Skip to content
Snippets Groups Projects
Select Git revision
  • 41017f0cac925e4a6bcf3359b75e5538112d4216
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

pci.h

Blame
  • audit.c 62.43 KiB
    /* audit.c -- Auditing support
     * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
     * System-call specific features have moved to auditsc.c
     *
     * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
     * All Rights Reserved.
     *
     * This program is free software; you can redistribute it and/or modify
     * it under the terms of the GNU General Public License as published by
     * the Free Software Foundation; either version 2 of the License, or
     * (at your option) any later version.
     *
     * This program is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     * GNU General Public License for more details.
     *
     * You should have received a copy of the GNU General Public License
     * along with this program; if not, write to the Free Software
     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
     *
     * Written by Rickard E. (Rik) Faith <faith@redhat.com>
     *
     * Goals: 1) Integrate fully with Security Modules.
     *	  2) Minimal run-time overhead:
     *	     a) Minimal when syscall auditing is disabled (audit_enable=0).
     *	     b) Small when syscall auditing is enabled and no audit record
     *		is generated (defer as much work as possible to record
     *		generation time):
     *		i) context is allocated,
     *		ii) names from getname are stored without a copy, and
     *		iii) inode information stored from path_lookup.
     *	  3) Ability to disable syscall auditing at boot time (audit=0).
     *	  4) Usable by other parts of the kernel (if audit_log* is called,
     *	     then a syscall record will be generated automatically for the
     *	     current syscall).
     *	  5) Netlink interface to user-space.
     *	  6) Support low-overhead kernel-based filtering to minimize the
     *	     information that must be passed to user-space.
     *
     * Audit userspace, documentation, tests, and bug/issue trackers:
     * 	https://github.com/linux-audit
     */
    
    #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
    
    #include <linux/file.h>
    #include <linux/init.h>
    #include <linux/types.h>
    #include <linux/atomic.h>
    #include <linux/mm.h>
    #include <linux/export.h>
    #include <linux/slab.h>
    #include <linux/err.h>
    #include <linux/kthread.h>
    #include <linux/kernel.h>
    #include <linux/syscalls.h>
    #include <linux/spinlock.h>
    #include <linux/rcupdate.h>
    #include <linux/mutex.h>
    #include <linux/gfp.h>
    #include <linux/pid.h>
    
    #include <linux/audit.h>
    
    #include <net/sock.h>
    #include <net/netlink.h>
    #include <linux/skbuff.h>
    #ifdef CONFIG_SECURITY
    #include <linux/security.h>
    #endif
    #include <linux/freezer.h>
    #include <linux/pid_namespace.h>
    #include <net/netns/generic.h>
    
    #include "audit.h"
    
    /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
     * (Initialization happens after skb_init is called.) */
    #define AUDIT_DISABLED		-1
    #define AUDIT_UNINITIALIZED	0
    #define AUDIT_INITIALIZED	1
    static int	audit_initialized;
    
    u32		audit_enabled = AUDIT_OFF;
    bool		audit_ever_enabled = !!AUDIT_OFF;
    
    EXPORT_SYMBOL_GPL(audit_enabled);
    
    /* Default state when kernel boots without any parameters. */
    static u32	audit_default = AUDIT_OFF;
    
    /* If auditing cannot proceed, audit_failure selects what happens. */
    static u32	audit_failure = AUDIT_FAIL_PRINTK;
    
    /* private audit network namespace index */
    static unsigned int audit_net_id;
    
    /**
     * struct audit_net - audit private network namespace data
     * @sk: communication socket
     */
    struct audit_net {
    	struct sock *sk;
    };
    
    /**
     * struct auditd_connection - kernel/auditd connection state
     * @pid: auditd PID
     * @portid: netlink portid
     * @net: the associated network namespace
     * @rcu: RCU head
     *
     * Description:
     * This struct is RCU protected; you must either hold the RCU lock for reading
     * or the associated spinlock for writing.
     */
    static struct auditd_connection {
    	struct pid *pid;
    	u32 portid;
    	struct net *net;
    	struct rcu_head rcu;
    } *auditd_conn = NULL;
    static DEFINE_SPINLOCK(auditd_conn_lock);
    
    /* If audit_rate_limit is non-zero, limit the rate of sending audit records
     * to that number per second.  This prevents DoS attacks, but results in
     * audit records being dropped. */
    static u32	audit_rate_limit;
    
    /* Number of outstanding audit_buffers allowed.
     * When set to zero, this means unlimited. */
    static u32	audit_backlog_limit = 64;
    #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
    static u32	audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
    
    /* The identity of the user shutting down the audit system. */
    kuid_t		audit_sig_uid = INVALID_UID;
    pid_t		audit_sig_pid = -1;
    u32		audit_sig_sid = 0;
    
    /* Records can be lost in several ways:
       0) [suppressed in audit_alloc]
       1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
       2) out of memory in audit_log_move [alloc_skb]
       3) suppressed due to audit_rate_limit
       4) suppressed due to audit_backlog_limit
    */
    static atomic_t	audit_lost = ATOMIC_INIT(0);
    
    /* Hash for inode-based rules */
    struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
    
    static struct kmem_cache *audit_buffer_cache;
    
    /* queue msgs to send via kauditd_task */
    static struct sk_buff_head audit_queue;
    /* queue msgs due to temporary unicast send problems */
    static struct sk_buff_head audit_retry_queue;
    /* queue msgs waiting for new auditd connection */
    static struct sk_buff_head audit_hold_queue;
    
    /* queue servicing thread */
    static struct task_struct *kauditd_task;
    static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
    
    /* waitqueue for callers who are blocked on the audit backlog */
    static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
    
    static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
    				   .mask = -1,
    				   .features = 0,
    				   .lock = 0,};
    
    static char *audit_feature_names[2] = {
    	"only_unset_loginuid",
    	"loginuid_immutable",
    };
    
    /**
     * struct audit_ctl_mutex - serialize requests from userspace
     * @lock: the mutex used for locking
     * @owner: the task which owns the lock
     *
     * Description:
     * This is the lock struct used to ensure we only process userspace requests
     * in an orderly fashion.  We can't simply use a mutex/lock here because we
     * need to track lock ownership so we don't end up blocking the lock owner in
     * audit_log_start() or similar.
     */
    static struct audit_ctl_mutex {
    	struct mutex lock;
    	void *owner;
    } audit_cmd_mutex;
    
    /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
     * audit records.  Since printk uses a 1024 byte buffer, this buffer
     * should be at least that large. */
    #define AUDIT_BUFSIZ 1024
    
    /* The audit_buffer is used when formatting an audit record.  The caller
     * locks briefly to get the record off the freelist or to allocate the
     * buffer, and locks briefly to send the buffer to the netlink layer or
     * to place it on a transmit queue.  Multiple audit_buffers can be in
     * use simultaneously. */
    struct audit_buffer {
    	struct sk_buff       *skb;	/* formatted skb ready to send */
    	struct audit_context *ctx;	/* NULL or associated context */
    	gfp_t		     gfp_mask;
    };
    
    struct audit_reply {
    	__u32 portid;
    	struct net *net;
    	struct sk_buff *skb;
    };
    
    /**
     * auditd_test_task - Check to see if a given task is an audit daemon
     * @task: the task to check
     *
     * Description:
     * Return 1 if the task is a registered audit daemon, 0 otherwise.
     */
    int auditd_test_task(struct task_struct *task)
    {
    	int rc;
    	struct auditd_connection *ac;
    
    	rcu_read_lock();
    	ac = rcu_dereference(auditd_conn);
    	rc = (ac && ac->pid == task_tgid(task) ? 1 : 0);
    	rcu_read_unlock();
    
    	return rc;
    }
    
    /**
     * audit_ctl_lock - Take the audit control lock
     */
    void audit_ctl_lock(void)
    {
    	mutex_lock(&audit_cmd_mutex.lock);
    	audit_cmd_mutex.owner = current;
    }
    
    /**
     * audit_ctl_unlock - Drop the audit control lock
     */
    void audit_ctl_unlock(void)
    {
    	audit_cmd_mutex.owner = NULL;
    	mutex_unlock(&audit_cmd_mutex.lock);
    }
    
    /**
     * audit_ctl_owner_current - Test to see if the current task owns the lock
     *
     * Description:
     * Return true if the current task owns the audit control lock, false if it
     * doesn't own the lock.
     */
    static bool audit_ctl_owner_current(void)
    {
    	return (current == audit_cmd_mutex.owner);
    }
    
    /**
     * auditd_pid_vnr - Return the auditd PID relative to the namespace
     *
     * Description:
     * Returns the PID in relation to the namespace, 0 on failure.
     */
    static pid_t auditd_pid_vnr(void)
    {
    	pid_t pid;
    	const struct auditd_connection *ac;
    
    	rcu_read_lock();
    	ac = rcu_dereference(auditd_conn);
    	if (!ac || !ac->pid)
    		pid = 0;
    	else
    		pid = pid_vnr(ac->pid);
    	rcu_read_unlock();
    
    	return pid;
    }
    
    /**
     * audit_get_sk - Return the audit socket for the given network namespace
     * @net: the destination network namespace
     *
     * Description:
     * Returns the sock pointer if valid, NULL otherwise.  The caller must ensure
     * that a reference is held for the network namespace while the sock is in use.
     */
    static struct sock *audit_get_sk(const struct net *net)
    {
    	struct audit_net *aunet;
    
    	if (!net)
    		return NULL;
    
    	aunet = net_generic(net, audit_net_id);
    	return aunet->sk;
    }
    
    void audit_panic(const char *message)
    {
    	switch (audit_failure) {
    	case AUDIT_FAIL_SILENT:
    		break;
    	case AUDIT_FAIL_PRINTK:
    		if (printk_ratelimit())
    			pr_err("%s\n", message);
    		break;
    	case AUDIT_FAIL_PANIC:
    		panic("audit: %s\n", message);
    		break;
    	}
    }
    
    static inline int audit_rate_check(void)
    {
    	static unsigned long	last_check = 0;
    	static int		messages   = 0;
    	static DEFINE_SPINLOCK(lock);
    	unsigned long		flags;
    	unsigned long		now;
    	unsigned long		elapsed;
    	int			retval	   = 0;
    
    	if (!audit_rate_limit) return 1;
    
    	spin_lock_irqsave(&lock, flags);
    	if (++messages < audit_rate_limit) {
    		retval = 1;
    	} else {
    		now     = jiffies;
    		elapsed = now - last_check;
    		if (elapsed > HZ) {
    			last_check = now;
    			messages   = 0;
    			retval     = 1;
    		}
    	}
    	spin_unlock_irqrestore(&lock, flags);
    
    	return retval;
    }
    
    /**
     * audit_log_lost - conditionally log lost audit message event
     * @message: the message stating reason for lost audit message
     *
     * Emit at least 1 message per second, even if audit_rate_check is
     * throttling.
     * Always increment the lost messages counter.
    */
    void audit_log_lost(const char *message)
    {
    	static unsigned long	last_msg = 0;
    	static DEFINE_SPINLOCK(lock);
    	unsigned long		flags;
    	unsigned long		now;
    	int			print;
    
    	atomic_inc(&audit_lost);
    
    	print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
    
    	if (!print) {
    		spin_lock_irqsave(&lock, flags);
    		now = jiffies;
    		if (now - last_msg > HZ) {
    			print = 1;
    			last_msg = now;
    		}
    		spin_unlock_irqrestore(&lock, flags);
    	}
    
    	if (print) {
    		if (printk_ratelimit())
    			pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
    				atomic_read(&audit_lost),
    				audit_rate_limit,
    				audit_backlog_limit);
    		audit_panic(message);
    	}
    }
    
    static int audit_log_config_change(char *function_name, u32 new, u32 old,
    				   int allow_changes)
    {
    	struct audit_buffer *ab;
    	int rc = 0;
    
    	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
    	if (unlikely(!ab))
    		return rc;
    	audit_log_format(ab, "%s=%u old=%u ", function_name, new, old);
    	audit_log_session_info(ab);
    	rc = audit_log_task_context(ab);
    	if (rc)
    		allow_changes = 0; /* Something weird, deny request */
    	audit_log_format(ab, " res=%d", allow_changes);
    	audit_log_end(ab);
    	return rc;
    }
    
    static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
    {
    	int allow_changes, rc = 0;
    	u32 old = *to_change;
    
    	/* check if we are locked */
    	if (audit_enabled == AUDIT_LOCKED)
    		allow_changes = 0;
    	else
    		allow_changes = 1;
    
    	if (audit_enabled != AUDIT_OFF) {
    		rc = audit_log_config_change(function_name, new, old, allow_changes);
    		if (rc)
    			allow_changes = 0;
    	}
    
    	/* If we are allowed, make the change */
    	if (allow_changes == 1)
    		*to_change = new;
    	/* Not allowed, update reason */
    	else if (rc == 0)
    		rc = -EPERM;
    	return rc;
    }
    
    static int audit_set_rate_limit(u32 limit)
    {
    	return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
    }
    
    static int audit_set_backlog_limit(u32 limit)
    {
    	return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
    }
    
    static int audit_set_backlog_wait_time(u32 timeout)
    {
    	return audit_do_config_change("audit_backlog_wait_time",
    				      &audit_backlog_wait_time, timeout);
    }
    
    static int audit_set_enabled(u32 state)
    {
    	int rc;
    	if (state > AUDIT_LOCKED)
    		return -EINVAL;
    
    	rc =  audit_do_config_change("audit_enabled", &audit_enabled, state);
    	if (!rc)
    		audit_ever_enabled |= !!state;
    
    	return rc;
    }
    
    static int audit_set_failure(u32 state)
    {
    	if (state != AUDIT_FAIL_SILENT
    	    && state != AUDIT_FAIL_PRINTK
    	    && state != AUDIT_FAIL_PANIC)
    		return -EINVAL;
    
    	return audit_do_config_change("audit_failure", &audit_failure, state);
    }
    
    /**
     * auditd_conn_free - RCU helper to release an auditd connection struct
     * @rcu: RCU head
     *
     * Description:
     * Drop any references inside the auditd connection tracking struct and free
     * the memory.
     */
    static void auditd_conn_free(struct rcu_head *rcu)
    {
    	struct auditd_connection *ac;
    
    	ac = container_of(rcu, struct auditd_connection, rcu);
    	put_pid(ac->pid);
    	put_net(ac->net);
    	kfree(ac);
    }
    
    /**
     * auditd_set - Set/Reset the auditd connection state
     * @pid: auditd PID
     * @portid: auditd netlink portid
     * @net: auditd network namespace pointer
     *
     * Description:
     * This function will obtain and drop network namespace references as
     * necessary.  Returns zero on success, negative values on failure.
     */
    static int auditd_set(struct pid *pid, u32 portid, struct net *net)
    {
    	unsigned long flags;
    	struct auditd_connection *ac_old, *ac_new;
    
    	if (!pid || !net)
    		return -EINVAL;
    
    	ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL);
    	if (!ac_new)
    		return -ENOMEM;
    	ac_new->pid = get_pid(pid);
    	ac_new->portid = portid;
    	ac_new->net = get_net(net);
    
    	spin_lock_irqsave(&auditd_conn_lock, flags);
    	ac_old = rcu_dereference_protected(auditd_conn,
    					   lockdep_is_held(&auditd_conn_lock));
    	rcu_assign_pointer(auditd_conn, ac_new);
    	spin_unlock_irqrestore(&auditd_conn_lock, flags);
    
    	if (ac_old)
    		call_rcu(&ac_old->rcu, auditd_conn_free);
    
    	return 0;
    }
    
    /**
     * kauditd_print_skb - Print the audit record to the ring buffer
     * @skb: audit record
     *
     * Whatever the reason, this packet may not make it to the auditd connection
     * so write it via printk so the information isn't completely lost.
     */
    static void kauditd_printk_skb(struct sk_buff *skb)
    {
    	struct nlmsghdr *nlh = nlmsg_hdr(skb);
    	char *data = nlmsg_data(nlh);
    
    	if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit())
    		pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
    }
    
    /**
     * kauditd_rehold_skb - Handle a audit record send failure in the hold queue
     * @skb: audit record
     *
     * Description:
     * This should only be used by the kauditd_thread when it fails to flush the
     * hold queue.
     */
    static void kauditd_rehold_skb(struct sk_buff *skb)
    {
    	/* put the record back in the queue at the same place */
    	skb_queue_head(&audit_hold_queue, skb);
    }
    
    /**
     * kauditd_hold_skb - Queue an audit record, waiting for auditd
     * @skb: audit record
     *
     * Description:
     * Queue the audit record, waiting for an instance of auditd.  When this
     * function is called we haven't given up yet on sending the record, but things
     * are not looking good.  The first thing we want to do is try to write the
     * record via printk and then see if we want to try and hold on to the record
     * and queue it, if we have room.  If we want to hold on to the record, but we
     * don't have room, record a record lost message.
     */
    static void kauditd_hold_skb(struct sk_buff *skb)
    {
    	/* at this point it is uncertain if we will ever send this to auditd so
    	 * try to send the message via printk before we go any further */
    	kauditd_printk_skb(skb);
    
    	/* can we just silently drop the message? */
    	if (!audit_default) {
    		kfree_skb(skb);
    		return;
    	}
    
    	/* if we have room, queue the message */
    	if (!audit_backlog_limit ||
    	    skb_queue_len(&audit_hold_queue) < audit_backlog_limit) {
    		skb_queue_tail(&audit_hold_queue, skb);
    		return;
    	}
    
    	/* we have no other options - drop the message */
    	audit_log_lost("kauditd hold queue overflow");
    	kfree_skb(skb);
    }
    
    /**
     * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd
     * @skb: audit record
     *
     * Description:
     * Not as serious as kauditd_hold_skb() as we still have a connected auditd,
     * but for some reason we are having problems sending it audit records so
     * queue the given record and attempt to resend.
     */
    static void kauditd_retry_skb(struct sk_buff *skb)
    {
    	/* NOTE: because records should only live in the retry queue for a
    	 * short period of time, before either being sent or moved to the hold
    	 * queue, we don't currently enforce a limit on this queue */
    	skb_queue_tail(&audit_retry_queue, skb);
    }
    
    /**
     * auditd_reset - Disconnect the auditd connection
     * @ac: auditd connection state
     *
     * Description:
     * Break the auditd/kauditd connection and move all the queued records into the
     * hold queue in case auditd reconnects.  It is important to note that the @ac
     * pointer should never be dereferenced inside this function as it may be NULL
     * or invalid, you can only compare the memory address!  If @ac is NULL then
     * the connection will always be reset.
     */
    static void auditd_reset(const struct auditd_connection *ac)
    {
    	unsigned long flags;
    	struct sk_buff *skb;
    	struct auditd_connection *ac_old;
    
    	/* if it isn't already broken, break the connection */
    	spin_lock_irqsave(&auditd_conn_lock, flags);
    	ac_old = rcu_dereference_protected(auditd_conn,
    					   lockdep_is_held(&auditd_conn_lock));
    	if (ac && ac != ac_old) {
    		/* someone already registered a new auditd connection */
    		spin_unlock_irqrestore(&auditd_conn_lock, flags);
    		return;
    	}
    	rcu_assign_pointer(auditd_conn, NULL);
    	spin_unlock_irqrestore(&auditd_conn_lock, flags);
    
    	if (ac_old)
    		call_rcu(&ac_old->rcu, auditd_conn_free);
    
    	/* flush the retry queue to the hold queue, but don't touch the main
    	 * queue since we need to process that normally for multicast */
    	while ((skb = skb_dequeue(&audit_retry_queue)))
    		kauditd_hold_skb(skb);
    }
    
    /**
     * auditd_send_unicast_skb - Send a record via unicast to auditd
     * @skb: audit record
     *
     * Description:
     * Send a skb to the audit daemon, returns positive/zero values on success and
     * negative values on failure; in all cases the skb will be consumed by this
     * function.  If the send results in -ECONNREFUSED the connection with auditd
     * will be reset.  This function may sleep so callers should not hold any locks
     * where this would cause a problem.
     */
    static int auditd_send_unicast_skb(struct sk_buff *skb)
    {
    	int rc;
    	u32 portid;
    	struct net *net;
    	struct sock *sk;
    	struct auditd_connection *ac;
    
    	/* NOTE: we can't call netlink_unicast while in the RCU section so
    	 *       take a reference to the network namespace and grab local
    	 *       copies of the namespace, the sock, and the portid; the
    	 *       namespace and sock aren't going to go away while we hold a
    	 *       reference and if the portid does become invalid after the RCU
    	 *       section netlink_unicast() should safely return an error */
    
    	rcu_read_lock();
    	ac = rcu_dereference(auditd_conn);
    	if (!ac) {
    		rcu_read_unlock();
    		kfree_skb(skb);
    		rc = -ECONNREFUSED;
    		goto err;
    	}
    	net = get_net(ac->net);
    	sk = audit_get_sk(net);
    	portid = ac->portid;
    	rcu_read_unlock();
    
    	rc = netlink_unicast(sk, skb, portid, 0);
    	put_net(net);
    	if (rc < 0)
    		goto err;
    
    	return rc;
    
    err:
    	if (ac && rc == -ECONNREFUSED)
    		auditd_reset(ac);
    	return rc;
    }
    
    /**
     * kauditd_send_queue - Helper for kauditd_thread to flush skb queues
     * @sk: the sending sock
     * @portid: the netlink destination
     * @queue: the skb queue to process
     * @retry_limit: limit on number of netlink unicast failures
     * @skb_hook: per-skb hook for additional processing
     * @err_hook: hook called if the skb fails the netlink unicast send
     *
     * Description:
     * Run through the given queue and attempt to send the audit records to auditd,
     * returns zero on success, negative values on failure.  It is up to the caller
     * to ensure that the @sk is valid for the duration of this function.
     *
     */
    static int kauditd_send_queue(struct sock *sk, u32 portid,
    			      struct sk_buff_head *queue,
    			      unsigned int retry_limit,
    			      void (*skb_hook)(struct sk_buff *skb),
    			      void (*err_hook)(struct sk_buff *skb))
    {
    	int rc = 0;
    	struct sk_buff *skb;
    	static unsigned int failed = 0;
    
    	/* NOTE: kauditd_thread takes care of all our locking, we just use
    	 *       the netlink info passed to us (e.g. sk and portid) */
    
    	while ((skb = skb_dequeue(queue))) {
    		/* call the skb_hook for each skb we touch */
    		if (skb_hook)
    			(*skb_hook)(skb);
    
    		/* can we send to anyone via unicast? */
    		if (!sk) {
    			if (err_hook)
    				(*err_hook)(skb);
    			continue;
    		}
    
    		/* grab an extra skb reference in case of error */
    		skb_get(skb);
    		rc = netlink_unicast(sk, skb, portid, 0);
    		if (rc < 0) {
    			/* fatal failure for our queue flush attempt? */
    			if (++failed >= retry_limit ||
    			    rc == -ECONNREFUSED || rc == -EPERM) {
    				/* yes - error processing for the queue */
    				sk = NULL;
    				if (err_hook)
    					(*err_hook)(skb);
    				if (!skb_hook)
    					goto out;
    				/* keep processing with the skb_hook */
    				continue;
    			} else
    				/* no - requeue to preserve ordering */
    				skb_queue_head(queue, skb);
    		} else {
    			/* it worked - drop the extra reference and continue */
    			consume_skb(skb);
    			failed = 0;
    		}
    	}
    
    out:
    	return (rc >= 0 ? 0 : rc);
    }
    
    /*
     * kauditd_send_multicast_skb - Send a record to any multicast listeners
     * @skb: audit record
     *
     * Description:
     * Write a multicast message to anyone listening in the initial network
     * namespace.  This function doesn't consume an skb as might be expected since
     * it has to copy it anyways.
     */
    static void kauditd_send_multicast_skb(struct sk_buff *skb)
    {
    	struct sk_buff *copy;
    	struct sock *sock = audit_get_sk(&init_net);
    	struct nlmsghdr *nlh;
    
    	/* NOTE: we are not taking an additional reference for init_net since
    	 *       we don't have to worry about it going away */
    
    	if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
    		return;
    
    	/*
    	 * The seemingly wasteful skb_copy() rather than bumping the refcount
    	 * using skb_get() is necessary because non-standard mods are made to
    	 * the skb by the original kaudit unicast socket send routine.  The
    	 * existing auditd daemon assumes this breakage.  Fixing this would
    	 * require co-ordinating a change in the established protocol between
    	 * the kaudit kernel subsystem and the auditd userspace code.  There is
    	 * no reason for new multicast clients to continue with this
    	 * non-compliance.
    	 */
    	copy = skb_copy(skb, GFP_KERNEL);
    	if (!copy)
    		return;
    	nlh = nlmsg_hdr(copy);
    	nlh->nlmsg_len = skb->len;
    
    	nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL);
    }
    
    /**
     * kauditd_thread - Worker thread to send audit records to userspace
     * @dummy: unused
     */
    static int kauditd_thread(void *dummy)
    {
    	int rc;
    	u32 portid = 0;
    	struct net *net = NULL;
    	struct sock *sk = NULL;
    	struct auditd_connection *ac;
    
    #define UNICAST_RETRIES 5
    
    	set_freezable();
    	while (!kthread_should_stop()) {
    		/* NOTE: see the lock comments in auditd_send_unicast_skb() */
    		rcu_read_lock();
    		ac = rcu_dereference(auditd_conn);
    		if (!ac) {
    			rcu_read_unlock();
    			goto main_queue;
    		}
    		net = get_net(ac->net);
    		sk = audit_get_sk(net);
    		portid = ac->portid;
    		rcu_read_unlock();
    
    		/* attempt to flush the hold queue */
    		rc = kauditd_send_queue(sk, portid,
    					&audit_hold_queue, UNICAST_RETRIES,
    					NULL, kauditd_rehold_skb);
    		if (ac && rc < 0) {
    			sk = NULL;
    			auditd_reset(ac);
    			goto main_queue;
    		}
    
    		/* attempt to flush the retry queue */
    		rc = kauditd_send_queue(sk, portid,
    					&audit_retry_queue, UNICAST_RETRIES,
    					NULL, kauditd_hold_skb);
    		if (ac && rc < 0) {
    			sk = NULL;
    			auditd_reset(ac);
    			goto main_queue;
    		}
    
    main_queue:
    		/* process the main queue - do the multicast send and attempt
    		 * unicast, dump failed record sends to the retry queue; if
    		 * sk == NULL due to previous failures we will just do the
    		 * multicast send and move the record to the hold queue */
    		rc = kauditd_send_queue(sk, portid, &audit_queue, 1,
    					kauditd_send_multicast_skb,
    					(sk ?
    					 kauditd_retry_skb : kauditd_hold_skb));
    		if (ac && rc < 0)
    			auditd_reset(ac);
    		sk = NULL;
    
    		/* drop our netns reference, no auditd sends past this line */
    		if (net) {
    			put_net(net);
    			net = NULL;
    		}
    
    		/* we have processed all the queues so wake everyone */
    		wake_up(&audit_backlog_wait);
    
    		/* NOTE: we want to wake up if there is anything on the queue,
    		 *       regardless of if an auditd is connected, as we need to
    		 *       do the multicast send and rotate records from the
    		 *       main queue to the retry/hold queues */
    		wait_event_freezable(kauditd_wait,
    				     (skb_queue_len(&audit_queue) ? 1 : 0));
    	}
    
    	return 0;
    }
    
    int audit_send_list(void *_dest)
    {
    	struct audit_netlink_list *dest = _dest;
    	struct sk_buff *skb;
    	struct sock *sk = audit_get_sk(dest->net);
    
    	/* wait for parent to finish and send an ACK */
    	audit_ctl_lock();
    	audit_ctl_unlock();
    
    	while ((skb = __skb_dequeue(&dest->q)) != NULL)
    		netlink_unicast(sk, skb, dest->portid, 0);
    
    	put_net(dest->net);
    	kfree(dest);
    
    	return 0;
    }
    
    struct sk_buff *audit_make_reply(int seq, int type, int done,
    				 int multi, const void *payload, int size)
    {
    	struct sk_buff	*skb;
    	struct nlmsghdr	*nlh;
    	void		*data;
    	int		flags = multi ? NLM_F_MULTI : 0;
    	int		t     = done  ? NLMSG_DONE  : type;
    
    	skb = nlmsg_new(size, GFP_KERNEL);
    	if (!skb)
    		return NULL;
    
    	nlh	= nlmsg_put(skb, 0, seq, t, size, flags);
    	if (!nlh)
    		goto out_kfree_skb;
    	data = nlmsg_data(nlh);
    	memcpy(data, payload, size);
    	return skb;
    
    out_kfree_skb:
    	kfree_skb(skb);
    	return NULL;
    }
    
    static int audit_send_reply_thread(void *arg)
    {
    	struct audit_reply *reply = (struct audit_reply *)arg;
    	struct sock *sk = audit_get_sk(reply->net);
    
    	audit_ctl_lock();
    	audit_ctl_unlock();
    
    	/* Ignore failure. It'll only happen if the sender goes away,
    	   because our timeout is set to infinite. */
    	netlink_unicast(sk, reply->skb, reply->portid, 0);
    	put_net(reply->net);
    	kfree(reply);
    	return 0;
    }
    
    /**
     * audit_send_reply - send an audit reply message via netlink
     * @request_skb: skb of request we are replying to (used to target the reply)
     * @seq: sequence number
     * @type: audit message type
     * @done: done (last) flag
     * @multi: multi-part message flag
     * @payload: payload data
     * @size: payload size
     *
     * Allocates an skb, builds the netlink message, and sends it to the port id.
     * No failure notifications.
     */
    static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
    			     int multi, const void *payload, int size)
    {
    	struct net *net = sock_net(NETLINK_CB(request_skb).sk);
    	struct sk_buff *skb;
    	struct task_struct *tsk;
    	struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
    					    GFP_KERNEL);
    
    	if (!reply)
    		return;
    
    	skb = audit_make_reply(seq, type, done, multi, payload, size);
    	if (!skb)
    		goto out;
    
    	reply->net = get_net(net);
    	reply->portid = NETLINK_CB(request_skb).portid;
    	reply->skb = skb;
    
    	tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
    	if (!IS_ERR(tsk))
    		return;
    	kfree_skb(skb);
    out:
    	kfree(reply);
    }
    
    /*
     * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
     * control messages.
     */
    static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
    {
    	int err = 0;
    
    	/* Only support initial user namespace for now. */
    	/*
    	 * We return ECONNREFUSED because it tricks userspace into thinking
    	 * that audit was not configured into the kernel.  Lots of users
    	 * configure their PAM stack (because that's what the distro does)
    	 * to reject login if unable to send messages to audit.  If we return
    	 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
    	 * configured in and will let login proceed.  If we return EPERM
    	 * userspace will reject all logins.  This should be removed when we
    	 * support non init namespaces!!
    	 */
    	if (current_user_ns() != &init_user_ns)
    		return -ECONNREFUSED;
    
    	switch (msg_type) {
    	case AUDIT_LIST:
    	case AUDIT_ADD:
    	case AUDIT_DEL:
    		return -EOPNOTSUPP;
    	case AUDIT_GET:
    	case AUDIT_SET:
    	case AUDIT_GET_FEATURE:
    	case AUDIT_SET_FEATURE:
    	case AUDIT_LIST_RULES:
    	case AUDIT_ADD_RULE:
    	case AUDIT_DEL_RULE:
    	case AUDIT_SIGNAL_INFO:
    	case AUDIT_TTY_GET:
    	case AUDIT_TTY_SET:
    	case AUDIT_TRIM:
    	case AUDIT_MAKE_EQUIV:
    		/* Only support auditd and auditctl in initial pid namespace
    		 * for now. */
    		if (task_active_pid_ns(current) != &init_pid_ns)
    			return -EPERM;
    
    		if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
    			err = -EPERM;
    		break;
    	case AUDIT_USER:
    	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
    	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
    		if (!netlink_capable(skb, CAP_AUDIT_WRITE))
    			err = -EPERM;
    		break;
    	default:  /* bad msg */
    		err = -EINVAL;
    	}
    
    	return err;
    }
    
    static void audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
    {
    	uid_t uid = from_kuid(&init_user_ns, current_uid());
    	pid_t pid = task_tgid_nr(current);
    
    	if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
    		*ab = NULL;
    		return;
    	}
    
    	*ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
    	if (unlikely(!*ab))
    		return;
    	audit_log_format(*ab, "pid=%d uid=%u ", pid, uid);
    	audit_log_session_info(*ab);
    	audit_log_task_context(*ab);
    }
    
    int is_audit_feature_set(int i)
    {
    	return af.features & AUDIT_FEATURE_TO_MASK(i);
    }
    
    
    static int audit_get_feature(struct sk_buff *skb)
    {
    	u32 seq;
    
    	seq = nlmsg_hdr(skb)->nlmsg_seq;
    
    	audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
    
    	return 0;
    }
    
    static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
    				     u32 old_lock, u32 new_lock, int res)
    {
    	struct audit_buffer *ab;
    
    	if (audit_enabled == AUDIT_OFF)
    		return;
    
    	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_FEATURE_CHANGE);
    	if (!ab)
    		return;
    	audit_log_task_info(ab);
    	audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
    			 audit_feature_names[which], !!old_feature, !!new_feature,
    			 !!old_lock, !!new_lock, res);
    	audit_log_end(ab);
    }
    
    static int audit_set_feature(struct sk_buff *skb)
    {
    	struct audit_features *uaf;
    	int i;
    
    	BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
    	uaf = nlmsg_data(nlmsg_hdr(skb));
    
    	/* if there is ever a version 2 we should handle that here */
    
    	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
    		u32 feature = AUDIT_FEATURE_TO_MASK(i);
    		u32 old_feature, new_feature, old_lock, new_lock;
    
    		/* if we are not changing this feature, move along */
    		if (!(feature & uaf->mask))
    			continue;
    
    		old_feature = af.features & feature;
    		new_feature = uaf->features & feature;
    		new_lock = (uaf->lock | af.lock) & feature;
    		old_lock = af.lock & feature;
    
    		/* are we changing a locked feature? */
    		if (old_lock && (new_feature != old_feature)) {
    			audit_log_feature_change(i, old_feature, new_feature,
    						 old_lock, new_lock, 0);
    			return -EPERM;
    		}
    	}
    	/* nothing invalid, do the changes */
    	for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
    		u32 feature = AUDIT_FEATURE_TO_MASK(i);
    		u32 old_feature, new_feature, old_lock, new_lock;
    
    		/* if we are not changing this feature, move along */
    		if (!(feature & uaf->mask))
    			continue;
    
    		old_feature = af.features & feature;
    		new_feature = uaf->features & feature;
    		old_lock = af.lock & feature;
    		new_lock = (uaf->lock | af.lock) & feature;
    
    		if (new_feature != old_feature)
    			audit_log_feature_change(i, old_feature, new_feature,
    						 old_lock, new_lock, 1);
    
    		if (new_feature)
    			af.features |= feature;
    		else
    			af.features &= ~feature;
    		af.lock |= new_lock;
    	}
    
    	return 0;
    }
    
    static int audit_replace(struct pid *pid)
    {
    	pid_t pvnr;
    	struct sk_buff *skb;
    
    	pvnr = pid_vnr(pid);
    	skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr));
    	if (!skb)
    		return -ENOMEM;
    	return auditd_send_unicast_skb(skb);
    }
    
    static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
    {
    	u32			seq;
    	void			*data;
    	int			err;
    	struct audit_buffer	*ab;
    	u16			msg_type = nlh->nlmsg_type;
    	struct audit_sig_info   *sig_data;
    	char			*ctx = NULL;
    	u32			len;
    
    	err = audit_netlink_ok(skb, msg_type);
    	if (err)
    		return err;
    
    	seq  = nlh->nlmsg_seq;
    	data = nlmsg_data(nlh);
    
    	switch (msg_type) {
    	case AUDIT_GET: {
    		struct audit_status	s;
    		memset(&s, 0, sizeof(s));
    		s.enabled		= audit_enabled;
    		s.failure		= audit_failure;
    		/* NOTE: use pid_vnr() so the PID is relative to the current
    		 *       namespace */
    		s.pid			= auditd_pid_vnr();
    		s.rate_limit		= audit_rate_limit;
    		s.backlog_limit		= audit_backlog_limit;
    		s.lost			= atomic_read(&audit_lost);
    		s.backlog		= skb_queue_len(&audit_queue);
    		s.feature_bitmap	= AUDIT_FEATURE_BITMAP_ALL;
    		s.backlog_wait_time	= audit_backlog_wait_time;
    		audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
    		break;
    	}
    	case AUDIT_SET: {
    		struct audit_status	s;
    		memset(&s, 0, sizeof(s));
    		/* guard against past and future API changes */
    		memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
    		if (s.mask & AUDIT_STATUS_ENABLED) {
    			err = audit_set_enabled(s.enabled);
    			if (err < 0)
    				return err;
    		}
    		if (s.mask & AUDIT_STATUS_FAILURE) {
    			err = audit_set_failure(s.failure);
    			if (err < 0)
    				return err;
    		}
    		if (s.mask & AUDIT_STATUS_PID) {
    			/* NOTE: we are using the vnr PID functions below
    			 *       because the s.pid value is relative to the
    			 *       namespace of the caller; at present this
    			 *       doesn't matter much since you can really only
    			 *       run auditd from the initial pid namespace, but
    			 *       something to keep in mind if this changes */
    			pid_t new_pid = s.pid;
    			pid_t auditd_pid;
    			struct pid *req_pid = task_tgid(current);
    
    			/* Sanity check - PID values must match. Setting
    			 * pid to 0 is how auditd ends auditing. */
    			if (new_pid && (new_pid != pid_vnr(req_pid)))
    				return -EINVAL;
    
    			/* test the auditd connection */
    			audit_replace(req_pid);
    
    			auditd_pid = auditd_pid_vnr();
    			if (auditd_pid) {
    				/* replacing a healthy auditd is not allowed */
    				if (new_pid) {
    					audit_log_config_change("audit_pid",
    							new_pid, auditd_pid, 0);
    					return -EEXIST;
    				}
    				/* only current auditd can unregister itself */
    				if (pid_vnr(req_pid) != auditd_pid) {
    					audit_log_config_change("audit_pid",
    							new_pid, auditd_pid, 0);
    					return -EACCES;
    				}
    			}
    
    			if (new_pid) {
    				/* register a new auditd connection */
    				err = auditd_set(req_pid,
    						 NETLINK_CB(skb).portid,
    						 sock_net(NETLINK_CB(skb).sk));
    				if (audit_enabled != AUDIT_OFF)
    					audit_log_config_change("audit_pid",
    								new_pid,
    								auditd_pid,
    								err ? 0 : 1);
    				if (err)
    					return err;
    
    				/* try to process any backlog */
    				wake_up_interruptible(&kauditd_wait);
    			} else {
    				if (audit_enabled != AUDIT_OFF)
    					audit_log_config_change("audit_pid",
    								new_pid,
    								auditd_pid, 1);
    
    				/* unregister the auditd connection */
    				auditd_reset(NULL);
    			}
    		}
    		if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
    			err = audit_set_rate_limit(s.rate_limit);
    			if (err < 0)
    				return err;
    		}
    		if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
    			err = audit_set_backlog_limit(s.backlog_limit);
    			if (err < 0)
    				return err;
    		}
    		if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
    			if (sizeof(s) > (size_t)nlh->nlmsg_len)
    				return -EINVAL;
    			if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
    				return -EINVAL;
    			err = audit_set_backlog_wait_time(s.backlog_wait_time);
    			if (err < 0)
    				return err;
    		}
    		if (s.mask == AUDIT_STATUS_LOST) {
    			u32 lost = atomic_xchg(&audit_lost, 0);
    
    			audit_log_config_change("lost", 0, lost, 1);
    			return lost;
    		}
    		break;
    	}
    	case AUDIT_GET_FEATURE:
    		err = audit_get_feature(skb);
    		if (err)
    			return err;
    		break;
    	case AUDIT_SET_FEATURE:
    		err = audit_set_feature(skb);
    		if (err)
    			return err;
    		break;
    	case AUDIT_USER:
    	case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
    	case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
    		if (!audit_enabled && msg_type != AUDIT_USER_AVC)
    			return 0;
    
    		err = audit_filter(msg_type, AUDIT_FILTER_USER);
    		if (err == 1) { /* match or error */
    			err = 0;
    			if (msg_type == AUDIT_USER_TTY) {
    				err = tty_audit_push();
    				if (err)
    					break;
    			}
    			audit_log_common_recv_msg(&ab, msg_type);
    			if (msg_type != AUDIT_USER_TTY)
    				audit_log_format(ab, " msg='%.*s'",
    						 AUDIT_MESSAGE_TEXT_MAX,
    						 (char *)data);
    			else {
    				int size;
    
    				audit_log_format(ab, " data=");
    				size = nlmsg_len(nlh);
    				if (size > 0 &&
    				    ((unsigned char *)data)[size - 1] == '\0')
    					size--;
    				audit_log_n_untrustedstring(ab, data, size);
    			}
    			audit_log_end(ab);
    		}
    		break;
    	case AUDIT_ADD_RULE:
    	case AUDIT_DEL_RULE:
    		if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
    			return -EINVAL;
    		if (audit_enabled == AUDIT_LOCKED) {
    			audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
    			audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
    			audit_log_end(ab);
    			return -EPERM;
    		}
    		err = audit_rule_change(msg_type, seq, data, nlmsg_len(nlh));
    		break;
    	case AUDIT_LIST_RULES:
    		err = audit_list_rules_send(skb, seq);
    		break;
    	case AUDIT_TRIM:
    		audit_trim_trees();
    		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
    		audit_log_format(ab, " op=trim res=1");
    		audit_log_end(ab);
    		break;
    	case AUDIT_MAKE_EQUIV: {
    		void *bufp = data;
    		u32 sizes[2];
    		size_t msglen = nlmsg_len(nlh);
    		char *old, *new;
    
    		err = -EINVAL;
    		if (msglen < 2 * sizeof(u32))
    			break;
    		memcpy(sizes, bufp, 2 * sizeof(u32));
    		bufp += 2 * sizeof(u32);
    		msglen -= 2 * sizeof(u32);
    		old = audit_unpack_string(&bufp, &msglen, sizes[0]);
    		if (IS_ERR(old)) {
    			err = PTR_ERR(old);
    			break;
    		}
    		new = audit_unpack_string(&bufp, &msglen, sizes[1]);
    		if (IS_ERR(new)) {
    			err = PTR_ERR(new);
    			kfree(old);
    			break;
    		}
    		/* OK, here comes... */
    		err = audit_tag_tree(old, new);
    
    		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
    
    		audit_log_format(ab, " op=make_equiv old=");
    		audit_log_untrustedstring(ab, old);
    		audit_log_format(ab, " new=");
    		audit_log_untrustedstring(ab, new);
    		audit_log_format(ab, " res=%d", !err);
    		audit_log_end(ab);
    		kfree(old);
    		kfree(new);
    		break;
    	}
    	case AUDIT_SIGNAL_INFO:
    		len = 0;
    		if (audit_sig_sid) {
    			err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
    			if (err)
    				return err;
    		}
    		sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
    		if (!sig_data) {
    			if (audit_sig_sid)
    				security_release_secctx(ctx, len);
    			return -ENOMEM;
    		}
    		sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
    		sig_data->pid = audit_sig_pid;
    		if (audit_sig_sid) {
    			memcpy(sig_data->ctx, ctx, len);
    			security_release_secctx(ctx, len);
    		}
    		audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
    				 sig_data, sizeof(*sig_data) + len);
    		kfree(sig_data);
    		break;
    	case AUDIT_TTY_GET: {
    		struct audit_tty_status s;
    		unsigned int t;
    
    		t = READ_ONCE(current->signal->audit_tty);
    		s.enabled = t & AUDIT_TTY_ENABLE;
    		s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
    
    		audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
    		break;
    	}
    	case AUDIT_TTY_SET: {
    		struct audit_tty_status s, old;
    		struct audit_buffer	*ab;
    		unsigned int t;
    
    		memset(&s, 0, sizeof(s));
    		/* guard against past and future API changes */
    		memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
    		/* check if new data is valid */
    		if ((s.enabled != 0 && s.enabled != 1) ||
    		    (s.log_passwd != 0 && s.log_passwd != 1))
    			err = -EINVAL;
    
    		if (err)
    			t = READ_ONCE(current->signal->audit_tty);
    		else {
    			t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
    			t = xchg(&current->signal->audit_tty, t);
    		}
    		old.enabled = t & AUDIT_TTY_ENABLE;
    		old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
    
    		audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
    		audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
    				 " old-log_passwd=%d new-log_passwd=%d res=%d",
    				 old.enabled, s.enabled, old.log_passwd,
    				 s.log_passwd, !err);
    		audit_log_end(ab);
    		break;
    	}
    	default:
    		err = -EINVAL;
    		break;
    	}
    
    	return err < 0 ? err : 0;
    }
    
    /**
     * audit_receive - receive messages from a netlink control socket
     * @skb: the message buffer
     *
     * Parse the provided skb and deal with any messages that may be present,
     * malformed skbs are discarded.
     */
    static void audit_receive(struct sk_buff  *skb)
    {
    	struct nlmsghdr *nlh;
    	/*
    	 * len MUST be signed for nlmsg_next to be able to dec it below 0
    	 * if the nlmsg_len was not aligned
    	 */
    	int len;
    	int err;
    
    	nlh = nlmsg_hdr(skb);
    	len = skb->len;
    
    	audit_ctl_lock();
    	while (nlmsg_ok(nlh, len)) {
    		err = audit_receive_msg(skb, nlh);
    		/* if err or if this message says it wants a response */
    		if (err || (nlh->nlmsg_flags & NLM_F_ACK))
    			netlink_ack(skb, nlh, err, NULL);
    
    		nlh = nlmsg_next(nlh, &len);
    	}
    	audit_ctl_unlock();
    }
    
    /* Run custom bind function on netlink socket group connect or bind requests. */
    static int audit_bind(struct net *net, int group)
    {
    	if (!capable(CAP_AUDIT_READ))
    		return -EPERM;
    
    	return 0;
    }
    
    static int __net_init audit_net_init(struct net *net)
    {
    	struct netlink_kernel_cfg cfg = {
    		.input	= audit_receive,
    		.bind	= audit_bind,
    		.flags	= NL_CFG_F_NONROOT_RECV,
    		.groups	= AUDIT_NLGRP_MAX,
    	};
    
    	struct audit_net *aunet = net_generic(net, audit_net_id);
    
    	aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
    	if (aunet->sk == NULL) {
    		audit_panic("cannot initialize netlink socket in namespace");
    		return -ENOMEM;
    	}
    	aunet->sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
    
    	return 0;
    }
    
    static void __net_exit audit_net_exit(struct net *net)
    {
    	struct audit_net *aunet = net_generic(net, audit_net_id);
    
    	/* NOTE: you would think that we would want to check the auditd
    	 * connection and potentially reset it here if it lives in this
    	 * namespace, but since the auditd connection tracking struct holds a
    	 * reference to this namespace (see auditd_set()) we are only ever
    	 * going to get here after that connection has been released */
    
    	netlink_kernel_release(aunet->sk);
    }
    
    static struct pernet_operations audit_net_ops __net_initdata = {
    	.init = audit_net_init,
    	.exit = audit_net_exit,
    	.id = &audit_net_id,
    	.size = sizeof(struct audit_net),
    };
    
    /* Initialize audit support at boot time. */
    static int __init audit_init(void)
    {
    	int i;
    
    	if (audit_initialized == AUDIT_DISABLED)
    		return 0;
    
    	audit_buffer_cache = kmem_cache_create("audit_buffer",
    					       sizeof(struct audit_buffer),
    					       0, SLAB_PANIC, NULL);
    
    	skb_queue_head_init(&audit_queue);
    	skb_queue_head_init(&audit_retry_queue);
    	skb_queue_head_init(&audit_hold_queue);
    
    	for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
    		INIT_LIST_HEAD(&audit_inode_hash[i]);
    
    	mutex_init(&audit_cmd_mutex.lock);
    	audit_cmd_mutex.owner = NULL;
    
    	pr_info("initializing netlink subsys (%s)\n",
    		audit_default ? "enabled" : "disabled");
    	register_pernet_subsys(&audit_net_ops);
    
    	audit_initialized = AUDIT_INITIALIZED;
    
    	kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
    	if (IS_ERR(kauditd_task)) {
    		int err = PTR_ERR(kauditd_task);
    		panic("audit: failed to start the kauditd thread (%d)\n", err);
    	}
    
    	audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL,
    		"state=initialized audit_enabled=%u res=1",
    		 audit_enabled);
    
    	return 0;
    }
    postcore_initcall(audit_init);
    
    /*
     * Process kernel command-line parameter at boot time.
     * audit={0|off} or audit={1|on}.
     */
    static int __init audit_enable(char *str)
    {
    	if (!strcasecmp(str, "off") || !strcmp(str, "0"))
    		audit_default = AUDIT_OFF;
    	else if (!strcasecmp(str, "on") || !strcmp(str, "1"))
    		audit_default = AUDIT_ON;
    	else {
    		pr_err("audit: invalid 'audit' parameter value (%s)\n", str);
    		audit_default = AUDIT_ON;
    	}
    
    	if (audit_default == AUDIT_OFF)
    		audit_initialized = AUDIT_DISABLED;
    	if (audit_set_enabled(audit_default))
    		pr_err("audit: error setting audit state (%d)\n",
    		       audit_default);
    
    	pr_info("%s\n", audit_default ?
    		"enabled (after initialization)" : "disabled (until reboot)");
    
    	return 1;
    }
    __setup("audit=", audit_enable);
    
    /* Process kernel command-line parameter at boot time.
     * audit_backlog_limit=<n> */
    static int __init audit_backlog_limit_set(char *str)
    {
    	u32 audit_backlog_limit_arg;
    
    	pr_info("audit_backlog_limit: ");
    	if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
    		pr_cont("using default of %u, unable to parse %s\n",
    			audit_backlog_limit, str);
    		return 1;
    	}
    
    	audit_backlog_limit = audit_backlog_limit_arg;
    	pr_cont("%d\n", audit_backlog_limit);
    
    	return 1;
    }
    __setup("audit_backlog_limit=", audit_backlog_limit_set);
    
    static void audit_buffer_free(struct audit_buffer *ab)
    {
    	if (!ab)
    		return;
    
    	kfree_skb(ab->skb);
    	kmem_cache_free(audit_buffer_cache, ab);
    }
    
    static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx,
    					       gfp_t gfp_mask, int type)
    {
    	struct audit_buffer *ab;
    
    	ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask);
    	if (!ab)
    		return NULL;
    
    	ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
    	if (!ab->skb)
    		goto err;
    	if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0))
    		goto err;
    
    	ab->ctx = ctx;
    	ab->gfp_mask = gfp_mask;
    
    	return ab;
    
    err:
    	audit_buffer_free(ab);
    	return NULL;
    }
    
    /**
     * audit_serial - compute a serial number for the audit record
     *
     * Compute a serial number for the audit record.  Audit records are
     * written to user-space as soon as they are generated, so a complete
     * audit record may be written in several pieces.  The timestamp of the
     * record and this serial number are used by the user-space tools to
     * determine which pieces belong to the same audit record.  The
     * (timestamp,serial) tuple is unique for each syscall and is live from
     * syscall entry to syscall exit.
     *
     * NOTE: Another possibility is to store the formatted records off the
     * audit context (for those records that have a context), and emit them
     * all at syscall exit.  However, this could delay the reporting of
     * significant errors until syscall exit (or never, if the system
     * halts).
     */
    unsigned int audit_serial(void)
    {
    	static atomic_t serial = ATOMIC_INIT(0);
    
    	return atomic_add_return(1, &serial);
    }
    
    static inline void audit_get_stamp(struct audit_context *ctx,
    				   struct timespec64 *t, unsigned int *serial)
    {
    	if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
    		ktime_get_coarse_real_ts64(t);
    		*serial = audit_serial();
    	}
    }
    
    /**
     * audit_log_start - obtain an audit buffer
     * @ctx: audit_context (may be NULL)
     * @gfp_mask: type of allocation
     * @type: audit message type
     *
     * Returns audit_buffer pointer on success or NULL on error.
     *
     * Obtain an audit buffer.  This routine does locking to obtain the
     * audit buffer, but then no locking is required for calls to
     * audit_log_*format.  If the task (ctx) is a task that is currently in a
     * syscall, then the syscall is marked as auditable and an audit record
     * will be written at syscall exit.  If there is no associated task, then
     * task context (ctx) should be NULL.
     */
    struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
    				     int type)
    {
    	struct audit_buffer *ab;
    	struct timespec64 t;
    	unsigned int uninitialized_var(serial);
    
    	if (audit_initialized != AUDIT_INITIALIZED)
    		return NULL;
    
    	if (unlikely(!audit_filter(type, AUDIT_FILTER_EXCLUDE)))
    		return NULL;
    
    	/* NOTE: don't ever fail/sleep on these two conditions:
    	 * 1. auditd generated record - since we need auditd to drain the
    	 *    queue; also, when we are checking for auditd, compare PIDs using
    	 *    task_tgid_vnr() since auditd_pid is set in audit_receive_msg()
    	 *    using a PID anchored in the caller's namespace
    	 * 2. generator holding the audit_cmd_mutex - we don't want to block
    	 *    while holding the mutex */
    	if (!(auditd_test_task(current) || audit_ctl_owner_current())) {
    		long stime = audit_backlog_wait_time;
    
    		while (audit_backlog_limit &&
    		       (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
    			/* wake kauditd to try and flush the queue */
    			wake_up_interruptible(&kauditd_wait);
    
    			/* sleep if we are allowed and we haven't exhausted our
    			 * backlog wait limit */
    			if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) {
    				DECLARE_WAITQUEUE(wait, current);
    
    				add_wait_queue_exclusive(&audit_backlog_wait,
    							 &wait);
    				set_current_state(TASK_UNINTERRUPTIBLE);
    				stime = schedule_timeout(stime);
    				remove_wait_queue(&audit_backlog_wait, &wait);
    			} else {
    				if (audit_rate_check() && printk_ratelimit())
    					pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
    						skb_queue_len(&audit_queue),
    						audit_backlog_limit);
    				audit_log_lost("backlog limit exceeded");
    				return NULL;
    			}
    		}
    	}
    
    	ab = audit_buffer_alloc(ctx, gfp_mask, type);
    	if (!ab) {
    		audit_log_lost("out of memory in audit_log_start");
    		return NULL;
    	}
    
    	audit_get_stamp(ab->ctx, &t, &serial);
    	audit_log_format(ab, "audit(%llu.%03lu:%u): ",
    			 (unsigned long long)t.tv_sec, t.tv_nsec/1000000, serial);
    
    	return ab;
    }
    
    /**
     * audit_expand - expand skb in the audit buffer
     * @ab: audit_buffer
     * @extra: space to add at tail of the skb
     *
     * Returns 0 (no space) on failed expansion, or available space if
     * successful.
     */
    static inline int audit_expand(struct audit_buffer *ab, int extra)
    {
    	struct sk_buff *skb = ab->skb;
    	int oldtail = skb_tailroom(skb);
    	int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
    	int newtail = skb_tailroom(skb);
    
    	if (ret < 0) {
    		audit_log_lost("out of memory in audit_expand");
    		return 0;
    	}
    
    	skb->truesize += newtail - oldtail;
    	return newtail;
    }
    
    /*
     * Format an audit message into the audit buffer.  If there isn't enough
     * room in the audit buffer, more room will be allocated and vsnprint
     * will be called a second time.  Currently, we assume that a printk
     * can't format message larger than 1024 bytes, so we don't either.
     */
    static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
    			      va_list args)
    {
    	int len, avail;
    	struct sk_buff *skb;
    	va_list args2;
    
    	if (!ab)
    		return;
    
    	BUG_ON(!ab->skb);
    	skb = ab->skb;
    	avail = skb_tailroom(skb);
    	if (avail == 0) {
    		avail = audit_expand(ab, AUDIT_BUFSIZ);
    		if (!avail)
    			goto out;
    	}
    	va_copy(args2, args);
    	len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
    	if (len >= avail) {
    		/* The printk buffer is 1024 bytes long, so if we get
    		 * here and AUDIT_BUFSIZ is at least 1024, then we can
    		 * log everything that printk could have logged. */
    		avail = audit_expand(ab,
    			max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
    		if (!avail)
    			goto out_va_end;
    		len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
    	}
    	if (len > 0)
    		skb_put(skb, len);
    out_va_end:
    	va_end(args2);
    out:
    	return;
    }
    
    /**
     * audit_log_format - format a message into the audit buffer.
     * @ab: audit_buffer
     * @fmt: format string
     * @...: optional parameters matching @fmt string
     *
     * All the work is done in audit_log_vformat.
     */
    void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
    {
    	va_list args;
    
    	if (!ab)
    		return;
    	va_start(args, fmt);
    	audit_log_vformat(ab, fmt, args);
    	va_end(args);
    }
    
    /**
     * audit_log_n_hex - convert a buffer to hex and append it to the audit skb
     * @ab: the audit_buffer
     * @buf: buffer to convert to hex
     * @len: length of @buf to be converted
     *
     * No return value; failure to expand is silently ignored.
     *
     * This function will take the passed buf and convert it into a string of
     * ascii hex digits. The new string is placed onto the skb.
     */
    void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
    		size_t len)
    {
    	int i, avail, new_len;
    	unsigned char *ptr;
    	struct sk_buff *skb;
    
    	if (!ab)
    		return;
    
    	BUG_ON(!ab->skb);
    	skb = ab->skb;
    	avail = skb_tailroom(skb);
    	new_len = len<<1;
    	if (new_len >= avail) {
    		/* Round the buffer request up to the next multiple */
    		new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
    		avail = audit_expand(ab, new_len);
    		if (!avail)
    			return;
    	}
    
    	ptr = skb_tail_pointer(skb);
    	for (i = 0; i < len; i++)
    		ptr = hex_byte_pack_upper(ptr, buf[i]);
    	*ptr = 0;
    	skb_put(skb, len << 1); /* new string is twice the old string */
    }
    
    /*
     * Format a string of no more than slen characters into the audit buffer,
     * enclosed in quote marks.
     */
    void audit_log_n_string(struct audit_buffer *ab, const char *string,
    			size_t slen)
    {
    	int avail, new_len;
    	unsigned char *ptr;
    	struct sk_buff *skb;
    
    	if (!ab)
    		return;
    
    	BUG_ON(!ab->skb);
    	skb = ab->skb;
    	avail = skb_tailroom(skb);
    	new_len = slen + 3;	/* enclosing quotes + null terminator */
    	if (new_len > avail) {
    		avail = audit_expand(ab, new_len);
    		if (!avail)
    			return;
    	}
    	ptr = skb_tail_pointer(skb);
    	*ptr++ = '"';
    	memcpy(ptr, string, slen);
    	ptr += slen;
    	*ptr++ = '"';
    	*ptr = 0;
    	skb_put(skb, slen + 2);	/* don't include null terminator */
    }
    
    /**
     * audit_string_contains_control - does a string need to be logged in hex
     * @string: string to be checked
     * @len: max length of the string to check
     */
    bool audit_string_contains_control(const char *string, size_t len)
    {
    	const unsigned char *p;
    	for (p = string; p < (const unsigned char *)string + len; p++) {
    		if (*p == '"' || *p < 0x21 || *p > 0x7e)
    			return true;
    	}
    	return false;
    }
    
    /**
     * audit_log_n_untrustedstring - log a string that may contain random characters
     * @ab: audit_buffer
     * @len: length of string (not including trailing null)
     * @string: string to be logged
     *
     * This code will escape a string that is passed to it if the string
     * contains a control character, unprintable character, double quote mark,
     * or a space. Unescaped strings will start and end with a double quote mark.
     * Strings that are escaped are printed in hex (2 digits per char).
     *
     * The caller specifies the number of characters in the string to log, which may
     * or may not be the entire string.
     */
    void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
    				 size_t len)
    {
    	if (audit_string_contains_control(string, len))
    		audit_log_n_hex(ab, string, len);
    	else
    		audit_log_n_string(ab, string, len);
    }
    
    /**
     * audit_log_untrustedstring - log a string that may contain random characters
     * @ab: audit_buffer
     * @string: string to be logged
     *
     * Same as audit_log_n_untrustedstring(), except that strlen is used to
     * determine string length.
     */
    void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
    {
    	audit_log_n_untrustedstring(ab, string, strlen(string));
    }
    
    /* This is a helper-function to print the escaped d_path */
    void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
    		      const struct path *path)
    {
    	char *p, *pathname;
    
    	if (prefix)
    		audit_log_format(ab, "%s", prefix);
    
    	/* We will allow 11 spaces for ' (deleted)' to be appended */
    	pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
    	if (!pathname) {
    		audit_log_string(ab, "<no_memory>");
    		return;
    	}
    	p = d_path(path, pathname, PATH_MAX+11);
    	if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
    		/* FIXME: can we save some information here? */
    		audit_log_string(ab, "<too_long>");
    	} else
    		audit_log_untrustedstring(ab, p);
    	kfree(pathname);
    }
    
    void audit_log_session_info(struct audit_buffer *ab)
    {
    	unsigned int sessionid = audit_get_sessionid(current);
    	uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
    
    	audit_log_format(ab, "auid=%u ses=%u", auid, sessionid);
    }
    
    void audit_log_key(struct audit_buffer *ab, char *key)
    {
    	audit_log_format(ab, " key=");
    	if (key)
    		audit_log_untrustedstring(ab, key);
    	else
    		audit_log_format(ab, "(null)");
    }
    
    void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
    {
    	int i;
    
    	if (cap_isclear(*cap)) {
    		audit_log_format(ab, " %s=0", prefix);
    		return;
    	}
    	audit_log_format(ab, " %s=", prefix);
    	CAP_FOR_EACH_U32(i)
    		audit_log_format(ab, "%08x", cap->cap[CAP_LAST_U32 - i]);
    }
    
    static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
    {
    	audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
    	audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
    	audit_log_format(ab, " cap_fe=%d cap_fver=%x",
    			 name->fcap.fE, name->fcap_ver);
    }
    
    static inline int audit_copy_fcaps(struct audit_names *name,
    				   const struct dentry *dentry)
    {
    	struct cpu_vfs_cap_data caps;
    	int rc;
    
    	if (!dentry)
    		return 0;
    
    	rc = get_vfs_caps_from_disk(dentry, &caps);
    	if (rc)
    		return rc;
    
    	name->fcap.permitted = caps.permitted;
    	name->fcap.inheritable = caps.inheritable;
    	name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
    	name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
    				VFS_CAP_REVISION_SHIFT;
    
    	return 0;
    }
    
    /* Copy inode data into an audit_names. */
    void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
    		      struct inode *inode)
    {
    	name->ino   = inode->i_ino;
    	name->dev   = inode->i_sb->s_dev;
    	name->mode  = inode->i_mode;
    	name->uid   = inode->i_uid;
    	name->gid   = inode->i_gid;
    	name->rdev  = inode->i_rdev;
    	security_inode_getsecid(inode, &name->osid);
    	audit_copy_fcaps(name, dentry);
    }
    
    /**
     * audit_log_name - produce AUDIT_PATH record from struct audit_names
     * @context: audit_context for the task
     * @n: audit_names structure with reportable details
     * @path: optional path to report instead of audit_names->name
     * @record_num: record number to report when handling a list of names
     * @call_panic: optional pointer to int that will be updated if secid fails
     */
    void audit_log_name(struct audit_context *context, struct audit_names *n,
    		    const struct path *path, int record_num, int *call_panic)
    {
    	struct audit_buffer *ab;
    	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
    	if (!ab)
    		return;
    
    	audit_log_format(ab, "item=%d", record_num);
    
    	if (path)
    		audit_log_d_path(ab, " name=", path);
    	else if (n->name) {
    		switch (n->name_len) {
    		case AUDIT_NAME_FULL:
    			/* log the full path */
    			audit_log_format(ab, " name=");
    			audit_log_untrustedstring(ab, n->name->name);
    			break;
    		case 0:
    			/* name was specified as a relative path and the
    			 * directory component is the cwd */
    			audit_log_d_path(ab, " name=", &context->pwd);
    			break;
    		default:
    			/* log the name's directory component */
    			audit_log_format(ab, " name=");
    			audit_log_n_untrustedstring(ab, n->name->name,
    						    n->name_len);
    		}
    	} else
    		audit_log_format(ab, " name=(null)");
    
    	if (n->ino != AUDIT_INO_UNSET)
    		audit_log_format(ab, " inode=%lu"
    				 " dev=%02x:%02x mode=%#ho"
    				 " ouid=%u ogid=%u rdev=%02x:%02x",
    				 n->ino,
    				 MAJOR(n->dev),
    				 MINOR(n->dev),
    				 n->mode,
    				 from_kuid(&init_user_ns, n->uid),
    				 from_kgid(&init_user_ns, n->gid),
    				 MAJOR(n->rdev),
    				 MINOR(n->rdev));
    	if (n->osid != 0) {
    		char *ctx = NULL;
    		u32 len;
    		if (security_secid_to_secctx(
    			n->osid, &ctx, &len)) {
    			audit_log_format(ab, " osid=%u", n->osid);
    			if (call_panic)
    				*call_panic = 2;
    		} else {
    			audit_log_format(ab, " obj=%s", ctx);
    			security_release_secctx(ctx, len);
    		}
    	}
    
    	/* log the audit_names record type */
    	switch(n->type) {
    	case AUDIT_TYPE_NORMAL:
    		audit_log_format(ab, " nametype=NORMAL");
    		break;
    	case AUDIT_TYPE_PARENT:
    		audit_log_format(ab, " nametype=PARENT");
    		break;
    	case AUDIT_TYPE_CHILD_DELETE:
    		audit_log_format(ab, " nametype=DELETE");
    		break;
    	case AUDIT_TYPE_CHILD_CREATE:
    		audit_log_format(ab, " nametype=CREATE");
    		break;
    	default:
    		audit_log_format(ab, " nametype=UNKNOWN");
    		break;
    	}
    
    	audit_log_fcaps(ab, n);
    	audit_log_end(ab);
    }
    
    int audit_log_task_context(struct audit_buffer *ab)
    {
    	char *ctx = NULL;
    	unsigned len;
    	int error;
    	u32 sid;
    
    	security_task_getsecid(current, &sid);
    	if (!sid)
    		return 0;
    
    	error = security_secid_to_secctx(sid, &ctx, &len);
    	if (error) {
    		if (error != -EINVAL)
    			goto error_path;
    		return 0;
    	}
    
    	audit_log_format(ab, " subj=%s", ctx);
    	security_release_secctx(ctx, len);
    	return 0;
    
    error_path:
    	audit_panic("error in audit_log_task_context");
    	return error;
    }
    EXPORT_SYMBOL(audit_log_task_context);
    
    void audit_log_d_path_exe(struct audit_buffer *ab,
    			  struct mm_struct *mm)
    {
    	struct file *exe_file;
    
    	if (!mm)
    		goto out_null;
    
    	exe_file = get_mm_exe_file(mm);
    	if (!exe_file)
    		goto out_null;
    
    	audit_log_d_path(ab, " exe=", &exe_file->f_path);
    	fput(exe_file);
    	return;
    out_null:
    	audit_log_format(ab, " exe=(null)");
    }
    
    struct tty_struct *audit_get_tty(void)
    {
    	struct tty_struct *tty = NULL;
    	unsigned long flags;
    
    	spin_lock_irqsave(&current->sighand->siglock, flags);
    	if (current->signal)
    		tty = tty_kref_get(current->signal->tty);
    	spin_unlock_irqrestore(&current->sighand->siglock, flags);
    	return tty;
    }
    
    void audit_put_tty(struct tty_struct *tty)
    {
    	tty_kref_put(tty);
    }
    
    void audit_log_task_info(struct audit_buffer *ab)
    {
    	const struct cred *cred;
    	char comm[sizeof(current->comm)];
    	struct tty_struct *tty;
    
    	if (!ab)
    		return;
    
    	cred = current_cred();
    	tty = audit_get_tty();
    	audit_log_format(ab,
    			 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
    			 " euid=%u suid=%u fsuid=%u"
    			 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
    			 task_ppid_nr(current),
    			 task_tgid_nr(current),
    			 from_kuid(&init_user_ns, audit_get_loginuid(current)),
    			 from_kuid(&init_user_ns, cred->uid),
    			 from_kgid(&init_user_ns, cred->gid),
    			 from_kuid(&init_user_ns, cred->euid),
    			 from_kuid(&init_user_ns, cred->suid),
    			 from_kuid(&init_user_ns, cred->fsuid),
    			 from_kgid(&init_user_ns, cred->egid),
    			 from_kgid(&init_user_ns, cred->sgid),
    			 from_kgid(&init_user_ns, cred->fsgid),
    			 tty ? tty_name(tty) : "(none)",
    			 audit_get_sessionid(current));
    	audit_put_tty(tty);
    	audit_log_format(ab, " comm=");
    	audit_log_untrustedstring(ab, get_task_comm(comm, current));
    	audit_log_d_path_exe(ab, current->mm);
    	audit_log_task_context(ab);
    }
    EXPORT_SYMBOL(audit_log_task_info);
    
    /**
     * audit_log_link_denied - report a link restriction denial
     * @operation: specific link operation
     */
    void audit_log_link_denied(const char *operation)
    {
    	struct audit_buffer *ab;
    
    	if (!audit_enabled || audit_dummy_context())
    		return;
    
    	/* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
    	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_LINK);
    	if (!ab)
    		return;
    	audit_log_format(ab, "op=%s", operation);
    	audit_log_task_info(ab);
    	audit_log_format(ab, " res=0");
    	audit_log_end(ab);
    }
    
    /**
     * audit_log_end - end one audit record
     * @ab: the audit_buffer
     *
     * We can not do a netlink send inside an irq context because it blocks (last
     * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a
     * queue and a tasklet is scheduled to remove them from the queue outside the
     * irq context.  May be called in any context.
     */
    void audit_log_end(struct audit_buffer *ab)
    {
    	struct sk_buff *skb;
    	struct nlmsghdr *nlh;
    
    	if (!ab)
    		return;
    
    	if (audit_rate_check()) {
    		skb = ab->skb;
    		ab->skb = NULL;
    
    		/* setup the netlink header, see the comments in
    		 * kauditd_send_multicast_skb() for length quirks */
    		nlh = nlmsg_hdr(skb);
    		nlh->nlmsg_len = skb->len - NLMSG_HDRLEN;
    
    		/* queue the netlink packet and poke the kauditd thread */
    		skb_queue_tail(&audit_queue, skb);
    		wake_up_interruptible(&kauditd_wait);
    	} else
    		audit_log_lost("rate limit exceeded");
    
    	audit_buffer_free(ab);
    }
    
    /**
     * audit_log - Log an audit record
     * @ctx: audit context
     * @gfp_mask: type of allocation
     * @type: audit message type
     * @fmt: format string to use
     * @...: variable parameters matching the format string
     *
     * This is a convenience function that calls audit_log_start,
     * audit_log_vformat, and audit_log_end.  It may be called
     * in any context.
     */
    void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
    	       const char *fmt, ...)
    {
    	struct audit_buffer *ab;
    	va_list args;
    
    	ab = audit_log_start(ctx, gfp_mask, type);
    	if (ab) {
    		va_start(args, fmt);
    		audit_log_vformat(ab, fmt, args);
    		va_end(args);
    		audit_log_end(ab);
    	}
    }
    
    EXPORT_SYMBOL(audit_log_start);
    EXPORT_SYMBOL(audit_log_end);
    EXPORT_SYMBOL(audit_log_format);
    EXPORT_SYMBOL(audit_log);