Skip to content
Snippets Groups Projects
Select Git revision
  • 3460d0bc256a50b71dbdae8227c600761c502022
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

expr.h

Blame
  • sock.h 63.71 KiB
    /*
     * INET		An implementation of the TCP/IP protocol suite for the LINUX
     *		operating system.  INET is implemented using the  BSD Socket
     *		interface as the means of communication with the user level.
     *
     *		Definitions for the AF_INET socket handler.
     *
     * Version:	@(#)sock.h	1.0.4	05/13/93
     *
     * Authors:	Ross Biro
     *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
     *		Corey Minyard <wf-rch!minyard@relay.EU.net>
     *		Florian La Roche <flla@stud.uni-sb.de>
     *
     * Fixes:
     *		Alan Cox	:	Volatiles in skbuff pointers. See
     *					skbuff comments. May be overdone,
     *					better to prove they can be removed
     *					than the reverse.
     *		Alan Cox	:	Added a zapped field for tcp to note
     *					a socket is reset and must stay shut up
     *		Alan Cox	:	New fields for options
     *	Pauline Middelink	:	identd support
     *		Alan Cox	:	Eliminate low level recv/recvfrom
     *		David S. Miller	:	New socket lookup architecture.
     *              Steve Whitehouse:       Default routines for sock_ops
     *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
     *              			protinfo be just a void pointer, as the
     *              			protocol specific parts were moved to
     *              			respective headers and ipv4/v6, etc now
     *              			use private slabcaches for its socks
     *              Pedro Hortas	:	New flags field for socket options
     *
     *
     *		This program is free software; you can redistribute it and/or
     *		modify it under the terms of the GNU General Public License
     *		as published by the Free Software Foundation; either version
     *		2 of the License, or (at your option) any later version.
     */
    #ifndef _SOCK_H
    #define _SOCK_H
    
    #include <linux/hardirq.h>
    #include <linux/kernel.h>
    #include <linux/list.h>
    #include <linux/list_nulls.h>
    #include <linux/timer.h>
    #include <linux/cache.h>
    #include <linux/bitops.h>
    #include <linux/lockdep.h>
    #include <linux/netdevice.h>
    #include <linux/skbuff.h>	/* struct sk_buff */
    #include <linux/mm.h>
    #include <linux/security.h>
    #include <linux/slab.h>
    #include <linux/uaccess.h>
    #include <linux/memcontrol.h>
    #include <linux/res_counter.h>
    #include <linux/static_key.h>
    #include <linux/aio.h>
    #include <linux/sched.h>
    
    #include <linux/filter.h>
    #include <linux/rculist_nulls.h>
    #include <linux/poll.h>
    
    #include <linux/atomic.h>
    #include <net/dst.h>
    #include <net/checksum.h>
    #include <linux/net_tstamp.h>
    
    struct cgroup;
    struct cgroup_subsys;
    #ifdef CONFIG_NET
    int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss);
    void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg);
    #else
    static inline
    int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
    {
    	return 0;
    }
    static inline
    void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
    {
    }
    #endif
    /*
     * This structure really needs to be cleaned up.
     * Most of it is for TCP, and not used by any of
     * the other protocols.
     */
    
    /* Define this to get the SOCK_DBG debugging facility. */
    #define SOCK_DEBUGGING
    #ifdef SOCK_DEBUGGING
    #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
    					printk(KERN_DEBUG msg); } while (0)
    #else
    /* Validate arguments and do nothing */
    static inline __printf(2, 3)
    void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
    {
    }
    #endif
    
    /* This is the per-socket lock.  The spinlock provides a synchronization
     * between user contexts and software interrupt processing, whereas the
     * mini-semaphore synchronizes multiple users amongst themselves.
     */
    typedef struct {
    	spinlock_t		slock;
    	int			owned;
    	wait_queue_head_t	wq;
    	/*
    	 * We express the mutex-alike socket_lock semantics
    	 * to the lock validator by explicitly managing
    	 * the slock as a lock variant (in addition to
    	 * the slock itself):
    	 */
    #ifdef CONFIG_DEBUG_LOCK_ALLOC
    	struct lockdep_map dep_map;
    #endif
    } socket_lock_t;
    
    struct sock;
    struct proto;
    struct net;
    
    typedef __u32 __bitwise __portpair;
    typedef __u64 __bitwise __addrpair;
    
    /**
     *	struct sock_common - minimal network layer representation of sockets
     *	@skc_daddr: Foreign IPv4 addr
     *	@skc_rcv_saddr: Bound local IPv4 addr
     *	@skc_hash: hash value used with various protocol lookup tables
     *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
     *	@skc_dport: placeholder for inet_dport/tw_dport
     *	@skc_num: placeholder for inet_num/tw_num
     *	@skc_family: network address family
     *	@skc_state: Connection state
     *	@skc_reuse: %SO_REUSEADDR setting
     *	@skc_reuseport: %SO_REUSEPORT setting
     *	@skc_bound_dev_if: bound device index if != 0
     *	@skc_bind_node: bind hash linkage for various protocol lookup tables
     *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
     *	@skc_prot: protocol handlers inside a network family
     *	@skc_net: reference to the network namespace of this socket
     *	@skc_node: main hash linkage for various protocol lookup tables
     *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
     *	@skc_tx_queue_mapping: tx queue number for this connection
     *	@skc_refcnt: reference count
     *
     *	This is the minimal network layer representation of sockets, the header
     *	for struct sock and struct inet_timewait_sock.
     */
    struct sock_common {
    	/* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
    	 * address on 64bit arches : cf INET_MATCH()
    	 */
    	union {
    		__addrpair	skc_addrpair;
    		struct {
    			__be32	skc_daddr;
    			__be32	skc_rcv_saddr;
    		};
    	};
    	union  {
    		unsigned int	skc_hash;
    		__u16		skc_u16hashes[2];
    	};
    	/* skc_dport && skc_num must be grouped as well */
    	union {
    		__portpair	skc_portpair;
    		struct {
    			__be16	skc_dport;
    			__u16	skc_num;
    		};
    	};
    
    	unsigned short		skc_family;
    	volatile unsigned char	skc_state;
    	unsigned char		skc_reuse:4;
    	unsigned char		skc_reuseport:1;
    	unsigned char		skc_ipv6only:1;
    	int			skc_bound_dev_if;
    	union {
    		struct hlist_node	skc_bind_node;
    		struct hlist_nulls_node skc_portaddr_node;
    	};
    	struct proto		*skc_prot;
    #ifdef CONFIG_NET_NS
    	struct net	 	*skc_net;
    #endif
    
    #if IS_ENABLED(CONFIG_IPV6)
    	struct in6_addr		skc_v6_daddr;
    	struct in6_addr		skc_v6_rcv_saddr;
    #endif
    
    	/*
    	 * fields between dontcopy_begin/dontcopy_end
    	 * are not copied in sock_copy()
    	 */
    	/* private: */
    	int			skc_dontcopy_begin[0];
    	/* public: */
    	union {
    		struct hlist_node	skc_node;
    		struct hlist_nulls_node skc_nulls_node;
    	};
    	int			skc_tx_queue_mapping;
    	atomic_t		skc_refcnt;
    	/* private: */
    	int                     skc_dontcopy_end[0];
    	/* public: */
    };
    
    struct cg_proto;
    /**
      *	struct sock - network layer representation of sockets
      *	@__sk_common: shared layout with inet_timewait_sock
      *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
      *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
      *	@sk_lock:	synchronizer
      *	@sk_rcvbuf: size of receive buffer in bytes
      *	@sk_wq: sock wait queue and async head
      *	@sk_rx_dst: receive input route used by early demux
      *	@sk_dst_cache: destination cache
      *	@sk_dst_lock: destination cache lock
      *	@sk_policy: flow policy
      *	@sk_receive_queue: incoming packets
      *	@sk_wmem_alloc: transmit queue bytes committed
      *	@sk_write_queue: Packet sending queue
      *	@sk_async_wait_queue: DMA copied packets
      *	@sk_omem_alloc: "o" is "option" or "other"
      *	@sk_wmem_queued: persistent queue size
      *	@sk_forward_alloc: space allocated forward
      *	@sk_napi_id: id of the last napi context to receive data for sk
      *	@sk_ll_usec: usecs to busypoll when there is no data
      *	@sk_allocation: allocation mode
      *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
      *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
      *	@sk_sndbuf: size of send buffer in bytes
      *	@sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
      *		   %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
      *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
      *	@sk_no_check_rx: allow zero checksum in RX packets
      *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
      *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
      *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
      *	@sk_gso_max_size: Maximum GSO segment size to build
      *	@sk_gso_max_segs: Maximum number of GSO segments
      *	@sk_lingertime: %SO_LINGER l_linger setting
      *	@sk_backlog: always used with the per-socket spinlock held
      *	@sk_callback_lock: used with the callbacks in the end of this struct
      *	@sk_error_queue: rarely used
      *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
      *			  IPV6_ADDRFORM for instance)
      *	@sk_err: last error
      *	@sk_err_soft: errors that don't cause failure but are the cause of a
      *		      persistent failure not just 'timed out'
      *	@sk_drops: raw/udp drops counter
      *	@sk_ack_backlog: current listen backlog
      *	@sk_max_ack_backlog: listen backlog set in listen()
      *	@sk_priority: %SO_PRIORITY setting
      *	@sk_cgrp_prioidx: socket group's priority map index
      *	@sk_type: socket type (%SOCK_STREAM, etc)
      *	@sk_protocol: which protocol this socket belongs in this network family
      *	@sk_peer_pid: &struct pid for this socket's peer
      *	@sk_peer_cred: %SO_PEERCRED setting
      *	@sk_rcvlowat: %SO_RCVLOWAT setting
      *	@sk_rcvtimeo: %SO_RCVTIMEO setting
      *	@sk_sndtimeo: %SO_SNDTIMEO setting
      *	@sk_rxhash: flow hash received from netif layer
      *	@sk_txhash: computed flow hash for use on transmit
      *	@sk_filter: socket filtering instructions
      *	@sk_protinfo: private area, net family specific, when not using slab
      *	@sk_timer: sock cleanup timer
      *	@sk_stamp: time stamp of last packet received
      *	@sk_tsflags: SO_TIMESTAMPING socket options
      *	@sk_socket: Identd and reporting IO signals
      *	@sk_user_data: RPC layer private data
      *	@sk_frag: cached page frag
      *	@sk_peek_off: current peek_offset value
      *	@sk_send_head: front of stuff to transmit
      *	@sk_security: used by security modules
      *	@sk_mark: generic packet mark
      *	@sk_classid: this socket's cgroup classid
      *	@sk_cgrp: this socket's cgroup-specific proto data
      *	@sk_write_pending: a write to stream socket waits to start
      *	@sk_state_change: callback to indicate change in the state of the sock
      *	@sk_data_ready: callback to indicate there is data to be processed
      *	@sk_write_space: callback to indicate there is bf sending space available
      *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
      *	@sk_backlog_rcv: callback to process the backlog
      *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
     */
    struct sock {
    	/*
    	 * Now struct inet_timewait_sock also uses sock_common, so please just
    	 * don't add nothing before this first member (__sk_common) --acme
    	 */
    	struct sock_common	__sk_common;
    #define sk_node			__sk_common.skc_node
    #define sk_nulls_node		__sk_common.skc_nulls_node
    #define sk_refcnt		__sk_common.skc_refcnt
    #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
    
    #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
    #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
    #define sk_hash			__sk_common.skc_hash
    #define sk_portpair		__sk_common.skc_portpair
    #define sk_num			__sk_common.skc_num
    #define sk_dport		__sk_common.skc_dport
    #define sk_addrpair		__sk_common.skc_addrpair
    #define sk_daddr		__sk_common.skc_daddr
    #define sk_rcv_saddr		__sk_common.skc_rcv_saddr
    #define sk_family		__sk_common.skc_family
    #define sk_state		__sk_common.skc_state
    #define sk_reuse		__sk_common.skc_reuse
    #define sk_reuseport		__sk_common.skc_reuseport
    #define sk_ipv6only		__sk_common.skc_ipv6only
    #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
    #define sk_bind_node		__sk_common.skc_bind_node
    #define sk_prot			__sk_common.skc_prot
    #define sk_net			__sk_common.skc_net
    #define sk_v6_daddr		__sk_common.skc_v6_daddr
    #define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
    
    	socket_lock_t		sk_lock;
    	struct sk_buff_head	sk_receive_queue;
    	/*
    	 * The backlog queue is special, it is always used with
    	 * the per-socket spinlock held and requires low latency
    	 * access. Therefore we special case it's implementation.
    	 * Note : rmem_alloc is in this structure to fill a hole
    	 * on 64bit arches, not because its logically part of
    	 * backlog.
    	 */
    	struct {
    		atomic_t	rmem_alloc;
    		int		len;
    		struct sk_buff	*head;
    		struct sk_buff	*tail;
    	} sk_backlog;
    #define sk_rmem_alloc sk_backlog.rmem_alloc
    	int			sk_forward_alloc;
    #ifdef CONFIG_RPS
    	__u32			sk_rxhash;
    #endif
    	__u32			sk_txhash;
    #ifdef CONFIG_NET_RX_BUSY_POLL
    	unsigned int		sk_napi_id;
    	unsigned int		sk_ll_usec;
    #endif
    	atomic_t		sk_drops;
    	int			sk_rcvbuf;
    
    	struct sk_filter __rcu	*sk_filter;
    	struct socket_wq __rcu	*sk_wq;
    
    #ifdef CONFIG_NET_DMA
    	struct sk_buff_head	sk_async_wait_queue;
    #endif
    
    #ifdef CONFIG_XFRM
    	struct xfrm_policy	*sk_policy[2];
    #endif
    	unsigned long 		sk_flags;
    	struct dst_entry	*sk_rx_dst;
    	struct dst_entry __rcu	*sk_dst_cache;
    	spinlock_t		sk_dst_lock;
    	atomic_t		sk_wmem_alloc;
    	atomic_t		sk_omem_alloc;
    	int			sk_sndbuf;
    	struct sk_buff_head	sk_write_queue;
    	kmemcheck_bitfield_begin(flags);
    	unsigned int		sk_shutdown  : 2,
    				sk_no_check_tx : 1,
    				sk_no_check_rx : 1,
    				sk_userlocks : 4,
    				sk_protocol  : 8,
    				sk_type      : 16;
    	kmemcheck_bitfield_end(flags);
    	int			sk_wmem_queued;
    	gfp_t			sk_allocation;
    	u32			sk_pacing_rate; /* bytes per second */
    	u32			sk_max_pacing_rate;
    	netdev_features_t	sk_route_caps;
    	netdev_features_t	sk_route_nocaps;
    	int			sk_gso_type;
    	unsigned int		sk_gso_max_size;
    	u16			sk_gso_max_segs;
    	int			sk_rcvlowat;
    	unsigned long	        sk_lingertime;
    	struct sk_buff_head	sk_error_queue;
    	struct proto		*sk_prot_creator;
    	rwlock_t		sk_callback_lock;
    	int			sk_err,
    				sk_err_soft;
    	unsigned short		sk_ack_backlog;
    	unsigned short		sk_max_ack_backlog;
    	__u32			sk_priority;
    #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
    	__u32			sk_cgrp_prioidx;
    #endif
    	struct pid		*sk_peer_pid;
    	const struct cred	*sk_peer_cred;
    	long			sk_rcvtimeo;
    	long			sk_sndtimeo;
    	void			*sk_protinfo;
    	struct timer_list	sk_timer;
    	ktime_t			sk_stamp;
    	u16			sk_tsflags;
    	struct socket		*sk_socket;
    	void			*sk_user_data;
    	struct page_frag	sk_frag;
    	struct sk_buff		*sk_send_head;
    	__s32			sk_peek_off;
    	int			sk_write_pending;
    #ifdef CONFIG_SECURITY
    	void			*sk_security;
    #endif
    	__u32			sk_mark;
    	u32			sk_classid;
    	struct cg_proto		*sk_cgrp;
    	void			(*sk_state_change)(struct sock *sk);
    	void			(*sk_data_ready)(struct sock *sk);
    	void			(*sk_write_space)(struct sock *sk);
    	void			(*sk_error_report)(struct sock *sk);
    	int			(*sk_backlog_rcv)(struct sock *sk,
    						  struct sk_buff *skb);
    	void                    (*sk_destruct)(struct sock *sk);
    };
    
    #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
    
    #define rcu_dereference_sk_user_data(sk)	rcu_dereference(__sk_user_data((sk)))
    #define rcu_assign_sk_user_data(sk, ptr)	rcu_assign_pointer(__sk_user_data((sk)), ptr)
    
    /*
     * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
     * or not whether his port will be reused by someone else. SK_FORCE_REUSE
     * on a socket means that the socket will reuse everybody else's port
     * without looking at the other's sk_reuse value.
     */
    
    #define SK_NO_REUSE	0
    #define SK_CAN_REUSE	1
    #define SK_FORCE_REUSE	2
    
    static inline int sk_peek_offset(struct sock *sk, int flags)
    {
    	if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0))
    		return sk->sk_peek_off;
    	else
    		return 0;
    }
    
    static inline void sk_peek_offset_bwd(struct sock *sk, int val)
    {
    	if (sk->sk_peek_off >= 0) {
    		if (sk->sk_peek_off >= val)
    			sk->sk_peek_off -= val;
    		else
    			sk->sk_peek_off = 0;
    	}
    }
    
    static inline void sk_peek_offset_fwd(struct sock *sk, int val)
    {
    	if (sk->sk_peek_off >= 0)
    		sk->sk_peek_off += val;
    }
    
    /*
     * Hashed lists helper routines
     */
    static inline struct sock *sk_entry(const struct hlist_node *node)
    {
    	return hlist_entry(node, struct sock, sk_node);
    }
    
    static inline struct sock *__sk_head(const struct hlist_head *head)
    {
    	return hlist_entry(head->first, struct sock, sk_node);
    }
    
    static inline struct sock *sk_head(const struct hlist_head *head)
    {
    	return hlist_empty(head) ? NULL : __sk_head(head);
    }
    
    static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
    {
    	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
    }
    
    static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
    {
    	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
    }
    
    static inline struct sock *sk_next(const struct sock *sk)
    {
    	return sk->sk_node.next ?
    		hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
    }
    
    static inline struct sock *sk_nulls_next(const struct sock *sk)
    {
    	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
    		hlist_nulls_entry(sk->sk_nulls_node.next,
    				  struct sock, sk_nulls_node) :
    		NULL;
    }
    
    static inline bool sk_unhashed(const struct sock *sk)
    {
    	return hlist_unhashed(&sk->sk_node);
    }
    
    static inline bool sk_hashed(const struct sock *sk)
    {
    	return !sk_unhashed(sk);
    }
    
    static inline void sk_node_init(struct hlist_node *node)
    {
    	node->pprev = NULL;
    }
    
    static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
    {
    	node->pprev = NULL;
    }
    
    static inline void __sk_del_node(struct sock *sk)
    {
    	__hlist_del(&sk->sk_node);
    }
    
    /* NB: equivalent to hlist_del_init_rcu */
    static inline bool __sk_del_node_init(struct sock *sk)
    {
    	if (sk_hashed(sk)) {
    		__sk_del_node(sk);
    		sk_node_init(&sk->sk_node);
    		return true;
    	}
    	return false;
    }
    
    /* Grab socket reference count. This operation is valid only
       when sk is ALREADY grabbed f.e. it is found in hash table
       or a list and the lookup is made under lock preventing hash table
       modifications.
     */
    
    static inline void sock_hold(struct sock *sk)
    {
    	atomic_inc(&sk->sk_refcnt);
    }
    
    /* Ungrab socket in the context, which assumes that socket refcnt
       cannot hit zero, f.e. it is true in context of any socketcall.
     */
    static inline void __sock_put(struct sock *sk)
    {
    	atomic_dec(&sk->sk_refcnt);
    }
    
    static inline bool sk_del_node_init(struct sock *sk)
    {
    	bool rc = __sk_del_node_init(sk);
    
    	if (rc) {
    		/* paranoid for a while -acme */
    		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
    		__sock_put(sk);
    	}
    	return rc;
    }
    #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
    
    static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
    {
    	if (sk_hashed(sk)) {
    		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
    		return true;
    	}
    	return false;
    }
    
    static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
    {
    	bool rc = __sk_nulls_del_node_init_rcu(sk);
    
    	if (rc) {
    		/* paranoid for a while -acme */
    		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
    		__sock_put(sk);
    	}
    	return rc;
    }
    
    static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
    {
    	hlist_add_head(&sk->sk_node, list);
    }
    
    static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
    {
    	sock_hold(sk);
    	__sk_add_node(sk, list);
    }
    
    static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
    {
    	sock_hold(sk);
    	hlist_add_head_rcu(&sk->sk_node, list);
    }
    
    static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
    {
    	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
    }
    
    static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
    {
    	sock_hold(sk);
    	__sk_nulls_add_node_rcu(sk, list);
    }
    
    static inline void __sk_del_bind_node(struct sock *sk)
    {
    	__hlist_del(&sk->sk_bind_node);
    }
    
    static inline void sk_add_bind_node(struct sock *sk,
    					struct hlist_head *list)
    {
    	hlist_add_head(&sk->sk_bind_node, list);
    }
    
    #define sk_for_each(__sk, list) \
    	hlist_for_each_entry(__sk, list, sk_node)
    #define sk_for_each_rcu(__sk, list) \
    	hlist_for_each_entry_rcu(__sk, list, sk_node)
    #define sk_nulls_for_each(__sk, node, list) \
    	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
    #define sk_nulls_for_each_rcu(__sk, node, list) \
    	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
    #define sk_for_each_from(__sk) \
    	hlist_for_each_entry_from(__sk, sk_node)
    #define sk_nulls_for_each_from(__sk, node) \
    	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
    		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
    #define sk_for_each_safe(__sk, tmp, list) \
    	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
    #define sk_for_each_bound(__sk, list) \
    	hlist_for_each_entry(__sk, list, sk_bind_node)
    
    /**
     * sk_nulls_for_each_entry_offset - iterate over a list at a given struct offset
     * @tpos:	the type * to use as a loop cursor.
     * @pos:	the &struct hlist_node to use as a loop cursor.
     * @head:	the head for your list.
     * @offset:	offset of hlist_node within the struct.
     *
     */
    #define sk_nulls_for_each_entry_offset(tpos, pos, head, offset)		       \
    	for (pos = (head)->first;					       \
    	     (!is_a_nulls(pos)) &&					       \
    		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
    	     pos = pos->next)
    
    static inline struct user_namespace *sk_user_ns(struct sock *sk)
    {
    	/* Careful only use this in a context where these parameters
    	 * can not change and must all be valid, such as recvmsg from
    	 * userspace.
    	 */
    	return sk->sk_socket->file->f_cred->user_ns;
    }
    
    /* Sock flags */
    enum sock_flags {
    	SOCK_DEAD,
    	SOCK_DONE,
    	SOCK_URGINLINE,
    	SOCK_KEEPOPEN,
    	SOCK_LINGER,
    	SOCK_DESTROY,
    	SOCK_BROADCAST,
    	SOCK_TIMESTAMP,
    	SOCK_ZAPPED,
    	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
    	SOCK_DBG, /* %SO_DEBUG setting */
    	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
    	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
    	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
    	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
    	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
    	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
    	SOCK_FASYNC, /* fasync() active */
    	SOCK_RXQ_OVFL,
    	SOCK_ZEROCOPY, /* buffers from userspace */
    	SOCK_WIFI_STATUS, /* push wifi status to userspace */
    	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
    		     * Will use last 4 bytes of packet sent from
    		     * user-space instead.
    		     */
    	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
    	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
    };
    
    static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
    {
    	nsk->sk_flags = osk->sk_flags;
    }
    
    static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
    {
    	__set_bit(flag, &sk->sk_flags);
    }
    
    static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
    {
    	__clear_bit(flag, &sk->sk_flags);
    }
    
    static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
    {
    	return test_bit(flag, &sk->sk_flags);
    }
    
    #ifdef CONFIG_NET
    extern struct static_key memalloc_socks;
    static inline int sk_memalloc_socks(void)
    {
    	return static_key_false(&memalloc_socks);
    }
    #else
    
    static inline int sk_memalloc_socks(void)
    {
    	return 0;
    }
    
    #endif
    
    static inline gfp_t sk_gfp_atomic(struct sock *sk, gfp_t gfp_mask)
    {
    	return GFP_ATOMIC | (sk->sk_allocation & __GFP_MEMALLOC);
    }
    
    static inline void sk_acceptq_removed(struct sock *sk)
    {
    	sk->sk_ack_backlog--;
    }
    
    static inline void sk_acceptq_added(struct sock *sk)
    {
    	sk->sk_ack_backlog++;
    }
    
    static inline bool sk_acceptq_is_full(const struct sock *sk)
    {
    	return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
    }
    
    /*
     * Compute minimal free write space needed to queue new packets.
     */
    static inline int sk_stream_min_wspace(const struct sock *sk)
    {
    	return sk->sk_wmem_queued >> 1;
    }
    
    static inline int sk_stream_wspace(const struct sock *sk)
    {
    	return sk->sk_sndbuf - sk->sk_wmem_queued;
    }
    
    void sk_stream_write_space(struct sock *sk);
    
    /* OOB backlog add */
    static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
    {
    	/* dont let skb dst not refcounted, we are going to leave rcu lock */
    	skb_dst_force(skb);
    
    	if (!sk->sk_backlog.tail)
    		sk->sk_backlog.head = skb;
    	else
    		sk->sk_backlog.tail->next = skb;
    
    	sk->sk_backlog.tail = skb;
    	skb->next = NULL;
    }
    
    /*
     * Take into account size of receive queue and backlog queue
     * Do not take into account this skb truesize,
     * to allow even a single big packet to come.
     */
    static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
    {
    	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
    
    	return qsize > limit;
    }
    
    /* The per-socket spinlock must be held here. */
    static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
    					      unsigned int limit)
    {
    	if (sk_rcvqueues_full(sk, limit))
    		return -ENOBUFS;
    
    	__sk_add_backlog(sk, skb);
    	sk->sk_backlog.len += skb->truesize;
    	return 0;
    }
    
    int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
    
    static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
    {
    	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
    		return __sk_backlog_rcv(sk, skb);
    
    	return sk->sk_backlog_rcv(sk, skb);
    }
    
    static inline void sock_rps_record_flow_hash(__u32 hash)
    {
    #ifdef CONFIG_RPS
    	struct rps_sock_flow_table *sock_flow_table;
    
    	rcu_read_lock();
    	sock_flow_table = rcu_dereference(rps_sock_flow_table);
    	rps_record_sock_flow(sock_flow_table, hash);
    	rcu_read_unlock();
    #endif
    }
    
    static inline void sock_rps_reset_flow_hash(__u32 hash)
    {
    #ifdef CONFIG_RPS
    	struct rps_sock_flow_table *sock_flow_table;
    
    	rcu_read_lock();
    	sock_flow_table = rcu_dereference(rps_sock_flow_table);
    	rps_reset_sock_flow(sock_flow_table, hash);
    	rcu_read_unlock();
    #endif
    }
    
    static inline void sock_rps_record_flow(const struct sock *sk)
    {
    #ifdef CONFIG_RPS
    	sock_rps_record_flow_hash(sk->sk_rxhash);
    #endif
    }
    
    static inline void sock_rps_reset_flow(const struct sock *sk)
    {
    #ifdef CONFIG_RPS
    	sock_rps_reset_flow_hash(sk->sk_rxhash);
    #endif
    }
    
    static inline void sock_rps_save_rxhash(struct sock *sk,
    					const struct sk_buff *skb)
    {
    #ifdef CONFIG_RPS
    	if (unlikely(sk->sk_rxhash != skb->hash)) {
    		sock_rps_reset_flow(sk);
    		sk->sk_rxhash = skb->hash;
    	}
    #endif
    }
    
    static inline void sock_rps_reset_rxhash(struct sock *sk)
    {
    #ifdef CONFIG_RPS
    	sock_rps_reset_flow(sk);
    	sk->sk_rxhash = 0;
    #endif
    }
    
    #define sk_wait_event(__sk, __timeo, __condition)			\
    	({	int __rc;						\
    		release_sock(__sk);					\
    		__rc = __condition;					\
    		if (!__rc) {						\
    			*(__timeo) = schedule_timeout(*(__timeo));	\
    		}							\
    		lock_sock(__sk);					\
    		__rc = __condition;					\
    		__rc;							\
    	})
    
    int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
    int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
    void sk_stream_wait_close(struct sock *sk, long timeo_p);
    int sk_stream_error(struct sock *sk, int flags, int err);
    void sk_stream_kill_queues(struct sock *sk);
    void sk_set_memalloc(struct sock *sk);
    void sk_clear_memalloc(struct sock *sk);
    
    int sk_wait_data(struct sock *sk, long *timeo);
    
    struct request_sock_ops;
    struct timewait_sock_ops;
    struct inet_hashinfo;
    struct raw_hashinfo;
    struct module;
    
    /*
     * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
     * un-modified. Special care is taken when initializing object to zero.
     */
    static inline void sk_prot_clear_nulls(struct sock *sk, int size)
    {
    	if (offsetof(struct sock, sk_node.next) != 0)
    		memset(sk, 0, offsetof(struct sock, sk_node.next));
    	memset(&sk->sk_node.pprev, 0,
    	       size - offsetof(struct sock, sk_node.pprev));
    }
    
    /* Networking protocol blocks we attach to sockets.
     * socket layer -> transport layer interface
     * transport -> network interface is defined by struct inet_proto
     */
    struct proto {
    	void			(*close)(struct sock *sk,
    					long timeout);
    	int			(*connect)(struct sock *sk,
    					struct sockaddr *uaddr,
    					int addr_len);
    	int			(*disconnect)(struct sock *sk, int flags);
    
    	struct sock *		(*accept)(struct sock *sk, int flags, int *err);
    
    	int			(*ioctl)(struct sock *sk, int cmd,
    					 unsigned long arg);
    	int			(*init)(struct sock *sk);
    	void			(*destroy)(struct sock *sk);
    	void			(*shutdown)(struct sock *sk, int how);
    	int			(*setsockopt)(struct sock *sk, int level,
    					int optname, char __user *optval,
    					unsigned int optlen);
    	int			(*getsockopt)(struct sock *sk, int level,
    					int optname, char __user *optval,
    					int __user *option);
    #ifdef CONFIG_COMPAT
    	int			(*compat_setsockopt)(struct sock *sk,
    					int level,
    					int optname, char __user *optval,
    					unsigned int optlen);
    	int			(*compat_getsockopt)(struct sock *sk,
    					int level,
    					int optname, char __user *optval,
    					int __user *option);
    	int			(*compat_ioctl)(struct sock *sk,
    					unsigned int cmd, unsigned long arg);
    #endif
    	int			(*sendmsg)(struct kiocb *iocb, struct sock *sk,
    					   struct msghdr *msg, size_t len);
    	int			(*recvmsg)(struct kiocb *iocb, struct sock *sk,
    					   struct msghdr *msg,
    					   size_t len, int noblock, int flags,
    					   int *addr_len);
    	int			(*sendpage)(struct sock *sk, struct page *page,
    					int offset, size_t size, int flags);
    	int			(*bind)(struct sock *sk,
    					struct sockaddr *uaddr, int addr_len);
    
    	int			(*backlog_rcv) (struct sock *sk,
    						struct sk_buff *skb);
    
    	void		(*release_cb)(struct sock *sk);
    	void		(*mtu_reduced)(struct sock *sk);
    
    	/* Keeping track of sk's, looking them up, and port selection methods. */
    	void			(*hash)(struct sock *sk);
    	void			(*unhash)(struct sock *sk);
    	void			(*rehash)(struct sock *sk);
    	int			(*get_port)(struct sock *sk, unsigned short snum);
    	void			(*clear_sk)(struct sock *sk, int size);
    
    	/* Keeping track of sockets in use */
    #ifdef CONFIG_PROC_FS
    	unsigned int		inuse_idx;
    #endif
    
    	bool			(*stream_memory_free)(const struct sock *sk);
    	/* Memory pressure */
    	void			(*enter_memory_pressure)(struct sock *sk);
    	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
    	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
    	/*
    	 * Pressure flag: try to collapse.
    	 * Technical note: it is used by multiple contexts non atomically.
    	 * All the __sk_mem_schedule() is of this nature: accounting
    	 * is strict, actions are advisory and have some latency.
    	 */
    	int			*memory_pressure;
    	long			*sysctl_mem;
    	int			*sysctl_wmem;
    	int			*sysctl_rmem;
    	int			max_header;
    	bool			no_autobind;
    
    	struct kmem_cache	*slab;
    	unsigned int		obj_size;
    	int			slab_flags;
    
    	struct percpu_counter	*orphan_count;
    
    	struct request_sock_ops	*rsk_prot;
    	struct timewait_sock_ops *twsk_prot;
    
    	union {
    		struct inet_hashinfo	*hashinfo;
    		struct udp_table	*udp_table;
    		struct raw_hashinfo	*raw_hash;
    	} h;
    
    	struct module		*owner;
    
    	char			name[32];
    
    	struct list_head	node;
    #ifdef SOCK_REFCNT_DEBUG
    	atomic_t		socks;
    #endif
    #ifdef CONFIG_MEMCG_KMEM
    	/*
    	 * cgroup specific init/deinit functions. Called once for all
    	 * protocols that implement it, from cgroups populate function.
    	 * This function has to setup any files the protocol want to
    	 * appear in the kmem cgroup filesystem.
    	 */
    	int			(*init_cgroup)(struct mem_cgroup *memcg,
    					       struct cgroup_subsys *ss);
    	void			(*destroy_cgroup)(struct mem_cgroup *memcg);
    	struct cg_proto		*(*proto_cgroup)(struct mem_cgroup *memcg);
    #endif
    };
    
    /*
     * Bits in struct cg_proto.flags
     */
    enum cg_proto_flags {
    	/* Currently active and new sockets should be assigned to cgroups */
    	MEMCG_SOCK_ACTIVE,
    	/* It was ever activated; we must disarm static keys on destruction */
    	MEMCG_SOCK_ACTIVATED,
    };
    
    struct cg_proto {
    	struct res_counter	memory_allocated;	/* Current allocated memory. */
    	struct percpu_counter	sockets_allocated;	/* Current number of sockets. */
    	int			memory_pressure;
    	long			sysctl_mem[3];
    	unsigned long		flags;
    	/*
    	 * memcg field is used to find which memcg we belong directly
    	 * Each memcg struct can hold more than one cg_proto, so container_of
    	 * won't really cut.
    	 *
    	 * The elegant solution would be having an inverse function to
    	 * proto_cgroup in struct proto, but that means polluting the structure
    	 * for everybody, instead of just for memcg users.
    	 */
    	struct mem_cgroup	*memcg;
    };
    
    int proto_register(struct proto *prot, int alloc_slab);
    void proto_unregister(struct proto *prot);
    
    static inline bool memcg_proto_active(struct cg_proto *cg_proto)
    {
    	return test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags);
    }
    
    static inline bool memcg_proto_activated(struct cg_proto *cg_proto)
    {
    	return test_bit(MEMCG_SOCK_ACTIVATED, &cg_proto->flags);
    }
    
    #ifdef SOCK_REFCNT_DEBUG
    static inline void sk_refcnt_debug_inc(struct sock *sk)
    {
    	atomic_inc(&sk->sk_prot->socks);
    }
    
    static inline void sk_refcnt_debug_dec(struct sock *sk)
    {
    	atomic_dec(&sk->sk_prot->socks);
    	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
    	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
    }
    
    static inline void sk_refcnt_debug_release(const struct sock *sk)
    {
    	if (atomic_read(&sk->sk_refcnt) != 1)
    		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
    		       sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
    }
    #else /* SOCK_REFCNT_DEBUG */
    #define sk_refcnt_debug_inc(sk) do { } while (0)
    #define sk_refcnt_debug_dec(sk) do { } while (0)
    #define sk_refcnt_debug_release(sk) do { } while (0)
    #endif /* SOCK_REFCNT_DEBUG */
    
    #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET)
    extern struct static_key memcg_socket_limit_enabled;
    static inline struct cg_proto *parent_cg_proto(struct proto *proto,
    					       struct cg_proto *cg_proto)
    {
    	return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg));
    }
    #define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled)
    #else
    #define mem_cgroup_sockets_enabled 0
    static inline struct cg_proto *parent_cg_proto(struct proto *proto,
    					       struct cg_proto *cg_proto)
    {
    	return NULL;
    }
    #endif
    
    static inline bool sk_stream_memory_free(const struct sock *sk)
    {
    	if (sk->sk_wmem_queued >= sk->sk_sndbuf)
    		return false;
    
    	return sk->sk_prot->stream_memory_free ?
    		sk->sk_prot->stream_memory_free(sk) : true;
    }
    
    static inline bool sk_stream_is_writeable(const struct sock *sk)
    {
    	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
    	       sk_stream_memory_free(sk);
    }
    
    
    static inline bool sk_has_memory_pressure(const struct sock *sk)
    {
    	return sk->sk_prot->memory_pressure != NULL;
    }
    
    static inline bool sk_under_memory_pressure(const struct sock *sk)
    {
    	if (!sk->sk_prot->memory_pressure)
    		return false;
    
    	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
    		return !!sk->sk_cgrp->memory_pressure;
    
    	return !!*sk->sk_prot->memory_pressure;
    }
    
    static inline void sk_leave_memory_pressure(struct sock *sk)
    {
    	int *memory_pressure = sk->sk_prot->memory_pressure;
    
    	if (!memory_pressure)
    		return;
    
    	if (*memory_pressure)
    		*memory_pressure = 0;
    
    	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
    		struct cg_proto *cg_proto = sk->sk_cgrp;
    		struct proto *prot = sk->sk_prot;
    
    		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
    			cg_proto->memory_pressure = 0;
    	}
    
    }
    
    static inline void sk_enter_memory_pressure(struct sock *sk)
    {
    	if (!sk->sk_prot->enter_memory_pressure)
    		return;
    
    	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
    		struct cg_proto *cg_proto = sk->sk_cgrp;
    		struct proto *prot = sk->sk_prot;
    
    		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
    			cg_proto->memory_pressure = 1;
    	}
    
    	sk->sk_prot->enter_memory_pressure(sk);
    }
    
    static inline long sk_prot_mem_limits(const struct sock *sk, int index)
    {
    	long *prot = sk->sk_prot->sysctl_mem;
    	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
    		prot = sk->sk_cgrp->sysctl_mem;
    	return prot[index];
    }
    
    static inline void memcg_memory_allocated_add(struct cg_proto *prot,
    					      unsigned long amt,
    					      int *parent_status)
    {
    	struct res_counter *fail;
    	int ret;
    
    	ret = res_counter_charge_nofail(&prot->memory_allocated,
    					amt << PAGE_SHIFT, &fail);
    	if (ret < 0)
    		*parent_status = OVER_LIMIT;
    }
    
    static inline void memcg_memory_allocated_sub(struct cg_proto *prot,
    					      unsigned long amt)
    {
    	res_counter_uncharge(&prot->memory_allocated, amt << PAGE_SHIFT);
    }
    
    static inline u64 memcg_memory_allocated_read(struct cg_proto *prot)
    {
    	u64 ret;
    	ret = res_counter_read_u64(&prot->memory_allocated, RES_USAGE);
    	return ret >> PAGE_SHIFT;
    }
    
    static inline long
    sk_memory_allocated(const struct sock *sk)
    {
    	struct proto *prot = sk->sk_prot;
    	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
    		return memcg_memory_allocated_read(sk->sk_cgrp);
    
    	return atomic_long_read(prot->memory_allocated);
    }
    
    static inline long
    sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status)
    {
    	struct proto *prot = sk->sk_prot;
    
    	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
    		memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status);
    		/* update the root cgroup regardless */
    		atomic_long_add_return(amt, prot->memory_allocated);
    		return memcg_memory_allocated_read(sk->sk_cgrp);
    	}
    
    	return atomic_long_add_return(amt, prot->memory_allocated);
    }
    
    static inline void
    sk_memory_allocated_sub(struct sock *sk, int amt)
    {
    	struct proto *prot = sk->sk_prot;
    
    	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
    		memcg_memory_allocated_sub(sk->sk_cgrp, amt);
    
    	atomic_long_sub(amt, prot->memory_allocated);
    }
    
    static inline void sk_sockets_allocated_dec(struct sock *sk)
    {
    	struct proto *prot = sk->sk_prot;
    
    	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
    		struct cg_proto *cg_proto = sk->sk_cgrp;
    
    		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
    			percpu_counter_dec(&cg_proto->sockets_allocated);
    	}
    
    	percpu_counter_dec(prot->sockets_allocated);
    }
    
    static inline void sk_sockets_allocated_inc(struct sock *sk)
    {
    	struct proto *prot = sk->sk_prot;
    
    	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
    		struct cg_proto *cg_proto = sk->sk_cgrp;
    
    		for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
    			percpu_counter_inc(&cg_proto->sockets_allocated);
    	}
    
    	percpu_counter_inc(prot->sockets_allocated);
    }
    
    static inline int
    sk_sockets_allocated_read_positive(struct sock *sk)
    {
    	struct proto *prot = sk->sk_prot;
    
    	if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
    		return percpu_counter_read_positive(&sk->sk_cgrp->sockets_allocated);
    
    	return percpu_counter_read_positive(prot->sockets_allocated);
    }
    
    static inline int
    proto_sockets_allocated_sum_positive(struct proto *prot)
    {
    	return percpu_counter_sum_positive(prot->sockets_allocated);
    }
    
    static inline long
    proto_memory_allocated(struct proto *prot)
    {
    	return atomic_long_read(prot->memory_allocated);
    }
    
    static inline bool
    proto_memory_pressure(struct proto *prot)
    {
    	if (!prot->memory_pressure)
    		return false;
    	return !!*prot->memory_pressure;
    }
    
    
    #ifdef CONFIG_PROC_FS
    /* Called with local bh disabled */
    void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
    int sock_prot_inuse_get(struct net *net, struct proto *proto);
    #else
    static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
    		int inc)
    {
    }
    #endif
    
    
    /* With per-bucket locks this operation is not-atomic, so that
     * this version is not worse.
     */
    static inline void __sk_prot_rehash(struct sock *sk)
    {
    	sk->sk_prot->unhash(sk);
    	sk->sk_prot->hash(sk);
    }
    
    void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
    
    /* About 10 seconds */
    #define SOCK_DESTROY_TIME (10*HZ)
    
    /* Sockets 0-1023 can't be bound to unless you are superuser */
    #define PROT_SOCK	1024
    
    #define SHUTDOWN_MASK	3
    #define RCV_SHUTDOWN	1
    #define SEND_SHUTDOWN	2
    
    #define SOCK_SNDBUF_LOCK	1
    #define SOCK_RCVBUF_LOCK	2
    #define SOCK_BINDADDR_LOCK	4
    #define SOCK_BINDPORT_LOCK	8
    
    /* sock_iocb: used to kick off async processing of socket ios */
    struct sock_iocb {
    	struct list_head	list;
    
    	int			flags;
    	int			size;
    	struct socket		*sock;
    	struct sock		*sk;
    	struct scm_cookie	*scm;
    	struct msghdr		*msg, async_msg;
    	struct kiocb		*kiocb;
    };
    
    static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
    {
    	return (struct sock_iocb *)iocb->private;
    }
    
    static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
    {
    	return si->kiocb;
    }
    
    struct socket_alloc {
    	struct socket socket;
    	struct inode vfs_inode;
    };
    
    static inline struct socket *SOCKET_I(struct inode *inode)
    {
    	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
    }
    
    static inline struct inode *SOCK_INODE(struct socket *socket)
    {
    	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
    }
    
    /*
     * Functions for memory accounting
     */
    int __sk_mem_schedule(struct sock *sk, int size, int kind);
    void __sk_mem_reclaim(struct sock *sk);
    
    #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
    #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
    #define SK_MEM_SEND	0
    #define SK_MEM_RECV	1
    
    static inline int sk_mem_pages(int amt)
    {
    	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
    }
    
    static inline bool sk_has_account(struct sock *sk)
    {
    	/* return true if protocol supports memory accounting */
    	return !!sk->sk_prot->memory_allocated;
    }
    
    static inline bool sk_wmem_schedule(struct sock *sk, int size)
    {
    	if (!sk_has_account(sk))
    		return true;
    	return size <= sk->sk_forward_alloc ||
    		__sk_mem_schedule(sk, size, SK_MEM_SEND);
    }
    
    static inline bool
    sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
    {
    	if (!sk_has_account(sk))
    		return true;
    	return size<= sk->sk_forward_alloc ||
    		__sk_mem_schedule(sk, size, SK_MEM_RECV) ||
    		skb_pfmemalloc(skb);
    }
    
    static inline void sk_mem_reclaim(struct sock *sk)
    {
    	if (!sk_has_account(sk))
    		return;
    	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
    		__sk_mem_reclaim(sk);
    }
    
    static inline void sk_mem_reclaim_partial(struct sock *sk)
    {
    	if (!sk_has_account(sk))
    		return;
    	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
    		__sk_mem_reclaim(sk);
    }
    
    static inline void sk_mem_charge(struct sock *sk, int size)
    {
    	if (!sk_has_account(sk))
    		return;
    	sk->sk_forward_alloc -= size;
    }
    
    static inline void sk_mem_uncharge(struct sock *sk, int size)
    {
    	if (!sk_has_account(sk))
    		return;
    	sk->sk_forward_alloc += size;
    }
    
    static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
    {
    	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
    	sk->sk_wmem_queued -= skb->truesize;
    	sk_mem_uncharge(sk, skb->truesize);
    	__kfree_skb(skb);
    }
    
    /* Used by processes to "lock" a socket state, so that
     * interrupts and bottom half handlers won't change it
     * from under us. It essentially blocks any incoming
     * packets, so that we won't get any new data or any
     * packets that change the state of the socket.
     *
     * While locked, BH processing will add new packets to
     * the backlog queue.  This queue is processed by the
     * owner of the socket lock right before it is released.
     *
     * Since ~2.3.5 it is also exclusive sleep lock serializing
     * accesses from user process context.
     */
    #define sock_owned_by_user(sk)	((sk)->sk_lock.owned)
    
    static inline void sock_release_ownership(struct sock *sk)
    {
    	sk->sk_lock.owned = 0;
    }
    
    /*
     * Macro so as to not evaluate some arguments when
     * lockdep is not enabled.
     *
     * Mark both the sk_lock and the sk_lock.slock as a
     * per-address-family lock class.
     */
    #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
    do {									\
    	sk->sk_lock.owned = 0;						\
    	init_waitqueue_head(&sk->sk_lock.wq);				\
    	spin_lock_init(&(sk)->sk_lock.slock);				\
    	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
    			sizeof((sk)->sk_lock));				\
    	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
    				(skey), (sname));				\
    	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
    } while (0)
    
    void lock_sock_nested(struct sock *sk, int subclass);
    
    static inline void lock_sock(struct sock *sk)
    {
    	lock_sock_nested(sk, 0);
    }
    
    void release_sock(struct sock *sk);
    
    /* BH context may only use the following locking interface. */
    #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
    #define bh_lock_sock_nested(__sk) \
    				spin_lock_nested(&((__sk)->sk_lock.slock), \
    				SINGLE_DEPTH_NESTING)
    #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
    
    bool lock_sock_fast(struct sock *sk);
    /**
     * unlock_sock_fast - complement of lock_sock_fast
     * @sk: socket
     * @slow: slow mode
     *
     * fast unlock socket for user context.
     * If slow mode is on, we call regular release_sock()
     */
    static inline void unlock_sock_fast(struct sock *sk, bool slow)
    {
    	if (slow)
    		release_sock(sk);
    	else
    		spin_unlock_bh(&sk->sk_lock.slock);
    }
    
    
    struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
    		      struct proto *prot);
    void sk_free(struct sock *sk);
    void sk_release_kernel(struct sock *sk);
    struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
    
    struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
    			     gfp_t priority);
    void sock_wfree(struct sk_buff *skb);
    void skb_orphan_partial(struct sk_buff *skb);
    void sock_rfree(struct sk_buff *skb);
    void sock_edemux(struct sk_buff *skb);
    
    int sock_setsockopt(struct socket *sock, int level, int op,
    		    char __user *optval, unsigned int optlen);
    
    int sock_getsockopt(struct socket *sock, int level, int op,
    		    char __user *optval, int __user *optlen);
    struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
    				    int noblock, int *errcode);
    struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
    				     unsigned long data_len, int noblock,
    				     int *errcode, int max_page_order);
    void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
    void sock_kfree_s(struct sock *sk, void *mem, int size);
    void sk_send_sigurg(struct sock *sk);
    
    /*
     * Functions to fill in entries in struct proto_ops when a protocol
     * does not implement a particular function.
     */
    int sock_no_bind(struct socket *, struct sockaddr *, int);
    int sock_no_connect(struct socket *, struct sockaddr *, int, int);
    int sock_no_socketpair(struct socket *, struct socket *);
    int sock_no_accept(struct socket *, struct socket *, int);
    int sock_no_getname(struct socket *, struct sockaddr *, int *, int);
    unsigned int sock_no_poll(struct file *, struct socket *,
    			  struct poll_table_struct *);
    int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
    int sock_no_listen(struct socket *, int);
    int sock_no_shutdown(struct socket *, int);
    int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
    int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
    int sock_no_sendmsg(struct kiocb *, struct socket *, struct msghdr *, size_t);
    int sock_no_recvmsg(struct kiocb *, struct socket *, struct msghdr *, size_t,
    		    int);
    int sock_no_mmap(struct file *file, struct socket *sock,
    		 struct vm_area_struct *vma);
    ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
    			 size_t size, int flags);
    
    /*
     * Functions to fill in entries in struct proto_ops when a protocol
     * uses the inet style.
     */
    int sock_common_getsockopt(struct socket *sock, int level, int optname,
    				  char __user *optval, int __user *optlen);
    int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
    			       struct msghdr *msg, size_t size, int flags);
    int sock_common_setsockopt(struct socket *sock, int level, int optname,
    				  char __user *optval, unsigned int optlen);
    int compat_sock_common_getsockopt(struct socket *sock, int level,
    		int optname, char __user *optval, int __user *optlen);
    int compat_sock_common_setsockopt(struct socket *sock, int level,
    		int optname, char __user *optval, unsigned int optlen);
    
    void sk_common_release(struct sock *sk);
    
    /*
     *	Default socket callbacks and setup code
     */
    
    /* Initialise core socket variables */
    void sock_init_data(struct socket *sock, struct sock *sk);
    
    /*
     * Socket reference counting postulates.
     *
     * * Each user of socket SHOULD hold a reference count.
     * * Each access point to socket (an hash table bucket, reference from a list,
     *   running timer, skb in flight MUST hold a reference count.
     * * When reference count hits 0, it means it will never increase back.
     * * When reference count hits 0, it means that no references from
     *   outside exist to this socket and current process on current CPU
     *   is last user and may/should destroy this socket.
     * * sk_free is called from any context: process, BH, IRQ. When
     *   it is called, socket has no references from outside -> sk_free
     *   may release descendant resources allocated by the socket, but
     *   to the time when it is called, socket is NOT referenced by any
     *   hash tables, lists etc.
     * * Packets, delivered from outside (from network or from another process)
     *   and enqueued on receive/error queues SHOULD NOT grab reference count,
     *   when they sit in queue. Otherwise, packets will leak to hole, when
     *   socket is looked up by one cpu and unhasing is made by another CPU.
     *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
     *   (leak to backlog). Packet socket does all the processing inside
     *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
     *   use separate SMP lock, so that they are prone too.
     */
    
    /* Ungrab socket and destroy it, if it was the last reference. */
    static inline void sock_put(struct sock *sk)
    {
    	if (atomic_dec_and_test(&sk->sk_refcnt))
    		sk_free(sk);
    }
    /* Generic version of sock_put(), dealing with all sockets
     * (TCP_TIMEWAIT, ESTABLISHED...)
     */
    void sock_gen_put(struct sock *sk);
    
    int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested);
    
    static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
    {
    	sk->sk_tx_queue_mapping = tx_queue;
    }
    
    static inline void sk_tx_queue_clear(struct sock *sk)
    {
    	sk->sk_tx_queue_mapping = -1;
    }
    
    static inline int sk_tx_queue_get(const struct sock *sk)
    {
    	return sk ? sk->sk_tx_queue_mapping : -1;
    }
    
    static inline void sk_set_socket(struct sock *sk, struct socket *sock)
    {
    	sk_tx_queue_clear(sk);
    	sk->sk_socket = sock;
    }
    
    static inline wait_queue_head_t *sk_sleep(struct sock *sk)
    {
    	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
    	return &rcu_dereference_raw(sk->sk_wq)->wait;
    }
    /* Detach socket from process context.
     * Announce socket dead, detach it from wait queue and inode.
     * Note that parent inode held reference count on this struct sock,
     * we do not release it in this function, because protocol
     * probably wants some additional cleanups or even continuing
     * to work with this socket (TCP).
     */
    static inline void sock_orphan(struct sock *sk)
    {
    	write_lock_bh(&sk->sk_callback_lock);
    	sock_set_flag(sk, SOCK_DEAD);
    	sk_set_socket(sk, NULL);
    	sk->sk_wq  = NULL;
    	write_unlock_bh(&sk->sk_callback_lock);
    }
    
    static inline void sock_graft(struct sock *sk, struct socket *parent)
    {
    	write_lock_bh(&sk->sk_callback_lock);
    	sk->sk_wq = parent->wq;
    	parent->sk = sk;
    	sk_set_socket(sk, parent);
    	security_sock_graft(sk, parent);
    	write_unlock_bh(&sk->sk_callback_lock);
    }
    
    kuid_t sock_i_uid(struct sock *sk);
    unsigned long sock_i_ino(struct sock *sk);
    
    static inline struct dst_entry *
    __sk_dst_get(struct sock *sk)
    {
    	return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
    						       lockdep_is_held(&sk->sk_lock.slock));
    }
    
    static inline struct dst_entry *
    sk_dst_get(struct sock *sk)
    {
    	struct dst_entry *dst;
    
    	rcu_read_lock();
    	dst = rcu_dereference(sk->sk_dst_cache);
    	if (dst && !atomic_inc_not_zero(&dst->__refcnt))
    		dst = NULL;
    	rcu_read_unlock();
    	return dst;
    }
    
    static inline void dst_negative_advice(struct sock *sk)
    {
    	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
    
    	if (dst && dst->ops->negative_advice) {
    		ndst = dst->ops->negative_advice(dst);
    
    		if (ndst != dst) {
    			rcu_assign_pointer(sk->sk_dst_cache, ndst);
    			sk_tx_queue_clear(sk);
    		}
    	}
    }
    
    static inline void
    __sk_dst_set(struct sock *sk, struct dst_entry *dst)
    {
    	struct dst_entry *old_dst;
    
    	sk_tx_queue_clear(sk);
    	/*
    	 * This can be called while sk is owned by the caller only,
    	 * with no state that can be checked in a rcu_dereference_check() cond
    	 */
    	old_dst = rcu_dereference_raw(sk->sk_dst_cache);
    	rcu_assign_pointer(sk->sk_dst_cache, dst);
    	dst_release(old_dst);
    }
    
    static inline void
    sk_dst_set(struct sock *sk, struct dst_entry *dst)
    {
    	struct dst_entry *old_dst;
    
    	sk_tx_queue_clear(sk);
    	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
    	dst_release(old_dst);
    }
    
    static inline void
    __sk_dst_reset(struct sock *sk)
    {
    	__sk_dst_set(sk, NULL);
    }
    
    static inline void
    sk_dst_reset(struct sock *sk)
    {
    	sk_dst_set(sk, NULL);
    }
    
    struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
    
    struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
    
    static inline bool sk_can_gso(const struct sock *sk)
    {
    	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
    }
    
    void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
    
    static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
    {
    	sk->sk_route_nocaps |= flags;
    	sk->sk_route_caps &= ~flags;
    }
    
    static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
    					   char __user *from, char *to,
    					   int copy, int offset)
    {
    	if (skb->ip_summed == CHECKSUM_NONE) {
    		int err = 0;
    		__wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err);
    		if (err)
    			return err;
    		skb->csum = csum_block_add(skb->csum, csum, offset);
    	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
    		if (!access_ok(VERIFY_READ, from, copy) ||
    		    __copy_from_user_nocache(to, from, copy))
    			return -EFAULT;
    	} else if (copy_from_user(to, from, copy))
    		return -EFAULT;
    
    	return 0;
    }
    
    static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
    				       char __user *from, int copy)
    {
    	int err, offset = skb->len;
    
    	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
    				       copy, offset);
    	if (err)
    		__skb_trim(skb, offset);
    
    	return err;
    }
    
    static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from,
    					   struct sk_buff *skb,
    					   struct page *page,
    					   int off, int copy)
    {
    	int err;
    
    	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
    				       copy, skb->len);
    	if (err)
    		return err;
    
    	skb->len	     += copy;
    	skb->data_len	     += copy;
    	skb->truesize	     += copy;
    	sk->sk_wmem_queued   += copy;
    	sk_mem_charge(sk, copy);
    	return 0;
    }
    
    static inline int skb_copy_to_page(struct sock *sk, char __user *from,
    				   struct sk_buff *skb, struct page *page,
    				   int off, int copy)
    {
    	if (skb->ip_summed == CHECKSUM_NONE) {
    		int err = 0;
    		__wsum csum = csum_and_copy_from_user(from,
    						     page_address(page) + off,
    							    copy, 0, &err);
    		if (err)
    			return err;
    		skb->csum = csum_block_add(skb->csum, csum, skb->len);
    	} else if (copy_from_user(page_address(page) + off, from, copy))
    		return -EFAULT;
    
    	skb->len	     += copy;
    	skb->data_len	     += copy;
    	skb->truesize	     += copy;
    	sk->sk_wmem_queued   += copy;
    	sk_mem_charge(sk, copy);
    	return 0;
    }
    
    /**
     * sk_wmem_alloc_get - returns write allocations
     * @sk: socket
     *
     * Returns sk_wmem_alloc minus initial offset of one
     */
    static inline int sk_wmem_alloc_get(const struct sock *sk)
    {
    	return atomic_read(&sk->sk_wmem_alloc) - 1;
    }
    
    /**
     * sk_rmem_alloc_get - returns read allocations
     * @sk: socket
     *
     * Returns sk_rmem_alloc
     */
    static inline int sk_rmem_alloc_get(const struct sock *sk)
    {
    	return atomic_read(&sk->sk_rmem_alloc);
    }
    
    /**
     * sk_has_allocations - check if allocations are outstanding
     * @sk: socket
     *
     * Returns true if socket has write or read allocations
     */
    static inline bool sk_has_allocations(const struct sock *sk)
    {
    	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
    }
    
    /**
     * wq_has_sleeper - check if there are any waiting processes
     * @wq: struct socket_wq
     *
     * Returns true if socket_wq has waiting processes
     *
     * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
     * barrier call. They were added due to the race found within the tcp code.
     *
     * Consider following tcp code paths:
     *
     * CPU1                  CPU2
     *
     * sys_select            receive packet
     *   ...                 ...
     *   __add_wait_queue    update tp->rcv_nxt
     *   ...                 ...
     *   tp->rcv_nxt check   sock_def_readable
     *   ...                 {
     *   schedule               rcu_read_lock();
     *                          wq = rcu_dereference(sk->sk_wq);
     *                          if (wq && waitqueue_active(&wq->wait))
     *                              wake_up_interruptible(&wq->wait)
     *                          ...
     *                       }
     *
     * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
     * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
     * could then endup calling schedule and sleep forever if there are no more
     * data on the socket.
     *
     */
    static inline bool wq_has_sleeper(struct socket_wq *wq)
    {
    	/* We need to be sure we are in sync with the
    	 * add_wait_queue modifications to the wait queue.
    	 *
    	 * This memory barrier is paired in the sock_poll_wait.
    	 */
    	smp_mb();
    	return wq && waitqueue_active(&wq->wait);
    }
    
    /**
     * sock_poll_wait - place memory barrier behind the poll_wait call.
     * @filp:           file
     * @wait_address:   socket wait queue
     * @p:              poll_table
     *
     * See the comments in the wq_has_sleeper function.
     */
    static inline void sock_poll_wait(struct file *filp,
    		wait_queue_head_t *wait_address, poll_table *p)
    {
    	if (!poll_does_not_wait(p) && wait_address) {
    		poll_wait(filp, wait_address, p);
    		/* We need to be sure we are in sync with the
    		 * socket flags modification.
    		 *
    		 * This memory barrier is paired in the wq_has_sleeper.
    		 */
    		smp_mb();
    	}
    }
    
    static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
    {
    	if (sk->sk_txhash) {
    		skb->l4_hash = 1;
    		skb->hash = sk->sk_txhash;
    	}
    }
    
    /*
     *	Queue a received datagram if it will fit. Stream and sequenced
     *	protocols can't normally use this as they need to fit buffers in
     *	and play with them.
     *
     *	Inlined as it's very short and called for pretty much every
     *	packet ever received.
     */
    
    static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
    {
    	skb_orphan(skb);
    	skb->sk = sk;
    	skb->destructor = sock_wfree;
    	skb_set_hash_from_sk(skb, sk);
    	/*
    	 * We used to take a refcount on sk, but following operation
    	 * is enough to guarantee sk_free() wont free this sock until
    	 * all in-flight packets are completed
    	 */
    	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
    }
    
    static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
    {
    	skb_orphan(skb);
    	skb->sk = sk;
    	skb->destructor = sock_rfree;
    	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
    	sk_mem_charge(sk, skb->truesize);
    }
    
    void sk_reset_timer(struct sock *sk, struct timer_list *timer,
    		    unsigned long expires);
    
    void sk_stop_timer(struct sock *sk, struct timer_list *timer);
    
    int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
    
    int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
    
    /*
     *	Recover an error report and clear atomically
     */
    
    static inline int sock_error(struct sock *sk)
    {
    	int err;
    	if (likely(!sk->sk_err))
    		return 0;
    	err = xchg(&sk->sk_err, 0);
    	return -err;
    }
    
    static inline unsigned long sock_wspace(struct sock *sk)
    {
    	int amt = 0;
    
    	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
    		amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
    		if (amt < 0)
    			amt = 0;
    	}
    	return amt;
    }
    
    static inline void sk_wake_async(struct sock *sk, int how, int band)
    {
    	if (sock_flag(sk, SOCK_FASYNC))
    		sock_wake_async(sk->sk_socket, how, band);
    }
    
    /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
     * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
     * Note: for send buffers, TCP works better if we can build two skbs at
     * minimum.
     */
    #define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
    
    #define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
    #define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
    
    static inline void sk_stream_moderate_sndbuf(struct sock *sk)
    {
    	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
    		sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
    		sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
    	}
    }
    
    struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
    
    /**
     * sk_page_frag - return an appropriate page_frag
     * @sk: socket
     *
     * If socket allocation mode allows current thread to sleep, it means its
     * safe to use the per task page_frag instead of the per socket one.
     */
    static inline struct page_frag *sk_page_frag(struct sock *sk)
    {
    	if (sk->sk_allocation & __GFP_WAIT)
    		return &current->task_frag;
    
    	return &sk->sk_frag;
    }
    
    bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
    
    /*
     *	Default write policy as shown to user space via poll/select/SIGIO
     */
    static inline bool sock_writeable(const struct sock *sk)
    {
    	return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
    }
    
    static inline gfp_t gfp_any(void)
    {
    	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
    }
    
    static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
    {
    	return noblock ? 0 : sk->sk_rcvtimeo;
    }
    
    static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
    {
    	return noblock ? 0 : sk->sk_sndtimeo;
    }
    
    static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
    {
    	return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
    }
    
    /* Alas, with timeout socket operations are not restartable.
     * Compare this to poll().
     */
    static inline int sock_intr_errno(long timeo)
    {
    	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
    }
    
    void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
    			   struct sk_buff *skb);
    void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
    			     struct sk_buff *skb);
    
    static inline void
    sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
    {
    	ktime_t kt = skb->tstamp;
    	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
    
    	/*
    	 * generate control messages if
    	 * - receive time stamping in software requested
    	 * - software time stamp available and wanted
    	 * - hardware time stamps available and wanted
    	 */
    	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
    	    (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
    	    (kt.tv64 &&
    	     (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE ||
    	      skb_shinfo(skb)->tx_flags & SKBTX_ANY_SW_TSTAMP)) ||
    	    (hwtstamps->hwtstamp.tv64 &&
    	     (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
    		__sock_recv_timestamp(msg, sk, skb);
    	else
    		sk->sk_stamp = kt;
    
    	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
    		__sock_recv_wifi_status(msg, sk, skb);
    }
    
    void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
    			      struct sk_buff *skb);
    
    static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
    					  struct sk_buff *skb)
    {
    #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
    			   (1UL << SOCK_RCVTSTAMP))
    #define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
    			   SOF_TIMESTAMPING_RAW_HARDWARE)
    
    	if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
    		__sock_recv_ts_and_drops(msg, sk, skb);
    	else
    		sk->sk_stamp = skb->tstamp;
    }
    
    /**
     * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
     * @sk:		socket sending this packet
     * @tx_flags:	filled with instructions for time stamping
     */
    void sock_tx_timestamp(struct sock *sk, __u8 *tx_flags);
    
    /**
     * sk_eat_skb - Release a skb if it is no longer needed
     * @sk: socket to eat this skb from
     * @skb: socket buffer to eat
     * @copied_early: flag indicating whether DMA operations copied this data early
     *
     * This routine must be called with interrupts disabled or with the socket
     * locked so that the sk_buff queue operation is ok.
    */
    #ifdef CONFIG_NET_DMA
    static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early)
    {
    	__skb_unlink(skb, &sk->sk_receive_queue);
    	if (!copied_early)
    		__kfree_skb(skb);
    	else
    		__skb_queue_tail(&sk->sk_async_wait_queue, skb);
    }
    #else
    static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early)
    {
    	__skb_unlink(skb, &sk->sk_receive_queue);
    	__kfree_skb(skb);
    }
    #endif
    
    static inline
    struct net *sock_net(const struct sock *sk)
    {
    	return read_pnet(&sk->sk_net);
    }
    
    static inline
    void sock_net_set(struct sock *sk, struct net *net)
    {
    	write_pnet(&sk->sk_net, net);
    }
    
    /*
     * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
     * They should not hold a reference to a namespace in order to allow
     * to stop it.
     * Sockets after sk_change_net should be released using sk_release_kernel
     */
    static inline void sk_change_net(struct sock *sk, struct net *net)
    {
    	struct net *current_net = sock_net(sk);
    
    	if (!net_eq(current_net, net)) {
    		put_net(current_net);
    		sock_net_set(sk, hold_net(net));
    	}
    }
    
    static inline struct sock *skb_steal_sock(struct sk_buff *skb)
    {
    	if (skb->sk) {
    		struct sock *sk = skb->sk;
    
    		skb->destructor = NULL;
    		skb->sk = NULL;
    		return sk;
    	}
    	return NULL;
    }
    
    void sock_enable_timestamp(struct sock *sk, int flag);
    int sock_get_timestamp(struct sock *, struct timeval __user *);
    int sock_get_timestampns(struct sock *, struct timespec __user *);
    int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
    		       int type);
    
    bool sk_ns_capable(const struct sock *sk,
    		   struct user_namespace *user_ns, int cap);
    bool sk_capable(const struct sock *sk, int cap);
    bool sk_net_capable(const struct sock *sk, int cap);
    
    /*
     *	Enable debug/info messages
     */
    extern int net_msg_warn;
    #define NETDEBUG(fmt, args...) \
    	do { if (net_msg_warn) printk(fmt,##args); } while (0)
    
    #define LIMIT_NETDEBUG(fmt, args...) \
    	do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
    
    extern __u32 sysctl_wmem_max;
    extern __u32 sysctl_rmem_max;
    
    extern int sysctl_optmem_max;
    
    extern __u32 sysctl_wmem_default;
    extern __u32 sysctl_rmem_default;
    
    #endif	/* _SOCK_H */