Skip to content
Snippets Groups Projects
Select Git revision
  • 3f8210fd22d0c02faa18b36974debf1ad25b7f92
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

intel_combo_phy.c

Blame
  • slub.c 103.33 KiB
    /*
     * SLUB: A slab allocator that limits cache line use instead of queuing
     * objects in per cpu and per node lists.
     *
     * The allocator synchronizes using per slab locks and only
     * uses a centralized lock to manage a pool of partial slabs.
     *
     * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
     */
    
    #include <linux/mm.h>
    #include <linux/module.h>
    #include <linux/bit_spinlock.h>
    #include <linux/interrupt.h>
    #include <linux/bitops.h>
    #include <linux/slab.h>
    #include <linux/seq_file.h>
    #include <linux/cpu.h>
    #include <linux/cpuset.h>
    #include <linux/mempolicy.h>
    #include <linux/ctype.h>
    #include <linux/kallsyms.h>
    #include <linux/memory.h>
    
    /*
     * Lock order:
     *   1. slab_lock(page)
     *   2. slab->list_lock
     *
     *   The slab_lock protects operations on the object of a particular
     *   slab and its metadata in the page struct. If the slab lock
     *   has been taken then no allocations nor frees can be performed
     *   on the objects in the slab nor can the slab be added or removed
     *   from the partial or full lists since this would mean modifying
     *   the page_struct of the slab.
     *
     *   The list_lock protects the partial and full list on each node and
     *   the partial slab counter. If taken then no new slabs may be added or
     *   removed from the lists nor make the number of partial slabs be modified.
     *   (Note that the total number of slabs is an atomic value that may be
     *   modified without taking the list lock).
     *
     *   The list_lock is a centralized lock and thus we avoid taking it as
     *   much as possible. As long as SLUB does not have to handle partial
     *   slabs, operations can continue without any centralized lock. F.e.
     *   allocating a long series of objects that fill up slabs does not require
     *   the list lock.
     *
     *   The lock order is sometimes inverted when we are trying to get a slab
     *   off a list. We take the list_lock and then look for a page on the list
     *   to use. While we do that objects in the slabs may be freed. We can
     *   only operate on the slab if we have also taken the slab_lock. So we use
     *   a slab_trylock() on the slab. If trylock was successful then no frees
     *   can occur anymore and we can use the slab for allocations etc. If the
     *   slab_trylock() does not succeed then frees are in progress in the slab and
     *   we must stay away from it for a while since we may cause a bouncing
     *   cacheline if we try to acquire the lock. So go onto the next slab.
     *   If all pages are busy then we may allocate a new slab instead of reusing
     *   a partial slab. A new slab has noone operating on it and thus there is
     *   no danger of cacheline contention.
     *
     *   Interrupts are disabled during allocation and deallocation in order to
     *   make the slab allocator safe to use in the context of an irq. In addition
     *   interrupts are disabled to ensure that the processor does not change
     *   while handling per_cpu slabs, due to kernel preemption.
     *
     * SLUB assigns one slab for allocation to each processor.
     * Allocations only occur from these slabs called cpu slabs.
     *
     * Slabs with free elements are kept on a partial list and during regular
     * operations no list for full slabs is used. If an object in a full slab is
     * freed then the slab will show up again on the partial lists.
     * We track full slabs for debugging purposes though because otherwise we
     * cannot scan all objects.
     *
     * Slabs are freed when they become empty. Teardown and setup is
     * minimal so we rely on the page allocators per cpu caches for
     * fast frees and allocs.
     *
     * Overloading of page flags that are otherwise used for LRU management.
     *
     * PageActive 		The slab is frozen and exempt from list processing.
     * 			This means that the slab is dedicated to a purpose
     * 			such as satisfying allocations for a specific
     * 			processor. Objects may be freed in the slab while
     * 			it is frozen but slab_free will then skip the usual
     * 			list operations. It is up to the processor holding
     * 			the slab to integrate the slab into the slab lists
     * 			when the slab is no longer needed.
     *
     * 			One use of this flag is to mark slabs that are
     * 			used for allocations. Then such a slab becomes a cpu
     * 			slab. The cpu slab may be equipped with an additional
     * 			freelist that allows lockless access to
     * 			free objects in addition to the regular freelist
     * 			that requires the slab lock.
     *
     * PageError		Slab requires special handling due to debug
     * 			options set. This moves	slab handling out of
     * 			the fast path and disables lockless freelists.
     */
    
    #define FROZEN (1 << PG_active)
    
    #ifdef CONFIG_SLUB_DEBUG
    #define SLABDEBUG (1 << PG_error)
    #else
    #define SLABDEBUG 0
    #endif
    
    static inline int SlabFrozen(struct page *page)
    {
    	return page->flags & FROZEN;
    }
    
    static inline void SetSlabFrozen(struct page *page)
    {
    	page->flags |= FROZEN;
    }
    
    static inline void ClearSlabFrozen(struct page *page)
    {
    	page->flags &= ~FROZEN;
    }
    
    static inline int SlabDebug(struct page *page)
    {
    	return page->flags & SLABDEBUG;
    }
    
    static inline void SetSlabDebug(struct page *page)
    {
    	page->flags |= SLABDEBUG;
    }
    
    static inline void ClearSlabDebug(struct page *page)
    {
    	page->flags &= ~SLABDEBUG;
    }
    
    /*
     * Issues still to be resolved:
     *
     * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
     *
     * - Variable sizing of the per node arrays
     */
    
    /* Enable to test recovery from slab corruption on boot */
    #undef SLUB_RESILIENCY_TEST
    
    /*
     * Currently fastpath is not supported if preemption is enabled.
     */
    #if defined(CONFIG_FAST_CMPXCHG_LOCAL) && !defined(CONFIG_PREEMPT)
    #define SLUB_FASTPATH
    #endif
    
    #if PAGE_SHIFT <= 12
    
    /*
     * Small page size. Make sure that we do not fragment memory
     */
    #define DEFAULT_MAX_ORDER 1
    #define DEFAULT_MIN_OBJECTS 4
    
    #else
    
    /*
     * Large page machines are customarily able to handle larger
     * page orders.
     */
    #define DEFAULT_MAX_ORDER 2
    #define DEFAULT_MIN_OBJECTS 8
    
    #endif
    
    /*
     * Mininum number of partial slabs. These will be left on the partial
     * lists even if they are empty. kmem_cache_shrink may reclaim them.
     */
    #define MIN_PARTIAL 5
    
    /*
     * Maximum number of desirable partial slabs.
     * The existence of more partial slabs makes kmem_cache_shrink
     * sort the partial list by the number of objects in the.
     */
    #define MAX_PARTIAL 10
    
    #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
    				SLAB_POISON | SLAB_STORE_USER)
    
    /*
     * Set of flags that will prevent slab merging
     */
    #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
    		SLAB_TRACE | SLAB_DESTROY_BY_RCU)
    
    #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
    		SLAB_CACHE_DMA)
    
    #ifndef ARCH_KMALLOC_MINALIGN
    #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
    #endif
    
    #ifndef ARCH_SLAB_MINALIGN
    #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
    #endif
    
    /* Internal SLUB flags */
    #define __OBJECT_POISON		0x80000000 /* Poison object */
    #define __SYSFS_ADD_DEFERRED	0x40000000 /* Not yet visible via sysfs */
    
    /* Not all arches define cache_line_size */
    #ifndef cache_line_size
    #define cache_line_size()	L1_CACHE_BYTES
    #endif
    
    static int kmem_size = sizeof(struct kmem_cache);
    
    #ifdef CONFIG_SMP
    static struct notifier_block slab_notifier;
    #endif
    
    static enum {
    	DOWN,		/* No slab functionality available */
    	PARTIAL,	/* kmem_cache_open() works but kmalloc does not */
    	UP,		/* Everything works but does not show up in sysfs */
    	SYSFS		/* Sysfs up */
    } slab_state = DOWN;
    
    /* A list of all slab caches on the system */
    static DECLARE_RWSEM(slub_lock);
    static LIST_HEAD(slab_caches);
    
    /*
     * Tracking user of a slab.
     */
    struct track {
    	void *addr;		/* Called from address */
    	int cpu;		/* Was running on cpu */
    	int pid;		/* Pid context */
    	unsigned long when;	/* When did the operation occur */
    };
    
    enum track_item { TRACK_ALLOC, TRACK_FREE };
    
    #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
    static int sysfs_slab_add(struct kmem_cache *);
    static int sysfs_slab_alias(struct kmem_cache *, const char *);
    static void sysfs_slab_remove(struct kmem_cache *);
    
    #else
    static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
    static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
    							{ return 0; }
    static inline void sysfs_slab_remove(struct kmem_cache *s)
    {
    	kfree(s);
    }
    
    #endif
    
    static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
    {
    #ifdef CONFIG_SLUB_STATS
    	c->stat[si]++;
    #endif
    }
    
    /********************************************************************
     * 			Core slab cache functions
     *******************************************************************/
    
    int slab_is_available(void)
    {
    	return slab_state >= UP;
    }
    
    static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
    {
    #ifdef CONFIG_NUMA
    	return s->node[node];
    #else
    	return &s->local_node;
    #endif
    }
    
    static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
    {
    #ifdef CONFIG_SMP
    	return s->cpu_slab[cpu];
    #else
    	return &s->cpu_slab;
    #endif
    }
    
    /*
     * The end pointer in a slab is special. It points to the first object in the
     * slab but has bit 0 set to mark it.
     *
     * Note that SLUB relies on page_mapping returning NULL for pages with bit 0
     * in the mapping set.
     */
    static inline int is_end(void *addr)
    {
    	return (unsigned long)addr & PAGE_MAPPING_ANON;
    }
    
    void *slab_address(struct page *page)
    {
    	return page->end - PAGE_MAPPING_ANON;
    }
    
    static inline int check_valid_pointer(struct kmem_cache *s,
    				struct page *page, const void *object)
    {
    	void *base;
    
    	if (object == page->end)
    		return 1;
    
    	base = slab_address(page);
    	if (object < base || object >= base + s->objects * s->size ||
    		(object - base) % s->size) {
    		return 0;
    	}
    
    	return 1;
    }
    
    /*
     * Slow version of get and set free pointer.
     *
     * This version requires touching the cache lines of kmem_cache which
     * we avoid to do in the fast alloc free paths. There we obtain the offset
     * from the page struct.
     */
    static inline void *get_freepointer(struct kmem_cache *s, void *object)
    {
    	return *(void **)(object + s->offset);
    }
    
    static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
    {
    	*(void **)(object + s->offset) = fp;
    }
    
    /* Loop over all objects in a slab */
    #define for_each_object(__p, __s, __addr) \
    	for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
    			__p += (__s)->size)
    
    /* Scan freelist */
    #define for_each_free_object(__p, __s, __free) \
    	for (__p = (__free); (__p) != page->end; __p = get_freepointer((__s),\
    		__p))
    
    /* Determine object index from a given position */
    static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
    {
    	return (p - addr) / s->size;
    }
    
    #ifdef CONFIG_SLUB_DEBUG
    /*
     * Debug settings:
     */
    #ifdef CONFIG_SLUB_DEBUG_ON
    static int slub_debug = DEBUG_DEFAULT_FLAGS;
    #else
    static int slub_debug;
    #endif
    
    static char *slub_debug_slabs;
    
    /*
     * Object debugging
     */
    static void print_section(char *text, u8 *addr, unsigned int length)
    {
    	int i, offset;
    	int newline = 1;
    	char ascii[17];
    
    	ascii[16] = 0;
    
    	for (i = 0; i < length; i++) {
    		if (newline) {
    			printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
    			newline = 0;
    		}
    		printk(KERN_CONT " %02x", addr[i]);
    		offset = i % 16;
    		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
    		if (offset == 15) {
    			printk(KERN_CONT " %s\n", ascii);
    			newline = 1;
    		}
    	}
    	if (!newline) {
    		i %= 16;
    		while (i < 16) {
    			printk(KERN_CONT "   ");
    			ascii[i] = ' ';
    			i++;
    		}
    		printk(KERN_CONT " %s\n", ascii);
    	}
    }
    
    static struct track *get_track(struct kmem_cache *s, void *object,
    	enum track_item alloc)
    {
    	struct track *p;
    
    	if (s->offset)
    		p = object + s->offset + sizeof(void *);
    	else
    		p = object + s->inuse;
    
    	return p + alloc;
    }
    
    static void set_track(struct kmem_cache *s, void *object,
    				enum track_item alloc, void *addr)
    {
    	struct track *p;
    
    	if (s->offset)
    		p = object + s->offset + sizeof(void *);
    	else
    		p = object + s->inuse;
    
    	p += alloc;
    	if (addr) {
    		p->addr = addr;
    		p->cpu = smp_processor_id();
    		p->pid = current ? current->pid : -1;
    		p->when = jiffies;
    	} else
    		memset(p, 0, sizeof(struct track));
    }
    
    static void init_tracking(struct kmem_cache *s, void *object)
    {
    	if (!(s->flags & SLAB_STORE_USER))
    		return;
    
    	set_track(s, object, TRACK_FREE, NULL);
    	set_track(s, object, TRACK_ALLOC, NULL);
    }
    
    static void print_track(const char *s, struct track *t)
    {
    	if (!t->addr)
    		return;
    
    	printk(KERN_ERR "INFO: %s in ", s);
    	__print_symbol("%s", (unsigned long)t->addr);
    	printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
    }
    
    static void print_tracking(struct kmem_cache *s, void *object)
    {
    	if (!(s->flags & SLAB_STORE_USER))
    		return;
    
    	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
    	print_track("Freed", get_track(s, object, TRACK_FREE));
    }
    
    static void print_page_info(struct page *page)
    {
    	printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
    		page, page->inuse, page->freelist, page->flags);
    
    }
    
    static void slab_bug(struct kmem_cache *s, char *fmt, ...)
    {
    	va_list args;
    	char buf[100];
    
    	va_start(args, fmt);
    	vsnprintf(buf, sizeof(buf), fmt, args);
    	va_end(args);
    	printk(KERN_ERR "========================================"
    			"=====================================\n");
    	printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
    	printk(KERN_ERR "----------------------------------------"
    			"-------------------------------------\n\n");
    }
    
    static void slab_fix(struct kmem_cache *s, char *fmt, ...)
    {
    	va_list args;
    	char buf[100];
    
    	va_start(args, fmt);
    	vsnprintf(buf, sizeof(buf), fmt, args);
    	va_end(args);
    	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
    }
    
    static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
    {
    	unsigned int off;	/* Offset of last byte */
    	u8 *addr = slab_address(page);
    
    	print_tracking(s, p);
    
    	print_page_info(page);
    
    	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
    			p, p - addr, get_freepointer(s, p));
    
    	if (p > addr + 16)
    		print_section("Bytes b4", p - 16, 16);
    
    	print_section("Object", p, min(s->objsize, 128));
    
    	if (s->flags & SLAB_RED_ZONE)
    		print_section("Redzone", p + s->objsize,
    			s->inuse - s->objsize);
    
    	if (s->offset)
    		off = s->offset + sizeof(void *);
    	else
    		off = s->inuse;
    
    	if (s->flags & SLAB_STORE_USER)
    		off += 2 * sizeof(struct track);
    
    	if (off != s->size)
    		/* Beginning of the filler is the free pointer */
    		print_section("Padding", p + off, s->size - off);
    
    	dump_stack();
    }
    
    static void object_err(struct kmem_cache *s, struct page *page,
    			u8 *object, char *reason)
    {
    	slab_bug(s, reason);
    	print_trailer(s, page, object);
    }
    
    static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
    {
    	va_list args;
    	char buf[100];
    
    	va_start(args, fmt);
    	vsnprintf(buf, sizeof(buf), fmt, args);
    	va_end(args);
    	slab_bug(s, fmt);
    	print_page_info(page);
    	dump_stack();
    }
    
    static void init_object(struct kmem_cache *s, void *object, int active)
    {
    	u8 *p = object;
    
    	if (s->flags & __OBJECT_POISON) {
    		memset(p, POISON_FREE, s->objsize - 1);
    		p[s->objsize - 1] = POISON_END;
    	}
    
    	if (s->flags & SLAB_RED_ZONE)
    		memset(p + s->objsize,
    			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
    			s->inuse - s->objsize);
    }
    
    static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
    {
    	while (bytes) {
    		if (*start != (u8)value)
    			return start;
    		start++;
    		bytes--;
    	}
    	return NULL;
    }
    
    static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
    						void *from, void *to)
    {
    	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
    	memset(from, data, to - from);
    }
    
    static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
    			u8 *object, char *what,
    			u8 *start, unsigned int value, unsigned int bytes)
    {
    	u8 *fault;
    	u8 *end;
    
    	fault = check_bytes(start, value, bytes);
    	if (!fault)
    		return 1;
    
    	end = start + bytes;
    	while (end > fault && end[-1] == value)
    		end--;
    
    	slab_bug(s, "%s overwritten", what);
    	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
    					fault, end - 1, fault[0], value);
    	print_trailer(s, page, object);
    
    	restore_bytes(s, what, value, fault, end);
    	return 0;
    }
    
    /*
     * Object layout:
     *
     * object address
     * 	Bytes of the object to be managed.
     * 	If the freepointer may overlay the object then the free
     * 	pointer is the first word of the object.
     *
     * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
     * 	0xa5 (POISON_END)
     *
     * object + s->objsize
     * 	Padding to reach word boundary. This is also used for Redzoning.
     * 	Padding is extended by another word if Redzoning is enabled and
     * 	objsize == inuse.
     *
     * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
     * 	0xcc (RED_ACTIVE) for objects in use.
     *
     * object + s->inuse
     * 	Meta data starts here.
     *
     * 	A. Free pointer (if we cannot overwrite object on free)
     * 	B. Tracking data for SLAB_STORE_USER
     * 	C. Padding to reach required alignment boundary or at mininum
     * 		one word if debuggin is on to be able to detect writes
     * 		before the word boundary.
     *
     *	Padding is done using 0x5a (POISON_INUSE)
     *
     * object + s->size
     * 	Nothing is used beyond s->size.
     *
     * If slabcaches are merged then the objsize and inuse boundaries are mostly
     * ignored. And therefore no slab options that rely on these boundaries
     * may be used with merged slabcaches.
     */
    
    static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
    {
    	unsigned long off = s->inuse;	/* The end of info */
    
    	if (s->offset)
    		/* Freepointer is placed after the object. */
    		off += sizeof(void *);
    
    	if (s->flags & SLAB_STORE_USER)
    		/* We also have user information there */
    		off += 2 * sizeof(struct track);
    
    	if (s->size == off)
    		return 1;
    
    	return check_bytes_and_report(s, page, p, "Object padding",
    				p + off, POISON_INUSE, s->size - off);
    }
    
    static int slab_pad_check(struct kmem_cache *s, struct page *page)
    {
    	u8 *start;
    	u8 *fault;
    	u8 *end;
    	int length;
    	int remainder;
    
    	if (!(s->flags & SLAB_POISON))
    		return 1;
    
    	start = slab_address(page);
    	end = start + (PAGE_SIZE << s->order);
    	length = s->objects * s->size;
    	remainder = end - (start + length);
    	if (!remainder)
    		return 1;
    
    	fault = check_bytes(start + length, POISON_INUSE, remainder);
    	if (!fault)
    		return 1;
    	while (end > fault && end[-1] == POISON_INUSE)
    		end--;
    
    	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
    	print_section("Padding", start, length);
    
    	restore_bytes(s, "slab padding", POISON_INUSE, start, end);
    	return 0;
    }
    
    static int check_object(struct kmem_cache *s, struct page *page,
    					void *object, int active)
    {
    	u8 *p = object;
    	u8 *endobject = object + s->objsize;
    
    	if (s->flags & SLAB_RED_ZONE) {
    		unsigned int red =
    			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
    
    		if (!check_bytes_and_report(s, page, object, "Redzone",
    			endobject, red, s->inuse - s->objsize))
    			return 0;
    	} else {
    		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
    			check_bytes_and_report(s, page, p, "Alignment padding",
    				endobject, POISON_INUSE, s->inuse - s->objsize);
    		}
    	}
    
    	if (s->flags & SLAB_POISON) {
    		if (!active && (s->flags & __OBJECT_POISON) &&
    			(!check_bytes_and_report(s, page, p, "Poison", p,
    					POISON_FREE, s->objsize - 1) ||
    			 !check_bytes_and_report(s, page, p, "Poison",
    				p + s->objsize - 1, POISON_END, 1)))
    			return 0;
    		/*
    		 * check_pad_bytes cleans up on its own.
    		 */
    		check_pad_bytes(s, page, p);
    	}
    
    	if (!s->offset && active)
    		/*
    		 * Object and freepointer overlap. Cannot check
    		 * freepointer while object is allocated.
    		 */
    		return 1;
    
    	/* Check free pointer validity */
    	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
    		object_err(s, page, p, "Freepointer corrupt");
    		/*
    		 * No choice but to zap it and thus loose the remainder
    		 * of the free objects in this slab. May cause
    		 * another error because the object count is now wrong.
    		 */
    		set_freepointer(s, p, page->end);
    		return 0;
    	}
    	return 1;
    }
    
    static int check_slab(struct kmem_cache *s, struct page *page)
    {
    	VM_BUG_ON(!irqs_disabled());
    
    	if (!PageSlab(page)) {
    		slab_err(s, page, "Not a valid slab page");
    		return 0;
    	}
    	if (page->inuse > s->objects) {
    		slab_err(s, page, "inuse %u > max %u",
    			s->name, page->inuse, s->objects);
    		return 0;
    	}
    	/* Slab_pad_check fixes things up after itself */
    	slab_pad_check(s, page);
    	return 1;
    }
    
    /*
     * Determine if a certain object on a page is on the freelist. Must hold the
     * slab lock to guarantee that the chains are in a consistent state.
     */
    static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
    {
    	int nr = 0;
    	void *fp = page->freelist;
    	void *object = NULL;
    
    	while (fp != page->end && nr <= s->objects) {
    		if (fp == search)
    			return 1;
    		if (!check_valid_pointer(s, page, fp)) {
    			if (object) {
    				object_err(s, page, object,
    					"Freechain corrupt");
    				set_freepointer(s, object, page->end);
    				break;
    			} else {
    				slab_err(s, page, "Freepointer corrupt");
    				page->freelist = page->end;
    				page->inuse = s->objects;
    				slab_fix(s, "Freelist cleared");
    				return 0;
    			}
    			break;
    		}
    		object = fp;
    		fp = get_freepointer(s, object);
    		nr++;
    	}
    
    	if (page->inuse != s->objects - nr) {
    		slab_err(s, page, "Wrong object count. Counter is %d but "
    			"counted were %d", page->inuse, s->objects - nr);
    		page->inuse = s->objects - nr;
    		slab_fix(s, "Object count adjusted.");
    	}
    	return search == NULL;
    }
    
    static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
    {
    	if (s->flags & SLAB_TRACE) {
    		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
    			s->name,
    			alloc ? "alloc" : "free",
    			object, page->inuse,
    			page->freelist);
    
    		if (!alloc)
    			print_section("Object", (void *)object, s->objsize);
    
    		dump_stack();
    	}
    }
    
    /*
     * Tracking of fully allocated slabs for debugging purposes.
     */
    static void add_full(struct kmem_cache_node *n, struct page *page)
    {
    	spin_lock(&n->list_lock);
    	list_add(&page->lru, &n->full);
    	spin_unlock(&n->list_lock);
    }
    
    static void remove_full(struct kmem_cache *s, struct page *page)
    {
    	struct kmem_cache_node *n;
    
    	if (!(s->flags & SLAB_STORE_USER))
    		return;
    
    	n = get_node(s, page_to_nid(page));
    
    	spin_lock(&n->list_lock);
    	list_del(&page->lru);
    	spin_unlock(&n->list_lock);
    }
    
    static void setup_object_debug(struct kmem_cache *s, struct page *page,
    								void *object)
    {
    	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
    		return;
    
    	init_object(s, object, 0);
    	init_tracking(s, object);
    }
    
    static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
    						void *object, void *addr)
    {
    	if (!check_slab(s, page))
    		goto bad;
    
    	if (object && !on_freelist(s, page, object)) {
    		object_err(s, page, object, "Object already allocated");
    		goto bad;
    	}
    
    	if (!check_valid_pointer(s, page, object)) {
    		object_err(s, page, object, "Freelist Pointer check fails");
    		goto bad;
    	}
    
    	if (object && !check_object(s, page, object, 0))
    		goto bad;
    
    	/* Success perform special debug activities for allocs */
    	if (s->flags & SLAB_STORE_USER)
    		set_track(s, object, TRACK_ALLOC, addr);
    	trace(s, page, object, 1);
    	init_object(s, object, 1);
    	return 1;
    
    bad:
    	if (PageSlab(page)) {
    		/*
    		 * If this is a slab page then lets do the best we can
    		 * to avoid issues in the future. Marking all objects
    		 * as used avoids touching the remaining objects.
    		 */
    		slab_fix(s, "Marking all objects used");
    		page->inuse = s->objects;
    		page->freelist = page->end;
    	}
    	return 0;
    }
    
    static int free_debug_processing(struct kmem_cache *s, struct page *page,
    						void *object, void *addr)
    {
    	if (!check_slab(s, page))
    		goto fail;
    
    	if (!check_valid_pointer(s, page, object)) {
    		slab_err(s, page, "Invalid object pointer 0x%p", object);
    		goto fail;
    	}
    
    	if (on_freelist(s, page, object)) {
    		object_err(s, page, object, "Object already free");
    		goto fail;
    	}
    
    	if (!check_object(s, page, object, 1))
    		return 0;
    
    	if (unlikely(s != page->slab)) {
    		if (!PageSlab(page)) {
    			slab_err(s, page, "Attempt to free object(0x%p) "
    				"outside of slab", object);
    		} else if (!page->slab) {
    			printk(KERN_ERR
    				"SLUB <none>: no slab for object 0x%p.\n",
    						object);
    			dump_stack();
    		} else
    			object_err(s, page, object,
    					"page slab pointer corrupt.");
    		goto fail;
    	}
    
    	/* Special debug activities for freeing objects */
    	if (!SlabFrozen(page) && page->freelist == page->end)
    		remove_full(s, page);
    	if (s->flags & SLAB_STORE_USER)
    		set_track(s, object, TRACK_FREE, addr);
    	trace(s, page, object, 0);
    	init_object(s, object, 0);
    	return 1;
    
    fail:
    	slab_fix(s, "Object at 0x%p not freed", object);
    	return 0;
    }
    
    static int __init setup_slub_debug(char *str)
    {
    	slub_debug = DEBUG_DEFAULT_FLAGS;
    	if (*str++ != '=' || !*str)
    		/*
    		 * No options specified. Switch on full debugging.
    		 */
    		goto out;
    
    	if (*str == ',')
    		/*
    		 * No options but restriction on slabs. This means full
    		 * debugging for slabs matching a pattern.
    		 */
    		goto check_slabs;
    
    	slub_debug = 0;
    	if (*str == '-')
    		/*
    		 * Switch off all debugging measures.
    		 */
    		goto out;
    
    	/*
    	 * Determine which debug features should be switched on
    	 */
    	for (; *str && *str != ','; str++) {
    		switch (tolower(*str)) {
    		case 'f':
    			slub_debug |= SLAB_DEBUG_FREE;
    			break;
    		case 'z':
    			slub_debug |= SLAB_RED_ZONE;
    			break;
    		case 'p':
    			slub_debug |= SLAB_POISON;
    			break;
    		case 'u':
    			slub_debug |= SLAB_STORE_USER;
    			break;
    		case 't':
    			slub_debug |= SLAB_TRACE;
    			break;
    		default:
    			printk(KERN_ERR "slub_debug option '%c' "
    				"unknown. skipped\n", *str);
    		}
    	}
    
    check_slabs:
    	if (*str == ',')
    		slub_debug_slabs = str + 1;
    out:
    	return 1;
    }
    
    __setup("slub_debug", setup_slub_debug);
    
    static unsigned long kmem_cache_flags(unsigned long objsize,
    	unsigned long flags, const char *name,
    	void (*ctor)(struct kmem_cache *, void *))
    {
    	/*
    	 * The page->offset field is only 16 bit wide. This is an offset
    	 * in units of words from the beginning of an object. If the slab
    	 * size is bigger then we cannot move the free pointer behind the
    	 * object anymore.
    	 *
    	 * On 32 bit platforms the limit is 256k. On 64bit platforms
    	 * the limit is 512k.
    	 *
    	 * Debugging or ctor may create a need to move the free
    	 * pointer. Fail if this happens.
    	 */
    	if (objsize >= 65535 * sizeof(void *)) {
    		BUG_ON(flags & (SLAB_RED_ZONE | SLAB_POISON |
    				SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
    		BUG_ON(ctor);
    	} else {
    		/*
    		 * Enable debugging if selected on the kernel commandline.
    		 */
    		if (slub_debug && (!slub_debug_slabs ||
    		    strncmp(slub_debug_slabs, name,
    			strlen(slub_debug_slabs)) == 0))
    				flags |= slub_debug;
    	}
    
    	return flags;
    }
    #else
    static inline void setup_object_debug(struct kmem_cache *s,
    			struct page *page, void *object) {}
    
    static inline int alloc_debug_processing(struct kmem_cache *s,
    	struct page *page, void *object, void *addr) { return 0; }
    
    static inline int free_debug_processing(struct kmem_cache *s,
    	struct page *page, void *object, void *addr) { return 0; }
    
    static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
    			{ return 1; }
    static inline int check_object(struct kmem_cache *s, struct page *page,
    			void *object, int active) { return 1; }
    static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
    static inline unsigned long kmem_cache_flags(unsigned long objsize,
    	unsigned long flags, const char *name,
    	void (*ctor)(struct kmem_cache *, void *))
    {
    	return flags;
    }
    #define slub_debug 0
    #endif
    /*
     * Slab allocation and freeing
     */
    static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
    {
    	struct page *page;
    	int pages = 1 << s->order;
    
    	if (s->order)
    		flags |= __GFP_COMP;
    
    	if (s->flags & SLAB_CACHE_DMA)
    		flags |= SLUB_DMA;
    
    	if (s->flags & SLAB_RECLAIM_ACCOUNT)
    		flags |= __GFP_RECLAIMABLE;
    
    	if (node == -1)
    		page = alloc_pages(flags, s->order);
    	else
    		page = alloc_pages_node(node, flags, s->order);
    
    	if (!page)
    		return NULL;
    
    	mod_zone_page_state(page_zone(page),
    		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
    		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
    		pages);
    
    	return page;
    }
    
    static void setup_object(struct kmem_cache *s, struct page *page,
    				void *object)
    {
    	setup_object_debug(s, page, object);
    	if (unlikely(s->ctor))
    		s->ctor(s, object);
    }
    
    static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
    {
    	struct page *page;
    	struct kmem_cache_node *n;
    	void *start;
    	void *last;
    	void *p;
    
    	BUG_ON(flags & GFP_SLAB_BUG_MASK);
    
    	page = allocate_slab(s,
    		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
    	if (!page)
    		goto out;
    
    	n = get_node(s, page_to_nid(page));
    	if (n)
    		atomic_long_inc(&n->nr_slabs);
    	page->slab = s;
    	page->flags |= 1 << PG_slab;
    	if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
    			SLAB_STORE_USER | SLAB_TRACE))
    		SetSlabDebug(page);
    
    	start = page_address(page);
    	page->end = start + 1;
    
    	if (unlikely(s->flags & SLAB_POISON))
    		memset(start, POISON_INUSE, PAGE_SIZE << s->order);
    
    	last = start;
    	for_each_object(p, s, start) {
    		setup_object(s, page, last);
    		set_freepointer(s, last, p);
    		last = p;
    	}
    	setup_object(s, page, last);
    	set_freepointer(s, last, page->end);
    
    	page->freelist = start;
    	page->inuse = 0;
    out:
    	return page;
    }
    
    static void __free_slab(struct kmem_cache *s, struct page *page)
    {
    	int pages = 1 << s->order;
    
    	if (unlikely(SlabDebug(page))) {
    		void *p;
    
    		slab_pad_check(s, page);
    		for_each_object(p, s, slab_address(page))
    			check_object(s, page, p, 0);
    		ClearSlabDebug(page);
    	}
    
    	mod_zone_page_state(page_zone(page),
    		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
    		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
    		-pages);
    
    	page->mapping = NULL;
    	__free_pages(page, s->order);
    }
    
    static void rcu_free_slab(struct rcu_head *h)
    {
    	struct page *page;
    
    	page = container_of((struct list_head *)h, struct page, lru);
    	__free_slab(page->slab, page);
    }
    
    static void free_slab(struct kmem_cache *s, struct page *page)
    {
    	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
    		/*
    		 * RCU free overloads the RCU head over the LRU
    		 */
    		struct rcu_head *head = (void *)&page->lru;
    
    		call_rcu(head, rcu_free_slab);
    	} else
    		__free_slab(s, page);
    }
    
    static void discard_slab(struct kmem_cache *s, struct page *page)
    {
    	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
    
    	atomic_long_dec(&n->nr_slabs);
    	reset_page_mapcount(page);
    	__ClearPageSlab(page);
    	free_slab(s, page);
    }
    
    /*
     * Per slab locking using the pagelock
     */
    static __always_inline void slab_lock(struct page *page)
    {
    	bit_spin_lock(PG_locked, &page->flags);
    }
    
    static __always_inline void slab_unlock(struct page *page)
    {
    	__bit_spin_unlock(PG_locked, &page->flags);
    }
    
    static __always_inline int slab_trylock(struct page *page)
    {
    	int rc = 1;
    
    	rc = bit_spin_trylock(PG_locked, &page->flags);
    	return rc;
    }
    
    /*
     * Management of partially allocated slabs
     */
    static void add_partial(struct kmem_cache_node *n,
    				struct page *page, int tail)
    {
    	spin_lock(&n->list_lock);
    	n->nr_partial++;
    	if (tail)
    		list_add_tail(&page->lru, &n->partial);
    	else
    		list_add(&page->lru, &n->partial);
    	spin_unlock(&n->list_lock);
    }
    
    static void remove_partial(struct kmem_cache *s,
    						struct page *page)
    {
    	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
    
    	spin_lock(&n->list_lock);
    	list_del(&page->lru);
    	n->nr_partial--;
    	spin_unlock(&n->list_lock);
    }
    
    /*
     * Lock slab and remove from the partial list.
     *
     * Must hold list_lock.
     */
    static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
    {
    	if (slab_trylock(page)) {
    		list_del(&page->lru);
    		n->nr_partial--;
    		SetSlabFrozen(page);
    		return 1;
    	}
    	return 0;
    }
    
    /*
     * Try to allocate a partial slab from a specific node.
     */
    static struct page *get_partial_node(struct kmem_cache_node *n)
    {
    	struct page *page;
    
    	/*
    	 * Racy check. If we mistakenly see no partial slabs then we
    	 * just allocate an empty slab. If we mistakenly try to get a
    	 * partial slab and there is none available then get_partials()
    	 * will return NULL.
    	 */
    	if (!n || !n->nr_partial)
    		return NULL;
    
    	spin_lock(&n->list_lock);
    	list_for_each_entry(page, &n->partial, lru)
    		if (lock_and_freeze_slab(n, page))
    			goto out;
    	page = NULL;
    out:
    	spin_unlock(&n->list_lock);
    	return page;
    }
    
    /*
     * Get a page from somewhere. Search in increasing NUMA distances.
     */
    static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
    {
    #ifdef CONFIG_NUMA
    	struct zonelist *zonelist;
    	struct zone **z;
    	struct page *page;
    
    	/*
    	 * The defrag ratio allows a configuration of the tradeoffs between
    	 * inter node defragmentation and node local allocations. A lower
    	 * defrag_ratio increases the tendency to do local allocations
    	 * instead of attempting to obtain partial slabs from other nodes.
    	 *
    	 * If the defrag_ratio is set to 0 then kmalloc() always
    	 * returns node local objects. If the ratio is higher then kmalloc()
    	 * may return off node objects because partial slabs are obtained
    	 * from other nodes and filled up.
    	 *
    	 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
    	 * defrag_ratio = 1000) then every (well almost) allocation will
    	 * first attempt to defrag slab caches on other nodes. This means
    	 * scanning over all nodes to look for partial slabs which may be
    	 * expensive if we do it every time we are trying to find a slab
    	 * with available objects.
    	 */
    	if (!s->remote_node_defrag_ratio ||
    			get_cycles() % 1024 > s->remote_node_defrag_ratio)
    		return NULL;
    
    	zonelist = &NODE_DATA(
    		slab_node(current->mempolicy))->node_zonelists[gfp_zone(flags)];
    	for (z = zonelist->zones; *z; z++) {
    		struct kmem_cache_node *n;
    
    		n = get_node(s, zone_to_nid(*z));
    
    		if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
    				n->nr_partial > MIN_PARTIAL) {
    			page = get_partial_node(n);
    			if (page)
    				return page;
    		}
    	}
    #endif
    	return NULL;
    }
    
    /*
     * Get a partial page, lock it and return it.
     */
    static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
    {
    	struct page *page;
    	int searchnode = (node == -1) ? numa_node_id() : node;
    
    	page = get_partial_node(get_node(s, searchnode));
    	if (page || (flags & __GFP_THISNODE))
    		return page;
    
    	return get_any_partial(s, flags);
    }
    
    /*
     * Move a page back to the lists.
     *
     * Must be called with the slab lock held.
     *
     * On exit the slab lock will have been dropped.
     */
    static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
    {
    	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
    	struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
    
    	ClearSlabFrozen(page);
    	if (page->inuse) {
    
    		if (page->freelist != page->end) {
    			add_partial(n, page, tail);
    			stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
    		} else {
    			stat(c, DEACTIVATE_FULL);
    			if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
    				add_full(n, page);
    		}
    		slab_unlock(page);
    	} else {
    		stat(c, DEACTIVATE_EMPTY);
    		if (n->nr_partial < MIN_PARTIAL) {
    			/*
    			 * Adding an empty slab to the partial slabs in order
    			 * to avoid page allocator overhead. This slab needs
    			 * to come after the other slabs with objects in
    			 * order to fill them up. That way the size of the
    			 * partial list stays small. kmem_cache_shrink can
    			 * reclaim empty slabs from the partial list.
    			 */
    			add_partial(n, page, 1);
    			slab_unlock(page);
    		} else {
    			slab_unlock(page);
    			stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
    			discard_slab(s, page);
    		}
    	}
    }
    
    /*
     * Remove the cpu slab
     */
    static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
    {
    	struct page *page = c->page;
    	int tail = 1;
    
    	if (c->freelist)
    		stat(c, DEACTIVATE_REMOTE_FREES);
    	/*
    	 * Merge cpu freelist into freelist. Typically we get here
    	 * because both freelists are empty. So this is unlikely
    	 * to occur.
    	 *
    	 * We need to use _is_end here because deactivate slab may
    	 * be called for a debug slab. Then c->freelist may contain
    	 * a dummy pointer.
    	 */
    	while (unlikely(!is_end(c->freelist))) {
    		void **object;
    
    		tail = 0;	/* Hot objects. Put the slab first */
    
    		/* Retrieve object from cpu_freelist */
    		object = c->freelist;
    		c->freelist = c->freelist[c->offset];
    
    		/* And put onto the regular freelist */
    		object[c->offset] = page->freelist;
    		page->freelist = object;
    		page->inuse--;
    	}
    	c->page = NULL;
    	unfreeze_slab(s, page, tail);
    }
    
    static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
    {
    	stat(c, CPUSLAB_FLUSH);
    	slab_lock(c->page);
    	deactivate_slab(s, c);
    }
    
    /*
     * Flush cpu slab.
     * Called from IPI handler with interrupts disabled.
     */
    static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
    {
    	struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
    
    	if (likely(c && c->page))
    		flush_slab(s, c);
    }
    
    static void flush_cpu_slab(void *d)
    {
    	struct kmem_cache *s = d;
    
    	__flush_cpu_slab(s, smp_processor_id());
    }
    
    static void flush_all(struct kmem_cache *s)
    {
    #ifdef CONFIG_SMP
    	on_each_cpu(flush_cpu_slab, s, 1, 1);
    #else
    	unsigned long flags;
    
    	local_irq_save(flags);
    	flush_cpu_slab(s);
    	local_irq_restore(flags);
    #endif
    }
    
    /*
     * Check if the objects in a per cpu structure fit numa
     * locality expectations.
     */
    static inline int node_match(struct kmem_cache_cpu *c, int node)
    {
    #ifdef CONFIG_NUMA
    	if (node != -1 && c->node != node)
    		return 0;
    #endif
    	return 1;
    }
    
    /*
     * Slow path. The lockless freelist is empty or we need to perform
     * debugging duties.
     *
     * Interrupts are disabled.
     *
     * Processing is still very fast if new objects have been freed to the
     * regular freelist. In that case we simply take over the regular freelist
     * as the lockless freelist and zap the regular freelist.
     *
     * If that is not working then we fall back to the partial lists. We take the
     * first element of the freelist as the object to allocate now and move the
     * rest of the freelist to the lockless freelist.
     *
     * And if we were unable to get a new slab from the partial slab lists then
     * we need to allocate a new slab. This is slowest path since we may sleep.
     */
    static void *__slab_alloc(struct kmem_cache *s,
    		gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
    {
    	void **object;
    	struct page *new;
    #ifdef SLUB_FASTPATH
    	unsigned long flags;
    
    	local_irq_save(flags);
    #endif
    	if (!c->page)
    		goto new_slab;
    
    	slab_lock(c->page);
    	if (unlikely(!node_match(c, node)))
    		goto another_slab;
    	stat(c, ALLOC_REFILL);
    load_freelist:
    	object = c->page->freelist;
    	if (unlikely(object == c->page->end))
    		goto another_slab;
    	if (unlikely(SlabDebug(c->page)))
    		goto debug;
    
    	object = c->page->freelist;
    	c->freelist = object[c->offset];
    	c->page->inuse = s->objects;
    	c->page->freelist = c->page->end;
    	c->node = page_to_nid(c->page);
    unlock_out:
    	slab_unlock(c->page);
    	stat(c, ALLOC_SLOWPATH);
    out:
    #ifdef SLUB_FASTPATH
    	local_irq_restore(flags);
    #endif
    	return object;
    
    another_slab:
    	deactivate_slab(s, c);
    
    new_slab:
    	new = get_partial(s, gfpflags, node);
    	if (new) {
    		c->page = new;
    		stat(c, ALLOC_FROM_PARTIAL);
    		goto load_freelist;
    	}
    
    	if (gfpflags & __GFP_WAIT)
    		local_irq_enable();
    
    	new = new_slab(s, gfpflags, node);
    
    	if (gfpflags & __GFP_WAIT)
    		local_irq_disable();
    
    	if (new) {
    		c = get_cpu_slab(s, smp_processor_id());
    		stat(c, ALLOC_SLAB);
    		if (c->page)
    			flush_slab(s, c);
    		slab_lock(new);
    		SetSlabFrozen(new);
    		c->page = new;
    		goto load_freelist;
    	}
    	object = NULL;
    	goto out;
    debug:
    	object = c->page->freelist;
    	if (!alloc_debug_processing(s, c->page, object, addr))
    		goto another_slab;
    
    	c->page->inuse++;
    	c->page->freelist = object[c->offset];
    	c->node = -1;
    	goto unlock_out;
    }
    
    /*
     * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
     * have the fastpath folded into their functions. So no function call
     * overhead for requests that can be satisfied on the fastpath.
     *
     * The fastpath works by first checking if the lockless freelist can be used.
     * If not then __slab_alloc is called for slow processing.
     *
     * Otherwise we can simply pick the next object from the lockless free list.
     */
    static __always_inline void *slab_alloc(struct kmem_cache *s,
    		gfp_t gfpflags, int node, void *addr)
    {
    	void **object;
    	struct kmem_cache_cpu *c;
    
    /*
     * The SLUB_FASTPATH path is provisional and is currently disabled if the
     * kernel is compiled with preemption or if the arch does not support
     * fast cmpxchg operations. There are a couple of coming changes that will
     * simplify matters and allow preemption. Ultimately we may end up making
     * SLUB_FASTPATH the default.
     *
     * 1. The introduction of the per cpu allocator will avoid array lookups
     *    through get_cpu_slab(). A special register can be used instead.
     *
     * 2. The introduction of per cpu atomic operations (cpu_ops) means that
     *    we can realize the logic here entirely with per cpu atomics. The
     *    per cpu atomic ops will take care of the preemption issues.
     */
    
    #ifdef SLUB_FASTPATH
    	c = get_cpu_slab(s, raw_smp_processor_id());
    	do {
    		object = c->freelist;
    		if (unlikely(is_end(object) || !node_match(c, node))) {
    			object = __slab_alloc(s, gfpflags, node, addr, c);
    			break;
    		}
    		stat(c, ALLOC_FASTPATH);
    	} while (cmpxchg_local(&c->freelist, object, object[c->offset])
    								!= object);
    #else
    	unsigned long flags;
    
    	local_irq_save(flags);
    	c = get_cpu_slab(s, smp_processor_id());
    	if (unlikely(is_end(c->freelist) || !node_match(c, node)))
    
    		object = __slab_alloc(s, gfpflags, node, addr, c);
    
    	else {
    		object = c->freelist;
    		c->freelist = object[c->offset];
    		stat(c, ALLOC_FASTPATH);
    	}
    	local_irq_restore(flags);
    #endif
    
    	if (unlikely((gfpflags & __GFP_ZERO) && object))
    		memset(object, 0, c->objsize);
    
    	return object;
    }
    
    void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
    {
    	return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
    }
    EXPORT_SYMBOL(kmem_cache_alloc);
    
    #ifdef CONFIG_NUMA
    void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
    {
    	return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
    }
    EXPORT_SYMBOL(kmem_cache_alloc_node);
    #endif
    
    /*
     * Slow patch handling. This may still be called frequently since objects
     * have a longer lifetime than the cpu slabs in most processing loads.
     *
     * So we still attempt to reduce cache line usage. Just take the slab
     * lock and free the item. If there is no additional partial page
     * handling required then we can return immediately.
     */
    static void __slab_free(struct kmem_cache *s, struct page *page,
    				void *x, void *addr, unsigned int offset)
    {
    	void *prior;
    	void **object = (void *)x;
    	struct kmem_cache_cpu *c;
    
    #ifdef SLUB_FASTPATH
    	unsigned long flags;
    
    	local_irq_save(flags);
    #endif
    	c = get_cpu_slab(s, raw_smp_processor_id());
    	stat(c, FREE_SLOWPATH);
    	slab_lock(page);
    
    	if (unlikely(SlabDebug(page)))
    		goto debug;
    checks_ok:
    	prior = object[offset] = page->freelist;
    	page->freelist = object;
    	page->inuse--;
    
    	if (unlikely(SlabFrozen(page))) {
    		stat(c, FREE_FROZEN);
    		goto out_unlock;
    	}
    
    	if (unlikely(!page->inuse))
    		goto slab_empty;
    
    	/*
    	 * Objects left in the slab. If it
    	 * was not on the partial list before
    	 * then add it.
    	 */
    	if (unlikely(prior == page->end)) {
    		add_partial(get_node(s, page_to_nid(page)), page, 1);
    		stat(c, FREE_ADD_PARTIAL);
    	}
    
    out_unlock:
    	slab_unlock(page);
    #ifdef SLUB_FASTPATH
    	local_irq_restore(flags);
    #endif
    	return;
    
    slab_empty:
    	if (prior != page->end) {
    		/*
    		 * Slab still on the partial list.
    		 */
    		remove_partial(s, page);
    		stat(c, FREE_REMOVE_PARTIAL);
    	}
    	slab_unlock(page);
    	stat(c, FREE_SLAB);
    #ifdef SLUB_FASTPATH
    	local_irq_restore(flags);
    #endif
    	discard_slab(s, page);
    	return;
    
    debug:
    	if (!free_debug_processing(s, page, x, addr))
    		goto out_unlock;
    	goto checks_ok;
    }
    
    /*
     * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
     * can perform fastpath freeing without additional function calls.
     *
     * The fastpath is only possible if we are freeing to the current cpu slab
     * of this processor. This typically the case if we have just allocated
     * the item before.
     *
     * If fastpath is not possible then fall back to __slab_free where we deal
     * with all sorts of special processing.
     */
    static __always_inline void slab_free(struct kmem_cache *s,
    			struct page *page, void *x, void *addr)
    {
    	void **object = (void *)x;
    	struct kmem_cache_cpu *c;
    
    #ifdef SLUB_FASTPATH
    	void **freelist;
    
    	c = get_cpu_slab(s, raw_smp_processor_id());
    	debug_check_no_locks_freed(object, s->objsize);
    	do {
    		freelist = c->freelist;
    		barrier();
    		/*
    		 * If the compiler would reorder the retrieval of c->page to
    		 * come before c->freelist then an interrupt could
    		 * change the cpu slab before we retrieve c->freelist. We
    		 * could be matching on a page no longer active and put the
    		 * object onto the freelist of the wrong slab.
    		 *
    		 * On the other hand: If we already have the freelist pointer
    		 * then any change of cpu_slab will cause the cmpxchg to fail
    		 * since the freelist pointers are unique per slab.
    		 */
    		if (unlikely(page != c->page || c->node < 0)) {
    			__slab_free(s, page, x, addr, c->offset);
    			break;
    		}
    		object[c->offset] = freelist;
    		stat(c, FREE_FASTPATH);
    	} while (cmpxchg_local(&c->freelist, freelist, object) != freelist);
    #else
    	unsigned long flags;
    
    	local_irq_save(flags);
    	debug_check_no_locks_freed(object, s->objsize);
    	c = get_cpu_slab(s, smp_processor_id());
    	if (likely(page == c->page && c->node >= 0)) {
    		object[c->offset] = c->freelist;
    		c->freelist = object;
    		stat(c, FREE_FASTPATH);
    	} else
    		__slab_free(s, page, x, addr, c->offset);
    
    	local_irq_restore(flags);
    #endif
    }
    
    void kmem_cache_free(struct kmem_cache *s, void *x)
    {
    	struct page *page;
    
    	page = virt_to_head_page(x);
    
    	slab_free(s, page, x, __builtin_return_address(0));
    }
    EXPORT_SYMBOL(kmem_cache_free);
    
    /* Figure out on which slab object the object resides */
    static struct page *get_object_page(const void *x)
    {
    	struct page *page = virt_to_head_page(x);
    
    	if (!PageSlab(page))
    		return NULL;
    
    	return page;
    }
    
    /*
     * Object placement in a slab is made very easy because we always start at
     * offset 0. If we tune the size of the object to the alignment then we can
     * get the required alignment by putting one properly sized object after
     * another.
     *
     * Notice that the allocation order determines the sizes of the per cpu
     * caches. Each processor has always one slab available for allocations.
     * Increasing the allocation order reduces the number of times that slabs
     * must be moved on and off the partial lists and is therefore a factor in
     * locking overhead.
     */
    
    /*
     * Mininum / Maximum order of slab pages. This influences locking overhead
     * and slab fragmentation. A higher order reduces the number of partial slabs
     * and increases the number of allocations possible without having to
     * take the list_lock.
     */
    static int slub_min_order;
    static int slub_max_order = DEFAULT_MAX_ORDER;
    static int slub_min_objects = DEFAULT_MIN_OBJECTS;
    
    /*
     * Merge control. If this is set then no merging of slab caches will occur.
     * (Could be removed. This was introduced to pacify the merge skeptics.)
     */
    static int slub_nomerge;
    
    /*
     * Calculate the order of allocation given an slab object size.
     *
     * The order of allocation has significant impact on performance and other
     * system components. Generally order 0 allocations should be preferred since
     * order 0 does not cause fragmentation in the page allocator. Larger objects
     * be problematic to put into order 0 slabs because there may be too much
     * unused space left. We go to a higher order if more than 1/8th of the slab
     * would be wasted.
     *
     * In order to reach satisfactory performance we must ensure that a minimum
     * number of objects is in one slab. Otherwise we may generate too much
     * activity on the partial lists which requires taking the list_lock. This is
     * less a concern for large slabs though which are rarely used.
     *
     * slub_max_order specifies the order where we begin to stop considering the
     * number of objects in a slab as critical. If we reach slub_max_order then
     * we try to keep the page order as low as possible. So we accept more waste
     * of space in favor of a small page order.
     *
     * Higher order allocations also allow the placement of more objects in a
     * slab and thereby reduce object handling overhead. If the user has
     * requested a higher mininum order then we start with that one instead of
     * the smallest order which will fit the object.
     */
    static inline int slab_order(int size, int min_objects,
    				int max_order, int fract_leftover)
    {
    	int order;
    	int rem;
    	int min_order = slub_min_order;
    
    	for (order = max(min_order,
    				fls(min_objects * size - 1) - PAGE_SHIFT);
    			order <= max_order; order++) {
    
    		unsigned long slab_size = PAGE_SIZE << order;
    
    		if (slab_size < min_objects * size)
    			continue;
    
    		rem = slab_size % size;
    
    		if (rem <= slab_size / fract_leftover)
    			break;
    
    	}
    
    	return order;
    }
    
    static inline int calculate_order(int size)
    {
    	int order;
    	int min_objects;
    	int fraction;
    
    	/*
    	 * Attempt to find best configuration for a slab. This
    	 * works by first attempting to generate a layout with
    	 * the best configuration and backing off gradually.
    	 *
    	 * First we reduce the acceptable waste in a slab. Then
    	 * we reduce the minimum objects required in a slab.
    	 */
    	min_objects = slub_min_objects;
    	while (min_objects > 1) {
    		fraction = 8;
    		while (fraction >= 4) {
    			order = slab_order(size, min_objects,
    						slub_max_order, fraction);
    			if (order <= slub_max_order)
    				return order;
    			fraction /= 2;
    		}
    		min_objects /= 2;
    	}
    
    	/*
    	 * We were unable to place multiple objects in a slab. Now
    	 * lets see if we can place a single object there.
    	 */
    	order = slab_order(size, 1, slub_max_order, 1);
    	if (order <= slub_max_order)
    		return order;
    
    	/*
    	 * Doh this slab cannot be placed using slub_max_order.
    	 */
    	order = slab_order(size, 1, MAX_ORDER, 1);
    	if (order <= MAX_ORDER)
    		return order;
    	return -ENOSYS;
    }
    
    /*
     * Figure out what the alignment of the objects will be.
     */
    static unsigned long calculate_alignment(unsigned long flags,
    		unsigned long align, unsigned long size)
    {
    	/*
    	 * If the user wants hardware cache aligned objects then
    	 * follow that suggestion if the object is sufficiently
    	 * large.
    	 *
    	 * The hardware cache alignment cannot override the
    	 * specified alignment though. If that is greater
    	 * then use it.
    	 */
    	if ((flags & SLAB_HWCACHE_ALIGN) &&
    			size > cache_line_size() / 2)
    		return max_t(unsigned long, align, cache_line_size());
    
    	if (align < ARCH_SLAB_MINALIGN)
    		return ARCH_SLAB_MINALIGN;
    
    	return ALIGN(align, sizeof(void *));
    }
    
    static void init_kmem_cache_cpu(struct kmem_cache *s,
    			struct kmem_cache_cpu *c)
    {
    	c->page = NULL;
    	c->freelist = (void *)PAGE_MAPPING_ANON;
    	c->node = 0;
    	c->offset = s->offset / sizeof(void *);
    	c->objsize = s->objsize;
    }
    
    static void init_kmem_cache_node(struct kmem_cache_node *n)
    {
    	n->nr_partial = 0;
    	atomic_long_set(&n->nr_slabs, 0);
    	spin_lock_init(&n->list_lock);
    	INIT_LIST_HEAD(&n->partial);
    #ifdef CONFIG_SLUB_DEBUG
    	INIT_LIST_HEAD(&n->full);
    #endif
    }
    
    #ifdef CONFIG_SMP
    /*
     * Per cpu array for per cpu structures.
     *
     * The per cpu array places all kmem_cache_cpu structures from one processor
     * close together meaning that it becomes possible that multiple per cpu
     * structures are contained in one cacheline. This may be particularly
     * beneficial for the kmalloc caches.
     *
     * A desktop system typically has around 60-80 slabs. With 100 here we are
     * likely able to get per cpu structures for all caches from the array defined
     * here. We must be able to cover all kmalloc caches during bootstrap.
     *
     * If the per cpu array is exhausted then fall back to kmalloc
     * of individual cachelines. No sharing is possible then.
     */
    #define NR_KMEM_CACHE_CPU 100
    
    static DEFINE_PER_CPU(struct kmem_cache_cpu,
    				kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
    
    static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
    static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
    
    static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
    							int cpu, gfp_t flags)
    {
    	struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
    
    	if (c)
    		per_cpu(kmem_cache_cpu_free, cpu) =
    				(void *)c->freelist;
    	else {
    		/* Table overflow: So allocate ourselves */
    		c = kmalloc_node(
    			ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
    			flags, cpu_to_node(cpu));
    		if (!c)
    			return NULL;
    	}
    
    	init_kmem_cache_cpu(s, c);
    	return c;
    }
    
    static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
    {
    	if (c < per_cpu(kmem_cache_cpu, cpu) ||
    			c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
    		kfree(c);
    		return;
    	}
    	c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
    	per_cpu(kmem_cache_cpu_free, cpu) = c;
    }
    
    static void free_kmem_cache_cpus(struct kmem_cache *s)
    {
    	int cpu;
    
    	for_each_online_cpu(cpu) {
    		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
    
    		if (c) {
    			s->cpu_slab[cpu] = NULL;
    			free_kmem_cache_cpu(c, cpu);
    		}
    	}
    }
    
    static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
    {
    	int cpu;
    
    	for_each_online_cpu(cpu) {
    		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
    
    		if (c)
    			continue;
    
    		c = alloc_kmem_cache_cpu(s, cpu, flags);
    		if (!c) {
    			free_kmem_cache_cpus(s);
    			return 0;
    		}
    		s->cpu_slab[cpu] = c;
    	}
    	return 1;
    }
    
    /*
     * Initialize the per cpu array.
     */
    static void init_alloc_cpu_cpu(int cpu)
    {
    	int i;
    
    	if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
    		return;
    
    	for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
    		free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
    
    	cpu_set(cpu, kmem_cach_cpu_free_init_once);
    }
    
    static void __init init_alloc_cpu(void)
    {
    	int cpu;
    
    	for_each_online_cpu(cpu)
    		init_alloc_cpu_cpu(cpu);
      }
    
    #else
    static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
    static inline void init_alloc_cpu(void) {}
    
    static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
    {
    	init_kmem_cache_cpu(s, &s->cpu_slab);
    	return 1;
    }
    #endif
    
    #ifdef CONFIG_NUMA
    /*
     * No kmalloc_node yet so do it by hand. We know that this is the first
     * slab on the node for this slabcache. There are no concurrent accesses
     * possible.
     *
     * Note that this function only works on the kmalloc_node_cache
     * when allocating for the kmalloc_node_cache. This is used for bootstrapping
     * memory on a fresh node that has no slab structures yet.
     */
    static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
    							   int node)
    {
    	struct page *page;
    	struct kmem_cache_node *n;
    	unsigned long flags;
    
    	BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
    
    	page = new_slab(kmalloc_caches, gfpflags, node);
    
    	BUG_ON(!page);
    	if (page_to_nid(page) != node) {
    		printk(KERN_ERR "SLUB: Unable to allocate memory from "
    				"node %d\n", node);
    		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
    				"in order to be able to continue\n");
    	}
    
    	n = page->freelist;
    	BUG_ON(!n);
    	page->freelist = get_freepointer(kmalloc_caches, n);
    	page->inuse++;
    	kmalloc_caches->node[node] = n;
    #ifdef CONFIG_SLUB_DEBUG
    	init_object(kmalloc_caches, n, 1);
    	init_tracking(kmalloc_caches, n);
    #endif
    	init_kmem_cache_node(n);
    	atomic_long_inc(&n->nr_slabs);
    	/*
    	 * lockdep requires consistent irq usage for each lock
    	 * so even though there cannot be a race this early in
    	 * the boot sequence, we still disable irqs.
    	 */
    	local_irq_save(flags);
    	add_partial(n, page, 0);
    	local_irq_restore(flags);
    	return n;
    }
    
    static void free_kmem_cache_nodes(struct kmem_cache *s)
    {
    	int node;
    
    	for_each_node_state(node, N_NORMAL_MEMORY) {
    		struct kmem_cache_node *n = s->node[node];
    		if (n && n != &s->local_node)
    			kmem_cache_free(kmalloc_caches, n);
    		s->node[node] = NULL;
    	}
    }
    
    static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
    {
    	int node;
    	int local_node;
    
    	if (slab_state >= UP)
    		local_node = page_to_nid(virt_to_page(s));
    	else
    		local_node = 0;
    
    	for_each_node_state(node, N_NORMAL_MEMORY) {
    		struct kmem_cache_node *n;
    
    		if (local_node == node)
    			n = &s->local_node;
    		else {
    			if (slab_state == DOWN) {
    				n = early_kmem_cache_node_alloc(gfpflags,
    								node);
    				continue;
    			}
    			n = kmem_cache_alloc_node(kmalloc_caches,
    							gfpflags, node);
    
    			if (!n) {
    				free_kmem_cache_nodes(s);
    				return 0;
    			}
    
    		}
    		s->node[node] = n;
    		init_kmem_cache_node(n);
    	}
    	return 1;
    }
    #else
    static void free_kmem_cache_nodes(struct kmem_cache *s)
    {
    }
    
    static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
    {
    	init_kmem_cache_node(&s->local_node);
    	return 1;
    }
    #endif
    
    /*
     * calculate_sizes() determines the order and the distribution of data within
     * a slab object.
     */
    static int calculate_sizes(struct kmem_cache *s)
    {
    	unsigned long flags = s->flags;
    	unsigned long size = s->objsize;
    	unsigned long align = s->align;
    
    	/*
    	 * Determine if we can poison the object itself. If the user of
    	 * the slab may touch the object after free or before allocation
    	 * then we should never poison the object itself.
    	 */
    	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
    			!s->ctor)
    		s->flags |= __OBJECT_POISON;
    	else
    		s->flags &= ~__OBJECT_POISON;
    
    	/*
    	 * Round up object size to the next word boundary. We can only
    	 * place the free pointer at word boundaries and this determines
    	 * the possible location of the free pointer.
    	 */
    	size = ALIGN(size, sizeof(void *));
    
    #ifdef CONFIG_SLUB_DEBUG
    	/*
    	 * If we are Redzoning then check if there is some space between the
    	 * end of the object and the free pointer. If not then add an
    	 * additional word to have some bytes to store Redzone information.
    	 */
    	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
    		size += sizeof(void *);
    #endif
    
    	/*
    	 * With that we have determined the number of bytes in actual use
    	 * by the object. This is the potential offset to the free pointer.
    	 */
    	s->inuse = size;
    
    	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
    		s->ctor)) {
    		/*
    		 * Relocate free pointer after the object if it is not
    		 * permitted to overwrite the first word of the object on
    		 * kmem_cache_free.
    		 *
    		 * This is the case if we do RCU, have a constructor or
    		 * destructor or are poisoning the objects.
    		 */
    		s->offset = size;
    		size += sizeof(void *);
    	}
    
    #ifdef CONFIG_SLUB_DEBUG
    	if (flags & SLAB_STORE_USER)
    		/*
    		 * Need to store information about allocs and frees after
    		 * the object.
    		 */
    		size += 2 * sizeof(struct track);
    
    	if (flags & SLAB_RED_ZONE)
    		/*
    		 * Add some empty padding so that we can catch
    		 * overwrites from earlier objects rather than let
    		 * tracking information or the free pointer be
    		 * corrupted if an user writes before the start
    		 * of the object.
    		 */
    		size += sizeof(void *);
    #endif
    
    	/*
    	 * Determine the alignment based on various parameters that the
    	 * user specified and the dynamic determination of cache line size
    	 * on bootup.
    	 */
    	align = calculate_alignment(flags, align, s->objsize);
    
    	/*
    	 * SLUB stores one object immediately after another beginning from
    	 * offset 0. In order to align the objects we have to simply size
    	 * each object to conform to the alignment.
    	 */
    	size = ALIGN(size, align);
    	s->size = size;
    
    	s->order = calculate_order(size);
    	if (s->order < 0)
    		return 0;
    
    	/*
    	 * Determine the number of objects per slab
    	 */
    	s->objects = (PAGE_SIZE << s->order) / size;
    
    	return !!s->objects;
    
    }
    
    static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
    		const char *name, size_t size,
    		size_t align, unsigned long flags,
    		void (*ctor)(struct kmem_cache *, void *))
    {
    	memset(s, 0, kmem_size);
    	s->name = name;
    	s->ctor = ctor;
    	s->objsize = size;
    	s->align = align;
    	s->flags = kmem_cache_flags(size, flags, name, ctor);
    
    	if (!calculate_sizes(s))
    		goto error;
    
    	s->refcount = 1;
    #ifdef CONFIG_NUMA
    	s->remote_node_defrag_ratio = 100;
    #endif
    	if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
    		goto error;
    
    	if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
    		return 1;
    	free_kmem_cache_nodes(s);
    error:
    	if (flags & SLAB_PANIC)
    		panic("Cannot create slab %s size=%lu realsize=%u "
    			"order=%u offset=%u flags=%lx\n",
    			s->name, (unsigned long)size, s->size, s->order,
    			s->offset, flags);
    	return 0;
    }
    
    /*
     * Check if a given pointer is valid
     */
    int kmem_ptr_validate(struct kmem_cache *s, const void *object)
    {
    	struct page *page;
    
    	page = get_object_page(object);
    
    	if (!page || s != page->slab)
    		/* No slab or wrong slab */
    		return 0;
    
    	if (!check_valid_pointer(s, page, object))
    		return 0;
    
    	/*
    	 * We could also check if the object is on the slabs freelist.
    	 * But this would be too expensive and it seems that the main
    	 * purpose of kmem_ptr_valid is to check if the object belongs
    	 * to a certain slab.
    	 */
    	return 1;
    }
    EXPORT_SYMBOL(kmem_ptr_validate);
    
    /*
     * Determine the size of a slab object
     */
    unsigned int kmem_cache_size(struct kmem_cache *s)
    {
    	return s->objsize;
    }
    EXPORT_SYMBOL(kmem_cache_size);
    
    const char *kmem_cache_name(struct kmem_cache *s)
    {
    	return s->name;
    }
    EXPORT_SYMBOL(kmem_cache_name);
    
    /*
     * Attempt to free all slabs on a node. Return the number of slabs we
     * were unable to free.
     */
    static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
    			struct list_head *list)
    {
    	int slabs_inuse = 0;
    	unsigned long flags;
    	struct page *page, *h;
    
    	spin_lock_irqsave(&n->list_lock, flags);
    	list_for_each_entry_safe(page, h, list, lru)
    		if (!page->inuse) {
    			list_del(&page->lru);
    			discard_slab(s, page);
    		} else
    			slabs_inuse++;
    	spin_unlock_irqrestore(&n->list_lock, flags);
    	return slabs_inuse;
    }
    
    /*
     * Release all resources used by a slab cache.
     */
    static inline int kmem_cache_close(struct kmem_cache *s)
    {
    	int node;
    
    	flush_all(s);
    
    	/* Attempt to free all objects */
    	free_kmem_cache_cpus(s);
    	for_each_node_state(node, N_NORMAL_MEMORY) {
    		struct kmem_cache_node *n = get_node(s, node);
    
    		n->nr_partial -= free_list(s, n, &n->partial);
    		if (atomic_long_read(&n->nr_slabs))
    			return 1;
    	}
    	free_kmem_cache_nodes(s);
    	return 0;
    }
    
    /*
     * Close a cache and release the kmem_cache structure
     * (must be used for caches created using kmem_cache_create)
     */
    void kmem_cache_destroy(struct kmem_cache *s)
    {
    	down_write(&slub_lock);
    	s->refcount--;
    	if (!s->refcount) {
    		list_del(&s->list);
    		up_write(&slub_lock);
    		if (kmem_cache_close(s))
    			WARN_ON(1);
    		sysfs_slab_remove(s);
    	} else
    		up_write(&slub_lock);
    }
    EXPORT_SYMBOL(kmem_cache_destroy);
    
    /********************************************************************
     *		Kmalloc subsystem
     *******************************************************************/
    
    struct kmem_cache kmalloc_caches[PAGE_SHIFT] __cacheline_aligned;
    EXPORT_SYMBOL(kmalloc_caches);
    
    #ifdef CONFIG_ZONE_DMA
    static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT];
    #endif
    
    static int __init setup_slub_min_order(char *str)
    {
    	get_option(&str, &slub_min_order);
    
    	return 1;
    }
    
    __setup("slub_min_order=", setup_slub_min_order);
    
    static int __init setup_slub_max_order(char *str)
    {
    	get_option(&str, &slub_max_order);
    
    	return 1;
    }
    
    __setup("slub_max_order=", setup_slub_max_order);
    
    static int __init setup_slub_min_objects(char *str)
    {
    	get_option(&str, &slub_min_objects);
    
    	return 1;
    }
    
    __setup("slub_min_objects=", setup_slub_min_objects);
    
    static int __init setup_slub_nomerge(char *str)
    {
    	slub_nomerge = 1;
    	return 1;
    }
    
    __setup("slub_nomerge", setup_slub_nomerge);
    
    static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
    		const char *name, int size, gfp_t gfp_flags)
    {
    	unsigned int flags = 0;
    
    	if (gfp_flags & SLUB_DMA)
    		flags = SLAB_CACHE_DMA;
    
    	down_write(&slub_lock);
    	if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
    			flags, NULL))
    		goto panic;
    
    	list_add(&s->list, &slab_caches);
    	up_write(&slub_lock);
    	if (sysfs_slab_add(s))
    		goto panic;
    	return s;
    
    panic:
    	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
    }
    
    #ifdef CONFIG_ZONE_DMA
    
    static void sysfs_add_func(struct work_struct *w)
    {
    	struct kmem_cache *s;
    
    	down_write(&slub_lock);
    	list_for_each_entry(s, &slab_caches, list) {
    		if (s->flags & __SYSFS_ADD_DEFERRED) {
    			s->flags &= ~__SYSFS_ADD_DEFERRED;
    			sysfs_slab_add(s);
    		}
    	}
    	up_write(&slub_lock);
    }
    
    static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
    
    static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
    {
    	struct kmem_cache *s;
    	char *text;
    	size_t realsize;
    
    	s = kmalloc_caches_dma[index];
    	if (s)
    		return s;
    
    	/* Dynamically create dma cache */
    	if (flags & __GFP_WAIT)
    		down_write(&slub_lock);
    	else {
    		if (!down_write_trylock(&slub_lock))
    			goto out;
    	}
    
    	if (kmalloc_caches_dma[index])
    		goto unlock_out;
    
    	realsize = kmalloc_caches[index].objsize;
    	text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
    			 (unsigned int)realsize);
    	s = kmalloc(kmem_size, flags & ~SLUB_DMA);
    
    	if (!s || !text || !kmem_cache_open(s, flags, text,
    			realsize, ARCH_KMALLOC_MINALIGN,
    			SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
    		kfree(s);
    		kfree(text);
    		goto unlock_out;
    	}
    
    	list_add(&s->list, &slab_caches);
    	kmalloc_caches_dma[index] = s;
    
    	schedule_work(&sysfs_add_work);
    
    unlock_out:
    	up_write(&slub_lock);
    out:
    	return kmalloc_caches_dma[index];
    }
    #endif
    
    /*
     * Conversion table for small slabs sizes / 8 to the index in the
     * kmalloc array. This is necessary for slabs < 192 since we have non power
     * of two cache sizes there. The size of larger slabs can be determined using
     * fls.
     */
    static s8 size_index[24] = {
    	3,	/* 8 */
    	4,	/* 16 */
    	5,	/* 24 */
    	5,	/* 32 */
    	6,	/* 40 */
    	6,	/* 48 */
    	6,	/* 56 */
    	6,	/* 64 */
    	1,	/* 72 */
    	1,	/* 80 */
    	1,	/* 88 */
    	1,	/* 96 */
    	7,	/* 104 */
    	7,	/* 112 */
    	7,	/* 120 */
    	7,	/* 128 */
    	2,	/* 136 */
    	2,	/* 144 */
    	2,	/* 152 */
    	2,	/* 160 */
    	2,	/* 168 */
    	2,	/* 176 */
    	2,	/* 184 */
    	2	/* 192 */
    };
    
    static struct kmem_cache *get_slab(size_t size, gfp_t flags)
    {
    	int index;
    
    	if (size <= 192) {
    		if (!size)
    			return ZERO_SIZE_PTR;
    
    		index = size_index[(size - 1) / 8];
    	} else
    		index = fls(size - 1);
    
    #ifdef CONFIG_ZONE_DMA
    	if (unlikely((flags & SLUB_DMA)))
    		return dma_kmalloc_cache(index, flags);
    
    #endif
    	return &kmalloc_caches[index];
    }
    
    void *__kmalloc(size_t size, gfp_t flags)
    {
    	struct kmem_cache *s;
    
    	if (unlikely(size > PAGE_SIZE / 2))
    		return (void *)__get_free_pages(flags | __GFP_COMP,
    							get_order(size));
    
    	s = get_slab(size, flags);
    
    	if (unlikely(ZERO_OR_NULL_PTR(s)))
    		return s;
    
    	return slab_alloc(s, flags, -1, __builtin_return_address(0));
    }
    EXPORT_SYMBOL(__kmalloc);
    
    #ifdef CONFIG_NUMA
    void *__kmalloc_node(size_t size, gfp_t flags, int node)
    {
    	struct kmem_cache *s;
    
    	if (unlikely(size > PAGE_SIZE / 2))
    		return (void *)__get_free_pages(flags | __GFP_COMP,
    							get_order(size));
    
    	s = get_slab(size, flags);
    
    	if (unlikely(ZERO_OR_NULL_PTR(s)))
    		return s;
    
    	return slab_alloc(s, flags, node, __builtin_return_address(0));
    }
    EXPORT_SYMBOL(__kmalloc_node);
    #endif
    
    size_t ksize(const void *object)
    {
    	struct page *page;
    	struct kmem_cache *s;
    
    	BUG_ON(!object);
    	if (unlikely(object == ZERO_SIZE_PTR))
    		return 0;
    
    	page = virt_to_head_page(object);
    	BUG_ON(!page);
    
    	if (unlikely(!PageSlab(page)))
    		return PAGE_SIZE << compound_order(page);
    
    	s = page->slab;
    	BUG_ON(!s);
    
    	/*
    	 * Debugging requires use of the padding between object
    	 * and whatever may come after it.
    	 */
    	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
    		return s->objsize;
    
    	/*
    	 * If we have the need to store the freelist pointer
    	 * back there or track user information then we can
    	 * only use the space before that information.
    	 */
    	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
    		return s->inuse;
    
    	/*
    	 * Else we can use all the padding etc for the allocation
    	 */
    	return s->size;
    }
    EXPORT_SYMBOL(ksize);
    
    void kfree(const void *x)
    {
    	struct page *page;
    	void *object = (void *)x;
    
    	if (unlikely(ZERO_OR_NULL_PTR(x)))
    		return;
    
    	page = virt_to_head_page(x);
    	if (unlikely(!PageSlab(page))) {
    		put_page(page);
    		return;
    	}
    	slab_free(page->slab, page, object, __builtin_return_address(0));
    }
    EXPORT_SYMBOL(kfree);
    
    static unsigned long count_partial(struct kmem_cache_node *n)
    {
    	unsigned long flags;
    	unsigned long x = 0;
    	struct page *page;
    
    	spin_lock_irqsave(&n->list_lock, flags);
    	list_for_each_entry(page, &n->partial, lru)
    		x += page->inuse;
    	spin_unlock_irqrestore(&n->list_lock, flags);
    	return x;
    }
    
    /*
     * kmem_cache_shrink removes empty slabs from the partial lists and sorts
     * the remaining slabs by the number of items in use. The slabs with the
     * most items in use come first. New allocations will then fill those up
     * and thus they can be removed from the partial lists.
     *
     * The slabs with the least items are placed last. This results in them
     * being allocated from last increasing the chance that the last objects
     * are freed in them.
     */
    int kmem_cache_shrink(struct kmem_cache *s)
    {
    	int node;
    	int i;
    	struct kmem_cache_node *n;
    	struct page *page;
    	struct page *t;
    	struct list_head *slabs_by_inuse =
    		kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
    	unsigned long flags;
    
    	if (!slabs_by_inuse)
    		return -ENOMEM;
    
    	flush_all(s);
    	for_each_node_state(node, N_NORMAL_MEMORY) {
    		n = get_node(s, node);
    
    		if (!n->nr_partial)
    			continue;
    
    		for (i = 0; i < s->objects; i++)
    			INIT_LIST_HEAD(slabs_by_inuse + i);
    
    		spin_lock_irqsave(&n->list_lock, flags);
    
    		/*
    		 * Build lists indexed by the items in use in each slab.
    		 *
    		 * Note that concurrent frees may occur while we hold the
    		 * list_lock. page->inuse here is the upper limit.
    		 */
    		list_for_each_entry_safe(page, t, &n->partial, lru) {
    			if (!page->inuse && slab_trylock(page)) {
    				/*
    				 * Must hold slab lock here because slab_free
    				 * may have freed the last object and be
    				 * waiting to release the slab.
    				 */
    				list_del(&page->lru);
    				n->nr_partial--;
    				slab_unlock(page);
    				discard_slab(s, page);
    			} else {
    				list_move(&page->lru,
    				slabs_by_inuse + page->inuse);
    			}
    		}
    
    		/*
    		 * Rebuild the partial list with the slabs filled up most
    		 * first and the least used slabs at the end.
    		 */
    		for (i = s->objects - 1; i >= 0; i--)
    			list_splice(slabs_by_inuse + i, n->partial.prev);
    
    		spin_unlock_irqrestore(&n->list_lock, flags);
    	}
    
    	kfree(slabs_by_inuse);
    	return 0;
    }
    EXPORT_SYMBOL(kmem_cache_shrink);
    
    #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
    static int slab_mem_going_offline_callback(void *arg)
    {
    	struct kmem_cache *s;
    
    	down_read(&slub_lock);
    	list_for_each_entry(s, &slab_caches, list)
    		kmem_cache_shrink(s);
    	up_read(&slub_lock);
    
    	return 0;
    }
    
    static void slab_mem_offline_callback(void *arg)
    {
    	struct kmem_cache_node *n;
    	struct kmem_cache *s;
    	struct memory_notify *marg = arg;
    	int offline_node;
    
    	offline_node = marg->status_change_nid;
    
    	/*
    	 * If the node still has available memory. we need kmem_cache_node
    	 * for it yet.
    	 */
    	if (offline_node < 0)
    		return;
    
    	down_read(&slub_lock);
    	list_for_each_entry(s, &slab_caches, list) {
    		n = get_node(s, offline_node);
    		if (n) {
    			/*
    			 * if n->nr_slabs > 0, slabs still exist on the node
    			 * that is going down. We were unable to free them,
    			 * and offline_pages() function shoudn't call this
    			 * callback. So, we must fail.
    			 */
    			BUG_ON(atomic_long_read(&n->nr_slabs));
    
    			s->node[offline_node] = NULL;
    			kmem_cache_free(kmalloc_caches, n);
    		}
    	}
    	up_read(&slub_lock);
    }
    
    static int slab_mem_going_online_callback(void *arg)
    {
    	struct kmem_cache_node *n;
    	struct kmem_cache *s;
    	struct memory_notify *marg = arg;
    	int nid = marg->status_change_nid;
    	int ret = 0;
    
    	/*
    	 * If the node's memory is already available, then kmem_cache_node is
    	 * already created. Nothing to do.
    	 */
    	if (nid < 0)
    		return 0;
    
    	/*
    	 * We are bringing a node online. No memory is availabe yet. We must
    	 * allocate a kmem_cache_node structure in order to bring the node
    	 * online.
    	 */
    	down_read(&slub_lock);
    	list_for_each_entry(s, &slab_caches, list) {
    		/*
    		 * XXX: kmem_cache_alloc_node will fallback to other nodes
    		 *      since memory is not yet available from the node that
    		 *      is brought up.
    		 */
    		n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
    		if (!n) {
    			ret = -ENOMEM;
    			goto out;
    		}
    		init_kmem_cache_node(n);
    		s->node[nid] = n;
    	}
    out:
    	up_read(&slub_lock);
    	return ret;
    }
    
    static int slab_memory_callback(struct notifier_block *self,
    				unsigned long action, void *arg)
    {
    	int ret = 0;
    
    	switch (action) {
    	case MEM_GOING_ONLINE:
    		ret = slab_mem_going_online_callback(arg);
    		break;
    	case MEM_GOING_OFFLINE:
    		ret = slab_mem_going_offline_callback(arg);
    		break;
    	case MEM_OFFLINE:
    	case MEM_CANCEL_ONLINE:
    		slab_mem_offline_callback(arg);
    		break;
    	case MEM_ONLINE:
    	case MEM_CANCEL_OFFLINE:
    		break;
    	}
    
    	ret = notifier_from_errno(ret);
    	return ret;
    }
    
    #endif /* CONFIG_MEMORY_HOTPLUG */
    
    /********************************************************************
     *			Basic setup of slabs
     *******************************************************************/
    
    void __init kmem_cache_init(void)
    {
    	int i;
    	int caches = 0;
    
    	init_alloc_cpu();
    
    #ifdef CONFIG_NUMA
    	/*
    	 * Must first have the slab cache available for the allocations of the
    	 * struct kmem_cache_node's. There is special bootstrap code in
    	 * kmem_cache_open for slab_state == DOWN.
    	 */
    	create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
    		sizeof(struct kmem_cache_node), GFP_KERNEL);
    	kmalloc_caches[0].refcount = -1;
    	caches++;
    
    	hotplug_memory_notifier(slab_memory_callback, 1);
    #endif
    
    	/* Able to allocate the per node structures */
    	slab_state = PARTIAL;
    
    	/* Caches that are not of the two-to-the-power-of size */
    	if (KMALLOC_MIN_SIZE <= 64) {
    		create_kmalloc_cache(&kmalloc_caches[1],
    				"kmalloc-96", 96, GFP_KERNEL);
    		caches++;
    	}
    	if (KMALLOC_MIN_SIZE <= 128) {
    		create_kmalloc_cache(&kmalloc_caches[2],
    				"kmalloc-192", 192, GFP_KERNEL);
    		caches++;
    	}
    
    	for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++) {
    		create_kmalloc_cache(&kmalloc_caches[i],
    			"kmalloc", 1 << i, GFP_KERNEL);
    		caches++;
    	}
    
    
    	/*
    	 * Patch up the size_index table if we have strange large alignment
    	 * requirements for the kmalloc array. This is only the case for
    	 * mips it seems. The standard arches will not generate any code here.
    	 *
    	 * Largest permitted alignment is 256 bytes due to the way we
    	 * handle the index determination for the smaller caches.
    	 *
    	 * Make sure that nothing crazy happens if someone starts tinkering
    	 * around with ARCH_KMALLOC_MINALIGN
    	 */
    	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
    		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
    
    	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
    		size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
    
    	slab_state = UP;
    
    	/* Provide the correct kmalloc names now that the caches are up */
    	for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++)
    		kmalloc_caches[i]. name =
    			kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
    
    #ifdef CONFIG_SMP
    	register_cpu_notifier(&slab_notifier);
    	kmem_size = offsetof(struct kmem_cache, cpu_slab) +
    				nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
    #else
    	kmem_size = sizeof(struct kmem_cache);
    #endif
    
    
    	printk(KERN_INFO
    		"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
    		" CPUs=%d, Nodes=%d\n",
    		caches, cache_line_size(),
    		slub_min_order, slub_max_order, slub_min_objects,
    		nr_cpu_ids, nr_node_ids);
    }
    
    /*
     * Find a mergeable slab cache
     */
    static int slab_unmergeable(struct kmem_cache *s)
    {
    	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
    		return 1;
    
    	if (s->ctor)
    		return 1;
    
    	/*
    	 * We may have set a slab to be unmergeable during bootstrap.
    	 */
    	if (s->refcount < 0)
    		return 1;
    
    	return 0;
    }
    
    static struct kmem_cache *find_mergeable(size_t size,
    		size_t align, unsigned long flags, const char *name,
    		void (*ctor)(struct kmem_cache *, void *))
    {
    	struct kmem_cache *s;
    
    	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
    		return NULL;
    
    	if (ctor)
    		return NULL;
    
    	size = ALIGN(size, sizeof(void *));
    	align = calculate_alignment(flags, align, size);
    	size = ALIGN(size, align);
    	flags = kmem_cache_flags(size, flags, name, NULL);
    
    	list_for_each_entry(s, &slab_caches, list) {
    		if (slab_unmergeable(s))
    			continue;
    
    		if (size > s->size)
    			continue;
    
    		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
    				continue;
    		/*
    		 * Check if alignment is compatible.
    		 * Courtesy of Adrian Drzewiecki
    		 */
    		if ((s->size & ~(align - 1)) != s->size)
    			continue;
    
    		if (s->size - size >= sizeof(void *))
    			continue;
    
    		return s;
    	}
    	return NULL;
    }
    
    struct kmem_cache *kmem_cache_create(const char *name, size_t size,
    		size_t align, unsigned long flags,
    		void (*ctor)(struct kmem_cache *, void *))
    {
    	struct kmem_cache *s;
    
    	down_write(&slub_lock);
    	s = find_mergeable(size, align, flags, name, ctor);
    	if (s) {
    		int cpu;
    
    		s->refcount++;
    		/*
    		 * Adjust the object sizes so that we clear
    		 * the complete object on kzalloc.
    		 */
    		s->objsize = max(s->objsize, (int)size);
    
    		/*
    		 * And then we need to update the object size in the
    		 * per cpu structures
    		 */
    		for_each_online_cpu(cpu)
    			get_cpu_slab(s, cpu)->objsize = s->objsize;
    		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
    		up_write(&slub_lock);
    		if (sysfs_slab_alias(s, name))
    			goto err;
    		return s;
    	}
    	s = kmalloc(kmem_size, GFP_KERNEL);
    	if (s) {
    		if (kmem_cache_open(s, GFP_KERNEL, name,
    				size, align, flags, ctor)) {
    			list_add(&s->list, &slab_caches);
    			up_write(&slub_lock);
    			if (sysfs_slab_add(s))
    				goto err;
    			return s;
    		}
    		kfree(s);
    	}
    	up_write(&slub_lock);
    
    err:
    	if (flags & SLAB_PANIC)
    		panic("Cannot create slabcache %s\n", name);
    	else
    		s = NULL;
    	return s;
    }
    EXPORT_SYMBOL(kmem_cache_create);
    
    #ifdef CONFIG_SMP
    /*
     * Use the cpu notifier to insure that the cpu slabs are flushed when
     * necessary.
     */
    static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
    		unsigned long action, void *hcpu)
    {
    	long cpu = (long)hcpu;
    	struct kmem_cache *s;
    	unsigned long flags;
    
    	switch (action) {
    	case CPU_UP_PREPARE:
    	case CPU_UP_PREPARE_FROZEN:
    		init_alloc_cpu_cpu(cpu);
    		down_read(&slub_lock);
    		list_for_each_entry(s, &slab_caches, list)
    			s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
    							GFP_KERNEL);
    		up_read(&slub_lock);
    		break;
    
    	case CPU_UP_CANCELED:
    	case CPU_UP_CANCELED_FROZEN:
    	case CPU_DEAD:
    	case CPU_DEAD_FROZEN:
    		down_read(&slub_lock);
    		list_for_each_entry(s, &slab_caches, list) {
    			struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
    
    			local_irq_save(flags);
    			__flush_cpu_slab(s, cpu);
    			local_irq_restore(flags);
    			free_kmem_cache_cpu(c, cpu);
    			s->cpu_slab[cpu] = NULL;
    		}
    		up_read(&slub_lock);
    		break;
    	default:
    		break;
    	}
    	return NOTIFY_OK;
    }
    
    static struct notifier_block __cpuinitdata slab_notifier = {
    	.notifier_call = slab_cpuup_callback
    };
    
    #endif
    
    void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
    {
    	struct kmem_cache *s;
    
    	if (unlikely(size > PAGE_SIZE / 2))
    		return (void *)__get_free_pages(gfpflags | __GFP_COMP,
    							get_order(size));
    	s = get_slab(size, gfpflags);
    
    	if (unlikely(ZERO_OR_NULL_PTR(s)))
    		return s;
    
    	return slab_alloc(s, gfpflags, -1, caller);
    }
    
    void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
    					int node, void *caller)
    {
    	struct kmem_cache *s;
    
    	if (unlikely(size > PAGE_SIZE / 2))
    		return (void *)__get_free_pages(gfpflags | __GFP_COMP,
    							get_order(size));
    	s = get_slab(size, gfpflags);
    
    	if (unlikely(ZERO_OR_NULL_PTR(s)))
    		return s;
    
    	return slab_alloc(s, gfpflags, node, caller);
    }
    
    #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
    static int validate_slab(struct kmem_cache *s, struct page *page,
    						unsigned long *map)
    {
    	void *p;
    	void *addr = slab_address(page);
    
    	if (!check_slab(s, page) ||
    			!on_freelist(s, page, NULL))
    		return 0;
    
    	/* Now we know that a valid freelist exists */
    	bitmap_zero(map, s->objects);
    
    	for_each_free_object(p, s, page->freelist) {
    		set_bit(slab_index(p, s, addr), map);
    		if (!check_object(s, page, p, 0))
    			return 0;
    	}
    
    	for_each_object(p, s, addr)
    		if (!test_bit(slab_index(p, s, addr), map))
    			if (!check_object(s, page, p, 1))
    				return 0;
    	return 1;
    }
    
    static void validate_slab_slab(struct kmem_cache *s, struct page *page,
    						unsigned long *map)
    {
    	if (slab_trylock(page)) {
    		validate_slab(s, page, map);
    		slab_unlock(page);
    	} else
    		printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
    			s->name, page);
    
    	if (s->flags & DEBUG_DEFAULT_FLAGS) {
    		if (!SlabDebug(page))
    			printk(KERN_ERR "SLUB %s: SlabDebug not set "
    				"on slab 0x%p\n", s->name, page);
    	} else {
    		if (SlabDebug(page))
    			printk(KERN_ERR "SLUB %s: SlabDebug set on "
    				"slab 0x%p\n", s->name, page);
    	}
    }
    
    static int validate_slab_node(struct kmem_cache *s,
    		struct kmem_cache_node *n, unsigned long *map)
    {
    	unsigned long count = 0;
    	struct page *page;
    	unsigned long flags;
    
    	spin_lock_irqsave(&n->list_lock, flags);
    
    	list_for_each_entry(page, &n->partial, lru) {
    		validate_slab_slab(s, page, map);
    		count++;
    	}
    	if (count != n->nr_partial)
    		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
    			"counter=%ld\n", s->name, count, n->nr_partial);
    
    	if (!(s->flags & SLAB_STORE_USER))
    		goto out;
    
    	list_for_each_entry(page, &n->full, lru) {
    		validate_slab_slab(s, page, map);
    		count++;
    	}
    	if (count != atomic_long_read(&n->nr_slabs))
    		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
    			"counter=%ld\n", s->name, count,
    			atomic_long_read(&n->nr_slabs));
    
    out:
    	spin_unlock_irqrestore(&n->list_lock, flags);
    	return count;
    }
    
    static long validate_slab_cache(struct kmem_cache *s)
    {
    	int node;
    	unsigned long count = 0;
    	unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) *
    				sizeof(unsigned long), GFP_KERNEL);
    
    	if (!map)
    		return -ENOMEM;
    
    	flush_all(s);
    	for_each_node_state(node, N_NORMAL_MEMORY) {
    		struct kmem_cache_node *n = get_node(s, node);
    
    		count += validate_slab_node(s, n, map);
    	}
    	kfree(map);
    	return count;
    }
    
    #ifdef SLUB_RESILIENCY_TEST
    static void resiliency_test(void)
    {
    	u8 *p;
    
    	printk(KERN_ERR "SLUB resiliency testing\n");
    	printk(KERN_ERR "-----------------------\n");
    	printk(KERN_ERR "A. Corruption after allocation\n");
    
    	p = kzalloc(16, GFP_KERNEL);
    	p[16] = 0x12;
    	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
    			" 0x12->0x%p\n\n", p + 16);
    
    	validate_slab_cache(kmalloc_caches + 4);
    
    	/* Hmmm... The next two are dangerous */
    	p = kzalloc(32, GFP_KERNEL);
    	p[32 + sizeof(void *)] = 0x34;
    	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
    			" 0x34 -> -0x%p\n", p);
    	printk(KERN_ERR
    		"If allocated object is overwritten then not detectable\n\n");
    
    	validate_slab_cache(kmalloc_caches + 5);
    	p = kzalloc(64, GFP_KERNEL);
    	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
    	*p = 0x56;
    	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
    									p);
    	printk(KERN_ERR
    		"If allocated object is overwritten then not detectable\n\n");
    	validate_slab_cache(kmalloc_caches + 6);
    
    	printk(KERN_ERR "\nB. Corruption after free\n");
    	p = kzalloc(128, GFP_KERNEL);
    	kfree(p);
    	*p = 0x78;
    	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
    	validate_slab_cache(kmalloc_caches + 7);
    
    	p = kzalloc(256, GFP_KERNEL);
    	kfree(p);
    	p[50] = 0x9a;
    	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
    			p);
    	validate_slab_cache(kmalloc_caches + 8);
    
    	p = kzalloc(512, GFP_KERNEL);
    	kfree(p);
    	p[512] = 0xab;
    	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
    	validate_slab_cache(kmalloc_caches + 9);
    }
    #else
    static void resiliency_test(void) {};
    #endif
    
    /*
     * Generate lists of code addresses where slabcache objects are allocated
     * and freed.
     */
    
    struct location {
    	unsigned long count;
    	void *addr;
    	long long sum_time;
    	long min_time;
    	long max_time;
    	long min_pid;
    	long max_pid;
    	cpumask_t cpus;
    	nodemask_t nodes;
    };
    
    struct loc_track {
    	unsigned long max;
    	unsigned long count;
    	struct location *loc;
    };
    
    static void free_loc_track(struct loc_track *t)
    {
    	if (t->max)
    		free_pages((unsigned long)t->loc,
    			get_order(sizeof(struct location) * t->max));
    }
    
    static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
    {
    	struct location *l;
    	int order;
    
    	order = get_order(sizeof(struct location) * max);
    
    	l = (void *)__get_free_pages(flags, order);
    	if (!l)
    		return 0;
    
    	if (t->count) {
    		memcpy(l, t->loc, sizeof(struct location) * t->count);
    		free_loc_track(t);
    	}
    	t->max = max;
    	t->loc = l;
    	return 1;
    }
    
    static int add_location(struct loc_track *t, struct kmem_cache *s,
    				const struct track *track)
    {
    	long start, end, pos;
    	struct location *l;
    	void *caddr;
    	unsigned long age = jiffies - track->when;
    
    	start = -1;
    	end = t->count;
    
    	for ( ; ; ) {
    		pos = start + (end - start + 1) / 2;
    
    		/*
    		 * There is nothing at "end". If we end up there
    		 * we need to add something to before end.
    		 */
    		if (pos == end)
    			break;
    
    		caddr = t->loc[pos].addr;
    		if (track->addr == caddr) {
    
    			l = &t->loc[pos];
    			l->count++;
    			if (track->when) {
    				l->sum_time += age;
    				if (age < l->min_time)
    					l->min_time = age;
    				if (age > l->max_time)
    					l->max_time = age;
    
    				if (track->pid < l->min_pid)
    					l->min_pid = track->pid;
    				if (track->pid > l->max_pid)
    					l->max_pid = track->pid;
    
    				cpu_set(track->cpu, l->cpus);
    			}
    			node_set(page_to_nid(virt_to_page(track)), l->nodes);
    			return 1;
    		}
    
    		if (track->addr < caddr)
    			end = pos;
    		else
    			start = pos;
    	}
    
    	/*
    	 * Not found. Insert new tracking element.
    	 */
    	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
    		return 0;
    
    	l = t->loc + pos;
    	if (pos < t->count)
    		memmove(l + 1, l,
    			(t->count - pos) * sizeof(struct location));
    	t->count++;
    	l->count = 1;
    	l->addr = track->addr;
    	l->sum_time = age;
    	l->min_time = age;
    	l->max_time = age;
    	l->min_pid = track->pid;
    	l->max_pid = track->pid;
    	cpus_clear(l->cpus);
    	cpu_set(track->cpu, l->cpus);
    	nodes_clear(l->nodes);
    	node_set(page_to_nid(virt_to_page(track)), l->nodes);
    	return 1;
    }
    
    static void process_slab(struct loc_track *t, struct kmem_cache *s,
    		struct page *page, enum track_item alloc)
    {
    	void *addr = slab_address(page);
    	DECLARE_BITMAP(map, s->objects);
    	void *p;
    
    	bitmap_zero(map, s->objects);
    	for_each_free_object(p, s, page->freelist)
    		set_bit(slab_index(p, s, addr), map);
    
    	for_each_object(p, s, addr)
    		if (!test_bit(slab_index(p, s, addr), map))
    			add_location(t, s, get_track(s, p, alloc));
    }
    
    static int list_locations(struct kmem_cache *s, char *buf,
    					enum track_item alloc)
    {
    	int len = 0;
    	unsigned long i;
    	struct loc_track t = { 0, 0, NULL };
    	int node;
    
    	if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
    			GFP_TEMPORARY))
    		return sprintf(buf, "Out of memory\n");
    
    	/* Push back cpu slabs */
    	flush_all(s);
    
    	for_each_node_state(node, N_NORMAL_MEMORY) {
    		struct kmem_cache_node *n = get_node(s, node);
    		unsigned long flags;
    		struct page *page;
    
    		if (!atomic_long_read(&n->nr_slabs))
    			continue;
    
    		spin_lock_irqsave(&n->list_lock, flags);
    		list_for_each_entry(page, &n->partial, lru)
    			process_slab(&t, s, page, alloc);
    		list_for_each_entry(page, &n->full, lru)
    			process_slab(&t, s, page, alloc);
    		spin_unlock_irqrestore(&n->list_lock, flags);
    	}
    
    	for (i = 0; i < t.count; i++) {
    		struct location *l = &t.loc[i];
    
    		if (len > PAGE_SIZE - 100)
    			break;
    		len += sprintf(buf + len, "%7ld ", l->count);
    
    		if (l->addr)
    			len += sprint_symbol(buf + len, (unsigned long)l->addr);
    		else
    			len += sprintf(buf + len, "<not-available>");
    
    		if (l->sum_time != l->min_time) {
    			unsigned long remainder;
    
    			len += sprintf(buf + len, " age=%ld/%ld/%ld",
    			l->min_time,
    			div_long_long_rem(l->sum_time, l->count, &remainder),
    			l->max_time);
    		} else
    			len += sprintf(buf + len, " age=%ld",
    				l->min_time);
    
    		if (l->min_pid != l->max_pid)
    			len += sprintf(buf + len, " pid=%ld-%ld",
    				l->min_pid, l->max_pid);
    		else
    			len += sprintf(buf + len, " pid=%ld",
    				l->min_pid);
    
    		if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
    				len < PAGE_SIZE - 60) {
    			len += sprintf(buf + len, " cpus=");
    			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
    					l->cpus);
    		}
    
    		if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
    				len < PAGE_SIZE - 60) {
    			len += sprintf(buf + len, " nodes=");
    			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
    					l->nodes);
    		}
    
    		len += sprintf(buf + len, "\n");
    	}
    
    	free_loc_track(&t);
    	if (!t.count)
    		len += sprintf(buf, "No data\n");
    	return len;
    }
    
    enum slab_stat_type {
    	SL_FULL,
    	SL_PARTIAL,
    	SL_CPU,
    	SL_OBJECTS
    };
    
    #define SO_FULL		(1 << SL_FULL)
    #define SO_PARTIAL	(1 << SL_PARTIAL)
    #define SO_CPU		(1 << SL_CPU)
    #define SO_OBJECTS	(1 << SL_OBJECTS)
    
    static unsigned long slab_objects(struct kmem_cache *s,
    			char *buf, unsigned long flags)
    {
    	unsigned long total = 0;
    	int cpu;
    	int node;
    	int x;
    	unsigned long *nodes;
    	unsigned long *per_cpu;
    
    	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
    	per_cpu = nodes + nr_node_ids;
    
    	for_each_possible_cpu(cpu) {
    		struct page *page;
    		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
    
    		if (!c)
    			continue;
    
    		page = c->page;
    		node = c->node;
    		if (node < 0)
    			continue;
    		if (page) {
    			if (flags & SO_CPU) {
    				if (flags & SO_OBJECTS)
    					x = page->inuse;
    				else
    					x = 1;
    				total += x;
    				nodes[node] += x;
    			}
    			per_cpu[node]++;
    		}
    	}
    
    	for_each_node_state(node, N_NORMAL_MEMORY) {
    		struct kmem_cache_node *n = get_node(s, node);
    
    		if (flags & SO_PARTIAL) {
    			if (flags & SO_OBJECTS)
    				x = count_partial(n);
    			else
    				x = n->nr_partial;
    			total += x;
    			nodes[node] += x;
    		}
    
    		if (flags & SO_FULL) {
    			int full_slabs = atomic_long_read(&n->nr_slabs)
    					- per_cpu[node]
    					- n->nr_partial;
    
    			if (flags & SO_OBJECTS)
    				x = full_slabs * s->objects;
    			else
    				x = full_slabs;
    			total += x;
    			nodes[node] += x;
    		}
    	}
    
    	x = sprintf(buf, "%lu", total);
    #ifdef CONFIG_NUMA
    	for_each_node_state(node, N_NORMAL_MEMORY)
    		if (nodes[node])
    			x += sprintf(buf + x, " N%d=%lu",
    					node, nodes[node]);
    #endif
    	kfree(nodes);
    	return x + sprintf(buf + x, "\n");
    }
    
    static int any_slab_objects(struct kmem_cache *s)
    {
    	int node;
    	int cpu;
    
    	for_each_possible_cpu(cpu) {
    		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
    
    		if (c && c->page)
    			return 1;
    	}
    
    	for_each_online_node(node) {
    		struct kmem_cache_node *n = get_node(s, node);
    
    		if (!n)
    			continue;
    
    		if (n->nr_partial || atomic_long_read(&n->nr_slabs))
    			return 1;
    	}
    	return 0;
    }
    
    #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
    #define to_slab(n) container_of(n, struct kmem_cache, kobj);
    
    struct slab_attribute {
    	struct attribute attr;
    	ssize_t (*show)(struct kmem_cache *s, char *buf);
    	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
    };
    
    #define SLAB_ATTR_RO(_name) \
    	static struct slab_attribute _name##_attr = __ATTR_RO(_name)
    
    #define SLAB_ATTR(_name) \
    	static struct slab_attribute _name##_attr =  \
    	__ATTR(_name, 0644, _name##_show, _name##_store)
    
    static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
    {
    	return sprintf(buf, "%d\n", s->size);
    }
    SLAB_ATTR_RO(slab_size);
    
    static ssize_t align_show(struct kmem_cache *s, char *buf)
    {
    	return sprintf(buf, "%d\n", s->align);
    }
    SLAB_ATTR_RO(align);
    
    static ssize_t object_size_show(struct kmem_cache *s, char *buf)
    {
    	return sprintf(buf, "%d\n", s->objsize);
    }
    SLAB_ATTR_RO(object_size);
    
    static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
    {
    	return sprintf(buf, "%d\n", s->objects);
    }
    SLAB_ATTR_RO(objs_per_slab);
    
    static ssize_t order_show(struct kmem_cache *s, char *buf)
    {
    	return sprintf(buf, "%d\n", s->order);
    }
    SLAB_ATTR_RO(order);
    
    static ssize_t ctor_show(struct kmem_cache *s, char *buf)
    {
    	if (s->ctor) {
    		int n = sprint_symbol(buf, (unsigned long)s->ctor);
    
    		return n + sprintf(buf + n, "\n");
    	}
    	return 0;
    }
    SLAB_ATTR_RO(ctor);
    
    static ssize_t aliases_show(struct kmem_cache *s, char *buf)
    {
    	return sprintf(buf, "%d\n", s->refcount - 1);
    }
    SLAB_ATTR_RO(aliases);
    
    static ssize_t slabs_show(struct kmem_cache *s, char *buf)
    {
    	return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
    }
    SLAB_ATTR_RO(slabs);
    
    static ssize_t partial_show(struct kmem_cache *s, char *buf)
    {
    	return slab_objects(s, buf, SO_PARTIAL);
    }
    SLAB_ATTR_RO(partial);
    
    static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
    {
    	return slab_objects(s, buf, SO_CPU);
    }
    SLAB_ATTR_RO(cpu_slabs);
    
    static ssize_t objects_show(struct kmem_cache *s, char *buf)
    {
    	return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
    }
    SLAB_ATTR_RO(objects);
    
    static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
    {
    	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
    }
    
    static ssize_t sanity_checks_store(struct kmem_cache *s,
    				const char *buf, size_t length)
    {
    	s->flags &= ~SLAB_DEBUG_FREE;
    	if (buf[0] == '1')
    		s->flags |= SLAB_DEBUG_FREE;
    	return length;
    }
    SLAB_ATTR(sanity_checks);
    
    static ssize_t trace_show(struct kmem_cache *s, char *buf)
    {
    	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
    }
    
    static ssize_t trace_store(struct kmem_cache *s, const char *buf,
    							size_t length)
    {
    	s->flags &= ~SLAB_TRACE;
    	if (buf[0] == '1')
    		s->flags |= SLAB_TRACE;
    	return length;
    }
    SLAB_ATTR(trace);
    
    static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
    {
    	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
    }
    
    static ssize_t reclaim_account_store(struct kmem_cache *s,
    				const char *buf, size_t length)
    {
    	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
    	if (buf[0] == '1')
    		s->flags |= SLAB_RECLAIM_ACCOUNT;
    	return length;
    }
    SLAB_ATTR(reclaim_account);
    
    static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
    {
    	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
    }
    SLAB_ATTR_RO(hwcache_align);
    
    #ifdef CONFIG_ZONE_DMA
    static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
    {
    	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
    }
    SLAB_ATTR_RO(cache_dma);
    #endif
    
    static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
    {
    	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
    }
    SLAB_ATTR_RO(destroy_by_rcu);
    
    static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
    {
    	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
    }
    
    static ssize_t red_zone_store(struct kmem_cache *s,
    				const char *buf, size_t length)
    {
    	if (any_slab_objects(s))
    		return -EBUSY;
    
    	s->flags &= ~SLAB_RED_ZONE;
    	if (buf[0] == '1')
    		s->flags |= SLAB_RED_ZONE;
    	calculate_sizes(s);
    	return length;
    }
    SLAB_ATTR(red_zone);
    
    static ssize_t poison_show(struct kmem_cache *s, char *buf)
    {
    	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
    }
    
    static ssize_t poison_store(struct kmem_cache *s,
    				const char *buf, size_t length)
    {
    	if (any_slab_objects(s))
    		return -EBUSY;
    
    	s->flags &= ~SLAB_POISON;
    	if (buf[0] == '1')
    		s->flags |= SLAB_POISON;
    	calculate_sizes(s);
    	return length;
    }
    SLAB_ATTR(poison);
    
    static ssize_t store_user_show(struct kmem_cache *s, char *buf)
    {
    	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
    }
    
    static ssize_t store_user_store(struct kmem_cache *s,
    				const char *buf, size_t length)
    {
    	if (any_slab_objects(s))
    		return -EBUSY;
    
    	s->flags &= ~SLAB_STORE_USER;
    	if (buf[0] == '1')
    		s->flags |= SLAB_STORE_USER;
    	calculate_sizes(s);
    	return length;
    }
    SLAB_ATTR(store_user);
    
    static ssize_t validate_show(struct kmem_cache *s, char *buf)
    {
    	return 0;
    }
    
    static ssize_t validate_store(struct kmem_cache *s,
    			const char *buf, size_t length)
    {
    	int ret = -EINVAL;
    
    	if (buf[0] == '1') {
    		ret = validate_slab_cache(s);
    		if (ret >= 0)
    			ret = length;
    	}
    	return ret;
    }
    SLAB_ATTR(validate);
    
    static ssize_t shrink_show(struct kmem_cache *s, char *buf)
    {
    	return 0;
    }
    
    static ssize_t shrink_store(struct kmem_cache *s,
    			const char *buf, size_t length)
    {
    	if (buf[0] == '1') {
    		int rc = kmem_cache_shrink(s);
    
    		if (rc)
    			return rc;
    	} else
    		return -EINVAL;
    	return length;
    }
    SLAB_ATTR(shrink);
    
    static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
    {
    	if (!(s->flags & SLAB_STORE_USER))
    		return -ENOSYS;
    	return list_locations(s, buf, TRACK_ALLOC);
    }
    SLAB_ATTR_RO(alloc_calls);
    
    static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
    {
    	if (!(s->flags & SLAB_STORE_USER))
    		return -ENOSYS;
    	return list_locations(s, buf, TRACK_FREE);
    }
    SLAB_ATTR_RO(free_calls);
    
    #ifdef CONFIG_NUMA
    static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
    {
    	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
    }
    
    static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
    				const char *buf, size_t length)
    {
    	int n = simple_strtoul(buf, NULL, 10);
    
    	if (n < 100)
    		s->remote_node_defrag_ratio = n * 10;
    	return length;
    }
    SLAB_ATTR(remote_node_defrag_ratio);
    #endif
    
    #ifdef CONFIG_SLUB_STATS
    
    static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
    {
    	unsigned long sum  = 0;
    	int cpu;
    	int len;
    	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
    
    	if (!data)
    		return -ENOMEM;
    
    	for_each_online_cpu(cpu) {
    		unsigned x = get_cpu_slab(s, cpu)->stat[si];
    
    		data[cpu] = x;
    		sum += x;
    	}
    
    	len = sprintf(buf, "%lu", sum);
    
    	for_each_online_cpu(cpu) {
    		if (data[cpu] && len < PAGE_SIZE - 20)
    			len += sprintf(buf + len, " c%d=%u", cpu, data[cpu]);
    	}
    	kfree(data);
    	return len + sprintf(buf + len, "\n");
    }
    
    #define STAT_ATTR(si, text) 					\
    static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
    {								\
    	return show_stat(s, buf, si);				\
    }								\
    SLAB_ATTR_RO(text);						\
    
    STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
    STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
    STAT_ATTR(FREE_FASTPATH, free_fastpath);
    STAT_ATTR(FREE_SLOWPATH, free_slowpath);
    STAT_ATTR(FREE_FROZEN, free_frozen);
    STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
    STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
    STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
    STAT_ATTR(ALLOC_SLAB, alloc_slab);
    STAT_ATTR(ALLOC_REFILL, alloc_refill);
    STAT_ATTR(FREE_SLAB, free_slab);
    STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
    STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
    STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
    STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
    STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
    STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
    
    #endif
    
    static struct attribute *slab_attrs[] = {
    	&slab_size_attr.attr,
    	&object_size_attr.attr,
    	&objs_per_slab_attr.attr,
    	&order_attr.attr,
    	&objects_attr.attr,
    	&slabs_attr.attr,
    	&partial_attr.attr,
    	&cpu_slabs_attr.attr,
    	&ctor_attr.attr,
    	&aliases_attr.attr,
    	&align_attr.attr,
    	&sanity_checks_attr.attr,
    	&trace_attr.attr,
    	&hwcache_align_attr.attr,
    	&reclaim_account_attr.attr,
    	&destroy_by_rcu_attr.attr,
    	&red_zone_attr.attr,
    	&poison_attr.attr,
    	&store_user_attr.attr,
    	&validate_attr.attr,
    	&shrink_attr.attr,
    	&alloc_calls_attr.attr,
    	&free_calls_attr.attr,
    #ifdef CONFIG_ZONE_DMA
    	&cache_dma_attr.attr,
    #endif
    #ifdef CONFIG_NUMA
    	&remote_node_defrag_ratio_attr.attr,
    #endif
    #ifdef CONFIG_SLUB_STATS
    	&alloc_fastpath_attr.attr,
    	&alloc_slowpath_attr.attr,
    	&free_fastpath_attr.attr,
    	&free_slowpath_attr.attr,
    	&free_frozen_attr.attr,
    	&free_add_partial_attr.attr,
    	&free_remove_partial_attr.attr,
    	&alloc_from_partial_attr.attr,
    	&alloc_slab_attr.attr,
    	&alloc_refill_attr.attr,
    	&free_slab_attr.attr,
    	&cpuslab_flush_attr.attr,
    	&deactivate_full_attr.attr,
    	&deactivate_empty_attr.attr,
    	&deactivate_to_head_attr.attr,
    	&deactivate_to_tail_attr.attr,
    	&deactivate_remote_frees_attr.attr,
    #endif
    	NULL
    };
    
    static struct attribute_group slab_attr_group = {
    	.attrs = slab_attrs,
    };
    
    static ssize_t slab_attr_show(struct kobject *kobj,
    				struct attribute *attr,
    				char *buf)
    {
    	struct slab_attribute *attribute;
    	struct kmem_cache *s;
    	int err;
    
    	attribute = to_slab_attr(attr);
    	s = to_slab(kobj);
    
    	if (!attribute->show)
    		return -EIO;
    
    	err = attribute->show(s, buf);
    
    	return err;
    }
    
    static ssize_t slab_attr_store(struct kobject *kobj,
    				struct attribute *attr,
    				const char *buf, size_t len)
    {
    	struct slab_attribute *attribute;
    	struct kmem_cache *s;
    	int err;
    
    	attribute = to_slab_attr(attr);
    	s = to_slab(kobj);
    
    	if (!attribute->store)
    		return -EIO;
    
    	err = attribute->store(s, buf, len);
    
    	return err;
    }
    
    static void kmem_cache_release(struct kobject *kobj)
    {
    	struct kmem_cache *s = to_slab(kobj);
    
    	kfree(s);
    }
    
    static struct sysfs_ops slab_sysfs_ops = {
    	.show = slab_attr_show,
    	.store = slab_attr_store,
    };
    
    static struct kobj_type slab_ktype = {
    	.sysfs_ops = &slab_sysfs_ops,
    	.release = kmem_cache_release
    };
    
    static int uevent_filter(struct kset *kset, struct kobject *kobj)
    {
    	struct kobj_type *ktype = get_ktype(kobj);
    
    	if (ktype == &slab_ktype)
    		return 1;
    	return 0;
    }
    
    static struct kset_uevent_ops slab_uevent_ops = {
    	.filter = uevent_filter,
    };
    
    static struct kset *slab_kset;
    
    #define ID_STR_LENGTH 64
    
    /* Create a unique string id for a slab cache:
     * format
     * :[flags-]size:[memory address of kmemcache]
     */
    static char *create_unique_id(struct kmem_cache *s)
    {
    	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
    	char *p = name;
    
    	BUG_ON(!name);
    
    	*p++ = ':';
    	/*
    	 * First flags affecting slabcache operations. We will only
    	 * get here for aliasable slabs so we do not need to support
    	 * too many flags. The flags here must cover all flags that
    	 * are matched during merging to guarantee that the id is
    	 * unique.
    	 */
    	if (s->flags & SLAB_CACHE_DMA)
    		*p++ = 'd';
    	if (s->flags & SLAB_RECLAIM_ACCOUNT)
    		*p++ = 'a';
    	if (s->flags & SLAB_DEBUG_FREE)
    		*p++ = 'F';
    	if (p != name + 1)
    		*p++ = '-';
    	p += sprintf(p, "%07d", s->size);
    	BUG_ON(p > name + ID_STR_LENGTH - 1);
    	return name;
    }
    
    static int sysfs_slab_add(struct kmem_cache *s)
    {
    	int err;
    	const char *name;
    	int unmergeable;
    
    	if (slab_state < SYSFS)
    		/* Defer until later */
    		return 0;
    
    	unmergeable = slab_unmergeable(s);
    	if (unmergeable) {
    		/*
    		 * Slabcache can never be merged so we can use the name proper.
    		 * This is typically the case for debug situations. In that
    		 * case we can catch duplicate names easily.
    		 */
    		sysfs_remove_link(&slab_kset->kobj, s->name);
    		name = s->name;
    	} else {
    		/*
    		 * Create a unique name for the slab as a target
    		 * for the symlinks.
    		 */
    		name = create_unique_id(s);
    	}
    
    	s->kobj.kset = slab_kset;
    	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
    	if (err) {
    		kobject_put(&s->kobj);
    		return err;
    	}
    
    	err = sysfs_create_group(&s->kobj, &slab_attr_group);
    	if (err)
    		return err;
    	kobject_uevent(&s->kobj, KOBJ_ADD);
    	if (!unmergeable) {
    		/* Setup first alias */
    		sysfs_slab_alias(s, s->name);
    		kfree(name);
    	}
    	return 0;
    }
    
    static void sysfs_slab_remove(struct kmem_cache *s)
    {
    	kobject_uevent(&s->kobj, KOBJ_REMOVE);
    	kobject_del(&s->kobj);
    	kobject_put(&s->kobj);
    }
    
    /*
     * Need to buffer aliases during bootup until sysfs becomes
     * available lest we loose that information.
     */
    struct saved_alias {
    	struct kmem_cache *s;
    	const char *name;
    	struct saved_alias *next;
    };
    
    static struct saved_alias *alias_list;
    
    static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
    {
    	struct saved_alias *al;
    
    	if (slab_state == SYSFS) {
    		/*
    		 * If we have a leftover link then remove it.
    		 */
    		sysfs_remove_link(&slab_kset->kobj, name);
    		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
    	}
    
    	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
    	if (!al)
    		return -ENOMEM;
    
    	al->s = s;
    	al->name = name;
    	al->next = alias_list;
    	alias_list = al;
    	return 0;
    }
    
    static int __init slab_sysfs_init(void)
    {
    	struct kmem_cache *s;
    	int err;
    
    	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
    	if (!slab_kset) {
    		printk(KERN_ERR "Cannot register slab subsystem.\n");
    		return -ENOSYS;
    	}
    
    	slab_state = SYSFS;
    
    	list_for_each_entry(s, &slab_caches, list) {
    		err = sysfs_slab_add(s);
    		if (err)
    			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
    						" to sysfs\n", s->name);
    	}
    
    	while (alias_list) {
    		struct saved_alias *al = alias_list;
    
    		alias_list = alias_list->next;
    		err = sysfs_slab_alias(al->s, al->name);
    		if (err)
    			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
    					" %s to sysfs\n", s->name);
    		kfree(al);
    	}
    
    	resiliency_test();
    	return 0;
    }
    
    __initcall(slab_sysfs_init);
    #endif
    
    /*
     * The /proc/slabinfo ABI
     */
    #ifdef CONFIG_SLABINFO
    
    ssize_t slabinfo_write(struct file *file, const char __user * buffer,
                           size_t count, loff_t *ppos)
    {
    	return -EINVAL;
    }
    
    
    static void print_slabinfo_header(struct seq_file *m)
    {
    	seq_puts(m, "slabinfo - version: 2.1\n");
    	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
    		 "<objperslab> <pagesperslab>");
    	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
    	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
    	seq_putc(m, '\n');
    }
    
    static void *s_start(struct seq_file *m, loff_t *pos)
    {
    	loff_t n = *pos;
    
    	down_read(&slub_lock);
    	if (!n)
    		print_slabinfo_header(m);
    
    	return seq_list_start(&slab_caches, *pos);
    }
    
    static void *s_next(struct seq_file *m, void *p, loff_t *pos)
    {
    	return seq_list_next(p, &slab_caches, pos);
    }
    
    static void s_stop(struct seq_file *m, void *p)
    {
    	up_read(&slub_lock);
    }
    
    static int s_show(struct seq_file *m, void *p)
    {
    	unsigned long nr_partials = 0;
    	unsigned long nr_slabs = 0;
    	unsigned long nr_inuse = 0;
    	unsigned long nr_objs;
    	struct kmem_cache *s;
    	int node;
    
    	s = list_entry(p, struct kmem_cache, list);
    
    	for_each_online_node(node) {
    		struct kmem_cache_node *n = get_node(s, node);
    
    		if (!n)
    			continue;
    
    		nr_partials += n->nr_partial;
    		nr_slabs += atomic_long_read(&n->nr_slabs);
    		nr_inuse += count_partial(n);
    	}
    
    	nr_objs = nr_slabs * s->objects;
    	nr_inuse += (nr_slabs - nr_partials) * s->objects;
    
    	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
    		   nr_objs, s->size, s->objects, (1 << s->order));
    	seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
    	seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
    		   0UL);
    	seq_putc(m, '\n');
    	return 0;
    }
    
    const struct seq_operations slabinfo_op = {
    	.start = s_start,
    	.next = s_next,
    	.stop = s_stop,
    	.show = s_show,
    };
    
    #endif /* CONFIG_SLABINFO */