Skip to content
Snippets Groups Projects
Select Git revision
  • 3377e227af441aff710726437adc20efc359fd9c
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

pgtable-64.h

Blame
  • trace_hwlat.c 16.74 KiB
    /*
     * trace_hwlatdetect.c - A simple Hardware Latency detector.
     *
     * Use this tracer to detect large system latencies induced by the behavior of
     * certain underlying system hardware or firmware, independent of Linux itself.
     * The code was developed originally to detect the presence of SMIs on Intel
     * and AMD systems, although there is no dependency upon x86 herein.
     *
     * The classical example usage of this tracer is in detecting the presence of
     * SMIs or System Management Interrupts on Intel and AMD systems. An SMI is a
     * somewhat special form of hardware interrupt spawned from earlier CPU debug
     * modes in which the (BIOS/EFI/etc.) firmware arranges for the South Bridge
     * LPC (or other device) to generate a special interrupt under certain
     * circumstances, for example, upon expiration of a special SMI timer device,
     * due to certain external thermal readings, on certain I/O address accesses,
     * and other situations. An SMI hits a special CPU pin, triggers a special
     * SMI mode (complete with special memory map), and the OS is unaware.
     *
     * Although certain hardware-inducing latencies are necessary (for example,
     * a modern system often requires an SMI handler for correct thermal control
     * and remote management) they can wreak havoc upon any OS-level performance
     * guarantees toward low-latency, especially when the OS is not even made
     * aware of the presence of these interrupts. For this reason, we need a
     * somewhat brute force mechanism to detect these interrupts. In this case,
     * we do it by hogging all of the CPU(s) for configurable timer intervals,
     * sampling the built-in CPU timer, looking for discontiguous readings.
     *
     * WARNING: This implementation necessarily introduces latencies. Therefore,
     *          you should NEVER use this tracer while running in a production
     *          environment requiring any kind of low-latency performance
     *          guarantee(s).
     *
     * Copyright (C) 2008-2009 Jon Masters, Red Hat, Inc. <jcm@redhat.com>
     * Copyright (C) 2013-2016 Steven Rostedt, Red Hat, Inc. <srostedt@redhat.com>
     *
     * Includes useful feedback from Clark Williams <clark@redhat.com>
     *
     * This file is licensed under the terms of the GNU General Public
     * License version 2. This program is licensed "as is" without any
     * warranty of any kind, whether express or implied.
     */
    #include <linux/kthread.h>
    #include <linux/tracefs.h>
    #include <linux/uaccess.h>
    #include <linux/cpumask.h>
    #include <linux/delay.h>
    #include "trace.h"
    
    static struct trace_array	*hwlat_trace;
    
    #define U64STR_SIZE		22			/* 20 digits max */
    
    #define BANNER			"hwlat_detector: "
    #define DEFAULT_SAMPLE_WINDOW	1000000			/* 1s */
    #define DEFAULT_SAMPLE_WIDTH	500000			/* 0.5s */
    #define DEFAULT_LAT_THRESHOLD	10			/* 10us */
    
    /* sampling thread*/
    static struct task_struct *hwlat_kthread;
    
    static struct dentry *hwlat_sample_width;	/* sample width us */
    static struct dentry *hwlat_sample_window;	/* sample window us */
    
    /* Save the previous tracing_thresh value */
    static unsigned long save_tracing_thresh;
    
    /* NMI timestamp counters */
    static u64 nmi_ts_start;
    static u64 nmi_total_ts;
    static int nmi_count;
    static int nmi_cpu;
    
    /* Tells NMIs to call back to the hwlat tracer to record timestamps */
    bool trace_hwlat_callback_enabled;
    
    /* If the user changed threshold, remember it */
    static u64 last_tracing_thresh = DEFAULT_LAT_THRESHOLD * NSEC_PER_USEC;
    
    /* Individual latency samples are stored here when detected. */
    struct hwlat_sample {
    	u64		seqnum;		/* unique sequence */
    	u64		duration;	/* delta */
    	u64		outer_duration;	/* delta (outer loop) */
    	u64		nmi_total_ts;	/* Total time spent in NMIs */
    	struct timespec	timestamp;	/* wall time */
    	int		nmi_count;	/* # NMIs during this sample */
    };
    
    /* keep the global state somewhere. */
    static struct hwlat_data {
    
    	struct mutex lock;		/* protect changes */
    
    	u64	count;			/* total since reset */
    
    	u64	sample_window;		/* total sampling window (on+off) */
    	u64	sample_width;		/* active sampling portion of window */
    
    } hwlat_data = {
    	.sample_window		= DEFAULT_SAMPLE_WINDOW,
    	.sample_width		= DEFAULT_SAMPLE_WIDTH,
    };
    
    static void trace_hwlat_sample(struct hwlat_sample *sample)
    {
    	struct trace_array *tr = hwlat_trace;
    	struct trace_event_call *call = &event_hwlat;
    	struct ring_buffer *buffer = tr->trace_buffer.buffer;
    	struct ring_buffer_event *event;
    	struct hwlat_entry *entry;
    	unsigned long flags;
    	int pc;
    
    	pc = preempt_count();
    	local_save_flags(flags);
    
    	event = trace_buffer_lock_reserve(buffer, TRACE_HWLAT, sizeof(*entry),
    					  flags, pc);
    	if (!event)
    		return;
    	entry	= ring_buffer_event_data(event);
    	entry->seqnum			= sample->seqnum;
    	entry->duration			= sample->duration;
    	entry->outer_duration		= sample->outer_duration;
    	entry->timestamp		= sample->timestamp;
    	entry->nmi_total_ts		= sample->nmi_total_ts;
    	entry->nmi_count		= sample->nmi_count;
    
    	if (!call_filter_check_discard(call, entry, buffer, event))
    		trace_buffer_unlock_commit_nostack(buffer, event);
    }
    
    /* Macros to encapsulate the time capturing infrastructure */
    #define time_type	u64
    #define time_get()	trace_clock_local()
    #define time_to_us(x)	div_u64(x, 1000)
    #define time_sub(a, b)	((a) - (b))
    #define init_time(a, b)	(a = b)
    #define time_u64(a)	a
    
    void trace_hwlat_callback(bool enter)
    {
    	if (smp_processor_id() != nmi_cpu)
    		return;
    
    	/*
    	 * Currently trace_clock_local() calls sched_clock() and the
    	 * generic version is not NMI safe.
    	 */
    	if (!IS_ENABLED(CONFIG_GENERIC_SCHED_CLOCK)) {
    		if (enter)
    			nmi_ts_start = time_get();
    		else
    			nmi_total_ts = time_get() - nmi_ts_start;
    	}
    
    	if (enter)
    		nmi_count++;
    }
    
    /**
     * get_sample - sample the CPU TSC and look for likely hardware latencies
     *
     * Used to repeatedly capture the CPU TSC (or similar), looking for potential
     * hardware-induced latency. Called with interrupts disabled and with
     * hwlat_data.lock held.
     */
    static int get_sample(void)
    {
    	struct trace_array *tr = hwlat_trace;
    	time_type start, t1, t2, last_t2;
    	s64 diff, total, last_total = 0;
    	u64 sample = 0;
    	u64 thresh = tracing_thresh;
    	u64 outer_sample = 0;
    	int ret = -1;
    
    	do_div(thresh, NSEC_PER_USEC); /* modifies interval value */
    
    	nmi_cpu = smp_processor_id();
    	nmi_total_ts = 0;
    	nmi_count = 0;
    	/* Make sure NMIs see this first */
    	barrier();
    
    	trace_hwlat_callback_enabled = true;
    
    	init_time(last_t2, 0);
    	start = time_get(); /* start timestamp */
    
    	do {
    
    		t1 = time_get();	/* we'll look for a discontinuity */
    		t2 = time_get();
    
    		if (time_u64(last_t2)) {
    			/* Check the delta from outer loop (t2 to next t1) */
    			diff = time_to_us(time_sub(t1, last_t2));
    			/* This shouldn't happen */
    			if (diff < 0) {
    				pr_err(BANNER "time running backwards\n");
    				goto out;
    			}
    			if (diff > outer_sample)
    				outer_sample = diff;
    		}
    		last_t2 = t2;
    
    		total = time_to_us(time_sub(t2, start)); /* sample width */
    
    		/* Check for possible overflows */
    		if (total < last_total) {
    			pr_err("Time total overflowed\n");
    			break;
    		}
    		last_total = total;
    
    		/* This checks the inner loop (t1 to t2) */
    		diff = time_to_us(time_sub(t2, t1));     /* current diff */
    
    		/* This shouldn't happen */
    		if (diff < 0) {
    			pr_err(BANNER "time running backwards\n");
    			goto out;
    		}
    
    		if (diff > sample)
    			sample = diff; /* only want highest value */
    
    	} while (total <= hwlat_data.sample_width);
    
    	barrier(); /* finish the above in the view for NMIs */
    	trace_hwlat_callback_enabled = false;
    	barrier(); /* Make sure nmi_total_ts is no longer updated */
    
    	ret = 0;
    
    	/* If we exceed the threshold value, we have found a hardware latency */
    	if (sample > thresh || outer_sample > thresh) {
    		struct hwlat_sample s;
    
    		ret = 1;
    
    		/* We read in microseconds */
    		if (nmi_total_ts)
    			do_div(nmi_total_ts, NSEC_PER_USEC);
    
    		hwlat_data.count++;
    		s.seqnum = hwlat_data.count;
    		s.duration = sample;
    		s.outer_duration = outer_sample;
    		s.timestamp = CURRENT_TIME;
    		s.nmi_total_ts = nmi_total_ts;
    		s.nmi_count = nmi_count;
    		trace_hwlat_sample(&s);
    
    		/* Keep a running maximum ever recorded hardware latency */
    		if (sample > tr->max_latency)
    			tr->max_latency = sample;
    	}
    
    out:
    	return ret;
    }
    
    static struct cpumask save_cpumask;
    static bool disable_migrate;
    
    static void move_to_next_cpu(bool initmask)
    {
    	static struct cpumask *current_mask;
    	int next_cpu;
    
    	if (disable_migrate)
    		return;
    
    	/* Just pick the first CPU on first iteration */
    	if (initmask) {
    		current_mask = &save_cpumask;
    		get_online_cpus();
    		cpumask_and(current_mask, cpu_online_mask, tracing_buffer_mask);
    		put_online_cpus();
    		next_cpu = cpumask_first(current_mask);
    		goto set_affinity;
    	}
    
    	/*
    	 * If for some reason the user modifies the CPU affinity
    	 * of this thread, than stop migrating for the duration
    	 * of the current test.
    	 */
    	if (!cpumask_equal(current_mask, &current->cpus_allowed))
    		goto disable;
    
    	get_online_cpus();
    	cpumask_and(current_mask, cpu_online_mask, tracing_buffer_mask);
    	next_cpu = cpumask_next(smp_processor_id(), current_mask);
    	put_online_cpus();
    
    	if (next_cpu >= nr_cpu_ids)
    		next_cpu = cpumask_first(current_mask);
    
     set_affinity:
    	if (next_cpu >= nr_cpu_ids) /* Shouldn't happen! */
    		goto disable;
    
    	cpumask_clear(current_mask);
    	cpumask_set_cpu(next_cpu, current_mask);
    
    	sched_setaffinity(0, current_mask);
    	return;
    
     disable:
    	disable_migrate = true;
    }
    
    /*
     * kthread_fn - The CPU time sampling/hardware latency detection kernel thread
     *
     * Used to periodically sample the CPU TSC via a call to get_sample. We
     * disable interrupts, which does (intentionally) introduce latency since we
     * need to ensure nothing else might be running (and thus preempting).
     * Obviously this should never be used in production environments.
     *
     * Currently this runs on which ever CPU it was scheduled on, but most
     * real-world hardware latency situations occur across several CPUs,
     * but we might later generalize this if we find there are any actualy
     * systems with alternate SMI delivery or other hardware latencies.
     */
    static int kthread_fn(void *data)
    {
    	u64 interval;
    	bool initmask = true;
    
    	while (!kthread_should_stop()) {
    
    		move_to_next_cpu(initmask);
    		initmask = false;
    
    		local_irq_disable();
    		get_sample();
    		local_irq_enable();
    
    		mutex_lock(&hwlat_data.lock);
    		interval = hwlat_data.sample_window - hwlat_data.sample_width;
    		mutex_unlock(&hwlat_data.lock);
    
    		do_div(interval, USEC_PER_MSEC); /* modifies interval value */
    
    		/* Always sleep for at least 1ms */
    		if (interval < 1)
    			interval = 1;
    
    		if (msleep_interruptible(interval))
    			break;
    	}
    
    	return 0;
    }
    
    /**
     * start_kthread - Kick off the hardware latency sampling/detector kthread
     *
     * This starts the kernel thread that will sit and sample the CPU timestamp
     * counter (TSC or similar) and look for potential hardware latencies.
     */
    static int start_kthread(struct trace_array *tr)
    {
    	struct task_struct *kthread;
    
    	kthread = kthread_create(kthread_fn, NULL, "hwlatd");
    	if (IS_ERR(kthread)) {
    		pr_err(BANNER "could not start sampling thread\n");
    		return -ENOMEM;
    	}
    	hwlat_kthread = kthread;
    	wake_up_process(kthread);
    
    	return 0;
    }
    
    /**
     * stop_kthread - Inform the hardware latency samping/detector kthread to stop
     *
     * This kicks the running hardware latency sampling/detector kernel thread and
     * tells it to stop sampling now. Use this on unload and at system shutdown.
     */
    static void stop_kthread(void)
    {
    	if (!hwlat_kthread)
    		return;
    	kthread_stop(hwlat_kthread);
    	hwlat_kthread = NULL;
    }
    
    /*
     * hwlat_read - Wrapper read function for reading both window and width
     * @filp: The active open file structure
     * @ubuf: The userspace provided buffer to read value into
     * @cnt: The maximum number of bytes to read
     * @ppos: The current "file" position
     *
     * This function provides a generic read implementation for the global state
     * "hwlat_data" structure filesystem entries.
     */
    static ssize_t hwlat_read(struct file *filp, char __user *ubuf,
    			  size_t cnt, loff_t *ppos)
    {
    	char buf[U64STR_SIZE];
    	u64 *entry = filp->private_data;
    	u64 val;
    	int len;
    
    	if (!entry)
    		return -EFAULT;
    
    	if (cnt > sizeof(buf))
    		cnt = sizeof(buf);
    
    	val = *entry;
    
    	len = snprintf(buf, sizeof(buf), "%llu\n", val);
    
    	return simple_read_from_buffer(ubuf, cnt, ppos, buf, len);
    }
    
    /**
     * hwlat_width_write - Write function for "width" entry
     * @filp: The active open file structure
     * @ubuf: The user buffer that contains the value to write
     * @cnt: The maximum number of bytes to write to "file"
     * @ppos: The current position in @file
     *
     * This function provides a write implementation for the "width" interface
     * to the hardware latency detector. It can be used to configure
     * for how many us of the total window us we will actively sample for any
     * hardware-induced latency periods. Obviously, it is not possible to
     * sample constantly and have the system respond to a sample reader, or,
     * worse, without having the system appear to have gone out to lunch. It
     * is enforced that width is less that the total window size.
     */
    static ssize_t
    hwlat_width_write(struct file *filp, const char __user *ubuf,
    		  size_t cnt, loff_t *ppos)
    {
    	u64 val;
    	int err;
    
    	err = kstrtoull_from_user(ubuf, cnt, 10, &val);
    	if (err)
    		return err;
    
    	mutex_lock(&hwlat_data.lock);
    	if (val < hwlat_data.sample_window)
    		hwlat_data.sample_width = val;
    	else
    		err = -EINVAL;
    	mutex_unlock(&hwlat_data.lock);
    
    	if (err)
    		return err;
    
    	return cnt;
    }
    
    /**
     * hwlat_window_write - Write function for "window" entry
     * @filp: The active open file structure
     * @ubuf: The user buffer that contains the value to write
     * @cnt: The maximum number of bytes to write to "file"
     * @ppos: The current position in @file
     *
     * This function provides a write implementation for the "window" interface
     * to the hardware latency detetector. The window is the total time
     * in us that will be considered one sample period. Conceptually, windows
     * occur back-to-back and contain a sample width period during which
     * actual sampling occurs. Can be used to write a new total window size. It
     * is enfoced that any value written must be greater than the sample width
     * size, or an error results.
     */
    static ssize_t
    hwlat_window_write(struct file *filp, const char __user *ubuf,
    		   size_t cnt, loff_t *ppos)
    {
    	u64 val;
    	int err;
    
    	err = kstrtoull_from_user(ubuf, cnt, 10, &val);
    	if (err)
    		return err;
    
    	mutex_lock(&hwlat_data.lock);
    	if (hwlat_data.sample_width < val)
    		hwlat_data.sample_window = val;
    	else
    		err = -EINVAL;
    	mutex_unlock(&hwlat_data.lock);
    
    	if (err)
    		return err;
    
    	return cnt;
    }
    
    static const struct file_operations width_fops = {
    	.open		= tracing_open_generic,
    	.read		= hwlat_read,
    	.write		= hwlat_width_write,
    };
    
    static const struct file_operations window_fops = {
    	.open		= tracing_open_generic,
    	.read		= hwlat_read,
    	.write		= hwlat_window_write,
    };
    
    /**
     * init_tracefs - A function to initialize the tracefs interface files
     *
     * This function creates entries in tracefs for "hwlat_detector".
     * It creates the hwlat_detector directory in the tracing directory,
     * and within that directory is the count, width and window files to
     * change and view those values.
     */
    static int init_tracefs(void)
    {
    	struct dentry *d_tracer;
    	struct dentry *top_dir;
    
    	d_tracer = tracing_init_dentry();
    	if (IS_ERR(d_tracer))
    		return -ENOMEM;
    
    	top_dir = tracefs_create_dir("hwlat_detector", d_tracer);
    	if (!top_dir)
    		return -ENOMEM;
    
    	hwlat_sample_window = tracefs_create_file("window", 0640,
    						  top_dir,
    						  &hwlat_data.sample_window,
    						  &window_fops);
    	if (!hwlat_sample_window)
    		goto err;
    
    	hwlat_sample_width = tracefs_create_file("width", 0644,
    						 top_dir,
    						 &hwlat_data.sample_width,
    						 &width_fops);
    	if (!hwlat_sample_width)
    		goto err;
    
    	return 0;
    
     err:
    	tracefs_remove_recursive(top_dir);
    	return -ENOMEM;
    }
    
    static void hwlat_tracer_start(struct trace_array *tr)
    {
    	int err;
    
    	err = start_kthread(tr);
    	if (err)
    		pr_err(BANNER "Cannot start hwlat kthread\n");
    }
    
    static void hwlat_tracer_stop(struct trace_array *tr)
    {
    	stop_kthread();
    }
    
    static bool hwlat_busy;
    
    static int hwlat_tracer_init(struct trace_array *tr)
    {
    	/* Only allow one instance to enable this */
    	if (hwlat_busy)
    		return -EBUSY;
    
    	hwlat_trace = tr;
    
    	disable_migrate = false;
    	hwlat_data.count = 0;
    	tr->max_latency = 0;
    	save_tracing_thresh = tracing_thresh;
    
    	/* tracing_thresh is in nsecs, we speak in usecs */
    	if (!tracing_thresh)
    		tracing_thresh = last_tracing_thresh;
    
    	if (tracer_tracing_is_on(tr))
    		hwlat_tracer_start(tr);
    
    	hwlat_busy = true;
    
    	return 0;
    }
    
    static void hwlat_tracer_reset(struct trace_array *tr)
    {
    	stop_kthread();
    
    	/* the tracing threshold is static between runs */
    	last_tracing_thresh = tracing_thresh;
    
    	tracing_thresh = save_tracing_thresh;
    	hwlat_busy = false;
    }
    
    static struct tracer hwlat_tracer __read_mostly =
    {
    	.name		= "hwlat",
    	.init		= hwlat_tracer_init,
    	.reset		= hwlat_tracer_reset,
    	.start		= hwlat_tracer_start,
    	.stop		= hwlat_tracer_stop,
    	.allow_instances = true,
    };
    
    __init static int init_hwlat_tracer(void)
    {
    	int ret;
    
    	mutex_init(&hwlat_data.lock);
    
    	ret = register_tracer(&hwlat_tracer);
    	if (ret)
    		return ret;
    
    	init_tracefs();
    
    	return 0;
    }
    late_initcall(init_hwlat_tracer);