max_cnq;
    	attr->max_sge = qed_attr->max_sge;
    	attr->max_inline = qed_attr->max_inline;
    	attr->max_sqe = min_t(u32, qed_attr->max_wqe, QEDR_MAX_SQE);
    	attr->max_rqe = min_t(u32, qed_attr->max_wqe, QEDR_MAX_RQE);
    	attr->max_qp_resp_rd_atomic_resc = qed_attr->max_qp_resp_rd_atomic_resc;
    	attr->max_qp_req_rd_atomic_resc = qed_attr->max_qp_req_rd_atomic_resc;
    	attr->max_dev_resp_rd_atomic_resc =
    	    qed_attr->max_dev_resp_rd_atomic_resc;
    	attr->max_cq = qed_attr->max_cq;
    	attr->max_qp = qed_attr->max_qp;
    	attr->max_mr = qed_attr->max_mr;
    	attr->max_mr_size = qed_attr->max_mr_size;
    	attr->max_cqe = min_t(u64, qed_attr->max_cqe, QEDR_MAX_CQES);
    	attr->max_mw = qed_attr->max_mw;
    	attr->max_fmr = qed_attr->max_fmr;
    	attr->max_mr_mw_fmr_pbl = qed_attr->max_mr_mw_fmr_pbl;
    	attr->max_mr_mw_fmr_size = qed_attr->max_mr_mw_fmr_size;
    	attr->max_pd = qed_attr->max_pd;
    	attr->max_ah = qed_attr->max_ah;
    	attr->max_pkey = qed_attr->max_pkey;
    	attr->max_srq = qed_attr->max_srq;
    	attr->max_srq_wr = qed_attr->max_srq_wr;
    	attr->dev_caps = qed_attr->dev_caps;
    	attr->page_size_caps = qed_attr->page_size_caps;
    	attr->dev_ack_delay = qed_attr->dev_ack_delay;
    	attr->reserved_lkey = qed_attr->reserved_lkey;
    	attr->bad_pkey_counter = qed_attr->bad_pkey_counter;
    	attr->max_stats_queues = qed_attr->max_stats_queues;
    
    	return 0;
    }
    
    void qedr_unaffiliated_event(void *context,
    			     u8 event_code)
    {
    	pr_err("unaffiliated event not implemented yet\n");
    }
    
    void qedr_affiliated_event(void *context, u8 e_code, void *fw_handle)
    {
    #define EVENT_TYPE_NOT_DEFINED	0
    #define EVENT_TYPE_CQ		1
    #define EVENT_TYPE_QP		2
    	struct qedr_dev *dev = (struct qedr_dev *)context;
    	union event_ring_data *data = fw_handle;
    	u64 roce_handle64 = ((u64)data->roce_handle.hi << 32) +
    			    data->roce_handle.lo;
    	u8 event_type = EVENT_TYPE_NOT_DEFINED;
    	struct ib_event event;
    	struct ib_cq *ibcq;
    	struct ib_qp *ibqp;
    	struct qedr_cq *cq;
    	struct qedr_qp *qp;
    
    	switch (e_code) {
    	case ROCE_ASYNC_EVENT_CQ_OVERFLOW_ERR:
    		event.event = IB_EVENT_CQ_ERR;
    		event_type = EVENT_TYPE_CQ;
    		break;
    	case ROCE_ASYNC_EVENT_SQ_DRAINED:
    		event.event = IB_EVENT_SQ_DRAINED;
    		event_type = EVENT_TYPE_QP;
    		break;
    	case ROCE_ASYNC_EVENT_QP_CATASTROPHIC_ERR:
    		event.event = IB_EVENT_QP_FATAL;
    		event_type = EVENT_TYPE_QP;
    		break;
    	case ROCE_ASYNC_EVENT_LOCAL_INVALID_REQUEST_ERR:
    		event.event = IB_EVENT_QP_REQ_ERR;
    		event_type = EVENT_TYPE_QP;
    		break;
    	case ROCE_ASYNC_EVENT_LOCAL_ACCESS_ERR:
    		event.event = IB_EVENT_QP_ACCESS_ERR;
    		event_type = EVENT_TYPE_QP;
    		break;
    	default:
    		DP_ERR(dev, "unsupported event %d on handle=%llx\n", e_code,
    		       roce_handle64);
    	}
    
    	switch (event_type) {
    	case EVENT_TYPE_CQ:
    		cq = (struct qedr_cq *)(uintptr_t)roce_handle64;
    		if (cq) {
    			ibcq = &cq->ibcq;
    			if (ibcq->event_handler) {
    				event.device = ibcq->device;
    				event.element.cq = ibcq;
    				ibcq->event_handler(&event, ibcq->cq_context);
    			}
    		} else {
    			WARN(1,
    			     "Error: CQ event with NULL pointer ibcq. Handle=%llx\n",
    			     roce_handle64);
    		}
    		DP_ERR(dev, "CQ event %d on hanlde %p\n", e_code, cq);
    		break;
    	case EVENT_TYPE_QP:
    		qp = (struct qedr_qp *)(uintptr_t)roce_handle64;
    		if (qp) {
    			ibqp = &qp->ibqp;
    			if (ibqp->event_handler) {
    				event.device = ibqp->device;
    				event.element.qp = ibqp;
    				ibqp->event_handler(&event, ibqp->qp_context);
    			}
    		} else {
    			WARN(1,
    			     "Error: QP event with NULL pointer ibqp. Handle=%llx\n",
    			     roce_handle64);
    		}
    		DP_ERR(dev, "QP event %d on hanlde %p\n", e_code, qp);
    		break;
    	default:
    		break;
    	}
    }
    
    static int qedr_init_hw(struct qedr_dev *dev)
    {
    	struct qed_rdma_add_user_out_params out_params;
    	struct qed_rdma_start_in_params *in_params;
    	struct qed_rdma_cnq_params *cur_pbl;
    	struct qed_rdma_events events;
    	dma_addr_t p_phys_table;
    	u32 page_cnt;
    	int rc = 0;
    	int i;
    
    	in_params =  kzalloc(sizeof(*in_params), GFP_KERNEL);
    	if (!in_params) {
    		rc = -ENOMEM;
    		goto out;
    	}
    
    	in_params->desired_cnq = dev->num_cnq;
    	for (i = 0; i < dev->num_cnq; i++) {
    		cur_pbl = &in_params->cnq_pbl_list[i];
    
    		page_cnt = qed_chain_get_page_cnt(&dev->cnq_array[i].pbl);
    		cur_pbl->num_pbl_pages = page_cnt;
    
    		p_phys_table = qed_chain_get_pbl_phys(&dev->cnq_array[i].pbl);
    		cur_pbl->pbl_ptr = (u64)p_phys_table;
    	}
    
    	events.affiliated_event = qedr_affiliated_event;
    	events.unaffiliated_event = qedr_unaffiliated_event;
    	events.context = dev;
    
    	in_params->events = &events;
    	in_params->cq_mode = QED_RDMA_CQ_MODE_32_BITS;
    	in_params->max_mtu = dev->ndev->mtu;
    	ether_addr_copy(&in_params->mac_addr[0], dev->ndev->dev_addr);
    
    	rc = dev->ops->rdma_init(dev->cdev, in_params);
    	if (rc)
    		goto out;
    
    	rc = dev->ops->rdma_add_user(dev->rdma_ctx, &out_params);
    	if (rc)
    		goto out;
    
    	dev->db_addr = (void *)(uintptr_t)out_params.dpi_addr;
    	dev->db_phys_addr = out_params.dpi_phys_addr;
    	dev->db_size = out_params.dpi_size;
    	dev->dpi = out_params.dpi;
    
    	rc = qedr_set_device_attr(dev);
    out:
    	kfree(in_params);
    	if (rc)
    		DP_ERR(dev, "Init HW Failed rc = %d\n", rc);
    
    	return rc;
    }
    
    void qedr_stop_hw(struct qedr_dev *dev)
    {
    	dev->ops->rdma_remove_user(dev->rdma_ctx, dev->dpi);
    	dev->ops->rdma_stop(dev->rdma_ctx);
    }
    
    static struct qedr_dev *qedr_add(struct qed_dev *cdev, struct pci_dev *pdev,
    				 struct net_device *ndev)
    {
    	struct qed_dev_rdma_info dev_info;
    	struct qedr_dev *dev;
    	int rc = 0, i;
    
    	dev = (struct qedr_dev *)ib_alloc_device(sizeof(*dev));
    	if (!dev) {
    		pr_err("Unable to allocate ib device\n");
    		return NULL;
    	}
    
    	DP_DEBUG(dev, QEDR_MSG_INIT, "qedr add device called\n");
    
    	dev->pdev = pdev;
    	dev->ndev = ndev;
    	dev->cdev = cdev;
    
    	qed_ops = qed_get_rdma_ops();
    	if (!qed_ops) {
    		DP_ERR(dev, "Failed to get qed roce operations\n");
    		goto init_err;
    	}
    
    	dev->ops = qed_ops;
    	rc = qed_ops->fill_dev_info(cdev, &dev_info);
    	if (rc)
    		goto init_err;
    
    	dev->num_hwfns = dev_info.common.num_hwfns;
    	dev->rdma_ctx = dev->ops->rdma_get_rdma_ctx(cdev);
    
    	dev->num_cnq = dev->ops->rdma_get_min_cnq_msix(cdev);
    	if (!dev->num_cnq) {
    		DP_ERR(dev, "not enough CNQ resources.\n");
    		goto init_err;
    	}
    
    	dev->wq_multiplier = QEDR_WQ_MULTIPLIER_DFT;
    
    	qedr_pci_set_atomic(dev, pdev);
    
    	rc = qedr_alloc_resources(dev);
    	if (rc)
    		goto init_err;
    
    	rc = qedr_init_hw(dev);
    	if (rc)
    		goto alloc_err;
    
    	rc = qedr_setup_irqs(dev);
    	if (rc)
    		goto irq_err;
    
    	rc = qedr_register_device(dev);
    	if (rc) {
    		DP_ERR(dev, "Unable to allocate register device\n");
    		goto reg_err;
    	}
    
    	for (i = 0; i < ARRAY_SIZE(qedr_attributes); i++)
    		if (device_create_file(&dev->ibdev.dev, qedr_attributes[i]))
    			goto sysfs_err;
    
    	DP_DEBUG(dev, QEDR_MSG_INIT, "qedr driver loaded successfully\n");
    	return dev;
    
    sysfs_err:
    	ib_unregister_device(&dev->ibdev);
    reg_err:
    	qedr_sync_free_irqs(dev);
    irq_err:
    	qedr_stop_hw(dev);
    alloc_err:
    	qedr_free_resources(dev);
    init_err:
    	ib_dealloc_device(&dev->ibdev);
    	DP_ERR(dev, "qedr driver load failed rc=%d\n", rc);
    
    	return NULL;
    }
    
    static void qedr_remove(struct qedr_dev *dev)
    {
    	/* First unregister with stack to stop all the active traffic
    	 * of the registered clients.
    	 */
    	qedr_remove_sysfiles(dev);
    	ib_unregister_device(&dev->ibdev);
    
    	qedr_stop_hw(dev);
    	qedr_sync_free_irqs(dev);
    	qedr_free_resources(dev);
    	ib_dealloc_device(&dev->ibdev);
    }
    
    static int qedr_close(struct qedr_dev *dev)
    {
    	qedr_ib_dispatch_event(dev, 1, IB_EVENT_PORT_ERR);
    
    	return 0;
    }
    
    static void qedr_shutdown(struct qedr_dev *dev)
    {
    	qedr_close(dev);
    	qedr_remove(dev);
    }
    
    static void qedr_mac_address_change(struct qedr_dev *dev)
    {
    	union ib_gid *sgid = &dev->sgid_tbl[0];
    	u8 guid[8], mac_addr[6];
    	int rc;
    
    	/* Update SGID */
    	ether_addr_copy(&mac_addr[0], dev->ndev->dev_addr);
    	guid[0] = mac_addr[0] ^ 2;
    	guid[1] = mac_addr[1];
    	guid[2] = mac_addr[2];
    	guid[3] = 0xff;
    	guid[4] = 0xfe;
    	guid[5] = mac_addr[3];
    	guid[6] = mac_addr[4];
    	guid[7] = mac_addr[5];
    	sgid->global.subnet_prefix = cpu_to_be64(0xfe80000000000000LL);
    	memcpy(&sgid->raw[8], guid, sizeof(guid));
    
    	/* Update LL2 */
    	rc = dev->ops->roce_ll2_set_mac_filter(dev->cdev,
    					       dev->gsi_ll2_mac_address,
    					       dev->ndev->dev_addr);
    
    	ether_addr_copy(dev->gsi_ll2_mac_address, dev->ndev->dev_addr);
    
    	qedr_ib_dispatch_event(dev, 1, IB_EVENT_GID_CHANGE);
    
    	if (rc)
    		DP_ERR(dev, "Error updating mac filter\n");
    }
    
    /* event handling via NIC driver ensures that all the NIC specific
     * initialization done before RoCE driver notifies
     * event to stack.
     */
    static void qedr_notify(struct qedr_dev *dev, enum qede_roce_event event)
    {
    	switch (event) {
    	case QEDE_UP:
    		qedr_ib_dispatch_event(dev, 1, IB_EVENT_PORT_ACTIVE);
    		break;
    	case QEDE_DOWN:
    		qedr_close(dev);
    		break;
    	case QEDE_CLOSE:
    		qedr_shutdown(dev);
    		break;
    	case QEDE_CHANGE_ADDR:
    		qedr_mac_address_change(dev);
    		break;
    	default:
    		pr_err("Event not supported\n");
    	}
    }
    
    static struct qedr_driver qedr_drv = {
    	.name = "qedr_driver",
    	.add = qedr_add,
    	.remove = qedr_remove,
    	.notify = qedr_notify,
    };
    
    static int __init qedr_init_module(void)
    {
    	return qede_roce_register_driver(&qedr_drv);
    }
    
    static void __exit qedr_exit_module(void)
    {
    	qede_roce_unregister_driver(&qedr_drv);
    }
    
    module_init(qedr_init_module);
    module_exit(qedr_exit_module);