Skip to content
Snippets Groups Projects
Select Git revision
  • 317a76f9a44b437d6301718f4e5d08bd93f98da7
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

tcp_output.c

Blame
  • tcp_output.c 50.54 KiB
    /*
     * INET		An implementation of the TCP/IP protocol suite for the LINUX
     *		operating system.  INET is implemented using the  BSD Socket
     *		interface as the means of communication with the user level.
     *
     *		Implementation of the Transmission Control Protocol(TCP).
     *
     * Version:	$Id: tcp_output.c,v 1.146 2002/02/01 22:01:04 davem Exp $
     *
     * Authors:	Ross Biro
     *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
     *		Mark Evans, <evansmp@uhura.aston.ac.uk>
     *		Corey Minyard <wf-rch!minyard@relay.EU.net>
     *		Florian La Roche, <flla@stud.uni-sb.de>
     *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
     *		Linus Torvalds, <torvalds@cs.helsinki.fi>
     *		Alan Cox, <gw4pts@gw4pts.ampr.org>
     *		Matthew Dillon, <dillon@apollo.west.oic.com>
     *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
     *		Jorge Cwik, <jorge@laser.satlink.net>
     */
    
    /*
     * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
     *				:	Fragmentation on mtu decrease
     *				:	Segment collapse on retransmit
     *				:	AF independence
     *
     *		Linus Torvalds	:	send_delayed_ack
     *		David S. Miller	:	Charge memory using the right skb
     *					during syn/ack processing.
     *		David S. Miller :	Output engine completely rewritten.
     *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
     *		Cacophonix Gaul :	draft-minshall-nagle-01
     *		J Hadi Salim	:	ECN support
     *
     */
    
    #include <net/tcp.h>
    
    #include <linux/compiler.h>
    #include <linux/module.h>
    #include <linux/smp_lock.h>
    
    /* People can turn this off for buggy TCP's found in printers etc. */
    int sysctl_tcp_retrans_collapse = 1;
    
    /* This limits the percentage of the congestion window which we
     * will allow a single TSO frame to consume.  Building TSO frames
     * which are too large can cause TCP streams to be bursty.
     */
    int sysctl_tcp_tso_win_divisor = 8;
    
    static inline void update_send_head(struct sock *sk, struct tcp_sock *tp,
    				    struct sk_buff *skb)
    {
    	sk->sk_send_head = skb->next;
    	if (sk->sk_send_head == (struct sk_buff *)&sk->sk_write_queue)
    		sk->sk_send_head = NULL;
    	tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
    	tcp_packets_out_inc(sk, tp, skb);
    }
    
    /* SND.NXT, if window was not shrunk.
     * If window has been shrunk, what should we make? It is not clear at all.
     * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
     * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
     * invalid. OK, let's make this for now:
     */
    static inline __u32 tcp_acceptable_seq(struct sock *sk, struct tcp_sock *tp)
    {
    	if (!before(tp->snd_una+tp->snd_wnd, tp->snd_nxt))
    		return tp->snd_nxt;
    	else
    		return tp->snd_una+tp->snd_wnd;
    }
    
    /* Calculate mss to advertise in SYN segment.
     * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
     *
     * 1. It is independent of path mtu.
     * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
     * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
     *    attached devices, because some buggy hosts are confused by
     *    large MSS.
     * 4. We do not make 3, we advertise MSS, calculated from first
     *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
     *    This may be overridden via information stored in routing table.
     * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
     *    probably even Jumbo".
     */
    static __u16 tcp_advertise_mss(struct sock *sk)
    {
    	struct tcp_sock *tp = tcp_sk(sk);
    	struct dst_entry *dst = __sk_dst_get(sk);
    	int mss = tp->advmss;
    
    	if (dst && dst_metric(dst, RTAX_ADVMSS) < mss) {
    		mss = dst_metric(dst, RTAX_ADVMSS);
    		tp->advmss = mss;
    	}
    
    	return (__u16)mss;
    }
    
    /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
     * This is the first part of cwnd validation mechanism. */
    static void tcp_cwnd_restart(struct tcp_sock *tp, struct dst_entry *dst)
    {
    	s32 delta = tcp_time_stamp - tp->lsndtime;
    	u32 restart_cwnd = tcp_init_cwnd(tp, dst);
    	u32 cwnd = tp->snd_cwnd;
    
    	tcp_ca_event(tp, CA_EVENT_CWND_RESTART);
    
    	tp->snd_ssthresh = tcp_current_ssthresh(tp);
    	restart_cwnd = min(restart_cwnd, cwnd);
    
    	while ((delta -= tp->rto) > 0 && cwnd > restart_cwnd)
    		cwnd >>= 1;
    	tp->snd_cwnd = max(cwnd, restart_cwnd);
    	tp->snd_cwnd_stamp = tcp_time_stamp;
    	tp->snd_cwnd_used = 0;
    }
    
    static inline void tcp_event_data_sent(struct tcp_sock *tp,
    				       struct sk_buff *skb, struct sock *sk)
    {
    	u32 now = tcp_time_stamp;
    
    	if (!tp->packets_out && (s32)(now - tp->lsndtime) > tp->rto)
    		tcp_cwnd_restart(tp, __sk_dst_get(sk));
    
    	tp->lsndtime = now;
    
    	/* If it is a reply for ato after last received
    	 * packet, enter pingpong mode.
    	 */
    	if ((u32)(now - tp->ack.lrcvtime) < tp->ack.ato)
    		tp->ack.pingpong = 1;
    }
    
    static __inline__ void tcp_event_ack_sent(struct sock *sk)
    {
    	struct tcp_sock *tp = tcp_sk(sk);
    
    	tcp_dec_quickack_mode(tp);
    	tcp_clear_xmit_timer(sk, TCP_TIME_DACK);
    }
    
    /* Determine a window scaling and initial window to offer.
     * Based on the assumption that the given amount of space
     * will be offered. Store the results in the tp structure.
     * NOTE: for smooth operation initial space offering should
     * be a multiple of mss if possible. We assume here that mss >= 1.
     * This MUST be enforced by all callers.
     */
    void tcp_select_initial_window(int __space, __u32 mss,
    			       __u32 *rcv_wnd, __u32 *window_clamp,
    			       int wscale_ok, __u8 *rcv_wscale)
    {
    	unsigned int space = (__space < 0 ? 0 : __space);
    
    	/* If no clamp set the clamp to the max possible scaled window */
    	if (*window_clamp == 0)
    		(*window_clamp) = (65535 << 14);
    	space = min(*window_clamp, space);
    
    	/* Quantize space offering to a multiple of mss if possible. */
    	if (space > mss)
    		space = (space / mss) * mss;
    
    	/* NOTE: offering an initial window larger than 32767
    	 * will break some buggy TCP stacks. We try to be nice.
    	 * If we are not window scaling, then this truncates
    	 * our initial window offering to 32k. There should also
    	 * be a sysctl option to stop being nice.
    	 */
    	(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
    	(*rcv_wscale) = 0;
    	if (wscale_ok) {
    		/* Set window scaling on max possible window
    		 * See RFC1323 for an explanation of the limit to 14 
    		 */
    		space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
    		while (space > 65535 && (*rcv_wscale) < 14) {
    			space >>= 1;
    			(*rcv_wscale)++;
    		}
    	}
    
    	/* Set initial window to value enough for senders,
    	 * following RFC1414. Senders, not following this RFC,
    	 * will be satisfied with 2.
    	 */
    	if (mss > (1<<*rcv_wscale)) {
    		int init_cwnd = 4;
    		if (mss > 1460*3)
    			init_cwnd = 2;
    		else if (mss > 1460)
    			init_cwnd = 3;
    		if (*rcv_wnd > init_cwnd*mss)
    			*rcv_wnd = init_cwnd*mss;
    	}
    
    	/* Set the clamp no higher than max representable value */
    	(*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
    }
    
    /* Chose a new window to advertise, update state in tcp_sock for the
     * socket, and return result with RFC1323 scaling applied.  The return
     * value can be stuffed directly into th->window for an outgoing
     * frame.
     */
    static __inline__ u16 tcp_select_window(struct sock *sk)
    {
    	struct tcp_sock *tp = tcp_sk(sk);
    	u32 cur_win = tcp_receive_window(tp);
    	u32 new_win = __tcp_select_window(sk);
    
    	/* Never shrink the offered window */
    	if(new_win < cur_win) {
    		/* Danger Will Robinson!
    		 * Don't update rcv_wup/rcv_wnd here or else
    		 * we will not be able to advertise a zero
    		 * window in time.  --DaveM
    		 *
    		 * Relax Will Robinson.
    		 */
    		new_win = cur_win;
    	}
    	tp->rcv_wnd = new_win;
    	tp->rcv_wup = tp->rcv_nxt;
    
    	/* Make sure we do not exceed the maximum possible
    	 * scaled window.
    	 */
    	if (!tp->rx_opt.rcv_wscale)
    		new_win = min(new_win, MAX_TCP_WINDOW);
    	else
    		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
    
    	/* RFC1323 scaling applied */
    	new_win >>= tp->rx_opt.rcv_wscale;
    
    	/* If we advertise zero window, disable fast path. */
    	if (new_win == 0)
    		tp->pred_flags = 0;
    
    	return new_win;
    }
    
    
    /* This routine actually transmits TCP packets queued in by
     * tcp_do_sendmsg().  This is used by both the initial
     * transmission and possible later retransmissions.
     * All SKB's seen here are completely headerless.  It is our
     * job to build the TCP header, and pass the packet down to
     * IP so it can do the same plus pass the packet off to the
     * device.
     *
     * We are working here with either a clone of the original
     * SKB, or a fresh unique copy made by the retransmit engine.
     */
    static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb)
    {
    	if (skb != NULL) {
    		struct inet_sock *inet = inet_sk(sk);
    		struct tcp_sock *tp = tcp_sk(sk);
    		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
    		int tcp_header_size = tp->tcp_header_len;
    		struct tcphdr *th;
    		int sysctl_flags;
    		int err;
    
    		BUG_ON(!tcp_skb_pcount(skb));
    
    #define SYSCTL_FLAG_TSTAMPS	0x1
    #define SYSCTL_FLAG_WSCALE	0x2
    #define SYSCTL_FLAG_SACK	0x4
    
    		/* If congestion control is doing timestamping */
    		if (tp->ca_ops->rtt_sample)
    			do_gettimeofday(&skb->stamp);
    
    		sysctl_flags = 0;
    		if (tcb->flags & TCPCB_FLAG_SYN) {
    			tcp_header_size = sizeof(struct tcphdr) + TCPOLEN_MSS;
    			if(sysctl_tcp_timestamps) {
    				tcp_header_size += TCPOLEN_TSTAMP_ALIGNED;
    				sysctl_flags |= SYSCTL_FLAG_TSTAMPS;
    			}
    			if(sysctl_tcp_window_scaling) {
    				tcp_header_size += TCPOLEN_WSCALE_ALIGNED;
    				sysctl_flags |= SYSCTL_FLAG_WSCALE;
    			}
    			if(sysctl_tcp_sack) {
    				sysctl_flags |= SYSCTL_FLAG_SACK;
    				if(!(sysctl_flags & SYSCTL_FLAG_TSTAMPS))
    					tcp_header_size += TCPOLEN_SACKPERM_ALIGNED;
    			}
    		} else if (tp->rx_opt.eff_sacks) {
    			/* A SACK is 2 pad bytes, a 2 byte header, plus
    			 * 2 32-bit sequence numbers for each SACK block.
    			 */
    			tcp_header_size += (TCPOLEN_SACK_BASE_ALIGNED +
    					    (tp->rx_opt.eff_sacks * TCPOLEN_SACK_PERBLOCK));
    		}
    		
    		if (tcp_packets_in_flight(tp) == 0)
    			tcp_ca_event(tp, CA_EVENT_TX_START);
    
    		th = (struct tcphdr *) skb_push(skb, tcp_header_size);
    		skb->h.th = th;
    		skb_set_owner_w(skb, sk);
    
    		/* Build TCP header and checksum it. */
    		th->source		= inet->sport;
    		th->dest		= inet->dport;
    		th->seq			= htonl(tcb->seq);
    		th->ack_seq		= htonl(tp->rcv_nxt);
    		*(((__u16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) | tcb->flags);
    		if (tcb->flags & TCPCB_FLAG_SYN) {
    			/* RFC1323: The window in SYN & SYN/ACK segments
    			 * is never scaled.
    			 */
    			th->window	= htons(tp->rcv_wnd);
    		} else {
    			th->window	= htons(tcp_select_window(sk));
    		}
    		th->check		= 0;
    		th->urg_ptr		= 0;
    
    		if (tp->urg_mode &&
    		    between(tp->snd_up, tcb->seq+1, tcb->seq+0xFFFF)) {
    			th->urg_ptr		= htons(tp->snd_up-tcb->seq);
    			th->urg			= 1;
    		}
    
    		if (tcb->flags & TCPCB_FLAG_SYN) {
    			tcp_syn_build_options((__u32 *)(th + 1),
    					      tcp_advertise_mss(sk),
    					      (sysctl_flags & SYSCTL_FLAG_TSTAMPS),
    					      (sysctl_flags & SYSCTL_FLAG_SACK),
    					      (sysctl_flags & SYSCTL_FLAG_WSCALE),
    					      tp->rx_opt.rcv_wscale,
    					      tcb->when,
    		      			      tp->rx_opt.ts_recent);
    		} else {
    			tcp_build_and_update_options((__u32 *)(th + 1),
    						     tp, tcb->when);
    
    			TCP_ECN_send(sk, tp, skb, tcp_header_size);
    		}
    		tp->af_specific->send_check(sk, th, skb->len, skb);
    
    		if (tcb->flags & TCPCB_FLAG_ACK)
    			tcp_event_ack_sent(sk);
    
    		if (skb->len != tcp_header_size)
    			tcp_event_data_sent(tp, skb, sk);
    
    		TCP_INC_STATS(TCP_MIB_OUTSEGS);
    
    		err = tp->af_specific->queue_xmit(skb, 0);
    		if (err <= 0)
    			return err;
    
    		tcp_enter_cwr(tp);
    
    		/* NET_XMIT_CN is special. It does not guarantee,
    		 * that this packet is lost. It tells that device
    		 * is about to start to drop packets or already
    		 * drops some packets of the same priority and
    		 * invokes us to send less aggressively.
    		 */
    		return err == NET_XMIT_CN ? 0 : err;
    	}
    	return -ENOBUFS;
    #undef SYSCTL_FLAG_TSTAMPS
    #undef SYSCTL_FLAG_WSCALE
    #undef SYSCTL_FLAG_SACK
    }
    
    
    /* This routine just queue's the buffer 
     *
     * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
     * otherwise socket can stall.
     */
    static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
    {
    	struct tcp_sock *tp = tcp_sk(sk);
    
    	/* Advance write_seq and place onto the write_queue. */
    	tp->write_seq = TCP_SKB_CB(skb)->end_seq;
    	skb_header_release(skb);
    	__skb_queue_tail(&sk->sk_write_queue, skb);
    	sk_charge_skb(sk, skb);
    
    	/* Queue it, remembering where we must start sending. */
    	if (sk->sk_send_head == NULL)
    		sk->sk_send_head = skb;
    }
    
    static inline void tcp_tso_set_push(struct sk_buff *skb)
    {
    	/* Force push to be on for any TSO frames to workaround
    	 * problems with busted implementations like Mac OS-X that
    	 * hold off socket receive wakeups until push is seen.
    	 */
    	if (tcp_skb_pcount(skb) > 1)
    		TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
    }
    
    /* Send _single_ skb sitting at the send head. This function requires
     * true push pending frames to setup probe timer etc.
     */
    void tcp_push_one(struct sock *sk, unsigned cur_mss)
    {
    	struct tcp_sock *tp = tcp_sk(sk);
    	struct sk_buff *skb = sk->sk_send_head;
    
    	if (tcp_snd_test(sk, skb, cur_mss, TCP_NAGLE_PUSH)) {
    		/* Send it out now. */
    		TCP_SKB_CB(skb)->when = tcp_time_stamp;
    		tcp_tso_set_push(skb);
    		if (!tcp_transmit_skb(sk, skb_clone(skb, sk->sk_allocation))) {
    			sk->sk_send_head = NULL;
    			tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
    			tcp_packets_out_inc(sk, tp, skb);
    			return;
    		}
    	}
    }
    
    void tcp_set_skb_tso_segs(struct sock *sk, struct sk_buff *skb)
    {
    	struct tcp_sock *tp = tcp_sk(sk);
    
    	if (skb->len <= tp->mss_cache_std ||
    	    !(sk->sk_route_caps & NETIF_F_TSO)) {
    		/* Avoid the costly divide in the normal
    		 * non-TSO case.
    		 */
    		skb_shinfo(skb)->tso_segs = 1;
    		skb_shinfo(skb)->tso_size = 0;
    	} else {
    		unsigned int factor;
    
    		factor = skb->len + (tp->mss_cache_std - 1);
    		factor /= tp->mss_cache_std;
    		skb_shinfo(skb)->tso_segs = factor;
    		skb_shinfo(skb)->tso_size = tp->mss_cache_std;
    	}
    }
    
    /* Function to create two new TCP segments.  Shrinks the given segment
     * to the specified size and appends a new segment with the rest of the
     * packet to the list.  This won't be called frequently, I hope. 
     * Remember, these are still headerless SKBs at this point.
     */
    static int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len)
    {
    	struct tcp_sock *tp = tcp_sk(sk);
    	struct sk_buff *buff;
    	int nsize;
    	u16 flags;
    
    	nsize = skb_headlen(skb) - len;
    	if (nsize < 0)
    		nsize = 0;
    
    	if (skb_cloned(skb) &&
    	    skb_is_nonlinear(skb) &&
    	    pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
    		return -ENOMEM;
    
    	/* Get a new skb... force flag on. */
    	buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC);
    	if (buff == NULL)
    		return -ENOMEM; /* We'll just try again later. */
    	sk_charge_skb(sk, buff);
    
    	/* Correct the sequence numbers. */
    	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
    	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
    	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
    
    	/* PSH and FIN should only be set in the second packet. */
    	flags = TCP_SKB_CB(skb)->flags;
    	TCP_SKB_CB(skb)->flags = flags & ~(TCPCB_FLAG_FIN|TCPCB_FLAG_PSH);
    	TCP_SKB_CB(buff)->flags = flags;
    	TCP_SKB_CB(buff)->sacked =
    		(TCP_SKB_CB(skb)->sacked &
    		 (TCPCB_LOST | TCPCB_EVER_RETRANS | TCPCB_AT_TAIL));
    	TCP_SKB_CB(skb)->sacked &= ~TCPCB_AT_TAIL;
    
    	if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_HW) {
    		/* Copy and checksum data tail into the new buffer. */
    		buff->csum = csum_partial_copy_nocheck(skb->data + len, skb_put(buff, nsize),
    						       nsize, 0);
    
    		skb_trim(skb, len);
    
    		skb->csum = csum_block_sub(skb->csum, buff->csum, len);
    	} else {
    		skb->ip_summed = CHECKSUM_HW;
    		skb_split(skb, buff, len);
    	}
    
    	buff->ip_summed = skb->ip_summed;
    
    	/* Looks stupid, but our code really uses when of
    	 * skbs, which it never sent before. --ANK
    	 */
    	TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when;
    	buff->stamp = skb->stamp;
    
    	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) {
    		tp->lost_out -= tcp_skb_pcount(skb);
    		tp->left_out -= tcp_skb_pcount(skb);
    	}
    
    	/* Fix up tso_factor for both original and new SKB.  */
    	tcp_set_skb_tso_segs(sk, skb);
    	tcp_set_skb_tso_segs(sk, buff);
    
    	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) {
    		tp->lost_out += tcp_skb_pcount(skb);
    		tp->left_out += tcp_skb_pcount(skb);
    	}
    
    	if (TCP_SKB_CB(buff)->sacked&TCPCB_LOST) {
    		tp->lost_out += tcp_skb_pcount(buff);
    		tp->left_out += tcp_skb_pcount(buff);
    	}
    
    	/* Link BUFF into the send queue. */
    	__skb_append(skb, buff);
    
    	return 0;
    }
    
    /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
     * eventually). The difference is that pulled data not copied, but
     * immediately discarded.
     */
    static unsigned char *__pskb_trim_head(struct sk_buff *skb, int len)
    {
    	int i, k, eat;
    
    	eat = len;
    	k = 0;
    	for (i=0; i<skb_shinfo(skb)->nr_frags; i++) {
    		if (skb_shinfo(skb)->frags[i].size <= eat) {
    			put_page(skb_shinfo(skb)->frags[i].page);
    			eat -= skb_shinfo(skb)->frags[i].size;
    		} else {
    			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
    			if (eat) {
    				skb_shinfo(skb)->frags[k].page_offset += eat;
    				skb_shinfo(skb)->frags[k].size -= eat;
    				eat = 0;
    			}
    			k++;
    		}
    	}
    	skb_shinfo(skb)->nr_frags = k;
    
    	skb->tail = skb->data;
    	skb->data_len -= len;
    	skb->len = skb->data_len;
    	return skb->tail;
    }
    
    int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
    {
    	if (skb_cloned(skb) &&
    	    pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
    		return -ENOMEM;
    
    	if (len <= skb_headlen(skb)) {
    		__skb_pull(skb, len);
    	} else {
    		if (__pskb_trim_head(skb, len-skb_headlen(skb)) == NULL)
    			return -ENOMEM;
    	}
    
    	TCP_SKB_CB(skb)->seq += len;
    	skb->ip_summed = CHECKSUM_HW;
    
    	skb->truesize	     -= len;
    	sk->sk_wmem_queued   -= len;
    	sk->sk_forward_alloc += len;
    	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
    
    	/* Any change of skb->len requires recalculation of tso
    	 * factor and mss.
    	 */
    	if (tcp_skb_pcount(skb) > 1)
    		tcp_set_skb_tso_segs(sk, skb);
    
    	return 0;
    }
    
    /* This function synchronize snd mss to current pmtu/exthdr set.
    
       tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
       for TCP options, but includes only bare TCP header.
    
       tp->rx_opt.mss_clamp is mss negotiated at connection setup.
       It is minumum of user_mss and mss received with SYN.
       It also does not include TCP options.
    
       tp->pmtu_cookie is last pmtu, seen by this function.
    
       tp->mss_cache is current effective sending mss, including
       all tcp options except for SACKs. It is evaluated,
       taking into account current pmtu, but never exceeds
       tp->rx_opt.mss_clamp.
    
       NOTE1. rfc1122 clearly states that advertised MSS
       DOES NOT include either tcp or ip options.
    
       NOTE2. tp->pmtu_cookie and tp->mss_cache are READ ONLY outside
       this function.			--ANK (980731)
     */
    
    unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
    {
    	struct tcp_sock *tp = tcp_sk(sk);
    	int mss_now;
    
    	/* Calculate base mss without TCP options:
    	   It is MMS_S - sizeof(tcphdr) of rfc1122
    	 */
    	mss_now = pmtu - tp->af_specific->net_header_len - sizeof(struct tcphdr);
    
    	/* Clamp it (mss_clamp does not include tcp options) */
    	if (mss_now > tp->rx_opt.mss_clamp)
    		mss_now = tp->rx_opt.mss_clamp;
    
    	/* Now subtract optional transport overhead */
    	mss_now -= tp->ext_header_len;
    
    	/* Then reserve room for full set of TCP options and 8 bytes of data */
    	if (mss_now < 48)
    		mss_now = 48;
    
    	/* Now subtract TCP options size, not including SACKs */
    	mss_now -= tp->tcp_header_len - sizeof(struct tcphdr);
    
    	/* Bound mss with half of window */
    	if (tp->max_window && mss_now > (tp->max_window>>1))
    		mss_now = max((tp->max_window>>1), 68U - tp->tcp_header_len);
    
    	/* And store cached results */
    	tp->pmtu_cookie = pmtu;
    	tp->mss_cache = tp->mss_cache_std = mss_now;
    
    	return mss_now;
    }
    
    /* Compute the current effective MSS, taking SACKs and IP options,
     * and even PMTU discovery events into account.
     *
     * LARGESEND note: !urg_mode is overkill, only frames up to snd_up
     * cannot be large. However, taking into account rare use of URG, this
     * is not a big flaw.
     */
    
    unsigned int tcp_current_mss(struct sock *sk, int large)
    {
    	struct tcp_sock *tp = tcp_sk(sk);
    	struct dst_entry *dst = __sk_dst_get(sk);
    	unsigned int do_large, mss_now;
    
    	mss_now = tp->mss_cache_std;
    	if (dst) {
    		u32 mtu = dst_mtu(dst);
    		if (mtu != tp->pmtu_cookie)
    			mss_now = tcp_sync_mss(sk, mtu);
    	}
    
    	do_large = (large &&
    		    (sk->sk_route_caps & NETIF_F_TSO) &&
    		    !tp->urg_mode);
    
    	if (do_large) {
    		unsigned int large_mss, factor, limit;
    
    		large_mss = 65535 - tp->af_specific->net_header_len -
    			tp->ext_header_len - tp->tcp_header_len;
    
    		if (tp->max_window && large_mss > (tp->max_window>>1))
    			large_mss = max((tp->max_window>>1),
    					68U - tp->tcp_header_len);
    
    		factor = large_mss / mss_now;
    
    		/* Always keep large mss multiple of real mss, but
    		 * do not exceed 1/tso_win_divisor of the congestion window
    		 * so we can keep the ACK clock ticking and minimize
    		 * bursting.
    		 */
    		limit = tp->snd_cwnd;
    		if (sysctl_tcp_tso_win_divisor)
    			limit /= sysctl_tcp_tso_win_divisor;
    		limit = max(1U, limit);
    		if (factor > limit)
    			factor = limit;
    
    		tp->mss_cache = mss_now * factor;
    
    		mss_now = tp->mss_cache;
    	}
    
    	if (tp->rx_opt.eff_sacks)
    		mss_now -= (TCPOLEN_SACK_BASE_ALIGNED +
    			    (tp->rx_opt.eff_sacks * TCPOLEN_SACK_PERBLOCK));
    	return mss_now;
    }
    
    /* This routine writes packets to the network.  It advances the
     * send_head.  This happens as incoming acks open up the remote
     * window for us.
     *
     * Returns 1, if no segments are in flight and we have queued segments, but
     * cannot send anything now because of SWS or another problem.
     */
    int tcp_write_xmit(struct sock *sk, int nonagle)
    {
    	struct tcp_sock *tp = tcp_sk(sk);
    	unsigned int mss_now;
    
    	/* If we are closed, the bytes will have to remain here.
    	 * In time closedown will finish, we empty the write queue and all
    	 * will be happy.
    	 */
    	if (sk->sk_state != TCP_CLOSE) {
    		struct sk_buff *skb;
    		int sent_pkts = 0;
    
    		/* Account for SACKS, we may need to fragment due to this.
    		 * It is just like the real MSS changing on us midstream.
    		 * We also handle things correctly when the user adds some
    		 * IP options mid-stream.  Silly to do, but cover it.
    		 */
    		mss_now = tcp_current_mss(sk, 1);
    
    		while ((skb = sk->sk_send_head) &&
    		       tcp_snd_test(sk, skb, mss_now,
    			       	    tcp_skb_is_last(sk, skb) ? nonagle :
    				    			       TCP_NAGLE_PUSH)) {
    			if (skb->len > mss_now) {
    				if (tcp_fragment(sk, skb, mss_now))
    					break;
    			}
    
    			TCP_SKB_CB(skb)->when = tcp_time_stamp;
    			tcp_tso_set_push(skb);
    			if (tcp_transmit_skb(sk, skb_clone(skb, GFP_ATOMIC)))
    				break;
    
    			/* Advance the send_head.  This one is sent out.
    			 * This call will increment packets_out.
    			 */
    			update_send_head(sk, tp, skb);
    
    			tcp_minshall_update(tp, mss_now, skb);
    			sent_pkts = 1;
    		}
    
    		if (sent_pkts) {
    			tcp_cwnd_validate(sk, tp);
    			return 0;
    		}
    
    		return !tp->packets_out && sk->sk_send_head;
    	}
    	return 0;
    }
    
    /* This function returns the amount that we can raise the
     * usable window based on the following constraints
     *  
     * 1. The window can never be shrunk once it is offered (RFC 793)
     * 2. We limit memory per socket
     *
     * RFC 1122:
     * "the suggested [SWS] avoidance algorithm for the receiver is to keep
     *  RECV.NEXT + RCV.WIN fixed until:
     *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
     *
     * i.e. don't raise the right edge of the window until you can raise
     * it at least MSS bytes.
     *
     * Unfortunately, the recommended algorithm breaks header prediction,
     * since header prediction assumes th->window stays fixed.
     *
     * Strictly speaking, keeping th->window fixed violates the receiver
     * side SWS prevention criteria. The problem is that under this rule
     * a stream of single byte packets will cause the right side of the
     * window to always advance by a single byte.
     * 
     * Of course, if the sender implements sender side SWS prevention
     * then this will not be a problem.
     * 
     * BSD seems to make the following compromise:
     * 
     *	If the free space is less than the 1/4 of the maximum
     *	space available and the free space is less than 1/2 mss,
     *	then set the window to 0.
     *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
     *	Otherwise, just prevent the window from shrinking
     *	and from being larger than the largest representable value.
     *
     * This prevents incremental opening of the window in the regime
     * where TCP is limited by the speed of the reader side taking
     * data out of the TCP receive queue. It does nothing about
     * those cases where the window is constrained on the sender side
     * because the pipeline is full.
     *
     * BSD also seems to "accidentally" limit itself to windows that are a
     * multiple of MSS, at least until the free space gets quite small.
     * This would appear to be a side effect of the mbuf implementation.
     * Combining these two algorithms results in the observed behavior
     * of having a fixed window size at almost all times.
     *
     * Below we obtain similar behavior by forcing the offered window to
     * a multiple of the mss when it is feasible to do so.
     *
     * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
     * Regular options like TIMESTAMP are taken into account.
     */
    u32 __tcp_select_window(struct sock *sk)
    {
    	struct tcp_sock *tp = tcp_sk(sk);
    	/* MSS for the peer's data.  Previous verions used mss_clamp
    	 * here.  I don't know if the value based on our guesses
    	 * of peer's MSS is better for the performance.  It's more correct
    	 * but may be worse for the performance because of rcv_mss
    	 * fluctuations.  --SAW  1998/11/1
    	 */
    	int mss = tp->ack.rcv_mss;
    	int free_space = tcp_space(sk);
    	int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk));
    	int window;
    
    	if (mss > full_space)
    		mss = full_space; 
    
    	if (free_space < full_space/2) {
    		tp->ack.quick = 0;
    
    		if (tcp_memory_pressure)
    			tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U*tp->advmss);
    
    		if (free_space < mss)
    			return 0;
    	}
    
    	if (free_space > tp->rcv_ssthresh)
    		free_space = tp->rcv_ssthresh;
    
    	/* Don't do rounding if we are using window scaling, since the
    	 * scaled window will not line up with the MSS boundary anyway.
    	 */
    	window = tp->rcv_wnd;
    	if (tp->rx_opt.rcv_wscale) {
    		window = free_space;
    
    		/* Advertise enough space so that it won't get scaled away.
    		 * Import case: prevent zero window announcement if
    		 * 1<<rcv_wscale > mss.
    		 */
    		if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
    			window = (((window >> tp->rx_opt.rcv_wscale) + 1)
    				  << tp->rx_opt.rcv_wscale);
    	} else {
    		/* Get the largest window that is a nice multiple of mss.
    		 * Window clamp already applied above.
    		 * If our current window offering is within 1 mss of the
    		 * free space we just keep it. This prevents the divide
    		 * and multiply from happening most of the time.
    		 * We also don't do any window rounding when the free space
    		 * is too small.
    		 */
    		if (window <= free_space - mss || window > free_space)
    			window = (free_space/mss)*mss;
    	}
    
    	return window;
    }
    
    /* Attempt to collapse two adjacent SKB's during retransmission. */
    static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *skb, int mss_now)
    {
    	struct tcp_sock *tp = tcp_sk(sk);
    	struct sk_buff *next_skb = skb->next;
    
    	/* The first test we must make is that neither of these two
    	 * SKB's are still referenced by someone else.
    	 */
    	if (!skb_cloned(skb) && !skb_cloned(next_skb)) {
    		int skb_size = skb->len, next_skb_size = next_skb->len;
    		u16 flags = TCP_SKB_CB(skb)->flags;
    
    		/* Also punt if next skb has been SACK'd. */
    		if(TCP_SKB_CB(next_skb)->sacked & TCPCB_SACKED_ACKED)
    			return;
    
    		/* Next skb is out of window. */
    		if (after(TCP_SKB_CB(next_skb)->end_seq, tp->snd_una+tp->snd_wnd))
    			return;
    
    		/* Punt if not enough space exists in the first SKB for
    		 * the data in the second, or the total combined payload
    		 * would exceed the MSS.
    		 */
    		if ((next_skb_size > skb_tailroom(skb)) ||
    		    ((skb_size + next_skb_size) > mss_now))
    			return;
    
    		BUG_ON(tcp_skb_pcount(skb) != 1 ||
    		       tcp_skb_pcount(next_skb) != 1);
    
    		/* Ok.  We will be able to collapse the packet. */
    		__skb_unlink(next_skb, next_skb->list);
    
    		memcpy(skb_put(skb, next_skb_size), next_skb->data, next_skb_size);
    
    		if (next_skb->ip_summed == CHECKSUM_HW)
    			skb->ip_summed = CHECKSUM_HW;
    
    		if (skb->ip_summed != CHECKSUM_HW)
    			skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
    
    		/* Update sequence range on original skb. */
    		TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
    
    		/* Merge over control information. */
    		flags |= TCP_SKB_CB(next_skb)->flags; /* This moves PSH/FIN etc. over */
    		TCP_SKB_CB(skb)->flags = flags;
    
    		/* All done, get rid of second SKB and account for it so
    		 * packet counting does not break.
    		 */
    		TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked&(TCPCB_EVER_RETRANS|TCPCB_AT_TAIL);
    		if (TCP_SKB_CB(next_skb)->sacked&TCPCB_SACKED_RETRANS)
    			tp->retrans_out -= tcp_skb_pcount(next_skb);
    		if (TCP_SKB_CB(next_skb)->sacked&TCPCB_LOST) {
    			tp->lost_out -= tcp_skb_pcount(next_skb);
    			tp->left_out -= tcp_skb_pcount(next_skb);
    		}
    		/* Reno case is special. Sigh... */
    		if (!tp->rx_opt.sack_ok && tp->sacked_out) {
    			tcp_dec_pcount_approx(&tp->sacked_out, next_skb);
    			tp->left_out -= tcp_skb_pcount(next_skb);
    		}
    
    		/* Not quite right: it can be > snd.fack, but
    		 * it is better to underestimate fackets.
    		 */
    		tcp_dec_pcount_approx(&tp->fackets_out, next_skb);
    		tcp_packets_out_dec(tp, next_skb);
    		sk_stream_free_skb(sk, next_skb);
    	}
    }
    
    /* Do a simple retransmit without using the backoff mechanisms in
     * tcp_timer. This is used for path mtu discovery. 
     * The socket is already locked here.
     */ 
    void tcp_simple_retransmit(struct sock *sk)
    {
    	struct tcp_sock *tp = tcp_sk(sk);
    	struct sk_buff *skb;
    	unsigned int mss = tcp_current_mss(sk, 0);
    	int lost = 0;
    
    	sk_stream_for_retrans_queue(skb, sk) {
    		if (skb->len > mss && 
    		    !(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
    			if (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) {
    				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
    				tp->retrans_out -= tcp_skb_pcount(skb);
    			}
    			if (!(TCP_SKB_CB(skb)->sacked&TCPCB_LOST)) {
    				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
    				tp->lost_out += tcp_skb_pcount(skb);
    				lost = 1;
    			}
    		}
    	}
    
    	if (!lost)
    		return;
    
    	tcp_sync_left_out(tp);
    
     	/* Don't muck with the congestion window here.
    	 * Reason is that we do not increase amount of _data_
    	 * in network, but units changed and effective
    	 * cwnd/ssthresh really reduced now.
    	 */
    	if (tp->ca_state != TCP_CA_Loss) {
    		tp->high_seq = tp->snd_nxt;
    		tp->snd_ssthresh = tcp_current_ssthresh(tp);
    		tp->prior_ssthresh = 0;
    		tp->undo_marker = 0;
    		tcp_set_ca_state(tp, TCP_CA_Loss);
    	}
    	tcp_xmit_retransmit_queue(sk);
    }
    
    /* This retransmits one SKB.  Policy decisions and retransmit queue
     * state updates are done by the caller.  Returns non-zero if an
     * error occurred which prevented the send.
     */
    int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
    {
    	struct tcp_sock *tp = tcp_sk(sk);
     	unsigned int cur_mss = tcp_current_mss(sk, 0);
    	int err;
    
    	/* Do not sent more than we queued. 1/4 is reserved for possible
    	 * copying overhead: frgagmentation, tunneling, mangling etc.
    	 */
    	if (atomic_read(&sk->sk_wmem_alloc) >
    	    min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
    		return -EAGAIN;
    
    	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
    		if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
    			BUG();
    
    		if (sk->sk_route_caps & NETIF_F_TSO) {
    			sk->sk_route_caps &= ~NETIF_F_TSO;
    			sock_set_flag(sk, SOCK_NO_LARGESEND);
    			tp->mss_cache = tp->mss_cache_std;
    		}
    
    		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
    			return -ENOMEM;
    	}
    
    	/* If receiver has shrunk his window, and skb is out of
    	 * new window, do not retransmit it. The exception is the
    	 * case, when window is shrunk to zero. In this case
    	 * our retransmit serves as a zero window probe.
    	 */
    	if (!before(TCP_SKB_CB(skb)->seq, tp->snd_una+tp->snd_wnd)
    	    && TCP_SKB_CB(skb)->seq != tp->snd_una)
    		return -EAGAIN;
    
    	if (skb->len > cur_mss) {
    		int old_factor = tcp_skb_pcount(skb);
    		int new_factor;
    
    		if (tcp_fragment(sk, skb, cur_mss))
    			return -ENOMEM; /* We'll try again later. */
    
    		/* New SKB created, account for it. */
    		new_factor = tcp_skb_pcount(skb);
    		tp->packets_out -= old_factor - new_factor;
    		tp->packets_out += tcp_skb_pcount(skb->next);
    	}
    
    	/* Collapse two adjacent packets if worthwhile and we can. */
    	if(!(TCP_SKB_CB(skb)->flags & TCPCB_FLAG_SYN) &&
    	   (skb->len < (cur_mss >> 1)) &&
    	   (skb->next != sk->sk_send_head) &&
    	   (skb->next != (struct sk_buff *)&sk->sk_write_queue) &&
    	   (skb_shinfo(skb)->nr_frags == 0 && skb_shinfo(skb->next)->nr_frags == 0) &&
    	   (tcp_skb_pcount(skb) == 1 && tcp_skb_pcount(skb->next) == 1) &&
    	   (sysctl_tcp_retrans_collapse != 0))
    		tcp_retrans_try_collapse(sk, skb, cur_mss);
    
    	if(tp->af_specific->rebuild_header(sk))
    		return -EHOSTUNREACH; /* Routing failure or similar. */
    
    	/* Some Solaris stacks overoptimize and ignore the FIN on a
    	 * retransmit when old data is attached.  So strip it off
    	 * since it is cheap to do so and saves bytes on the network.
    	 */
    	if(skb->len > 0 &&
    	   (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) &&
    	   tp->snd_una == (TCP_SKB_CB(skb)->end_seq - 1)) {
    		if (!pskb_trim(skb, 0)) {
    			TCP_SKB_CB(skb)->seq = TCP_SKB_CB(skb)->end_seq - 1;
    			skb_shinfo(skb)->tso_segs = 1;
    			skb_shinfo(skb)->tso_size = 0;
    			skb->ip_summed = CHECKSUM_NONE;
    			skb->csum = 0;
    		}
    	}
    
    	/* Make a copy, if the first transmission SKB clone we made
    	 * is still in somebody's hands, else make a clone.
    	 */
    	TCP_SKB_CB(skb)->when = tcp_time_stamp;
    	tcp_tso_set_push(skb);
    
    	err = tcp_transmit_skb(sk, (skb_cloned(skb) ?
    				    pskb_copy(skb, GFP_ATOMIC):
    				    skb_clone(skb, GFP_ATOMIC)));
    
    	if (err == 0) {
    		/* Update global TCP statistics. */
    		TCP_INC_STATS(TCP_MIB_RETRANSSEGS);
    
    		tp->total_retrans++;
    
    #if FASTRETRANS_DEBUG > 0
    		if (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) {
    			if (net_ratelimit())
    				printk(KERN_DEBUG "retrans_out leaked.\n");
    		}
    #endif
    		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
    		tp->retrans_out += tcp_skb_pcount(skb);
    
    		/* Save stamp of the first retransmit. */
    		if (!tp->retrans_stamp)
    			tp->retrans_stamp = TCP_SKB_CB(skb)->when;
    
    		tp->undo_retrans++;
    
    		/* snd_nxt is stored to detect loss of retransmitted segment,
    		 * see tcp_input.c tcp_sacktag_write_queue().
    		 */
    		TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt;
    	}
    	return err;
    }
    
    /* This gets called after a retransmit timeout, and the initially
     * retransmitted data is acknowledged.  It tries to continue
     * resending the rest of the retransmit queue, until either
     * we've sent it all or the congestion window limit is reached.
     * If doing SACK, the first ACK which comes back for a timeout
     * based retransmit packet might feed us FACK information again.
     * If so, we use it to avoid unnecessarily retransmissions.
     */
    void tcp_xmit_retransmit_queue(struct sock *sk)
    {
    	struct tcp_sock *tp = tcp_sk(sk);
    	struct sk_buff *skb;
    	int packet_cnt = tp->lost_out;
    
    	/* First pass: retransmit lost packets. */
    	if (packet_cnt) {
    		sk_stream_for_retrans_queue(skb, sk) {
    			__u8 sacked = TCP_SKB_CB(skb)->sacked;
    
    			/* Assume this retransmit will generate
    			 * only one packet for congestion window
    			 * calculation purposes.  This works because
    			 * tcp_retransmit_skb() will chop up the
    			 * packet to be MSS sized and all the
    			 * packet counting works out.
    			 */
    			if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
    				return;
    
    			if (sacked&TCPCB_LOST) {
    				if (!(sacked&(TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))) {
    					if (tcp_retransmit_skb(sk, skb))
    						return;
    					if (tp->ca_state != TCP_CA_Loss)
    						NET_INC_STATS_BH(LINUX_MIB_TCPFASTRETRANS);
    					else
    						NET_INC_STATS_BH(LINUX_MIB_TCPSLOWSTARTRETRANS);
    
    					if (skb ==
    					    skb_peek(&sk->sk_write_queue))
    						tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto);
    				}
    
    				packet_cnt -= tcp_skb_pcount(skb);
    				if (packet_cnt <= 0)
    					break;
    			}
    		}
    	}
    
    	/* OK, demanded retransmission is finished. */
    
    	/* Forward retransmissions are possible only during Recovery. */
    	if (tp->ca_state != TCP_CA_Recovery)
    		return;
    
    	/* No forward retransmissions in Reno are possible. */
    	if (!tp->rx_opt.sack_ok)
    		return;
    
    	/* Yeah, we have to make difficult choice between forward transmission
    	 * and retransmission... Both ways have their merits...
    	 *
    	 * For now we do not retransmit anything, while we have some new
    	 * segments to send.
    	 */
    
    	if (tcp_may_send_now(sk, tp))
    		return;
    
    	packet_cnt = 0;
    
    	sk_stream_for_retrans_queue(skb, sk) {
    		/* Similar to the retransmit loop above we
    		 * can pretend that the retransmitted SKB
    		 * we send out here will be composed of one
    		 * real MSS sized packet because tcp_retransmit_skb()
    		 * will fragment it if necessary.
    		 */
    		if (++packet_cnt > tp->fackets_out)
    			break;
    
    		if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
    			break;
    
    		if (TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS)
    			continue;
    
    		/* Ok, retransmit it. */
    		if (tcp_retransmit_skb(sk, skb))
    			break;
    
    		if (skb == skb_peek(&sk->sk_write_queue))
    			tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto);
    
    		NET_INC_STATS_BH(LINUX_MIB_TCPFORWARDRETRANS);
    	}
    }
    
    
    /* Send a fin.  The caller locks the socket for us.  This cannot be
     * allowed to fail queueing a FIN frame under any circumstances.
     */
    void tcp_send_fin(struct sock *sk)
    {
    	struct tcp_sock *tp = tcp_sk(sk);	
    	struct sk_buff *skb = skb_peek_tail(&sk->sk_write_queue);
    	int mss_now;
    	
    	/* Optimization, tack on the FIN if we have a queue of
    	 * unsent frames.  But be careful about outgoing SACKS
    	 * and IP options.
    	 */
    	mss_now = tcp_current_mss(sk, 1);
    
    	if (sk->sk_send_head != NULL) {
    		TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_FIN;
    		TCP_SKB_CB(skb)->end_seq++;
    		tp->write_seq++;
    	} else {
    		/* Socket is locked, keep trying until memory is available. */
    		for (;;) {
    			skb = alloc_skb(MAX_TCP_HEADER, GFP_KERNEL);
    			if (skb)
    				break;
    			yield();
    		}
    
    		/* Reserve space for headers and prepare control bits. */
    		skb_reserve(skb, MAX_TCP_HEADER);
    		skb->csum = 0;
    		TCP_SKB_CB(skb)->flags = (TCPCB_FLAG_ACK | TCPCB_FLAG_FIN);
    		TCP_SKB_CB(skb)->sacked = 0;
    		skb_shinfo(skb)->tso_segs = 1;
    		skb_shinfo(skb)->tso_size = 0;
    
    		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
    		TCP_SKB_CB(skb)->seq = tp->write_seq;
    		TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + 1;
    		tcp_queue_skb(sk, skb);
    	}
    	__tcp_push_pending_frames(sk, tp, mss_now, TCP_NAGLE_OFF);
    }
    
    /* We get here when a process closes a file descriptor (either due to
     * an explicit close() or as a byproduct of exit()'ing) and there
     * was unread data in the receive queue.  This behavior is recommended
     * by draft-ietf-tcpimpl-prob-03.txt section 3.10.  -DaveM
     */
    void tcp_send_active_reset(struct sock *sk, int priority)
    {
    	struct tcp_sock *tp = tcp_sk(sk);
    	struct sk_buff *skb;
    
    	/* NOTE: No TCP options attached and we never retransmit this. */
    	skb = alloc_skb(MAX_TCP_HEADER, priority);
    	if (!skb) {
    		NET_INC_STATS(LINUX_MIB_TCPABORTFAILED);
    		return;
    	}
    
    	/* Reserve space for headers and prepare control bits. */
    	skb_reserve(skb, MAX_TCP_HEADER);
    	skb->csum = 0;
    	TCP_SKB_CB(skb)->flags = (TCPCB_FLAG_ACK | TCPCB_FLAG_RST);
    	TCP_SKB_CB(skb)->sacked = 0;
    	skb_shinfo(skb)->tso_segs = 1;
    	skb_shinfo(skb)->tso_size = 0;
    
    	/* Send it off. */
    	TCP_SKB_CB(skb)->seq = tcp_acceptable_seq(sk, tp);
    	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq;
    	TCP_SKB_CB(skb)->when = tcp_time_stamp;
    	if (tcp_transmit_skb(sk, skb))
    		NET_INC_STATS(LINUX_MIB_TCPABORTFAILED);
    }
    
    /* WARNING: This routine must only be called when we have already sent
     * a SYN packet that crossed the incoming SYN that caused this routine
     * to get called. If this assumption fails then the initial rcv_wnd
     * and rcv_wscale values will not be correct.
     */
    int tcp_send_synack(struct sock *sk)
    {
    	struct sk_buff* skb;
    
    	skb = skb_peek(&sk->sk_write_queue);
    	if (skb == NULL || !(TCP_SKB_CB(skb)->flags&TCPCB_FLAG_SYN)) {
    		printk(KERN_DEBUG "tcp_send_synack: wrong queue state\n");
    		return -EFAULT;
    	}
    	if (!(TCP_SKB_CB(skb)->flags&TCPCB_FLAG_ACK)) {
    		if (skb_cloned(skb)) {
    			struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
    			if (nskb == NULL)
    				return -ENOMEM;
    			__skb_unlink(skb, &sk->sk_write_queue);
    			skb_header_release(nskb);
    			__skb_queue_head(&sk->sk_write_queue, nskb);
    			sk_stream_free_skb(sk, skb);
    			sk_charge_skb(sk, nskb);
    			skb = nskb;
    		}
    
    		TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_ACK;
    		TCP_ECN_send_synack(tcp_sk(sk), skb);
    	}
    	TCP_SKB_CB(skb)->when = tcp_time_stamp;
    	return tcp_transmit_skb(sk, skb_clone(skb, GFP_ATOMIC));
    }
    
    /*
     * Prepare a SYN-ACK.
     */
    struct sk_buff * tcp_make_synack(struct sock *sk, struct dst_entry *dst,
    				 struct request_sock *req)
    {
    	struct inet_request_sock *ireq = inet_rsk(req);
    	struct tcp_sock *tp = tcp_sk(sk);
    	struct tcphdr *th;
    	int tcp_header_size;
    	struct sk_buff *skb;
    
    	skb = sock_wmalloc(sk, MAX_TCP_HEADER + 15, 1, GFP_ATOMIC);
    	if (skb == NULL)
    		return NULL;
    
    	/* Reserve space for headers. */
    	skb_reserve(skb, MAX_TCP_HEADER);
    
    	skb->dst = dst_clone(dst);
    
    	tcp_header_size = (sizeof(struct tcphdr) + TCPOLEN_MSS +
    			   (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0) +
    			   (ireq->wscale_ok ? TCPOLEN_WSCALE_ALIGNED : 0) +
    			   /* SACK_PERM is in the place of NOP NOP of TS */
    			   ((ireq->sack_ok && !ireq->tstamp_ok) ? TCPOLEN_SACKPERM_ALIGNED : 0));
    	skb->h.th = th = (struct tcphdr *) skb_push(skb, tcp_header_size);
    
    	memset(th, 0, sizeof(struct tcphdr));
    	th->syn = 1;
    	th->ack = 1;
    	if (dst->dev->features&NETIF_F_TSO)
    		ireq->ecn_ok = 0;
    	TCP_ECN_make_synack(req, th);
    	th->source = inet_sk(sk)->sport;
    	th->dest = ireq->rmt_port;
    	TCP_SKB_CB(skb)->seq = tcp_rsk(req)->snt_isn;
    	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + 1;
    	TCP_SKB_CB(skb)->sacked = 0;
    	skb_shinfo(skb)->tso_segs = 1;
    	skb_shinfo(skb)->tso_size = 0;
    	th->seq = htonl(TCP_SKB_CB(skb)->seq);
    	th->ack_seq = htonl(tcp_rsk(req)->rcv_isn + 1);
    	if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */
    		__u8 rcv_wscale; 
    		/* Set this up on the first call only */
    		req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW);
    		/* tcp_full_space because it is guaranteed to be the first packet */
    		tcp_select_initial_window(tcp_full_space(sk), 
    			dst_metric(dst, RTAX_ADVMSS) - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
    			&req->rcv_wnd,
    			&req->window_clamp,
    			ireq->wscale_ok,
    			&rcv_wscale);
    		ireq->rcv_wscale = rcv_wscale; 
    	}
    
    	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
    	th->window = htons(req->rcv_wnd);
    
    	TCP_SKB_CB(skb)->when = tcp_time_stamp;
    	tcp_syn_build_options((__u32 *)(th + 1), dst_metric(dst, RTAX_ADVMSS), ireq->tstamp_ok,
    			      ireq->sack_ok, ireq->wscale_ok, ireq->rcv_wscale,
    			      TCP_SKB_CB(skb)->when,
    			      req->ts_recent);
    
    	skb->csum = 0;
    	th->doff = (tcp_header_size >> 2);
    	TCP_INC_STATS(TCP_MIB_OUTSEGS);
    	return skb;
    }
    
    /* 
     * Do all connect socket setups that can be done AF independent.
     */ 
    static inline void tcp_connect_init(struct sock *sk)
    {
    	struct dst_entry *dst = __sk_dst_get(sk);
    	struct tcp_sock *tp = tcp_sk(sk);
    	__u8 rcv_wscale;
    
    	/* We'll fix this up when we get a response from the other end.
    	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
    	 */
    	tp->tcp_header_len = sizeof(struct tcphdr) +
    		(sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
    
    	/* If user gave his TCP_MAXSEG, record it to clamp */
    	if (tp->rx_opt.user_mss)
    		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
    	tp->max_window = 0;
    	tcp_sync_mss(sk, dst_mtu(dst));
    
    	if (!tp->window_clamp)
    		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
    	tp->advmss = dst_metric(dst, RTAX_ADVMSS);
    	tcp_initialize_rcv_mss(sk);
    
    	tcp_select_initial_window(tcp_full_space(sk),
    				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
    				  &tp->rcv_wnd,
    				  &tp->window_clamp,
    				  sysctl_tcp_window_scaling,
    				  &rcv_wscale);
    
    	tp->rx_opt.rcv_wscale = rcv_wscale;
    	tp->rcv_ssthresh = tp->rcv_wnd;
    
    	sk->sk_err = 0;
    	sock_reset_flag(sk, SOCK_DONE);
    	tp->snd_wnd = 0;
    	tcp_init_wl(tp, tp->write_seq, 0);
    	tp->snd_una = tp->write_seq;
    	tp->snd_sml = tp->write_seq;
    	tp->rcv_nxt = 0;
    	tp->rcv_wup = 0;
    	tp->copied_seq = 0;
    
    	tp->rto = TCP_TIMEOUT_INIT;
    	tp->retransmits = 0;
    	tcp_clear_retrans(tp);
    }
    
    /*
     * Build a SYN and send it off.
     */ 
    int tcp_connect(struct sock *sk)
    {
    	struct tcp_sock *tp = tcp_sk(sk);
    	struct sk_buff *buff;
    
    	tcp_connect_init(sk);
    
    	buff = alloc_skb(MAX_TCP_HEADER + 15, sk->sk_allocation);
    	if (unlikely(buff == NULL))
    		return -ENOBUFS;
    
    	/* Reserve space for headers. */
    	skb_reserve(buff, MAX_TCP_HEADER);
    
    	TCP_SKB_CB(buff)->flags = TCPCB_FLAG_SYN;
    	TCP_ECN_send_syn(sk, tp, buff);
    	TCP_SKB_CB(buff)->sacked = 0;
    	skb_shinfo(buff)->tso_segs = 1;
    	skb_shinfo(buff)->tso_size = 0;
    	buff->csum = 0;
    	TCP_SKB_CB(buff)->seq = tp->write_seq++;
    	TCP_SKB_CB(buff)->end_seq = tp->write_seq;
    	tp->snd_nxt = tp->write_seq;
    	tp->pushed_seq = tp->write_seq;
    
    	/* Send it off. */
    	TCP_SKB_CB(buff)->when = tcp_time_stamp;
    	tp->retrans_stamp = TCP_SKB_CB(buff)->when;
    	skb_header_release(buff);
    	__skb_queue_tail(&sk->sk_write_queue, buff);
    	sk_charge_skb(sk, buff);
    	tp->packets_out += tcp_skb_pcount(buff);
    	tcp_transmit_skb(sk, skb_clone(buff, GFP_KERNEL));
    	TCP_INC_STATS(TCP_MIB_ACTIVEOPENS);
    
    	/* Timer for repeating the SYN until an answer. */
    	tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto);
    	return 0;
    }
    
    /* Send out a delayed ack, the caller does the policy checking
     * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
     * for details.
     */
    void tcp_send_delayed_ack(struct sock *sk)
    {
    	struct tcp_sock *tp = tcp_sk(sk);
    	int ato = tp->ack.ato;
    	unsigned long timeout;
    
    	if (ato > TCP_DELACK_MIN) {
    		int max_ato = HZ/2;
    
    		if (tp->ack.pingpong || (tp->ack.pending&TCP_ACK_PUSHED))
    			max_ato = TCP_DELACK_MAX;
    
    		/* Slow path, intersegment interval is "high". */
    
    		/* If some rtt estimate is known, use it to bound delayed ack.
    		 * Do not use tp->rto here, use results of rtt measurements
    		 * directly.
    		 */
    		if (tp->srtt) {
    			int rtt = max(tp->srtt>>3, TCP_DELACK_MIN);
    
    			if (rtt < max_ato)
    				max_ato = rtt;
    		}
    
    		ato = min(ato, max_ato);
    	}
    
    	/* Stay within the limit we were given */
    	timeout = jiffies + ato;
    
    	/* Use new timeout only if there wasn't a older one earlier. */
    	if (tp->ack.pending&TCP_ACK_TIMER) {
    		/* If delack timer was blocked or is about to expire,
    		 * send ACK now.
    		 */
    		if (tp->ack.blocked || time_before_eq(tp->ack.timeout, jiffies+(ato>>2))) {
    			tcp_send_ack(sk);
    			return;
    		}
    
    		if (!time_before(timeout, tp->ack.timeout))
    			timeout = tp->ack.timeout;
    	}
    	tp->ack.pending |= TCP_ACK_SCHED|TCP_ACK_TIMER;
    	tp->ack.timeout = timeout;
    	sk_reset_timer(sk, &tp->delack_timer, timeout);
    }
    
    /* This routine sends an ack and also updates the window. */
    void tcp_send_ack(struct sock *sk)
    {
    	/* If we have been reset, we may not send again. */
    	if (sk->sk_state != TCP_CLOSE) {
    		struct tcp_sock *tp = tcp_sk(sk);
    		struct sk_buff *buff;
    
    		/* We are not putting this on the write queue, so
    		 * tcp_transmit_skb() will set the ownership to this
    		 * sock.
    		 */
    		buff = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
    		if (buff == NULL) {
    			tcp_schedule_ack(tp);
    			tp->ack.ato = TCP_ATO_MIN;
    			tcp_reset_xmit_timer(sk, TCP_TIME_DACK, TCP_DELACK_MAX);
    			return;
    		}
    
    		/* Reserve space for headers and prepare control bits. */
    		skb_reserve(buff, MAX_TCP_HEADER);
    		buff->csum = 0;
    		TCP_SKB_CB(buff)->flags = TCPCB_FLAG_ACK;
    		TCP_SKB_CB(buff)->sacked = 0;
    		skb_shinfo(buff)->tso_segs = 1;
    		skb_shinfo(buff)->tso_size = 0;
    
    		/* Send it off, this clears delayed acks for us. */
    		TCP_SKB_CB(buff)->seq = TCP_SKB_CB(buff)->end_seq = tcp_acceptable_seq(sk, tp);
    		TCP_SKB_CB(buff)->when = tcp_time_stamp;
    		tcp_transmit_skb(sk, buff);
    	}
    }
    
    /* This routine sends a packet with an out of date sequence
     * number. It assumes the other end will try to ack it.
     *
     * Question: what should we make while urgent mode?
     * 4.4BSD forces sending single byte of data. We cannot send
     * out of window data, because we have SND.NXT==SND.MAX...
     *
     * Current solution: to send TWO zero-length segments in urgent mode:
     * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
     * out-of-date with SND.UNA-1 to probe window.
     */
    static int tcp_xmit_probe_skb(struct sock *sk, int urgent)
    {
    	struct tcp_sock *tp = tcp_sk(sk);
    	struct sk_buff *skb;
    
    	/* We don't queue it, tcp_transmit_skb() sets ownership. */
    	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
    	if (skb == NULL) 
    		return -1;
    
    	/* Reserve space for headers and set control bits. */
    	skb_reserve(skb, MAX_TCP_HEADER);
    	skb->csum = 0;
    	TCP_SKB_CB(skb)->flags = TCPCB_FLAG_ACK;
    	TCP_SKB_CB(skb)->sacked = urgent;
    	skb_shinfo(skb)->tso_segs = 1;
    	skb_shinfo(skb)->tso_size = 0;
    
    	/* Use a previous sequence.  This should cause the other
    	 * end to send an ack.  Don't queue or clone SKB, just
    	 * send it.
    	 */
    	TCP_SKB_CB(skb)->seq = urgent ? tp->snd_una : tp->snd_una - 1;
    	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq;
    	TCP_SKB_CB(skb)->when = tcp_time_stamp;
    	return tcp_transmit_skb(sk, skb);
    }
    
    int tcp_write_wakeup(struct sock *sk)
    {
    	if (sk->sk_state != TCP_CLOSE) {
    		struct tcp_sock *tp = tcp_sk(sk);
    		struct sk_buff *skb;
    
    		if ((skb = sk->sk_send_head) != NULL &&
    		    before(TCP_SKB_CB(skb)->seq, tp->snd_una+tp->snd_wnd)) {
    			int err;
    			unsigned int mss = tcp_current_mss(sk, 0);
    			unsigned int seg_size = tp->snd_una+tp->snd_wnd-TCP_SKB_CB(skb)->seq;
    
    			if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
    				tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
    
    			/* We are probing the opening of a window
    			 * but the window size is != 0
    			 * must have been a result SWS avoidance ( sender )
    			 */
    			if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
    			    skb->len > mss) {
    				seg_size = min(seg_size, mss);
    				TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
    				if (tcp_fragment(sk, skb, seg_size))
    					return -1;
    				/* SWS override triggered forced fragmentation.
    				 * Disable TSO, the connection is too sick. */
    				if (sk->sk_route_caps & NETIF_F_TSO) {
    					sock_set_flag(sk, SOCK_NO_LARGESEND);
    					sk->sk_route_caps &= ~NETIF_F_TSO;
    					tp->mss_cache = tp->mss_cache_std;
    				}
    			} else if (!tcp_skb_pcount(skb))
    				tcp_set_skb_tso_segs(sk, skb);
    
    			TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
    			TCP_SKB_CB(skb)->when = tcp_time_stamp;
    			tcp_tso_set_push(skb);
    			err = tcp_transmit_skb(sk, skb_clone(skb, GFP_ATOMIC));
    			if (!err) {
    				update_send_head(sk, tp, skb);
    			}
    			return err;
    		} else {
    			if (tp->urg_mode &&
    			    between(tp->snd_up, tp->snd_una+1, tp->snd_una+0xFFFF))
    				tcp_xmit_probe_skb(sk, TCPCB_URG);
    			return tcp_xmit_probe_skb(sk, 0);
    		}
    	}
    	return -1;
    }
    
    /* A window probe timeout has occurred.  If window is not closed send
     * a partial packet else a zero probe.
     */
    void tcp_send_probe0(struct sock *sk)
    {
    	struct tcp_sock *tp = tcp_sk(sk);
    	int err;
    
    	err = tcp_write_wakeup(sk);
    
    	if (tp->packets_out || !sk->sk_send_head) {
    		/* Cancel probe timer, if it is not required. */
    		tp->probes_out = 0;
    		tp->backoff = 0;
    		return;
    	}
    
    	if (err <= 0) {
    		if (tp->backoff < sysctl_tcp_retries2)
    			tp->backoff++;
    		tp->probes_out++;
    		tcp_reset_xmit_timer (sk, TCP_TIME_PROBE0, 
    				      min(tp->rto << tp->backoff, TCP_RTO_MAX));
    	} else {
    		/* If packet was not sent due to local congestion,
    		 * do not backoff and do not remember probes_out.
    		 * Let local senders to fight for local resources.
    		 *
    		 * Use accumulated backoff yet.
    		 */
    		if (!tp->probes_out)
    			tp->probes_out=1;
    		tcp_reset_xmit_timer (sk, TCP_TIME_PROBE0, 
    				      min(tp->rto << tp->backoff, TCP_RESOURCE_PROBE_INTERVAL));
    	}
    }
    
    EXPORT_SYMBOL(tcp_connect);
    EXPORT_SYMBOL(tcp_make_synack);
    EXPORT_SYMBOL(tcp_simple_retransmit);
    EXPORT_SYMBOL(tcp_sync_mss);