Skip to content
Snippets Groups Projects
Select Git revision
  • 408a93a2bb4f276f28059b51fbe0bbd06be350fc
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

assoc_array.c

Blame
  • vc.c 12.03 KiB
    // SPDX-License-Identifier: GPL-2.0
    /*
     * PCI Virtual Channel support
     *
     * Copyright (C) 2013 Red Hat, Inc.  All rights reserved.
     *     Author: Alex Williamson <alex.williamson@redhat.com>
     */
    
    #include <linux/device.h>
    #include <linux/kernel.h>
    #include <linux/module.h>
    #include <linux/pci.h>
    #include <linux/pci_regs.h>
    #include <linux/types.h>
    
    /**
     * pci_vc_save_restore_dwords - Save or restore a series of dwords
     * @dev: device
     * @pos: starting config space position
     * @buf: buffer to save to or restore from
     * @dwords: number of dwords to save/restore
     * @save: whether to save or restore
     */
    static void pci_vc_save_restore_dwords(struct pci_dev *dev, int pos,
    				       u32 *buf, int dwords, bool save)
    {
    	int i;
    
    	for (i = 0; i < dwords; i++, buf++) {
    		if (save)
    			pci_read_config_dword(dev, pos + (i * 4), buf);
    		else
    			pci_write_config_dword(dev, pos + (i * 4), *buf);
    	}
    }
    
    /**
     * pci_vc_load_arb_table - load and wait for VC arbitration table
     * @dev: device
     * @pos: starting position of VC capability (VC/VC9/MFVC)
     *
     * Set Load VC Arbitration Table bit requesting hardware to apply the VC
     * Arbitration Table (previously loaded).  When the VC Arbitration Table
     * Status clears, hardware has latched the table into VC arbitration logic.
     */
    static void pci_vc_load_arb_table(struct pci_dev *dev, int pos)
    {
    	u16 ctrl;
    
    	pci_read_config_word(dev, pos + PCI_VC_PORT_CTRL, &ctrl);
    	pci_write_config_word(dev, pos + PCI_VC_PORT_CTRL,
    			      ctrl | PCI_VC_PORT_CTRL_LOAD_TABLE);
    	if (pci_wait_for_pending(dev, pos + PCI_VC_PORT_STATUS,
    				 PCI_VC_PORT_STATUS_TABLE))
    		return;
    
    	pci_err(dev, "VC arbitration table failed to load\n");
    }
    
    /**
     * pci_vc_load_port_arb_table - Load and wait for VC port arbitration table
     * @dev: device
     * @pos: starting position of VC capability (VC/VC9/MFVC)
     * @res: VC resource number, ie. VCn (0-7)
     *
     * Set Load Port Arbitration Table bit requesting hardware to apply the Port
     * Arbitration Table (previously loaded).  When the Port Arbitration Table
     * Status clears, hardware has latched the table into port arbitration logic.
     */
    static void pci_vc_load_port_arb_table(struct pci_dev *dev, int pos, int res)
    {
    	int ctrl_pos, status_pos;
    	u32 ctrl;
    
    	ctrl_pos = pos + PCI_VC_RES_CTRL + (res * PCI_CAP_VC_PER_VC_SIZEOF);
    	status_pos = pos + PCI_VC_RES_STATUS + (res * PCI_CAP_VC_PER_VC_SIZEOF);
    
    	pci_read_config_dword(dev, ctrl_pos, &ctrl);
    	pci_write_config_dword(dev, ctrl_pos,
    			       ctrl | PCI_VC_RES_CTRL_LOAD_TABLE);
    
    	if (pci_wait_for_pending(dev, status_pos, PCI_VC_RES_STATUS_TABLE))
    		return;
    
    	pci_err(dev, "VC%d port arbitration table failed to load\n", res);
    }
    
    /**
     * pci_vc_enable - Enable virtual channel
     * @dev: device
     * @pos: starting position of VC capability (VC/VC9/MFVC)
     * @res: VC res number, ie. VCn (0-7)
     *
     * A VC is enabled by setting the enable bit in matching resource control
     * registers on both sides of a link.  We therefore need to find the opposite
     * end of the link.  To keep this simple we enable from the downstream device.
     * RC devices do not have an upstream device, nor does it seem that VC9 do
     * (spec is unclear).  Once we find the upstream device, match the VC ID to
     * get the correct resource, disable and enable on both ends.
     */
    static void pci_vc_enable(struct pci_dev *dev, int pos, int res)
    {
    	int ctrl_pos, status_pos, id, pos2, evcc, i, ctrl_pos2, status_pos2;
    	u32 ctrl, header, cap1, ctrl2;
    	struct pci_dev *link = NULL;
    
    	/* Enable VCs from the downstream device */
    	if (!dev->has_secondary_link)
    		return;
    
    	ctrl_pos = pos + PCI_VC_RES_CTRL + (res * PCI_CAP_VC_PER_VC_SIZEOF);
    	status_pos = pos + PCI_VC_RES_STATUS + (res * PCI_CAP_VC_PER_VC_SIZEOF);
    
    	pci_read_config_dword(dev, ctrl_pos, &ctrl);
    	id = ctrl & PCI_VC_RES_CTRL_ID;
    
    	pci_read_config_dword(dev, pos, &header);
    
    	/* If there is no opposite end of the link, skip to enable */
    	if (PCI_EXT_CAP_ID(header) == PCI_EXT_CAP_ID_VC9 ||
    	    pci_is_root_bus(dev->bus))
    		goto enable;
    
    	pos2 = pci_find_ext_capability(dev->bus->self, PCI_EXT_CAP_ID_VC);
    	if (!pos2)
    		goto enable;
    
    	pci_read_config_dword(dev->bus->self, pos2 + PCI_VC_PORT_CAP1, &cap1);
    	evcc = cap1 & PCI_VC_CAP1_EVCC;
    
    	/* VC0 is hardwired enabled, so we can start with 1 */
    	for (i = 1; i < evcc + 1; i++) {
    		ctrl_pos2 = pos2 + PCI_VC_RES_CTRL +
    				(i * PCI_CAP_VC_PER_VC_SIZEOF);
    		status_pos2 = pos2 + PCI_VC_RES_STATUS +
    				(i * PCI_CAP_VC_PER_VC_SIZEOF);
    		pci_read_config_dword(dev->bus->self, ctrl_pos2, &ctrl2);
    		if ((ctrl2 & PCI_VC_RES_CTRL_ID) == id) {
    			link = dev->bus->self;
    			break;
    		}
    	}
    
    	if (!link)
    		goto enable;
    
    	/* Disable if enabled */
    	if (ctrl2 & PCI_VC_RES_CTRL_ENABLE) {
    		ctrl2 &= ~PCI_VC_RES_CTRL_ENABLE;
    		pci_write_config_dword(link, ctrl_pos2, ctrl2);
    	}
    
    	/* Enable on both ends */
    	ctrl2 |= PCI_VC_RES_CTRL_ENABLE;
    	pci_write_config_dword(link, ctrl_pos2, ctrl2);
    enable:
    	ctrl |= PCI_VC_RES_CTRL_ENABLE;
    	pci_write_config_dword(dev, ctrl_pos, ctrl);
    
    	if (!pci_wait_for_pending(dev, status_pos, PCI_VC_RES_STATUS_NEGO))
    		pci_err(dev, "VC%d negotiation stuck pending\n", id);
    
    	if (link && !pci_wait_for_pending(link, status_pos2,
    					  PCI_VC_RES_STATUS_NEGO))
    		pci_err(link, "VC%d negotiation stuck pending\n", id);
    }
    
    /**
     * pci_vc_do_save_buffer - Size, save, or restore VC state
     * @dev: device
     * @pos: starting position of VC capability (VC/VC9/MFVC)
     * @save_state: buffer for save/restore
     * @name: for error message
     * @save: if provided a buffer, this indicates what to do with it
     *
     * Walking Virtual Channel config space to size, save, or restore it
     * is complicated, so we do it all from one function to reduce code and
     * guarantee ordering matches in the buffer.  When called with NULL
     * @save_state, return the size of the necessary save buffer.  When called
     * with a non-NULL @save_state, @save determines whether we save to the
     * buffer or restore from it.
     */
    static int pci_vc_do_save_buffer(struct pci_dev *dev, int pos,
    				 struct pci_cap_saved_state *save_state,
    				 bool save)
    {
    	u32 cap1;
    	char evcc, lpevcc, parb_size;
    	int i, len = 0;
    	u8 *buf = save_state ? (u8 *)save_state->cap.data : NULL;
    
    	/* Sanity check buffer size for save/restore */
    	if (buf && save_state->cap.size !=
    	    pci_vc_do_save_buffer(dev, pos, NULL, save)) {
    		pci_err(dev, "VC save buffer size does not match @0x%x\n", pos);
    		return -ENOMEM;
    	}
    
    	pci_read_config_dword(dev, pos + PCI_VC_PORT_CAP1, &cap1);
    	/* Extended VC Count (not counting VC0) */
    	evcc = cap1 & PCI_VC_CAP1_EVCC;
    	/* Low Priority Extended VC Count (not counting VC0) */
    	lpevcc = (cap1 & PCI_VC_CAP1_LPEVCC) >> 4;
    	/* Port Arbitration Table Entry Size (bits) */
    	parb_size = 1 << ((cap1 & PCI_VC_CAP1_ARB_SIZE) >> 10);
    
    	/*
    	 * Port VC Control Register contains VC Arbitration Select, which
    	 * cannot be modified when more than one LPVC is in operation.  We
    	 * therefore save/restore it first, as only VC0 should be enabled
    	 * after device reset.
    	 */
    	if (buf) {
    		if (save)
    			pci_read_config_word(dev, pos + PCI_VC_PORT_CTRL,
    					     (u16 *)buf);
    		else
    			pci_write_config_word(dev, pos + PCI_VC_PORT_CTRL,
    					      *(u16 *)buf);
    		buf += 4;
    	}
    	len += 4;
    
    	/*
    	 * If we have any Low Priority VCs and a VC Arbitration Table Offset
    	 * in Port VC Capability Register 2 then save/restore it next.
    	 */
    	if (lpevcc) {
    		u32 cap2;
    		int vcarb_offset;
    
    		pci_read_config_dword(dev, pos + PCI_VC_PORT_CAP2, &cap2);
    		vcarb_offset = ((cap2 & PCI_VC_CAP2_ARB_OFF) >> 24) * 16;
    
    		if (vcarb_offset) {
    			int size, vcarb_phases = 0;
    
    			if (cap2 & PCI_VC_CAP2_128_PHASE)
    				vcarb_phases = 128;
    			else if (cap2 & PCI_VC_CAP2_64_PHASE)
    				vcarb_phases = 64;
    			else if (cap2 & PCI_VC_CAP2_32_PHASE)
    				vcarb_phases = 32;
    
    			/* Fixed 4 bits per phase per lpevcc (plus VC0) */
    			size = ((lpevcc + 1) * vcarb_phases * 4) / 8;
    
    			if (size && buf) {
    				pci_vc_save_restore_dwords(dev,
    							   pos + vcarb_offset,
    							   (u32 *)buf,
    							   size / 4, save);
    				/*
    				 * On restore, we need to signal hardware to
    				 * re-load the VC Arbitration Table.
    				 */
    				if (!save)
    					pci_vc_load_arb_table(dev, pos);
    
    				buf += size;
    			}
    			len += size;
    		}
    	}
    
    	/*
    	 * In addition to each VC Resource Control Register, we may have a
    	 * Port Arbitration Table attached to each VC.  The Port Arbitration
    	 * Table Offset in each VC Resource Capability Register tells us if
    	 * it exists.  The entry size is global from the Port VC Capability
    	 * Register1 above.  The number of phases is determined per VC.
    	 */
    	for (i = 0; i < evcc + 1; i++) {
    		u32 cap;
    		int parb_offset;
    
    		pci_read_config_dword(dev, pos + PCI_VC_RES_CAP +
    				      (i * PCI_CAP_VC_PER_VC_SIZEOF), &cap);
    		parb_offset = ((cap & PCI_VC_RES_CAP_ARB_OFF) >> 24) * 16;
    		if (parb_offset) {
    			int size, parb_phases = 0;
    
    			if (cap & PCI_VC_RES_CAP_256_PHASE)
    				parb_phases = 256;
    			else if (cap & (PCI_VC_RES_CAP_128_PHASE |
    					PCI_VC_RES_CAP_128_PHASE_TB))
    				parb_phases = 128;
    			else if (cap & PCI_VC_RES_CAP_64_PHASE)
    				parb_phases = 64;
    			else if (cap & PCI_VC_RES_CAP_32_PHASE)
    				parb_phases = 32;
    
    			size = (parb_size * parb_phases) / 8;
    
    			if (size && buf) {
    				pci_vc_save_restore_dwords(dev,
    							   pos + parb_offset,
    							   (u32 *)buf,
    							   size / 4, save);
    				buf += size;
    			}
    			len += size;
    		}
    
    		/* VC Resource Control Register */
    		if (buf) {
    			int ctrl_pos = pos + PCI_VC_RES_CTRL +
    						(i * PCI_CAP_VC_PER_VC_SIZEOF);
    			if (save)
    				pci_read_config_dword(dev, ctrl_pos,
    						      (u32 *)buf);
    			else {
    				u32 tmp, ctrl = *(u32 *)buf;
    				/*
    				 * For an FLR case, the VC config may remain.
    				 * Preserve enable bit, restore the rest.
    				 */
    				pci_read_config_dword(dev, ctrl_pos, &tmp);
    				tmp &= PCI_VC_RES_CTRL_ENABLE;
    				tmp |= ctrl & ~PCI_VC_RES_CTRL_ENABLE;
    				pci_write_config_dword(dev, ctrl_pos, tmp);
    				/* Load port arbitration table if used */
    				if (ctrl & PCI_VC_RES_CTRL_ARB_SELECT)
    					pci_vc_load_port_arb_table(dev, pos, i);
    				/* Re-enable if needed */
    				if ((ctrl ^ tmp) & PCI_VC_RES_CTRL_ENABLE)
    					pci_vc_enable(dev, pos, i);
    			}
    			buf += 4;
    		}
    		len += 4;
    	}
    
    	return buf ? 0 : len;
    }
    
    static struct {
    	u16 id;
    	const char *name;
    } vc_caps[] = { { PCI_EXT_CAP_ID_MFVC, "MFVC" },
    		{ PCI_EXT_CAP_ID_VC, "VC" },
    		{ PCI_EXT_CAP_ID_VC9, "VC9" } };
    
    /**
     * pci_save_vc_state - Save VC state to pre-allocate save buffer
     * @dev: device
     *
     * For each type of VC capability, VC/VC9/MFVC, find the capability and
     * save it to the pre-allocated save buffer.
     */
    int pci_save_vc_state(struct pci_dev *dev)
    {
    	int i;
    
    	for (i = 0; i < ARRAY_SIZE(vc_caps); i++) {
    		int pos, ret;
    		struct pci_cap_saved_state *save_state;
    
    		pos = pci_find_ext_capability(dev, vc_caps[i].id);
    		if (!pos)
    			continue;
    
    		save_state = pci_find_saved_ext_cap(dev, vc_caps[i].id);
    		if (!save_state) {
    			pci_err(dev, "%s buffer not found in %s\n",
    				vc_caps[i].name, __func__);
    			return -ENOMEM;
    		}
    
    		ret = pci_vc_do_save_buffer(dev, pos, save_state, true);
    		if (ret) {
    			pci_err(dev, "%s save unsuccessful %s\n",
    				vc_caps[i].name, __func__);
    			return ret;
    		}
    	}
    
    	return 0;
    }
    
    /**
     * pci_restore_vc_state - Restore VC state from save buffer
     * @dev: device
     *
     * For each type of VC capability, VC/VC9/MFVC, find the capability and
     * restore it from the previously saved buffer.
     */
    void pci_restore_vc_state(struct pci_dev *dev)
    {
    	int i;
    
    	for (i = 0; i < ARRAY_SIZE(vc_caps); i++) {
    		int pos;
    		struct pci_cap_saved_state *save_state;
    
    		pos = pci_find_ext_capability(dev, vc_caps[i].id);
    		save_state = pci_find_saved_ext_cap(dev, vc_caps[i].id);
    		if (!save_state || !pos)
    			continue;
    
    		pci_vc_do_save_buffer(dev, pos, save_state, false);
    	}
    }
    
    /**
     * pci_allocate_vc_save_buffers - Allocate save buffers for VC caps
     * @dev: device
     *
     * For each type of VC capability, VC/VC9/MFVC, find the capability, size
     * it, and allocate a buffer for save/restore.
     */
    
    void pci_allocate_vc_save_buffers(struct pci_dev *dev)
    {
    	int i;
    
    	for (i = 0; i < ARRAY_SIZE(vc_caps); i++) {
    		int len, pos = pci_find_ext_capability(dev, vc_caps[i].id);
    
    		if (!pos)
    			continue;
    
    		len = pci_vc_do_save_buffer(dev, pos, NULL, false);
    		if (pci_add_ext_cap_save_buffer(dev, vc_caps[i].id, len))
    			pci_err(dev, "unable to preallocate %s save buffer\n",
    				vc_caps[i].name);
    	}
    }