Skip to content
Snippets Groups Projects
Select Git revision
  • 369af92ce47a04b2523ec4feea1febcacf8419b1
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

fault.c

Blame
  • gup.c 39.00 KiB
    #include <linux/kernel.h>
    #include <linux/errno.h>
    #include <linux/err.h>
    #include <linux/spinlock.h>
    
    #include <linux/mm.h>
    #include <linux/pagemap.h>
    #include <linux/rmap.h>
    #include <linux/swap.h>
    #include <linux/swapops.h>
    
    #include <linux/sched.h>
    #include <linux/rwsem.h>
    #include <linux/hugetlb.h>
    #include <asm/pgtable.h>
    
    #include "internal.h"
    
    static struct page *no_page_table(struct vm_area_struct *vma,
    		unsigned int flags)
    {
    	/*
    	 * When core dumping an enormous anonymous area that nobody
    	 * has touched so far, we don't want to allocate unnecessary pages or
    	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
    	 * then get_dump_page() will return NULL to leave a hole in the dump.
    	 * But we can only make this optimization where a hole would surely
    	 * be zero-filled if handle_mm_fault() actually did handle it.
    	 */
    	if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
    		return ERR_PTR(-EFAULT);
    	return NULL;
    }
    
    static struct page *follow_page_pte(struct vm_area_struct *vma,
    		unsigned long address, pmd_t *pmd, unsigned int flags)
    {
    	struct mm_struct *mm = vma->vm_mm;
    	struct page *page;
    	spinlock_t *ptl;
    	pte_t *ptep, pte;
    
    retry:
    	if (unlikely(pmd_bad(*pmd)))
    		return no_page_table(vma, flags);
    
    	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
    	pte = *ptep;
    	if (!pte_present(pte)) {
    		swp_entry_t entry;
    		/*
    		 * KSM's break_ksm() relies upon recognizing a ksm page
    		 * even while it is being migrated, so for that case we
    		 * need migration_entry_wait().
    		 */
    		if (likely(!(flags & FOLL_MIGRATION)))
    			goto no_page;
    		if (pte_none(pte))
    			goto no_page;
    		entry = pte_to_swp_entry(pte);
    		if (!is_migration_entry(entry))
    			goto no_page;
    		pte_unmap_unlock(ptep, ptl);
    		migration_entry_wait(mm, pmd, address);
    		goto retry;
    	}
    	if ((flags & FOLL_NUMA) && pte_protnone(pte))
    		goto no_page;
    	if ((flags & FOLL_WRITE) && !pte_write(pte)) {
    		pte_unmap_unlock(ptep, ptl);
    		return NULL;
    	}
    
    	page = vm_normal_page(vma, address, pte);
    	if (unlikely(!page)) {
    		if ((flags & FOLL_DUMP) ||
    		    !is_zero_pfn(pte_pfn(pte)))
    			goto bad_page;
    		page = pte_page(pte);
    	}
    
    	if (flags & FOLL_GET)
    		get_page_foll(page);
    	if (flags & FOLL_TOUCH) {
    		if ((flags & FOLL_WRITE) &&
    		    !pte_dirty(pte) && !PageDirty(page))
    			set_page_dirty(page);
    		/*
    		 * pte_mkyoung() would be more correct here, but atomic care
    		 * is needed to avoid losing the dirty bit: it is easier to use
    		 * mark_page_accessed().
    		 */
    		mark_page_accessed(page);
    	}
    	if ((flags & FOLL_POPULATE) && (vma->vm_flags & VM_LOCKED)) {
    		/*
    		 * The preliminary mapping check is mainly to avoid the
    		 * pointless overhead of lock_page on the ZERO_PAGE
    		 * which might bounce very badly if there is contention.
    		 *
    		 * If the page is already locked, we don't need to
    		 * handle it now - vmscan will handle it later if and
    		 * when it attempts to reclaim the page.
    		 */
    		if (page->mapping && trylock_page(page)) {
    			lru_add_drain();  /* push cached pages to LRU */
    			/*
    			 * Because we lock page here, and migration is
    			 * blocked by the pte's page reference, and we
    			 * know the page is still mapped, we don't even
    			 * need to check for file-cache page truncation.
    			 */
    			mlock_vma_page(page);
    			unlock_page(page);
    		}
    	}
    	pte_unmap_unlock(ptep, ptl);
    	return page;
    bad_page:
    	pte_unmap_unlock(ptep, ptl);
    	return ERR_PTR(-EFAULT);
    
    no_page:
    	pte_unmap_unlock(ptep, ptl);
    	if (!pte_none(pte))
    		return NULL;
    	return no_page_table(vma, flags);
    }
    
    /**
     * follow_page_mask - look up a page descriptor from a user-virtual address
     * @vma: vm_area_struct mapping @address
     * @address: virtual address to look up
     * @flags: flags modifying lookup behaviour
     * @page_mask: on output, *page_mask is set according to the size of the page
     *
     * @flags can have FOLL_ flags set, defined in <linux/mm.h>
     *
     * Returns the mapped (struct page *), %NULL if no mapping exists, or
     * an error pointer if there is a mapping to something not represented
     * by a page descriptor (see also vm_normal_page()).
     */
    struct page *follow_page_mask(struct vm_area_struct *vma,
    			      unsigned long address, unsigned int flags,
    			      unsigned int *page_mask)
    {
    	pgd_t *pgd;
    	pud_t *pud;
    	pmd_t *pmd;
    	spinlock_t *ptl;
    	struct page *page;
    	struct mm_struct *mm = vma->vm_mm;
    
    	*page_mask = 0;
    
    	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
    	if (!IS_ERR(page)) {
    		BUG_ON(flags & FOLL_GET);
    		return page;
    	}
    
    	pgd = pgd_offset(mm, address);
    	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
    		return no_page_table(vma, flags);
    
    	pud = pud_offset(pgd, address);
    	if (pud_none(*pud))
    		return no_page_table(vma, flags);
    	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
    		page = follow_huge_pud(mm, address, pud, flags);
    		if (page)
    			return page;
    		return no_page_table(vma, flags);
    	}
    	if (unlikely(pud_bad(*pud)))
    		return no_page_table(vma, flags);
    
    	pmd = pmd_offset(pud, address);
    	if (pmd_none(*pmd))
    		return no_page_table(vma, flags);
    	if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
    		page = follow_huge_pmd(mm, address, pmd, flags);
    		if (page)
    			return page;
    		return no_page_table(vma, flags);
    	}
    	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
    		return no_page_table(vma, flags);
    	if (pmd_trans_huge(*pmd)) {
    		if (flags & FOLL_SPLIT) {
    			split_huge_page_pmd(vma, address, pmd);
    			return follow_page_pte(vma, address, pmd, flags);
    		}
    		ptl = pmd_lock(mm, pmd);
    		if (likely(pmd_trans_huge(*pmd))) {
    			if (unlikely(pmd_trans_splitting(*pmd))) {
    				spin_unlock(ptl);
    				wait_split_huge_page(vma->anon_vma, pmd);
    			} else {
    				page = follow_trans_huge_pmd(vma, address,
    							     pmd, flags);
    				spin_unlock(ptl);
    				*page_mask = HPAGE_PMD_NR - 1;
    				return page;
    			}
    		} else
    			spin_unlock(ptl);
    	}
    	return follow_page_pte(vma, address, pmd, flags);
    }
    
    static int get_gate_page(struct mm_struct *mm, unsigned long address,
    		unsigned int gup_flags, struct vm_area_struct **vma,
    		struct page **page)
    {
    	pgd_t *pgd;
    	pud_t *pud;
    	pmd_t *pmd;
    	pte_t *pte;
    	int ret = -EFAULT;
    
    	/* user gate pages are read-only */
    	if (gup_flags & FOLL_WRITE)
    		return -EFAULT;
    	if (address > TASK_SIZE)
    		pgd = pgd_offset_k(address);
    	else
    		pgd = pgd_offset_gate(mm, address);
    	BUG_ON(pgd_none(*pgd));
    	pud = pud_offset(pgd, address);
    	BUG_ON(pud_none(*pud));
    	pmd = pmd_offset(pud, address);
    	if (pmd_none(*pmd))
    		return -EFAULT;
    	VM_BUG_ON(pmd_trans_huge(*pmd));
    	pte = pte_offset_map(pmd, address);
    	if (pte_none(*pte))
    		goto unmap;
    	*vma = get_gate_vma(mm);
    	if (!page)
    		goto out;
    	*page = vm_normal_page(*vma, address, *pte);
    	if (!*page) {
    		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
    			goto unmap;
    		*page = pte_page(*pte);
    	}
    	get_page(*page);
    out:
    	ret = 0;
    unmap:
    	pte_unmap(pte);
    	return ret;
    }
    
    /*
     * mmap_sem must be held on entry.  If @nonblocking != NULL and
     * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
     * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
     */
    static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
    		unsigned long address, unsigned int *flags, int *nonblocking)
    {
    	struct mm_struct *mm = vma->vm_mm;
    	unsigned int fault_flags = 0;
    	int ret;
    
    	/* For mm_populate(), just skip the stack guard page. */
    	if ((*flags & FOLL_POPULATE) &&
    			(stack_guard_page_start(vma, address) ||
    			 stack_guard_page_end(vma, address + PAGE_SIZE)))
    		return -ENOENT;
    	if (*flags & FOLL_WRITE)
    		fault_flags |= FAULT_FLAG_WRITE;
    	if (nonblocking)
    		fault_flags |= FAULT_FLAG_ALLOW_RETRY;
    	if (*flags & FOLL_NOWAIT)
    		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
    	if (*flags & FOLL_TRIED) {
    		VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
    		fault_flags |= FAULT_FLAG_TRIED;
    	}
    
    	ret = handle_mm_fault(mm, vma, address, fault_flags);
    	if (ret & VM_FAULT_ERROR) {
    		if (ret & VM_FAULT_OOM)
    			return -ENOMEM;
    		if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
    			return *flags & FOLL_HWPOISON ? -EHWPOISON : -EFAULT;
    		if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
    			return -EFAULT;
    		BUG();
    	}
    
    	if (tsk) {
    		if (ret & VM_FAULT_MAJOR)
    			tsk->maj_flt++;
    		else
    			tsk->min_flt++;
    	}
    
    	if (ret & VM_FAULT_RETRY) {
    		if (nonblocking)
    			*nonblocking = 0;
    		return -EBUSY;
    	}
    
    	/*
    	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
    	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
    	 * can thus safely do subsequent page lookups as if they were reads.
    	 * But only do so when looping for pte_write is futile: in some cases
    	 * userspace may also be wanting to write to the gotten user page,
    	 * which a read fault here might prevent (a readonly page might get
    	 * reCOWed by userspace write).
    	 */
    	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
    		*flags &= ~FOLL_WRITE;
    	return 0;
    }
    
    static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
    {
    	vm_flags_t vm_flags = vma->vm_flags;
    
    	if (vm_flags & (VM_IO | VM_PFNMAP))
    		return -EFAULT;
    
    	if (gup_flags & FOLL_WRITE) {
    		if (!(vm_flags & VM_WRITE)) {
    			if (!(gup_flags & FOLL_FORCE))
    				return -EFAULT;
    			/*
    			 * We used to let the write,force case do COW in a
    			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
    			 * set a breakpoint in a read-only mapping of an
    			 * executable, without corrupting the file (yet only
    			 * when that file had been opened for writing!).
    			 * Anon pages in shared mappings are surprising: now
    			 * just reject it.
    			 */
    			if (!is_cow_mapping(vm_flags)) {
    				WARN_ON_ONCE(vm_flags & VM_MAYWRITE);
    				return -EFAULT;
    			}
    		}
    	} else if (!(vm_flags & VM_READ)) {
    		if (!(gup_flags & FOLL_FORCE))
    			return -EFAULT;
    		/*
    		 * Is there actually any vma we can reach here which does not
    		 * have VM_MAYREAD set?
    		 */
    		if (!(vm_flags & VM_MAYREAD))
    			return -EFAULT;
    	}
    	return 0;
    }
    
    /**
     * __get_user_pages() - pin user pages in memory
     * @tsk:	task_struct of target task
     * @mm:		mm_struct of target mm
     * @start:	starting user address
     * @nr_pages:	number of pages from start to pin
     * @gup_flags:	flags modifying pin behaviour
     * @pages:	array that receives pointers to the pages pinned.
     *		Should be at least nr_pages long. Or NULL, if caller
     *		only intends to ensure the pages are faulted in.
     * @vmas:	array of pointers to vmas corresponding to each page.
     *		Or NULL if the caller does not require them.
     * @nonblocking: whether waiting for disk IO or mmap_sem contention
     *
     * Returns number of pages pinned. This may be fewer than the number
     * requested. If nr_pages is 0 or negative, returns 0. If no pages
     * were pinned, returns -errno. Each page returned must be released
     * with a put_page() call when it is finished with. vmas will only
     * remain valid while mmap_sem is held.
     *
     * Must be called with mmap_sem held.  It may be released.  See below.
     *
     * __get_user_pages walks a process's page tables and takes a reference to
     * each struct page that each user address corresponds to at a given
     * instant. That is, it takes the page that would be accessed if a user
     * thread accesses the given user virtual address at that instant.
     *
     * This does not guarantee that the page exists in the user mappings when
     * __get_user_pages returns, and there may even be a completely different
     * page there in some cases (eg. if mmapped pagecache has been invalidated
     * and subsequently re faulted). However it does guarantee that the page
     * won't be freed completely. And mostly callers simply care that the page
     * contains data that was valid *at some point in time*. Typically, an IO
     * or similar operation cannot guarantee anything stronger anyway because
     * locks can't be held over the syscall boundary.
     *
     * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
     * the page is written to, set_page_dirty (or set_page_dirty_lock, as
     * appropriate) must be called after the page is finished with, and
     * before put_page is called.
     *
     * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
     * or mmap_sem contention, and if waiting is needed to pin all pages,
     * *@nonblocking will be set to 0.  Further, if @gup_flags does not
     * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
     * this case.
     *
     * A caller using such a combination of @nonblocking and @gup_flags
     * must therefore hold the mmap_sem for reading only, and recognize
     * when it's been released.  Otherwise, it must be held for either
     * reading or writing and will not be released.
     *
     * In most cases, get_user_pages or get_user_pages_fast should be used
     * instead of __get_user_pages. __get_user_pages should be used only if
     * you need some special @gup_flags.
     */
    long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
    		unsigned long start, unsigned long nr_pages,
    		unsigned int gup_flags, struct page **pages,
    		struct vm_area_struct **vmas, int *nonblocking)
    {
    	long i = 0;
    	unsigned int page_mask;
    	struct vm_area_struct *vma = NULL;
    
    	if (!nr_pages)
    		return 0;
    
    	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
    
    	/*
    	 * If FOLL_FORCE is set then do not force a full fault as the hinting
    	 * fault information is unrelated to the reference behaviour of a task
    	 * using the address space
    	 */
    	if (!(gup_flags & FOLL_FORCE))
    		gup_flags |= FOLL_NUMA;
    
    	do {
    		struct page *page;
    		unsigned int foll_flags = gup_flags;
    		unsigned int page_increm;
    
    		/* first iteration or cross vma bound */
    		if (!vma || start >= vma->vm_end) {
    			vma = find_extend_vma(mm, start);
    			if (!vma && in_gate_area(mm, start)) {
    				int ret;
    				ret = get_gate_page(mm, start & PAGE_MASK,
    						gup_flags, &vma,
    						pages ? &pages[i] : NULL);
    				if (ret)
    					return i ? : ret;
    				page_mask = 0;
    				goto next_page;
    			}
    
    			if (!vma || check_vma_flags(vma, gup_flags))
    				return i ? : -EFAULT;
    			if (is_vm_hugetlb_page(vma)) {
    				i = follow_hugetlb_page(mm, vma, pages, vmas,
    						&start, &nr_pages, i,
    						gup_flags);
    				continue;
    			}
    		}
    retry:
    		/*
    		 * If we have a pending SIGKILL, don't keep faulting pages and
    		 * potentially allocating memory.
    		 */
    		if (unlikely(fatal_signal_pending(current)))
    			return i ? i : -ERESTARTSYS;
    		cond_resched();
    		page = follow_page_mask(vma, start, foll_flags, &page_mask);
    		if (!page) {
    			int ret;
    			ret = faultin_page(tsk, vma, start, &foll_flags,
    					nonblocking);
    			switch (ret) {
    			case 0:
    				goto retry;
    			case -EFAULT:
    			case -ENOMEM:
    			case -EHWPOISON:
    				return i ? i : ret;
    			case -EBUSY:
    				return i;
    			case -ENOENT:
    				goto next_page;
    			}
    			BUG();
    		}
    		if (IS_ERR(page))
    			return i ? i : PTR_ERR(page);
    		if (pages) {
    			pages[i] = page;
    			flush_anon_page(vma, page, start);
    			flush_dcache_page(page);
    			page_mask = 0;
    		}
    next_page:
    		if (vmas) {
    			vmas[i] = vma;
    			page_mask = 0;
    		}
    		page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
    		if (page_increm > nr_pages)
    			page_increm = nr_pages;
    		i += page_increm;
    		start += page_increm * PAGE_SIZE;
    		nr_pages -= page_increm;
    	} while (nr_pages);
    	return i;
    }
    EXPORT_SYMBOL(__get_user_pages);
    
    /*
     * fixup_user_fault() - manually resolve a user page fault
     * @tsk:	the task_struct to use for page fault accounting, or
     *		NULL if faults are not to be recorded.
     * @mm:		mm_struct of target mm
     * @address:	user address
     * @fault_flags:flags to pass down to handle_mm_fault()
     *
     * This is meant to be called in the specific scenario where for locking reasons
     * we try to access user memory in atomic context (within a pagefault_disable()
     * section), this returns -EFAULT, and we want to resolve the user fault before
     * trying again.
     *
     * Typically this is meant to be used by the futex code.
     *
     * The main difference with get_user_pages() is that this function will
     * unconditionally call handle_mm_fault() which will in turn perform all the
     * necessary SW fixup of the dirty and young bits in the PTE, while
     * handle_mm_fault() only guarantees to update these in the struct page.
     *
     * This is important for some architectures where those bits also gate the
     * access permission to the page because they are maintained in software.  On
     * such architectures, gup() will not be enough to make a subsequent access
     * succeed.
     *
     * This has the same semantics wrt the @mm->mmap_sem as does filemap_fault().
     */
    int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
    		     unsigned long address, unsigned int fault_flags)
    {
    	struct vm_area_struct *vma;
    	vm_flags_t vm_flags;
    	int ret;
    
    	vma = find_extend_vma(mm, address);
    	if (!vma || address < vma->vm_start)
    		return -EFAULT;
    
    	vm_flags = (fault_flags & FAULT_FLAG_WRITE) ? VM_WRITE : VM_READ;
    	if (!(vm_flags & vma->vm_flags))
    		return -EFAULT;
    
    	ret = handle_mm_fault(mm, vma, address, fault_flags);
    	if (ret & VM_FAULT_ERROR) {
    		if (ret & VM_FAULT_OOM)
    			return -ENOMEM;
    		if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
    			return -EHWPOISON;
    		if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
    			return -EFAULT;
    		BUG();
    	}
    	if (tsk) {
    		if (ret & VM_FAULT_MAJOR)
    			tsk->maj_flt++;
    		else
    			tsk->min_flt++;
    	}
    	return 0;
    }
    
    static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
    						struct mm_struct *mm,
    						unsigned long start,
    						unsigned long nr_pages,
    						int write, int force,
    						struct page **pages,
    						struct vm_area_struct **vmas,
    						int *locked, bool notify_drop,
    						unsigned int flags)
    {
    	long ret, pages_done;
    	bool lock_dropped;
    
    	if (locked) {
    		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
    		BUG_ON(vmas);
    		/* check caller initialized locked */
    		BUG_ON(*locked != 1);
    	}
    
    	if (pages)
    		flags |= FOLL_GET;
    	if (write)
    		flags |= FOLL_WRITE;
    	if (force)
    		flags |= FOLL_FORCE;
    
    	pages_done = 0;
    	lock_dropped = false;
    	for (;;) {
    		ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
    				       vmas, locked);
    		if (!locked)
    			/* VM_FAULT_RETRY couldn't trigger, bypass */
    			return ret;
    
    		/* VM_FAULT_RETRY cannot return errors */
    		if (!*locked) {
    			BUG_ON(ret < 0);
    			BUG_ON(ret >= nr_pages);
    		}
    
    		if (!pages)
    			/* If it's a prefault don't insist harder */
    			return ret;
    
    		if (ret > 0) {
    			nr_pages -= ret;
    			pages_done += ret;
    			if (!nr_pages)
    				break;
    		}
    		if (*locked) {
    			/* VM_FAULT_RETRY didn't trigger */
    			if (!pages_done)
    				pages_done = ret;
    			break;
    		}
    		/* VM_FAULT_RETRY triggered, so seek to the faulting offset */
    		pages += ret;
    		start += ret << PAGE_SHIFT;
    
    		/*
    		 * Repeat on the address that fired VM_FAULT_RETRY
    		 * without FAULT_FLAG_ALLOW_RETRY but with
    		 * FAULT_FLAG_TRIED.
    		 */
    		*locked = 1;
    		lock_dropped = true;
    		down_read(&mm->mmap_sem);
    		ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
    				       pages, NULL, NULL);
    		if (ret != 1) {
    			BUG_ON(ret > 1);
    			if (!pages_done)
    				pages_done = ret;
    			break;
    		}
    		nr_pages--;
    		pages_done++;
    		if (!nr_pages)
    			break;
    		pages++;
    		start += PAGE_SIZE;
    	}
    	if (notify_drop && lock_dropped && *locked) {
    		/*
    		 * We must let the caller know we temporarily dropped the lock
    		 * and so the critical section protected by it was lost.
    		 */
    		up_read(&mm->mmap_sem);
    		*locked = 0;
    	}
    	return pages_done;
    }
    
    /*
     * We can leverage the VM_FAULT_RETRY functionality in the page fault
     * paths better by using either get_user_pages_locked() or
     * get_user_pages_unlocked().
     *
     * get_user_pages_locked() is suitable to replace the form:
     *
     *      down_read(&mm->mmap_sem);
     *      do_something()
     *      get_user_pages(tsk, mm, ..., pages, NULL);
     *      up_read(&mm->mmap_sem);
     *
     *  to:
     *
     *      int locked = 1;
     *      down_read(&mm->mmap_sem);
     *      do_something()
     *      get_user_pages_locked(tsk, mm, ..., pages, &locked);
     *      if (locked)
     *          up_read(&mm->mmap_sem);
     */
    long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
    			   unsigned long start, unsigned long nr_pages,
    			   int write, int force, struct page **pages,
    			   int *locked)
    {
    	return __get_user_pages_locked(tsk, mm, start, nr_pages, write, force,
    				       pages, NULL, locked, true, FOLL_TOUCH);
    }
    EXPORT_SYMBOL(get_user_pages_locked);
    
    /*
     * Same as get_user_pages_unlocked(...., FOLL_TOUCH) but it allows to
     * pass additional gup_flags as last parameter (like FOLL_HWPOISON).
     *
     * NOTE: here FOLL_TOUCH is not set implicitly and must be set by the
     * caller if required (just like with __get_user_pages). "FOLL_GET",
     * "FOLL_WRITE" and "FOLL_FORCE" are set implicitly as needed
     * according to the parameters "pages", "write", "force"
     * respectively.
     */
    __always_inline long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
    					       unsigned long start, unsigned long nr_pages,
    					       int write, int force, struct page **pages,
    					       unsigned int gup_flags)
    {
    	long ret;
    	int locked = 1;
    	down_read(&mm->mmap_sem);
    	ret = __get_user_pages_locked(tsk, mm, start, nr_pages, write, force,
    				      pages, NULL, &locked, false, gup_flags);
    	if (locked)
    		up_read(&mm->mmap_sem);
    	return ret;
    }
    EXPORT_SYMBOL(__get_user_pages_unlocked);
    
    /*
     * get_user_pages_unlocked() is suitable to replace the form:
     *
     *      down_read(&mm->mmap_sem);
     *      get_user_pages(tsk, mm, ..., pages, NULL);
     *      up_read(&mm->mmap_sem);
     *
     *  with:
     *
     *      get_user_pages_unlocked(tsk, mm, ..., pages);
     *
     * It is functionally equivalent to get_user_pages_fast so
     * get_user_pages_fast should be used instead, if the two parameters
     * "tsk" and "mm" are respectively equal to current and current->mm,
     * or if "force" shall be set to 1 (get_user_pages_fast misses the
     * "force" parameter).
     */
    long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
    			     unsigned long start, unsigned long nr_pages,
    			     int write, int force, struct page **pages)
    {
    	return __get_user_pages_unlocked(tsk, mm, start, nr_pages, write,
    					 force, pages, FOLL_TOUCH);
    }
    EXPORT_SYMBOL(get_user_pages_unlocked);
    
    /*
     * get_user_pages() - pin user pages in memory
     * @tsk:	the task_struct to use for page fault accounting, or
     *		NULL if faults are not to be recorded.
     * @mm:		mm_struct of target mm
     * @start:	starting user address
     * @nr_pages:	number of pages from start to pin
     * @write:	whether pages will be written to by the caller
     * @force:	whether to force access even when user mapping is currently
     *		protected (but never forces write access to shared mapping).
     * @pages:	array that receives pointers to the pages pinned.
     *		Should be at least nr_pages long. Or NULL, if caller
     *		only intends to ensure the pages are faulted in.
     * @vmas:	array of pointers to vmas corresponding to each page.
     *		Or NULL if the caller does not require them.
     *
     * Returns number of pages pinned. This may be fewer than the number
     * requested. If nr_pages is 0 or negative, returns 0. If no pages
     * were pinned, returns -errno. Each page returned must be released
     * with a put_page() call when it is finished with. vmas will only
     * remain valid while mmap_sem is held.
     *
     * Must be called with mmap_sem held for read or write.
     *
     * get_user_pages walks a process's page tables and takes a reference to
     * each struct page that each user address corresponds to at a given
     * instant. That is, it takes the page that would be accessed if a user
     * thread accesses the given user virtual address at that instant.
     *
     * This does not guarantee that the page exists in the user mappings when
     * get_user_pages returns, and there may even be a completely different
     * page there in some cases (eg. if mmapped pagecache has been invalidated
     * and subsequently re faulted). However it does guarantee that the page
     * won't be freed completely. And mostly callers simply care that the page
     * contains data that was valid *at some point in time*. Typically, an IO
     * or similar operation cannot guarantee anything stronger anyway because
     * locks can't be held over the syscall boundary.
     *
     * If write=0, the page must not be written to. If the page is written to,
     * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
     * after the page is finished with, and before put_page is called.
     *
     * get_user_pages is typically used for fewer-copy IO operations, to get a
     * handle on the memory by some means other than accesses via the user virtual
     * addresses. The pages may be submitted for DMA to devices or accessed via
     * their kernel linear mapping (via the kmap APIs). Care should be taken to
     * use the correct cache flushing APIs.
     *
     * See also get_user_pages_fast, for performance critical applications.
     *
     * get_user_pages should be phased out in favor of
     * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
     * should use get_user_pages because it cannot pass
     * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
     */
    long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
    		unsigned long start, unsigned long nr_pages, int write,
    		int force, struct page **pages, struct vm_area_struct **vmas)
    {
    	return __get_user_pages_locked(tsk, mm, start, nr_pages, write, force,
    				       pages, vmas, NULL, false, FOLL_TOUCH);
    }
    EXPORT_SYMBOL(get_user_pages);
    
    /**
     * populate_vma_page_range() -  populate a range of pages in the vma.
     * @vma:   target vma
     * @start: start address
     * @end:   end address
     * @nonblocking:
     *
     * This takes care of mlocking the pages too if VM_LOCKED is set.
     *
     * return 0 on success, negative error code on error.
     *
     * vma->vm_mm->mmap_sem must be held.
     *
     * If @nonblocking is NULL, it may be held for read or write and will
     * be unperturbed.
     *
     * If @nonblocking is non-NULL, it must held for read only and may be
     * released.  If it's released, *@nonblocking will be set to 0.
     */
    long populate_vma_page_range(struct vm_area_struct *vma,
    		unsigned long start, unsigned long end, int *nonblocking)
    {
    	struct mm_struct *mm = vma->vm_mm;
    	unsigned long nr_pages = (end - start) / PAGE_SIZE;
    	int gup_flags;
    
    	VM_BUG_ON(start & ~PAGE_MASK);
    	VM_BUG_ON(end   & ~PAGE_MASK);
    	VM_BUG_ON_VMA(start < vma->vm_start, vma);
    	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
    	VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
    
    	gup_flags = FOLL_TOUCH | FOLL_POPULATE;
    	/*
    	 * We want to touch writable mappings with a write fault in order
    	 * to break COW, except for shared mappings because these don't COW
    	 * and we would not want to dirty them for nothing.
    	 */
    	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
    		gup_flags |= FOLL_WRITE;
    
    	/*
    	 * We want mlock to succeed for regions that have any permissions
    	 * other than PROT_NONE.
    	 */
    	if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
    		gup_flags |= FOLL_FORCE;
    
    	/*
    	 * We made sure addr is within a VMA, so the following will
    	 * not result in a stack expansion that recurses back here.
    	 */
    	return __get_user_pages(current, mm, start, nr_pages, gup_flags,
    				NULL, NULL, nonblocking);
    }
    
    /*
     * __mm_populate - populate and/or mlock pages within a range of address space.
     *
     * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
     * flags. VMAs must be already marked with the desired vm_flags, and
     * mmap_sem must not be held.
     */
    int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
    {
    	struct mm_struct *mm = current->mm;
    	unsigned long end, nstart, nend;
    	struct vm_area_struct *vma = NULL;
    	int locked = 0;
    	long ret = 0;
    
    	VM_BUG_ON(start & ~PAGE_MASK);
    	VM_BUG_ON(len != PAGE_ALIGN(len));
    	end = start + len;
    
    	for (nstart = start; nstart < end; nstart = nend) {
    		/*
    		 * We want to fault in pages for [nstart; end) address range.
    		 * Find first corresponding VMA.
    		 */
    		if (!locked) {
    			locked = 1;
    			down_read(&mm->mmap_sem);
    			vma = find_vma(mm, nstart);
    		} else if (nstart >= vma->vm_end)
    			vma = vma->vm_next;
    		if (!vma || vma->vm_start >= end)
    			break;
    		/*
    		 * Set [nstart; nend) to intersection of desired address
    		 * range with the first VMA. Also, skip undesirable VMA types.
    		 */
    		nend = min(end, vma->vm_end);
    		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
    			continue;
    		if (nstart < vma->vm_start)
    			nstart = vma->vm_start;
    		/*
    		 * Now fault in a range of pages. populate_vma_page_range()
    		 * double checks the vma flags, so that it won't mlock pages
    		 * if the vma was already munlocked.
    		 */
    		ret = populate_vma_page_range(vma, nstart, nend, &locked);
    		if (ret < 0) {
    			if (ignore_errors) {
    				ret = 0;
    				continue;	/* continue at next VMA */
    			}
    			break;
    		}
    		nend = nstart + ret * PAGE_SIZE;
    		ret = 0;
    	}
    	if (locked)
    		up_read(&mm->mmap_sem);
    	return ret;	/* 0 or negative error code */
    }
    
    /**
     * get_dump_page() - pin user page in memory while writing it to core dump
     * @addr: user address
     *
     * Returns struct page pointer of user page pinned for dump,
     * to be freed afterwards by page_cache_release() or put_page().
     *
     * Returns NULL on any kind of failure - a hole must then be inserted into
     * the corefile, to preserve alignment with its headers; and also returns
     * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
     * allowing a hole to be left in the corefile to save diskspace.
     *
     * Called without mmap_sem, but after all other threads have been killed.
     */
    #ifdef CONFIG_ELF_CORE
    struct page *get_dump_page(unsigned long addr)
    {
    	struct vm_area_struct *vma;
    	struct page *page;
    
    	if (__get_user_pages(current, current->mm, addr, 1,
    			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
    			     NULL) < 1)
    		return NULL;
    	flush_cache_page(vma, addr, page_to_pfn(page));
    	return page;
    }
    #endif /* CONFIG_ELF_CORE */
    
    /*
     * Generic RCU Fast GUP
     *
     * get_user_pages_fast attempts to pin user pages by walking the page
     * tables directly and avoids taking locks. Thus the walker needs to be
     * protected from page table pages being freed from under it, and should
     * block any THP splits.
     *
     * One way to achieve this is to have the walker disable interrupts, and
     * rely on IPIs from the TLB flushing code blocking before the page table
     * pages are freed. This is unsuitable for architectures that do not need
     * to broadcast an IPI when invalidating TLBs.
     *
     * Another way to achieve this is to batch up page table containing pages
     * belonging to more than one mm_user, then rcu_sched a callback to free those
     * pages. Disabling interrupts will allow the fast_gup walker to both block
     * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
     * (which is a relatively rare event). The code below adopts this strategy.
     *
     * Before activating this code, please be aware that the following assumptions
     * are currently made:
     *
     *  *) HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table is used to free
     *      pages containing page tables.
     *
     *  *) THP splits will broadcast an IPI, this can be achieved by overriding
     *      pmdp_splitting_flush.
     *
     *  *) ptes can be read atomically by the architecture.
     *
     *  *) access_ok is sufficient to validate userspace address ranges.
     *
     * The last two assumptions can be relaxed by the addition of helper functions.
     *
     * This code is based heavily on the PowerPC implementation by Nick Piggin.
     */
    #ifdef CONFIG_HAVE_GENERIC_RCU_GUP
    
    #ifdef __HAVE_ARCH_PTE_SPECIAL
    static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
    			 int write, struct page **pages, int *nr)
    {
    	pte_t *ptep, *ptem;
    	int ret = 0;
    
    	ptem = ptep = pte_offset_map(&pmd, addr);
    	do {
    		/*
    		 * In the line below we are assuming that the pte can be read
    		 * atomically. If this is not the case for your architecture,
    		 * please wrap this in a helper function!
    		 *
    		 * for an example see gup_get_pte in arch/x86/mm/gup.c
    		 */
    		pte_t pte = READ_ONCE(*ptep);
    		struct page *page;
    
    		/*
    		 * Similar to the PMD case below, NUMA hinting must take slow
    		 * path using the pte_protnone check.
    		 */
    		if (!pte_present(pte) || pte_special(pte) ||
    			pte_protnone(pte) || (write && !pte_write(pte)))
    			goto pte_unmap;
    
    		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
    		page = pte_page(pte);
    
    		if (!page_cache_get_speculative(page))
    			goto pte_unmap;
    
    		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
    			put_page(page);
    			goto pte_unmap;
    		}
    
    		pages[*nr] = page;
    		(*nr)++;
    
    	} while (ptep++, addr += PAGE_SIZE, addr != end);
    
    	ret = 1;
    
    pte_unmap:
    	pte_unmap(ptem);
    	return ret;
    }
    #else
    
    /*
     * If we can't determine whether or not a pte is special, then fail immediately
     * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
     * to be special.
     *
     * For a futex to be placed on a THP tail page, get_futex_key requires a
     * __get_user_pages_fast implementation that can pin pages. Thus it's still
     * useful to have gup_huge_pmd even if we can't operate on ptes.
     */
    static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
    			 int write, struct page **pages, int *nr)
    {
    	return 0;
    }
    #endif /* __HAVE_ARCH_PTE_SPECIAL */
    
    static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
    		unsigned long end, int write, struct page **pages, int *nr)
    {
    	struct page *head, *page, *tail;
    	int refs;
    
    	if (write && !pmd_write(orig))
    		return 0;
    
    	refs = 0;
    	head = pmd_page(orig);
    	page = head + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
    	tail = page;
    	do {
    		VM_BUG_ON_PAGE(compound_head(page) != head, page);
    		pages[*nr] = page;
    		(*nr)++;
    		page++;
    		refs++;
    	} while (addr += PAGE_SIZE, addr != end);
    
    	if (!page_cache_add_speculative(head, refs)) {
    		*nr -= refs;
    		return 0;
    	}
    
    	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
    		*nr -= refs;
    		while (refs--)
    			put_page(head);
    		return 0;
    	}
    
    	/*
    	 * Any tail pages need their mapcount reference taken before we
    	 * return. (This allows the THP code to bump their ref count when
    	 * they are split into base pages).
    	 */
    	while (refs--) {
    		if (PageTail(tail))
    			get_huge_page_tail(tail);
    		tail++;
    	}
    
    	return 1;
    }
    
    static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
    		unsigned long end, int write, struct page **pages, int *nr)
    {
    	struct page *head, *page, *tail;
    	int refs;
    
    	if (write && !pud_write(orig))
    		return 0;
    
    	refs = 0;
    	head = pud_page(orig);
    	page = head + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
    	tail = page;
    	do {
    		VM_BUG_ON_PAGE(compound_head(page) != head, page);
    		pages[*nr] = page;
    		(*nr)++;
    		page++;
    		refs++;
    	} while (addr += PAGE_SIZE, addr != end);
    
    	if (!page_cache_add_speculative(head, refs)) {
    		*nr -= refs;
    		return 0;
    	}
    
    	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
    		*nr -= refs;
    		while (refs--)
    			put_page(head);
    		return 0;
    	}
    
    	while (refs--) {
    		if (PageTail(tail))
    			get_huge_page_tail(tail);
    		tail++;
    	}
    
    	return 1;
    }
    
    static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
    			unsigned long end, int write,
    			struct page **pages, int *nr)
    {
    	int refs;
    	struct page *head, *page, *tail;
    
    	if (write && !pgd_write(orig))
    		return 0;
    
    	refs = 0;
    	head = pgd_page(orig);
    	page = head + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
    	tail = page;
    	do {
    		VM_BUG_ON_PAGE(compound_head(page) != head, page);
    		pages[*nr] = page;
    		(*nr)++;
    		page++;
    		refs++;
    	} while (addr += PAGE_SIZE, addr != end);
    
    	if (!page_cache_add_speculative(head, refs)) {
    		*nr -= refs;
    		return 0;
    	}
    
    	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
    		*nr -= refs;
    		while (refs--)
    			put_page(head);
    		return 0;
    	}
    
    	while (refs--) {
    		if (PageTail(tail))
    			get_huge_page_tail(tail);
    		tail++;
    	}
    
    	return 1;
    }
    
    static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
    		int write, struct page **pages, int *nr)
    {
    	unsigned long next;
    	pmd_t *pmdp;
    
    	pmdp = pmd_offset(&pud, addr);
    	do {
    		pmd_t pmd = READ_ONCE(*pmdp);
    
    		next = pmd_addr_end(addr, end);
    		if (pmd_none(pmd) || pmd_trans_splitting(pmd))
    			return 0;
    
    		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd))) {
    			/*
    			 * NUMA hinting faults need to be handled in the GUP
    			 * slowpath for accounting purposes and so that they
    			 * can be serialised against THP migration.
    			 */
    			if (pmd_protnone(pmd))
    				return 0;
    
    			if (!gup_huge_pmd(pmd, pmdp, addr, next, write,
    				pages, nr))
    				return 0;
    
    		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
    			/*
    			 * architecture have different format for hugetlbfs
    			 * pmd format and THP pmd format
    			 */
    			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
    					 PMD_SHIFT, next, write, pages, nr))
    				return 0;
    		} else if (!gup_pte_range(pmd, addr, next, write, pages, nr))
    				return 0;
    	} while (pmdp++, addr = next, addr != end);
    
    	return 1;
    }
    
    static int gup_pud_range(pgd_t pgd, unsigned long addr, unsigned long end,
    			 int write, struct page **pages, int *nr)
    {
    	unsigned long next;
    	pud_t *pudp;
    
    	pudp = pud_offset(&pgd, addr);
    	do {
    		pud_t pud = READ_ONCE(*pudp);
    
    		next = pud_addr_end(addr, end);
    		if (pud_none(pud))
    			return 0;
    		if (unlikely(pud_huge(pud))) {
    			if (!gup_huge_pud(pud, pudp, addr, next, write,
    					  pages, nr))
    				return 0;
    		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
    			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
    					 PUD_SHIFT, next, write, pages, nr))
    				return 0;
    		} else if (!gup_pmd_range(pud, addr, next, write, pages, nr))
    			return 0;
    	} while (pudp++, addr = next, addr != end);
    
    	return 1;
    }
    
    /*
     * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
     * the regular GUP. It will only return non-negative values.
     */
    int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
    			  struct page **pages)
    {
    	struct mm_struct *mm = current->mm;
    	unsigned long addr, len, end;
    	unsigned long next, flags;
    	pgd_t *pgdp;
    	int nr = 0;
    
    	start &= PAGE_MASK;
    	addr = start;
    	len = (unsigned long) nr_pages << PAGE_SHIFT;
    	end = start + len;
    
    	if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
    					start, len)))
    		return 0;
    
    	/*
    	 * Disable interrupts.  We use the nested form as we can already have
    	 * interrupts disabled by get_futex_key.
    	 *
    	 * With interrupts disabled, we block page table pages from being
    	 * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h
    	 * for more details.
    	 *
    	 * We do not adopt an rcu_read_lock(.) here as we also want to
    	 * block IPIs that come from THPs splitting.
    	 */
    
    	local_irq_save(flags);
    	pgdp = pgd_offset(mm, addr);
    	do {
    		pgd_t pgd = READ_ONCE(*pgdp);
    
    		next = pgd_addr_end(addr, end);
    		if (pgd_none(pgd))
    			break;
    		if (unlikely(pgd_huge(pgd))) {
    			if (!gup_huge_pgd(pgd, pgdp, addr, next, write,
    					  pages, &nr))
    				break;
    		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
    			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
    					 PGDIR_SHIFT, next, write, pages, &nr))
    				break;
    		} else if (!gup_pud_range(pgd, addr, next, write, pages, &nr))
    			break;
    	} while (pgdp++, addr = next, addr != end);
    	local_irq_restore(flags);
    
    	return nr;
    }
    
    /**
     * get_user_pages_fast() - pin user pages in memory
     * @start:	starting user address
     * @nr_pages:	number of pages from start to pin
     * @write:	whether pages will be written to
     * @pages:	array that receives pointers to the pages pinned.
     *		Should be at least nr_pages long.
     *
     * Attempt to pin user pages in memory without taking mm->mmap_sem.
     * If not successful, it will fall back to taking the lock and
     * calling get_user_pages().
     *
     * Returns number of pages pinned. This may be fewer than the number
     * requested. If nr_pages is 0 or negative, returns 0. If no pages
     * were pinned, returns -errno.
     */
    int get_user_pages_fast(unsigned long start, int nr_pages, int write,
    			struct page **pages)
    {
    	struct mm_struct *mm = current->mm;
    	int nr, ret;
    
    	start &= PAGE_MASK;
    	nr = __get_user_pages_fast(start, nr_pages, write, pages);
    	ret = nr;
    
    	if (nr < nr_pages) {
    		/* Try to get the remaining pages with get_user_pages */
    		start += nr << PAGE_SHIFT;
    		pages += nr;
    
    		ret = get_user_pages_unlocked(current, mm, start,
    					      nr_pages - nr, write, 0, pages);
    
    		/* Have to be a bit careful with return values */
    		if (nr > 0) {
    			if (ret < 0)
    				ret = nr;
    			else
    				ret += nr;
    		}
    	}
    
    	return ret;
    }
    
    #endif /* CONFIG_HAVE_GENERIC_RCU_GUP */