Skip to content
Snippets Groups Projects
Select Git revision
  • 51bb296b09a83ee1aae025778db38f9d2cc7bb1a
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

bio.c

Blame
  • ioctl.c 129.26 KiB
    /*
     * Copyright (C) 2007 Oracle.  All rights reserved.
     *
     * This program is free software; you can redistribute it and/or
     * modify it under the terms of the GNU General Public
     * License v2 as published by the Free Software Foundation.
     *
     * This program is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     * General Public License for more details.
     *
     * You should have received a copy of the GNU General Public
     * License along with this program; if not, write to the
     * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
     * Boston, MA 021110-1307, USA.
     */
    
    #include <linux/kernel.h>
    #include <linux/bio.h>
    #include <linux/buffer_head.h>
    #include <linux/file.h>
    #include <linux/fs.h>
    #include <linux/fsnotify.h>
    #include <linux/pagemap.h>
    #include <linux/highmem.h>
    #include <linux/time.h>
    #include <linux/init.h>
    #include <linux/string.h>
    #include <linux/backing-dev.h>
    #include <linux/mount.h>
    #include <linux/mpage.h>
    #include <linux/namei.h>
    #include <linux/swap.h>
    #include <linux/writeback.h>
    #include <linux/statfs.h>
    #include <linux/compat.h>
    #include <linux/bit_spinlock.h>
    #include <linux/security.h>
    #include <linux/xattr.h>
    #include <linux/vmalloc.h>
    #include <linux/slab.h>
    #include <linux/blkdev.h>
    #include <linux/uuid.h>
    #include <linux/btrfs.h>
    #include <linux/uaccess.h>
    #include "ctree.h"
    #include "disk-io.h"
    #include "transaction.h"
    #include "btrfs_inode.h"
    #include "print-tree.h"
    #include "volumes.h"
    #include "locking.h"
    #include "inode-map.h"
    #include "backref.h"
    #include "rcu-string.h"
    #include "send.h"
    #include "dev-replace.h"
    #include "props.h"
    #include "sysfs.h"
    #include "qgroup.h"
    
    #ifdef CONFIG_64BIT
    /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
     * structures are incorrect, as the timespec structure from userspace
     * is 4 bytes too small. We define these alternatives here to teach
     * the kernel about the 32-bit struct packing.
     */
    struct btrfs_ioctl_timespec_32 {
    	__u64 sec;
    	__u32 nsec;
    } __attribute__ ((__packed__));
    
    struct btrfs_ioctl_received_subvol_args_32 {
    	char	uuid[BTRFS_UUID_SIZE];	/* in */
    	__u64	stransid;		/* in */
    	__u64	rtransid;		/* out */
    	struct btrfs_ioctl_timespec_32 stime; /* in */
    	struct btrfs_ioctl_timespec_32 rtime; /* out */
    	__u64	flags;			/* in */
    	__u64	reserved[16];		/* in */
    } __attribute__ ((__packed__));
    
    #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
    				struct btrfs_ioctl_received_subvol_args_32)
    #endif
    
    
    static int btrfs_clone(struct inode *src, struct inode *inode,
    		       u64 off, u64 olen, u64 olen_aligned, u64 destoff);
    
    /* Mask out flags that are inappropriate for the given type of inode. */
    static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
    {
    	if (S_ISDIR(mode))
    		return flags;
    	else if (S_ISREG(mode))
    		return flags & ~FS_DIRSYNC_FL;
    	else
    		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
    }
    
    /*
     * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
     */
    static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
    {
    	unsigned int iflags = 0;
    
    	if (flags & BTRFS_INODE_SYNC)
    		iflags |= FS_SYNC_FL;
    	if (flags & BTRFS_INODE_IMMUTABLE)
    		iflags |= FS_IMMUTABLE_FL;
    	if (flags & BTRFS_INODE_APPEND)
    		iflags |= FS_APPEND_FL;
    	if (flags & BTRFS_INODE_NODUMP)
    		iflags |= FS_NODUMP_FL;
    	if (flags & BTRFS_INODE_NOATIME)
    		iflags |= FS_NOATIME_FL;
    	if (flags & BTRFS_INODE_DIRSYNC)
    		iflags |= FS_DIRSYNC_FL;
    	if (flags & BTRFS_INODE_NODATACOW)
    		iflags |= FS_NOCOW_FL;
    
    	if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS))
    		iflags |= FS_COMPR_FL;
    	else if (flags & BTRFS_INODE_NOCOMPRESS)
    		iflags |= FS_NOCOMP_FL;
    
    	return iflags;
    }
    
    /*
     * Update inode->i_flags based on the btrfs internal flags.
     */
    void btrfs_update_iflags(struct inode *inode)
    {
    	struct btrfs_inode *ip = BTRFS_I(inode);
    	unsigned int new_fl = 0;
    
    	if (ip->flags & BTRFS_INODE_SYNC)
    		new_fl |= S_SYNC;
    	if (ip->flags & BTRFS_INODE_IMMUTABLE)
    		new_fl |= S_IMMUTABLE;
    	if (ip->flags & BTRFS_INODE_APPEND)
    		new_fl |= S_APPEND;
    	if (ip->flags & BTRFS_INODE_NOATIME)
    		new_fl |= S_NOATIME;
    	if (ip->flags & BTRFS_INODE_DIRSYNC)
    		new_fl |= S_DIRSYNC;
    
    	set_mask_bits(&inode->i_flags,
    		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
    		      new_fl);
    }
    
    /*
     * Inherit flags from the parent inode.
     *
     * Currently only the compression flags and the cow flags are inherited.
     */
    void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
    {
    	unsigned int flags;
    
    	if (!dir)
    		return;
    
    	flags = BTRFS_I(dir)->flags;
    
    	if (flags & BTRFS_INODE_NOCOMPRESS) {
    		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
    		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
    	} else if (flags & BTRFS_INODE_COMPRESS) {
    		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
    		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
    	}
    
    	if (flags & BTRFS_INODE_NODATACOW) {
    		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
    		if (S_ISREG(inode->i_mode))
    			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
    	}
    
    	btrfs_update_iflags(inode);
    }
    
    static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
    {
    	struct btrfs_inode *ip = BTRFS_I(file_inode(file));
    	unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
    
    	if (copy_to_user(arg, &flags, sizeof(flags)))
    		return -EFAULT;
    	return 0;
    }
    
    static int check_flags(unsigned int flags)
    {
    	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
    		      FS_NOATIME_FL | FS_NODUMP_FL | \
    		      FS_SYNC_FL | FS_DIRSYNC_FL | \
    		      FS_NOCOMP_FL | FS_COMPR_FL |
    		      FS_NOCOW_FL))
    		return -EOPNOTSUPP;
    
    	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
    		return -EINVAL;
    
    	return 0;
    }
    
    static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
    {
    	struct inode *inode = file_inode(file);
    	struct btrfs_inode *ip = BTRFS_I(inode);
    	struct btrfs_root *root = ip->root;
    	struct btrfs_trans_handle *trans;
    	unsigned int flags, oldflags;
    	int ret;
    	u64 ip_oldflags;
    	unsigned int i_oldflags;
    	umode_t mode;
    
    	if (!inode_owner_or_capable(inode))
    		return -EPERM;
    
    	if (btrfs_root_readonly(root))
    		return -EROFS;
    
    	if (copy_from_user(&flags, arg, sizeof(flags)))
    		return -EFAULT;
    
    	ret = check_flags(flags);
    	if (ret)
    		return ret;
    
    	ret = mnt_want_write_file(file);
    	if (ret)
    		return ret;
    
    	mutex_lock(&inode->i_mutex);
    
    	ip_oldflags = ip->flags;
    	i_oldflags = inode->i_flags;
    	mode = inode->i_mode;
    
    	flags = btrfs_mask_flags(inode->i_mode, flags);
    	oldflags = btrfs_flags_to_ioctl(ip->flags);
    	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
    		if (!capable(CAP_LINUX_IMMUTABLE)) {
    			ret = -EPERM;
    			goto out_unlock;
    		}
    	}
    
    	if (flags & FS_SYNC_FL)
    		ip->flags |= BTRFS_INODE_SYNC;
    	else
    		ip->flags &= ~BTRFS_INODE_SYNC;
    	if (flags & FS_IMMUTABLE_FL)
    		ip->flags |= BTRFS_INODE_IMMUTABLE;
    	else
    		ip->flags &= ~BTRFS_INODE_IMMUTABLE;
    	if (flags & FS_APPEND_FL)
    		ip->flags |= BTRFS_INODE_APPEND;
    	else
    		ip->flags &= ~BTRFS_INODE_APPEND;
    	if (flags & FS_NODUMP_FL)
    		ip->flags |= BTRFS_INODE_NODUMP;
    	else
    		ip->flags &= ~BTRFS_INODE_NODUMP;
    	if (flags & FS_NOATIME_FL)
    		ip->flags |= BTRFS_INODE_NOATIME;
    	else
    		ip->flags &= ~BTRFS_INODE_NOATIME;
    	if (flags & FS_DIRSYNC_FL)
    		ip->flags |= BTRFS_INODE_DIRSYNC;
    	else
    		ip->flags &= ~BTRFS_INODE_DIRSYNC;
    	if (flags & FS_NOCOW_FL) {
    		if (S_ISREG(mode)) {
    			/*
    			 * It's safe to turn csums off here, no extents exist.
    			 * Otherwise we want the flag to reflect the real COW
    			 * status of the file and will not set it.
    			 */
    			if (inode->i_size == 0)
    				ip->flags |= BTRFS_INODE_NODATACOW
    					   | BTRFS_INODE_NODATASUM;
    		} else {
    			ip->flags |= BTRFS_INODE_NODATACOW;
    		}
    	} else {
    		/*
    		 * Revert back under same assuptions as above
    		 */
    		if (S_ISREG(mode)) {
    			if (inode->i_size == 0)
    				ip->flags &= ~(BTRFS_INODE_NODATACOW
    				             | BTRFS_INODE_NODATASUM);
    		} else {
    			ip->flags &= ~BTRFS_INODE_NODATACOW;
    		}
    	}
    
    	/*
    	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
    	 * flag may be changed automatically if compression code won't make
    	 * things smaller.
    	 */
    	if (flags & FS_NOCOMP_FL) {
    		ip->flags &= ~BTRFS_INODE_COMPRESS;
    		ip->flags |= BTRFS_INODE_NOCOMPRESS;
    
    		ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
    		if (ret && ret != -ENODATA)
    			goto out_drop;
    	} else if (flags & FS_COMPR_FL) {
    		const char *comp;
    
    		ip->flags |= BTRFS_INODE_COMPRESS;
    		ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
    
    		if (root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
    			comp = "lzo";
    		else
    			comp = "zlib";
    		ret = btrfs_set_prop(inode, "btrfs.compression",
    				     comp, strlen(comp), 0);
    		if (ret)
    			goto out_drop;
    
    	} else {
    		ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
    		if (ret && ret != -ENODATA)
    			goto out_drop;
    		ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
    	}
    
    	trans = btrfs_start_transaction(root, 1);
    	if (IS_ERR(trans)) {
    		ret = PTR_ERR(trans);
    		goto out_drop;
    	}
    
    	btrfs_update_iflags(inode);
    	inode_inc_iversion(inode);
    	inode->i_ctime = CURRENT_TIME;
    	ret = btrfs_update_inode(trans, root, inode);
    
    	btrfs_end_transaction(trans, root);
     out_drop:
    	if (ret) {
    		ip->flags = ip_oldflags;
    		inode->i_flags = i_oldflags;
    	}
    
     out_unlock:
    	mutex_unlock(&inode->i_mutex);
    	mnt_drop_write_file(file);
    	return ret;
    }
    
    static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
    {
    	struct inode *inode = file_inode(file);
    
    	return put_user(inode->i_generation, arg);
    }
    
    static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
    {
    	struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
    	struct btrfs_device *device;
    	struct request_queue *q;
    	struct fstrim_range range;
    	u64 minlen = ULLONG_MAX;
    	u64 num_devices = 0;
    	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
    	int ret;
    
    	if (!capable(CAP_SYS_ADMIN))
    		return -EPERM;
    
    	rcu_read_lock();
    	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
    				dev_list) {
    		if (!device->bdev)
    			continue;
    		q = bdev_get_queue(device->bdev);
    		if (blk_queue_discard(q)) {
    			num_devices++;
    			minlen = min((u64)q->limits.discard_granularity,
    				     minlen);
    		}
    	}
    	rcu_read_unlock();
    
    	if (!num_devices)
    		return -EOPNOTSUPP;
    	if (copy_from_user(&range, arg, sizeof(range)))
    		return -EFAULT;
    	if (range.start > total_bytes ||
    	    range.len < fs_info->sb->s_blocksize)
    		return -EINVAL;
    
    	range.len = min(range.len, total_bytes - range.start);
    	range.minlen = max(range.minlen, minlen);
    	ret = btrfs_trim_fs(fs_info->tree_root, &range);
    	if (ret < 0)
    		return ret;
    
    	if (copy_to_user(arg, &range, sizeof(range)))
    		return -EFAULT;
    
    	return 0;
    }
    
    int btrfs_is_empty_uuid(u8 *uuid)
    {
    	int i;
    
    	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
    		if (uuid[i])
    			return 0;
    	}
    	return 1;
    }
    
    static noinline int create_subvol(struct inode *dir,
    				  struct dentry *dentry,
    				  char *name, int namelen,
    				  u64 *async_transid,
    				  struct btrfs_qgroup_inherit *inherit)
    {
    	struct btrfs_trans_handle *trans;
    	struct btrfs_key key;
    	struct btrfs_root_item root_item;
    	struct btrfs_inode_item *inode_item;
    	struct extent_buffer *leaf;
    	struct btrfs_root *root = BTRFS_I(dir)->root;
    	struct btrfs_root *new_root;
    	struct btrfs_block_rsv block_rsv;
    	struct timespec cur_time = CURRENT_TIME;
    	struct inode *inode;
    	int ret;
    	int err;
    	u64 objectid;
    	u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
    	u64 index = 0;
    	u64 qgroup_reserved;
    	uuid_le new_uuid;
    
    	ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
    	if (ret)
    		return ret;
    
    	/*
    	 * Don't create subvolume whose level is not zero. Or qgroup will be
    	 * screwed up since it assume subvolme qgroup's level to be 0.
    	 */
    	if (btrfs_qgroup_level(objectid))
    		return -ENOSPC;
    
    	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
    	/*
    	 * The same as the snapshot creation, please see the comment
    	 * of create_snapshot().
    	 */
    	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
    					       8, &qgroup_reserved, false);
    	if (ret)
    		return ret;
    
    	trans = btrfs_start_transaction(root, 0);
    	if (IS_ERR(trans)) {
    		ret = PTR_ERR(trans);
    		btrfs_subvolume_release_metadata(root, &block_rsv,
    						 qgroup_reserved);
    		return ret;
    	}
    	trans->block_rsv = &block_rsv;
    	trans->bytes_reserved = block_rsv.size;
    
    	ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid, inherit);
    	if (ret)
    		goto fail;
    
    	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
    	if (IS_ERR(leaf)) {
    		ret = PTR_ERR(leaf);
    		goto fail;
    	}
    
    	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
    	btrfs_set_header_bytenr(leaf, leaf->start);
    	btrfs_set_header_generation(leaf, trans->transid);
    	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
    	btrfs_set_header_owner(leaf, objectid);
    
    	write_extent_buffer(leaf, root->fs_info->fsid, btrfs_header_fsid(),
    			    BTRFS_FSID_SIZE);
    	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
    			    btrfs_header_chunk_tree_uuid(leaf),
    			    BTRFS_UUID_SIZE);
    	btrfs_mark_buffer_dirty(leaf);
    
    	memset(&root_item, 0, sizeof(root_item));
    
    	inode_item = &root_item.inode;
    	btrfs_set_stack_inode_generation(inode_item, 1);
    	btrfs_set_stack_inode_size(inode_item, 3);
    	btrfs_set_stack_inode_nlink(inode_item, 1);
    	btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
    	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
    
    	btrfs_set_root_flags(&root_item, 0);
    	btrfs_set_root_limit(&root_item, 0);
    	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
    
    	btrfs_set_root_bytenr(&root_item, leaf->start);
    	btrfs_set_root_generation(&root_item, trans->transid);
    	btrfs_set_root_level(&root_item, 0);
    	btrfs_set_root_refs(&root_item, 1);
    	btrfs_set_root_used(&root_item, leaf->len);
    	btrfs_set_root_last_snapshot(&root_item, 0);
    
    	btrfs_set_root_generation_v2(&root_item,
    			btrfs_root_generation(&root_item));
    	uuid_le_gen(&new_uuid);
    	memcpy(root_item.uuid, new_uuid.b, BTRFS_UUID_SIZE);
    	btrfs_set_stack_timespec_sec(&root_item.otime, cur_time.tv_sec);
    	btrfs_set_stack_timespec_nsec(&root_item.otime, cur_time.tv_nsec);
    	root_item.ctime = root_item.otime;
    	btrfs_set_root_ctransid(&root_item, trans->transid);
    	btrfs_set_root_otransid(&root_item, trans->transid);
    
    	btrfs_tree_unlock(leaf);
    	free_extent_buffer(leaf);
    	leaf = NULL;
    
    	btrfs_set_root_dirid(&root_item, new_dirid);
    
    	key.objectid = objectid;
    	key.offset = 0;
    	key.type = BTRFS_ROOT_ITEM_KEY;
    	ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
    				&root_item);
    	if (ret)
    		goto fail;
    
    	key.offset = (u64)-1;
    	new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
    	if (IS_ERR(new_root)) {
    		ret = PTR_ERR(new_root);
    		btrfs_abort_transaction(trans, root, ret);
    		goto fail;
    	}
    
    	btrfs_record_root_in_trans(trans, new_root);
    
    	ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
    	if (ret) {
    		/* We potentially lose an unused inode item here */
    		btrfs_abort_transaction(trans, root, ret);
    		goto fail;
    	}
    
    	/*
    	 * insert the directory item
    	 */
    	ret = btrfs_set_inode_index(dir, &index);
    	if (ret) {
    		btrfs_abort_transaction(trans, root, ret);
    		goto fail;
    	}
    
    	ret = btrfs_insert_dir_item(trans, root,
    				    name, namelen, dir, &key,
    				    BTRFS_FT_DIR, index);
    	if (ret) {
    		btrfs_abort_transaction(trans, root, ret);
    		goto fail;
    	}
    
    	btrfs_i_size_write(dir, dir->i_size + namelen * 2);
    	ret = btrfs_update_inode(trans, root, dir);
    	BUG_ON(ret);
    
    	ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
    				 objectid, root->root_key.objectid,
    				 btrfs_ino(dir), index, name, namelen);
    	BUG_ON(ret);
    
    	ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
    				  root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
    				  objectid);
    	if (ret)
    		btrfs_abort_transaction(trans, root, ret);
    
    fail:
    	trans->block_rsv = NULL;
    	trans->bytes_reserved = 0;
    	btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
    
    	if (async_transid) {
    		*async_transid = trans->transid;
    		err = btrfs_commit_transaction_async(trans, root, 1);
    		if (err)
    			err = btrfs_commit_transaction(trans, root);
    	} else {
    		err = btrfs_commit_transaction(trans, root);
    	}
    	if (err && !ret)
    		ret = err;
    
    	if (!ret) {
    		inode = btrfs_lookup_dentry(dir, dentry);
    		if (IS_ERR(inode))
    			return PTR_ERR(inode);
    		d_instantiate(dentry, inode);
    	}
    	return ret;
    }
    
    static void btrfs_wait_for_no_snapshoting_writes(struct btrfs_root *root)
    {
    	s64 writers;
    	DEFINE_WAIT(wait);
    
    	do {
    		prepare_to_wait(&root->subv_writers->wait, &wait,
    				TASK_UNINTERRUPTIBLE);
    
    		writers = percpu_counter_sum(&root->subv_writers->counter);
    		if (writers)
    			schedule();
    
    		finish_wait(&root->subv_writers->wait, &wait);
    	} while (writers);
    }
    
    static int create_snapshot(struct btrfs_root *root, struct inode *dir,
    			   struct dentry *dentry, char *name, int namelen,
    			   u64 *async_transid, bool readonly,
    			   struct btrfs_qgroup_inherit *inherit)
    {
    	struct inode *inode;
    	struct btrfs_pending_snapshot *pending_snapshot;
    	struct btrfs_trans_handle *trans;
    	int ret;
    
    	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
    		return -EINVAL;
    
    	atomic_inc(&root->will_be_snapshoted);
    	smp_mb__after_atomic();
    	btrfs_wait_for_no_snapshoting_writes(root);
    
    	ret = btrfs_start_delalloc_inodes(root, 0);
    	if (ret)
    		goto out;
    
    	btrfs_wait_ordered_extents(root, -1);
    
    	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
    	if (!pending_snapshot) {
    		ret = -ENOMEM;
    		goto out;
    	}
    
    	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
    			     BTRFS_BLOCK_RSV_TEMP);
    	/*
    	 * 1 - parent dir inode
    	 * 2 - dir entries
    	 * 1 - root item
    	 * 2 - root ref/backref
    	 * 1 - root of snapshot
    	 * 1 - UUID item
    	 */
    	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
    					&pending_snapshot->block_rsv, 8,
    					&pending_snapshot->qgroup_reserved,
    					false);
    	if (ret)
    		goto free;
    
    	pending_snapshot->dentry = dentry;
    	pending_snapshot->root = root;
    	pending_snapshot->readonly = readonly;
    	pending_snapshot->dir = dir;
    	pending_snapshot->inherit = inherit;
    
    	trans = btrfs_start_transaction(root, 0);
    	if (IS_ERR(trans)) {
    		ret = PTR_ERR(trans);
    		goto fail;
    	}
    
    	spin_lock(&root->fs_info->trans_lock);
    	list_add(&pending_snapshot->list,
    		 &trans->transaction->pending_snapshots);
    	spin_unlock(&root->fs_info->trans_lock);
    	if (async_transid) {
    		*async_transid = trans->transid;
    		ret = btrfs_commit_transaction_async(trans,
    				     root->fs_info->extent_root, 1);
    		if (ret)
    			ret = btrfs_commit_transaction(trans, root);
    	} else {
    		ret = btrfs_commit_transaction(trans,
    					       root->fs_info->extent_root);
    	}
    	if (ret)
    		goto fail;
    
    	ret = pending_snapshot->error;
    	if (ret)
    		goto fail;
    
    	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
    	if (ret)
    		goto fail;
    
    	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
    	if (IS_ERR(inode)) {
    		ret = PTR_ERR(inode);
    		goto fail;
    	}
    
    	d_instantiate(dentry, inode);
    	ret = 0;
    fail:
    	btrfs_subvolume_release_metadata(BTRFS_I(dir)->root,
    					 &pending_snapshot->block_rsv,
    					 pending_snapshot->qgroup_reserved);
    free:
    	kfree(pending_snapshot);
    out:
    	if (atomic_dec_and_test(&root->will_be_snapshoted))
    		wake_up_atomic_t(&root->will_be_snapshoted);
    	return ret;
    }
    
    /*  copy of may_delete in fs/namei.c()
     *	Check whether we can remove a link victim from directory dir, check
     *  whether the type of victim is right.
     *  1. We can't do it if dir is read-only (done in permission())
     *  2. We should have write and exec permissions on dir
     *  3. We can't remove anything from append-only dir
     *  4. We can't do anything with immutable dir (done in permission())
     *  5. If the sticky bit on dir is set we should either
     *	a. be owner of dir, or
     *	b. be owner of victim, or
     *	c. have CAP_FOWNER capability
     *  6. If the victim is append-only or immutable we can't do antyhing with
     *     links pointing to it.
     *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
     *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
     *  9. We can't remove a root or mountpoint.
     * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
     *     nfs_async_unlink().
     */
    
    static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
    {
    	int error;
    
    	if (d_really_is_negative(victim))
    		return -ENOENT;
    
    	BUG_ON(d_inode(victim->d_parent) != dir);
    	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
    
    	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
    	if (error)
    		return error;
    	if (IS_APPEND(dir))
    		return -EPERM;
    	if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
    	    IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
    		return -EPERM;
    	if (isdir) {
    		if (!d_is_dir(victim))
    			return -ENOTDIR;
    		if (IS_ROOT(victim))
    			return -EBUSY;
    	} else if (d_is_dir(victim))
    		return -EISDIR;
    	if (IS_DEADDIR(dir))
    		return -ENOENT;
    	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
    		return -EBUSY;
    	return 0;
    }
    
    /* copy of may_create in fs/namei.c() */
    static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
    {
    	if (d_really_is_positive(child))
    		return -EEXIST;
    	if (IS_DEADDIR(dir))
    		return -ENOENT;
    	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
    }
    
    /*
     * Create a new subvolume below @parent.  This is largely modeled after
     * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
     * inside this filesystem so it's quite a bit simpler.
     */
    static noinline int btrfs_mksubvol(struct path *parent,
    				   char *name, int namelen,
    				   struct btrfs_root *snap_src,
    				   u64 *async_transid, bool readonly,
    				   struct btrfs_qgroup_inherit *inherit)
    {
    	struct inode *dir  = d_inode(parent->dentry);
    	struct dentry *dentry;
    	int error;
    
    	error = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
    	if (error == -EINTR)
    		return error;
    
    	dentry = lookup_one_len(name, parent->dentry, namelen);
    	error = PTR_ERR(dentry);
    	if (IS_ERR(dentry))
    		goto out_unlock;
    
    	error = -EEXIST;
    	if (d_really_is_positive(dentry))
    		goto out_dput;
    
    	error = btrfs_may_create(dir, dentry);
    	if (error)
    		goto out_dput;
    
    	/*
    	 * even if this name doesn't exist, we may get hash collisions.
    	 * check for them now when we can safely fail
    	 */
    	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
    					       dir->i_ino, name,
    					       namelen);
    	if (error)
    		goto out_dput;
    
    	down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
    
    	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
    		goto out_up_read;
    
    	if (snap_src) {
    		error = create_snapshot(snap_src, dir, dentry, name, namelen,
    					async_transid, readonly, inherit);
    	} else {
    		error = create_subvol(dir, dentry, name, namelen,
    				      async_transid, inherit);
    	}
    	if (!error)
    		fsnotify_mkdir(dir, dentry);
    out_up_read:
    	up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
    out_dput:
    	dput(dentry);
    out_unlock:
    	mutex_unlock(&dir->i_mutex);
    	return error;
    }
    
    /*
     * When we're defragging a range, we don't want to kick it off again
     * if it is really just waiting for delalloc to send it down.
     * If we find a nice big extent or delalloc range for the bytes in the
     * file you want to defrag, we return 0 to let you know to skip this
     * part of the file
     */
    static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
    {
    	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
    	struct extent_map *em = NULL;
    	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
    	u64 end;
    
    	read_lock(&em_tree->lock);
    	em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
    	read_unlock(&em_tree->lock);
    
    	if (em) {
    		end = extent_map_end(em);
    		free_extent_map(em);
    		if (end - offset > thresh)
    			return 0;
    	}
    	/* if we already have a nice delalloc here, just stop */
    	thresh /= 2;
    	end = count_range_bits(io_tree, &offset, offset + thresh,
    			       thresh, EXTENT_DELALLOC, 1);
    	if (end >= thresh)
    		return 0;
    	return 1;
    }
    
    /*
     * helper function to walk through a file and find extents
     * newer than a specific transid, and smaller than thresh.
     *
     * This is used by the defragging code to find new and small
     * extents
     */
    static int find_new_extents(struct btrfs_root *root,
    			    struct inode *inode, u64 newer_than,
    			    u64 *off, u32 thresh)
    {
    	struct btrfs_path *path;
    	struct btrfs_key min_key;
    	struct extent_buffer *leaf;
    	struct btrfs_file_extent_item *extent;
    	int type;
    	int ret;
    	u64 ino = btrfs_ino(inode);
    
    	path = btrfs_alloc_path();
    	if (!path)
    		return -ENOMEM;
    
    	min_key.objectid = ino;
    	min_key.type = BTRFS_EXTENT_DATA_KEY;
    	min_key.offset = *off;
    
    	while (1) {
    		ret = btrfs_search_forward(root, &min_key, path, newer_than);
    		if (ret != 0)
    			goto none;
    process_slot:
    		if (min_key.objectid != ino)
    			goto none;
    		if (min_key.type != BTRFS_EXTENT_DATA_KEY)
    			goto none;
    
    		leaf = path->nodes[0];
    		extent = btrfs_item_ptr(leaf, path->slots[0],
    					struct btrfs_file_extent_item);
    
    		type = btrfs_file_extent_type(leaf, extent);
    		if (type == BTRFS_FILE_EXTENT_REG &&
    		    btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
    		    check_defrag_in_cache(inode, min_key.offset, thresh)) {
    			*off = min_key.offset;
    			btrfs_free_path(path);
    			return 0;
    		}
    
    		path->slots[0]++;
    		if (path->slots[0] < btrfs_header_nritems(leaf)) {
    			btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
    			goto process_slot;
    		}
    
    		if (min_key.offset == (u64)-1)
    			goto none;
    
    		min_key.offset++;
    		btrfs_release_path(path);
    	}
    none:
    	btrfs_free_path(path);
    	return -ENOENT;
    }
    
    static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
    {
    	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
    	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
    	struct extent_map *em;
    	u64 len = PAGE_CACHE_SIZE;
    
    	/*
    	 * hopefully we have this extent in the tree already, try without
    	 * the full extent lock
    	 */
    	read_lock(&em_tree->lock);
    	em = lookup_extent_mapping(em_tree, start, len);
    	read_unlock(&em_tree->lock);
    
    	if (!em) {
    		struct extent_state *cached = NULL;
    		u64 end = start + len - 1;
    
    		/* get the big lock and read metadata off disk */
    		lock_extent_bits(io_tree, start, end, 0, &cached);
    		em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
    		unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS);
    
    		if (IS_ERR(em))
    			return NULL;
    	}
    
    	return em;
    }
    
    static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
    {
    	struct extent_map *next;
    	bool ret = true;
    
    	/* this is the last extent */
    	if (em->start + em->len >= i_size_read(inode))
    		return false;
    
    	next = defrag_lookup_extent(inode, em->start + em->len);
    	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
    		ret = false;
    	else if ((em->block_start + em->block_len == next->block_start) &&
    		 (em->block_len > 128 * 1024 && next->block_len > 128 * 1024))
    		ret = false;
    
    	free_extent_map(next);
    	return ret;
    }
    
    static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
    			       u64 *last_len, u64 *skip, u64 *defrag_end,
    			       int compress)
    {
    	struct extent_map *em;
    	int ret = 1;
    	bool next_mergeable = true;
    
    	/*
    	 * make sure that once we start defragging an extent, we keep on
    	 * defragging it
    	 */
    	if (start < *defrag_end)
    		return 1;
    
    	*skip = 0;
    
    	em = defrag_lookup_extent(inode, start);
    	if (!em)
    		return 0;
    
    	/* this will cover holes, and inline extents */
    	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
    		ret = 0;
    		goto out;
    	}
    
    	next_mergeable = defrag_check_next_extent(inode, em);
    	/*
    	 * we hit a real extent, if it is big or the next extent is not a
    	 * real extent, don't bother defragging it
    	 */
    	if (!compress && (*last_len == 0 || *last_len >= thresh) &&
    	    (em->len >= thresh || !next_mergeable))
    		ret = 0;
    out:
    	/*
    	 * last_len ends up being a counter of how many bytes we've defragged.
    	 * every time we choose not to defrag an extent, we reset *last_len
    	 * so that the next tiny extent will force a defrag.
    	 *
    	 * The end result of this is that tiny extents before a single big
    	 * extent will force at least part of that big extent to be defragged.
    	 */
    	if (ret) {
    		*defrag_end = extent_map_end(em);
    	} else {
    		*last_len = 0;
    		*skip = extent_map_end(em);
    		*defrag_end = 0;
    	}
    
    	free_extent_map(em);
    	return ret;
    }
    
    /*
     * it doesn't do much good to defrag one or two pages
     * at a time.  This pulls in a nice chunk of pages
     * to COW and defrag.
     *
     * It also makes sure the delalloc code has enough
     * dirty data to avoid making new small extents as part
     * of the defrag
     *
     * It's a good idea to start RA on this range
     * before calling this.
     */
    static int cluster_pages_for_defrag(struct inode *inode,
    				    struct page **pages,
    				    unsigned long start_index,
    				    unsigned long num_pages)
    {
    	unsigned long file_end;
    	u64 isize = i_size_read(inode);
    	u64 page_start;
    	u64 page_end;
    	u64 page_cnt;
    	int ret;
    	int i;
    	int i_done;
    	struct btrfs_ordered_extent *ordered;
    	struct extent_state *cached_state = NULL;
    	struct extent_io_tree *tree;
    	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
    
    	file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
    	if (!isize || start_index > file_end)
    		return 0;
    
    	page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
    
    	ret = btrfs_delalloc_reserve_space(inode,
    					   page_cnt << PAGE_CACHE_SHIFT);
    	if (ret)
    		return ret;
    	i_done = 0;
    	tree = &BTRFS_I(inode)->io_tree;
    
    	/* step one, lock all the pages */
    	for (i = 0; i < page_cnt; i++) {
    		struct page *page;
    again:
    		page = find_or_create_page(inode->i_mapping,
    					   start_index + i, mask);
    		if (!page)
    			break;
    
    		page_start = page_offset(page);
    		page_end = page_start + PAGE_CACHE_SIZE - 1;
    		while (1) {
    			lock_extent_bits(tree, page_start, page_end,
    					 0, &cached_state);
    			ordered = btrfs_lookup_ordered_extent(inode,
    							      page_start);
    			unlock_extent_cached(tree, page_start, page_end,
    					     &cached_state, GFP_NOFS);
    			if (!ordered)
    				break;
    
    			unlock_page(page);
    			btrfs_start_ordered_extent(inode, ordered, 1);
    			btrfs_put_ordered_extent(ordered);
    			lock_page(page);
    			/*
    			 * we unlocked the page above, so we need check if
    			 * it was released or not.
    			 */
    			if (page->mapping != inode->i_mapping) {
    				unlock_page(page);
    				page_cache_release(page);
    				goto again;
    			}
    		}
    
    		if (!PageUptodate(page)) {
    			btrfs_readpage(NULL, page);
    			lock_page(page);
    			if (!PageUptodate(page)) {
    				unlock_page(page);
    				page_cache_release(page);
    				ret = -EIO;
    				break;
    			}
    		}
    
    		if (page->mapping != inode->i_mapping) {
    			unlock_page(page);
    			page_cache_release(page);
    			goto again;
    		}
    
    		pages[i] = page;
    		i_done++;
    	}
    	if (!i_done || ret)
    		goto out;
    
    	if (!(inode->i_sb->s_flags & MS_ACTIVE))
    		goto out;
    
    	/*
    	 * so now we have a nice long stream of locked
    	 * and up to date pages, lets wait on them
    	 */
    	for (i = 0; i < i_done; i++)
    		wait_on_page_writeback(pages[i]);
    
    	page_start = page_offset(pages[0]);
    	page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE;
    
    	lock_extent_bits(&BTRFS_I(inode)->io_tree,
    			 page_start, page_end - 1, 0, &cached_state);
    	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
    			  page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
    			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
    			  &cached_state, GFP_NOFS);
    
    	if (i_done != page_cnt) {
    		spin_lock(&BTRFS_I(inode)->lock);
    		BTRFS_I(inode)->outstanding_extents++;
    		spin_unlock(&BTRFS_I(inode)->lock);
    		btrfs_delalloc_release_space(inode,
    				     (page_cnt - i_done) << PAGE_CACHE_SHIFT);
    	}
    
    
    	set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
    			  &cached_state, GFP_NOFS);
    
    	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
    			     page_start, page_end - 1, &cached_state,
    			     GFP_NOFS);
    
    	for (i = 0; i < i_done; i++) {
    		clear_page_dirty_for_io(pages[i]);
    		ClearPageChecked(pages[i]);
    		set_page_extent_mapped(pages[i]);
    		set_page_dirty(pages[i]);
    		unlock_page(pages[i]);
    		page_cache_release(pages[i]);
    	}
    	return i_done;
    out:
    	for (i = 0; i < i_done; i++) {
    		unlock_page(pages[i]);
    		page_cache_release(pages[i]);
    	}
    	btrfs_delalloc_release_space(inode, page_cnt << PAGE_CACHE_SHIFT);
    	return ret;
    
    }
    
    int btrfs_defrag_file(struct inode *inode, struct file *file,
    		      struct btrfs_ioctl_defrag_range_args *range,
    		      u64 newer_than, unsigned long max_to_defrag)
    {
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    	struct file_ra_state *ra = NULL;
    	unsigned long last_index;
    	u64 isize = i_size_read(inode);
    	u64 last_len = 0;
    	u64 skip = 0;
    	u64 defrag_end = 0;
    	u64 newer_off = range->start;
    	unsigned long i;
    	unsigned long ra_index = 0;
    	int ret;
    	int defrag_count = 0;
    	int compress_type = BTRFS_COMPRESS_ZLIB;
    	u32 extent_thresh = range->extent_thresh;
    	unsigned long max_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT;
    	unsigned long cluster = max_cluster;
    	u64 new_align = ~((u64)128 * 1024 - 1);
    	struct page **pages = NULL;
    
    	if (isize == 0)
    		return 0;
    
    	if (range->start >= isize)
    		return -EINVAL;
    
    	if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
    		if (range->compress_type > BTRFS_COMPRESS_TYPES)
    			return -EINVAL;
    		if (range->compress_type)
    			compress_type = range->compress_type;
    	}
    
    	if (extent_thresh == 0)
    		extent_thresh = 256 * 1024;
    
    	/*
    	 * if we were not given a file, allocate a readahead
    	 * context
    	 */
    	if (!file) {
    		ra = kzalloc(sizeof(*ra), GFP_NOFS);
    		if (!ra)
    			return -ENOMEM;
    		file_ra_state_init(ra, inode->i_mapping);
    	} else {
    		ra = &file->f_ra;
    	}
    
    	pages = kmalloc_array(max_cluster, sizeof(struct page *),
    			GFP_NOFS);
    	if (!pages) {
    		ret = -ENOMEM;
    		goto out_ra;
    	}
    
    	/* find the last page to defrag */
    	if (range->start + range->len > range->start) {
    		last_index = min_t(u64, isize - 1,
    			 range->start + range->len - 1) >> PAGE_CACHE_SHIFT;
    	} else {
    		last_index = (isize - 1) >> PAGE_CACHE_SHIFT;
    	}
    
    	if (newer_than) {
    		ret = find_new_extents(root, inode, newer_than,
    				       &newer_off, 64 * 1024);
    		if (!ret) {
    			range->start = newer_off;
    			/*
    			 * we always align our defrag to help keep
    			 * the extents in the file evenly spaced
    			 */
    			i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
    		} else
    			goto out_ra;
    	} else {
    		i = range->start >> PAGE_CACHE_SHIFT;
    	}
    	if (!max_to_defrag)
    		max_to_defrag = last_index - i + 1;
    
    	/*
    	 * make writeback starts from i, so the defrag range can be
    	 * written sequentially.
    	 */
    	if (i < inode->i_mapping->writeback_index)
    		inode->i_mapping->writeback_index = i;
    
    	while (i <= last_index && defrag_count < max_to_defrag &&
    	       (i < DIV_ROUND_UP(i_size_read(inode), PAGE_CACHE_SIZE))) {
    		/*
    		 * make sure we stop running if someone unmounts
    		 * the FS
    		 */
    		if (!(inode->i_sb->s_flags & MS_ACTIVE))
    			break;
    
    		if (btrfs_defrag_cancelled(root->fs_info)) {
    			printk(KERN_DEBUG "BTRFS: defrag_file cancelled\n");
    			ret = -EAGAIN;
    			break;
    		}
    
    		if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT,
    					 extent_thresh, &last_len, &skip,
    					 &defrag_end, range->flags &
    					 BTRFS_DEFRAG_RANGE_COMPRESS)) {
    			unsigned long next;
    			/*
    			 * the should_defrag function tells us how much to skip
    			 * bump our counter by the suggested amount
    			 */
    			next = DIV_ROUND_UP(skip, PAGE_CACHE_SIZE);
    			i = max(i + 1, next);
    			continue;
    		}
    
    		if (!newer_than) {
    			cluster = (PAGE_CACHE_ALIGN(defrag_end) >>
    				   PAGE_CACHE_SHIFT) - i;
    			cluster = min(cluster, max_cluster);
    		} else {
    			cluster = max_cluster;
    		}
    
    		if (i + cluster > ra_index) {
    			ra_index = max(i, ra_index);
    			btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
    				       cluster);
    			ra_index += cluster;
    		}
    
    		mutex_lock(&inode->i_mutex);
    		if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
    			BTRFS_I(inode)->force_compress = compress_type;
    		ret = cluster_pages_for_defrag(inode, pages, i, cluster);
    		if (ret < 0) {
    			mutex_unlock(&inode->i_mutex);
    			goto out_ra;
    		}
    
    		defrag_count += ret;
    		balance_dirty_pages_ratelimited(inode->i_mapping);
    		mutex_unlock(&inode->i_mutex);
    
    		if (newer_than) {
    			if (newer_off == (u64)-1)
    				break;
    
    			if (ret > 0)
    				i += ret;
    
    			newer_off = max(newer_off + 1,
    					(u64)i << PAGE_CACHE_SHIFT);
    
    			ret = find_new_extents(root, inode,
    					       newer_than, &newer_off,
    					       64 * 1024);
    			if (!ret) {
    				range->start = newer_off;
    				i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
    			} else {
    				break;
    			}
    		} else {
    			if (ret > 0) {
    				i += ret;
    				last_len += ret << PAGE_CACHE_SHIFT;
    			} else {
    				i++;
    				last_len = 0;
    			}
    		}
    	}
    
    	if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
    		filemap_flush(inode->i_mapping);
    		if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
    			     &BTRFS_I(inode)->runtime_flags))
    			filemap_flush(inode->i_mapping);
    	}
    
    	if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
    		/* the filemap_flush will queue IO into the worker threads, but
    		 * we have to make sure the IO is actually started and that
    		 * ordered extents get created before we return
    		 */
    		atomic_inc(&root->fs_info->async_submit_draining);
    		while (atomic_read(&root->fs_info->nr_async_submits) ||
    		      atomic_read(&root->fs_info->async_delalloc_pages)) {
    			wait_event(root->fs_info->async_submit_wait,
    			   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
    			    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
    		}
    		atomic_dec(&root->fs_info->async_submit_draining);
    	}
    
    	if (range->compress_type == BTRFS_COMPRESS_LZO) {
    		btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO);
    	}
    
    	ret = defrag_count;
    
    out_ra:
    	if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
    		mutex_lock(&inode->i_mutex);
    		BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
    		mutex_unlock(&inode->i_mutex);
    	}
    	if (!file)
    		kfree(ra);
    	kfree(pages);
    	return ret;
    }
    
    static noinline int btrfs_ioctl_resize(struct file *file,
    					void __user *arg)
    {
    	u64 new_size;
    	u64 old_size;
    	u64 devid = 1;
    	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
    	struct btrfs_ioctl_vol_args *vol_args;
    	struct btrfs_trans_handle *trans;
    	struct btrfs_device *device = NULL;
    	char *sizestr;
    	char *retptr;
    	char *devstr = NULL;
    	int ret = 0;
    	int mod = 0;
    
    	if (!capable(CAP_SYS_ADMIN))
    		return -EPERM;
    
    	ret = mnt_want_write_file(file);
    	if (ret)
    		return ret;
    
    	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
    			1)) {
    		mnt_drop_write_file(file);
    		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
    	}
    
    	mutex_lock(&root->fs_info->volume_mutex);
    	vol_args = memdup_user(arg, sizeof(*vol_args));
    	if (IS_ERR(vol_args)) {
    		ret = PTR_ERR(vol_args);
    		goto out;
    	}
    
    	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
    
    	sizestr = vol_args->name;
    	devstr = strchr(sizestr, ':');
    	if (devstr) {
    		sizestr = devstr + 1;
    		*devstr = '\0';
    		devstr = vol_args->name;
    		ret = kstrtoull(devstr, 10, &devid);
    		if (ret)
    			goto out_free;
    		if (!devid) {
    			ret = -EINVAL;
    			goto out_free;
    		}
    		btrfs_info(root->fs_info, "resizing devid %llu", devid);
    	}
    
    	device = btrfs_find_device(root->fs_info, devid, NULL, NULL);
    	if (!device) {
    		btrfs_info(root->fs_info, "resizer unable to find device %llu",
    		       devid);
    		ret = -ENODEV;
    		goto out_free;
    	}
    
    	if (!device->writeable) {
    		btrfs_info(root->fs_info,
    			   "resizer unable to apply on readonly device %llu",
    		       devid);
    		ret = -EPERM;
    		goto out_free;
    	}
    
    	if (!strcmp(sizestr, "max"))
    		new_size = device->bdev->bd_inode->i_size;
    	else {
    		if (sizestr[0] == '-') {
    			mod = -1;
    			sizestr++;
    		} else if (sizestr[0] == '+') {
    			mod = 1;
    			sizestr++;
    		}
    		new_size = memparse(sizestr, &retptr);
    		if (*retptr != '\0' || new_size == 0) {
    			ret = -EINVAL;
    			goto out_free;
    		}
    	}
    
    	if (device->is_tgtdev_for_dev_replace) {
    		ret = -EPERM;
    		goto out_free;
    	}
    
    	old_size = btrfs_device_get_total_bytes(device);
    
    	if (mod < 0) {
    		if (new_size > old_size) {
    			ret = -EINVAL;
    			goto out_free;
    		}
    		new_size = old_size - new_size;
    	} else if (mod > 0) {
    		if (new_size > ULLONG_MAX - old_size) {
    			ret = -ERANGE;
    			goto out_free;
    		}
    		new_size = old_size + new_size;
    	}
    
    	if (new_size < 256 * 1024 * 1024) {
    		ret = -EINVAL;
    		goto out_free;
    	}
    	if (new_size > device->bdev->bd_inode->i_size) {
    		ret = -EFBIG;
    		goto out_free;
    	}
    
    	new_size = div_u64(new_size, root->sectorsize);
    	new_size *= root->sectorsize;
    
    	printk_in_rcu(KERN_INFO "BTRFS: new size for %s is %llu\n",
    		      rcu_str_deref(device->name), new_size);
    
    	if (new_size > old_size) {
    		trans = btrfs_start_transaction(root, 0);
    		if (IS_ERR(trans)) {
    			ret = PTR_ERR(trans);
    			goto out_free;
    		}
    		ret = btrfs_grow_device(trans, device, new_size);
    		btrfs_commit_transaction(trans, root);
    	} else if (new_size < old_size) {
    		ret = btrfs_shrink_device(device, new_size);
    	} /* equal, nothing need to do */
    
    out_free:
    	kfree(vol_args);
    out:
    	mutex_unlock(&root->fs_info->volume_mutex);
    	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
    	mnt_drop_write_file(file);
    	return ret;
    }
    
    static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
    				char *name, unsigned long fd, int subvol,
    				u64 *transid, bool readonly,
    				struct btrfs_qgroup_inherit *inherit)
    {
    	int namelen;
    	int ret = 0;
    
    	ret = mnt_want_write_file(file);
    	if (ret)
    		goto out;
    
    	namelen = strlen(name);
    	if (strchr(name, '/')) {
    		ret = -EINVAL;
    		goto out_drop_write;
    	}
    
    	if (name[0] == '.' &&
    	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
    		ret = -EEXIST;
    		goto out_drop_write;
    	}
    
    	if (subvol) {
    		ret = btrfs_mksubvol(&file->f_path, name, namelen,
    				     NULL, transid, readonly, inherit);
    	} else {
    		struct fd src = fdget(fd);
    		struct inode *src_inode;
    		if (!src.file) {
    			ret = -EINVAL;
    			goto out_drop_write;
    		}
    
    		src_inode = file_inode(src.file);
    		if (src_inode->i_sb != file_inode(file)->i_sb) {
    			btrfs_info(BTRFS_I(src_inode)->root->fs_info,
    				   "Snapshot src from another FS");
    			ret = -EXDEV;
    		} else if (!inode_owner_or_capable(src_inode)) {
    			/*
    			 * Subvolume creation is not restricted, but snapshots
    			 * are limited to own subvolumes only
    			 */
    			ret = -EPERM;
    		} else {
    			ret = btrfs_mksubvol(&file->f_path, name, namelen,
    					     BTRFS_I(src_inode)->root,
    					     transid, readonly, inherit);
    		}
    		fdput(src);
    	}
    out_drop_write:
    	mnt_drop_write_file(file);
    out:
    	return ret;
    }
    
    static noinline int btrfs_ioctl_snap_create(struct file *file,
    					    void __user *arg, int subvol)
    {
    	struct btrfs_ioctl_vol_args *vol_args;
    	int ret;
    
    	vol_args = memdup_user(arg, sizeof(*vol_args));
    	if (IS_ERR(vol_args))
    		return PTR_ERR(vol_args);
    	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
    
    	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
    					      vol_args->fd, subvol,
    					      NULL, false, NULL);
    
    	kfree(vol_args);
    	return ret;
    }
    
    static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
    					       void __user *arg, int subvol)
    {
    	struct btrfs_ioctl_vol_args_v2 *vol_args;
    	int ret;
    	u64 transid = 0;
    	u64 *ptr = NULL;
    	bool readonly = false;
    	struct btrfs_qgroup_inherit *inherit = NULL;
    
    	vol_args = memdup_user(arg, sizeof(*vol_args));
    	if (IS_ERR(vol_args))
    		return PTR_ERR(vol_args);
    	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
    
    	if (vol_args->flags &
    	    ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
    	      BTRFS_SUBVOL_QGROUP_INHERIT)) {
    		ret = -EOPNOTSUPP;
    		goto free_args;
    	}
    
    	if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
    		ptr = &transid;
    	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
    		readonly = true;
    	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
    		if (vol_args->size > PAGE_CACHE_SIZE) {
    			ret = -EINVAL;
    			goto free_args;
    		}
    		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
    		if (IS_ERR(inherit)) {
    			ret = PTR_ERR(inherit);
    			goto free_args;
    		}
    	}
    
    	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
    					      vol_args->fd, subvol, ptr,
    					      readonly, inherit);
    	if (ret)
    		goto free_inherit;
    
    	if (ptr && copy_to_user(arg +
    				offsetof(struct btrfs_ioctl_vol_args_v2,
    					transid),
    				ptr, sizeof(*ptr)))
    		ret = -EFAULT;
    
    free_inherit:
    	kfree(inherit);
    free_args:
    	kfree(vol_args);
    	return ret;
    }
    
    static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
    						void __user *arg)
    {
    	struct inode *inode = file_inode(file);
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    	int ret = 0;
    	u64 flags = 0;
    
    	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
    		return -EINVAL;
    
    	down_read(&root->fs_info->subvol_sem);
    	if (btrfs_root_readonly(root))
    		flags |= BTRFS_SUBVOL_RDONLY;
    	up_read(&root->fs_info->subvol_sem);
    
    	if (copy_to_user(arg, &flags, sizeof(flags)))
    		ret = -EFAULT;
    
    	return ret;
    }
    
    static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
    					      void __user *arg)
    {
    	struct inode *inode = file_inode(file);
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    	struct btrfs_trans_handle *trans;
    	u64 root_flags;
    	u64 flags;
    	int ret = 0;
    
    	if (!inode_owner_or_capable(inode))
    		return -EPERM;
    
    	ret = mnt_want_write_file(file);
    	if (ret)
    		goto out;
    
    	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
    		ret = -EINVAL;
    		goto out_drop_write;
    	}
    
    	if (copy_from_user(&flags, arg, sizeof(flags))) {
    		ret = -EFAULT;
    		goto out_drop_write;
    	}
    
    	if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
    		ret = -EINVAL;
    		goto out_drop_write;
    	}
    
    	if (flags & ~BTRFS_SUBVOL_RDONLY) {
    		ret = -EOPNOTSUPP;
    		goto out_drop_write;
    	}
    
    	down_write(&root->fs_info->subvol_sem);
    
    	/* nothing to do */
    	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
    		goto out_drop_sem;
    
    	root_flags = btrfs_root_flags(&root->root_item);
    	if (flags & BTRFS_SUBVOL_RDONLY) {
    		btrfs_set_root_flags(&root->root_item,
    				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
    	} else {
    		/*
    		 * Block RO -> RW transition if this subvolume is involved in
    		 * send
    		 */
    		spin_lock(&root->root_item_lock);
    		if (root->send_in_progress == 0) {
    			btrfs_set_root_flags(&root->root_item,
    				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
    			spin_unlock(&root->root_item_lock);
    		} else {
    			spin_unlock(&root->root_item_lock);
    			btrfs_warn(root->fs_info,
    			"Attempt to set subvolume %llu read-write during send",
    					root->root_key.objectid);
    			ret = -EPERM;
    			goto out_drop_sem;
    		}
    	}
    
    	trans = btrfs_start_transaction(root, 1);
    	if (IS_ERR(trans)) {
    		ret = PTR_ERR(trans);
    		goto out_reset;
    	}
    
    	ret = btrfs_update_root(trans, root->fs_info->tree_root,
    				&root->root_key, &root->root_item);
    
    	btrfs_commit_transaction(trans, root);
    out_reset:
    	if (ret)
    		btrfs_set_root_flags(&root->root_item, root_flags);
    out_drop_sem:
    	up_write(&root->fs_info->subvol_sem);
    out_drop_write:
    	mnt_drop_write_file(file);
    out:
    	return ret;
    }
    
    /*
     * helper to check if the subvolume references other subvolumes
     */
    static noinline int may_destroy_subvol(struct btrfs_root *root)
    {
    	struct btrfs_path *path;
    	struct btrfs_dir_item *di;
    	struct btrfs_key key;
    	u64 dir_id;
    	int ret;
    
    	path = btrfs_alloc_path();
    	if (!path)
    		return -ENOMEM;
    
    	/* Make sure this root isn't set as the default subvol */
    	dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
    	di = btrfs_lookup_dir_item(NULL, root->fs_info->tree_root, path,
    				   dir_id, "default", 7, 0);
    	if (di && !IS_ERR(di)) {
    		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
    		if (key.objectid == root->root_key.objectid) {
    			ret = -EPERM;
    			btrfs_err(root->fs_info, "deleting default subvolume "
    				  "%llu is not allowed", key.objectid);
    			goto out;
    		}
    		btrfs_release_path(path);
    	}
    
    	key.objectid = root->root_key.objectid;
    	key.type = BTRFS_ROOT_REF_KEY;
    	key.offset = (u64)-1;
    
    	ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
    				&key, path, 0, 0);
    	if (ret < 0)
    		goto out;
    	BUG_ON(ret == 0);
    
    	ret = 0;
    	if (path->slots[0] > 0) {
    		path->slots[0]--;
    		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
    		if (key.objectid == root->root_key.objectid &&
    		    key.type == BTRFS_ROOT_REF_KEY)
    			ret = -ENOTEMPTY;
    	}
    out:
    	btrfs_free_path(path);
    	return ret;
    }
    
    static noinline int key_in_sk(struct btrfs_key *key,
    			      struct btrfs_ioctl_search_key *sk)
    {
    	struct btrfs_key test;
    	int ret;
    
    	test.objectid = sk->min_objectid;
    	test.type = sk->min_type;
    	test.offset = sk->min_offset;
    
    	ret = btrfs_comp_cpu_keys(key, &test);
    	if (ret < 0)
    		return 0;
    
    	test.objectid = sk->max_objectid;
    	test.type = sk->max_type;
    	test.offset = sk->max_offset;
    
    	ret = btrfs_comp_cpu_keys(key, &test);
    	if (ret > 0)
    		return 0;
    	return 1;
    }
    
    static noinline int copy_to_sk(struct btrfs_root *root,
    			       struct btrfs_path *path,
    			       struct btrfs_key *key,
    			       struct btrfs_ioctl_search_key *sk,
    			       size_t *buf_size,
    			       char __user *ubuf,
    			       unsigned long *sk_offset,
    			       int *num_found)
    {
    	u64 found_transid;
    	struct extent_buffer *leaf;
    	struct btrfs_ioctl_search_header sh;
    	unsigned long item_off;
    	unsigned long item_len;
    	int nritems;
    	int i;
    	int slot;
    	int ret = 0;
    
    	leaf = path->nodes[0];
    	slot = path->slots[0];
    	nritems = btrfs_header_nritems(leaf);
    
    	if (btrfs_header_generation(leaf) > sk->max_transid) {
    		i = nritems;
    		goto advance_key;
    	}
    	found_transid = btrfs_header_generation(leaf);
    
    	for (i = slot; i < nritems; i++) {
    		item_off = btrfs_item_ptr_offset(leaf, i);
    		item_len = btrfs_item_size_nr(leaf, i);
    
    		btrfs_item_key_to_cpu(leaf, key, i);
    		if (!key_in_sk(key, sk))
    			continue;
    
    		if (sizeof(sh) + item_len > *buf_size) {
    			if (*num_found) {
    				ret = 1;
    				goto out;
    			}
    
    			/*
    			 * return one empty item back for v1, which does not
    			 * handle -EOVERFLOW
    			 */
    
    			*buf_size = sizeof(sh) + item_len;
    			item_len = 0;
    			ret = -EOVERFLOW;
    		}
    
    		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
    			ret = 1;
    			goto out;
    		}
    
    		sh.objectid = key->objectid;
    		sh.offset = key->offset;
    		sh.type = key->type;
    		sh.len = item_len;
    		sh.transid = found_transid;
    
    		/* copy search result header */
    		if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) {
    			ret = -EFAULT;
    			goto out;
    		}
    
    		*sk_offset += sizeof(sh);
    
    		if (item_len) {
    			char __user *up = ubuf + *sk_offset;
    			/* copy the item */
    			if (read_extent_buffer_to_user(leaf, up,
    						       item_off, item_len)) {
    				ret = -EFAULT;
    				goto out;
    			}
    
    			*sk_offset += item_len;
    		}
    		(*num_found)++;
    
    		if (ret) /* -EOVERFLOW from above */
    			goto out;
    
    		if (*num_found >= sk->nr_items) {
    			ret = 1;
    			goto out;
    		}
    	}
    advance_key:
    	ret = 0;
    	if (key->offset < (u64)-1 && key->offset < sk->max_offset)
    		key->offset++;
    	else if (key->type < (u8)-1 && key->type < sk->max_type) {
    		key->offset = 0;
    		key->type++;
    	} else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) {
    		key->offset = 0;
    		key->type = 0;
    		key->objectid++;
    	} else
    		ret = 1;
    out:
    	/*
    	 *  0: all items from this leaf copied, continue with next
    	 *  1: * more items can be copied, but unused buffer is too small
    	 *     * all items were found
    	 *     Either way, it will stops the loop which iterates to the next
    	 *     leaf
    	 *  -EOVERFLOW: item was to large for buffer
    	 *  -EFAULT: could not copy extent buffer back to userspace
    	 */
    	return ret;
    }
    
    static noinline int search_ioctl(struct inode *inode,
    				 struct btrfs_ioctl_search_key *sk,
    				 size_t *buf_size,
    				 char __user *ubuf)
    {
    	struct btrfs_root *root;
    	struct btrfs_key key;
    	struct btrfs_path *path;
    	struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
    	int ret;
    	int num_found = 0;
    	unsigned long sk_offset = 0;
    
    	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
    		*buf_size = sizeof(struct btrfs_ioctl_search_header);
    		return -EOVERFLOW;
    	}
    
    	path = btrfs_alloc_path();
    	if (!path)
    		return -ENOMEM;
    
    	if (sk->tree_id == 0) {
    		/* search the root of the inode that was passed */
    		root = BTRFS_I(inode)->root;
    	} else {
    		key.objectid = sk->tree_id;
    		key.type = BTRFS_ROOT_ITEM_KEY;
    		key.offset = (u64)-1;
    		root = btrfs_read_fs_root_no_name(info, &key);
    		if (IS_ERR(root)) {
    			printk(KERN_ERR "BTRFS: could not find root %llu\n",
    			       sk->tree_id);
    			btrfs_free_path(path);
    			return -ENOENT;
    		}
    	}
    
    	key.objectid = sk->min_objectid;
    	key.type = sk->min_type;
    	key.offset = sk->min_offset;
    
    	while (1) {
    		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
    		if (ret != 0) {
    			if (ret > 0)
    				ret = 0;
    			goto err;
    		}
    		ret = copy_to_sk(root, path, &key, sk, buf_size, ubuf,
    				 &sk_offset, &num_found);
    		btrfs_release_path(path);
    		if (ret)
    			break;
    
    	}
    	if (ret > 0)
    		ret = 0;
    err:
    	sk->nr_items = num_found;
    	btrfs_free_path(path);
    	return ret;
    }
    
    static noinline int btrfs_ioctl_tree_search(struct file *file,
    					   void __user *argp)
    {
    	struct btrfs_ioctl_search_args __user *uargs;
    	struct btrfs_ioctl_search_key sk;
    	struct inode *inode;
    	int ret;
    	size_t buf_size;
    
    	if (!capable(CAP_SYS_ADMIN))
    		return -EPERM;
    
    	uargs = (struct btrfs_ioctl_search_args __user *)argp;
    
    	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
    		return -EFAULT;
    
    	buf_size = sizeof(uargs->buf);
    
    	inode = file_inode(file);
    	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
    
    	/*
    	 * In the origin implementation an overflow is handled by returning a
    	 * search header with a len of zero, so reset ret.
    	 */
    	if (ret == -EOVERFLOW)
    		ret = 0;
    
    	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
    		ret = -EFAULT;
    	return ret;
    }
    
    static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
    					       void __user *argp)
    {
    	struct btrfs_ioctl_search_args_v2 __user *uarg;
    	struct btrfs_ioctl_search_args_v2 args;
    	struct inode *inode;
    	int ret;
    	size_t buf_size;
    	const size_t buf_limit = 16 * 1024 * 1024;
    
    	if (!capable(CAP_SYS_ADMIN))
    		return -EPERM;
    
    	/* copy search header and buffer size */
    	uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
    	if (copy_from_user(&args, uarg, sizeof(args)))
    		return -EFAULT;
    
    	buf_size = args.buf_size;
    
    	if (buf_size < sizeof(struct btrfs_ioctl_search_header))
    		return -EOVERFLOW;
    
    	/* limit result size to 16MB */
    	if (buf_size > buf_limit)
    		buf_size = buf_limit;
    
    	inode = file_inode(file);
    	ret = search_ioctl(inode, &args.key, &buf_size,
    			   (char *)(&uarg->buf[0]));
    	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
    		ret = -EFAULT;
    	else if (ret == -EOVERFLOW &&
    		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
    		ret = -EFAULT;
    
    	return ret;
    }
    
    /*
     * Search INODE_REFs to identify path name of 'dirid' directory
     * in a 'tree_id' tree. and sets path name to 'name'.
     */
    static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
    				u64 tree_id, u64 dirid, char *name)
    {
    	struct btrfs_root *root;
    	struct btrfs_key key;
    	char *ptr;
    	int ret = -1;
    	int slot;
    	int len;
    	int total_len = 0;
    	struct btrfs_inode_ref *iref;
    	struct extent_buffer *l;
    	struct btrfs_path *path;
    
    	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
    		name[0]='\0';
    		return 0;
    	}
    
    	path = btrfs_alloc_path();
    	if (!path)
    		return -ENOMEM;
    
    	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
    
    	key.objectid = tree_id;
    	key.type = BTRFS_ROOT_ITEM_KEY;
    	key.offset = (u64)-1;
    	root = btrfs_read_fs_root_no_name(info, &key);
    	if (IS_ERR(root)) {
    		printk(KERN_ERR "BTRFS: could not find root %llu\n", tree_id);
    		ret = -ENOENT;
    		goto out;
    	}
    
    	key.objectid = dirid;
    	key.type = BTRFS_INODE_REF_KEY;
    	key.offset = (u64)-1;
    
    	while (1) {
    		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
    		if (ret < 0)
    			goto out;
    		else if (ret > 0) {
    			ret = btrfs_previous_item(root, path, dirid,
    						  BTRFS_INODE_REF_KEY);
    			if (ret < 0)
    				goto out;
    			else if (ret > 0) {
    				ret = -ENOENT;
    				goto out;
    			}
    		}
    
    		l = path->nodes[0];
    		slot = path->slots[0];
    		btrfs_item_key_to_cpu(l, &key, slot);
    
    		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
    		len = btrfs_inode_ref_name_len(l, iref);
    		ptr -= len + 1;
    		total_len += len + 1;
    		if (ptr < name) {
    			ret = -ENAMETOOLONG;
    			goto out;
    		}
    
    		*(ptr + len) = '/';
    		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
    
    		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
    			break;
    
    		btrfs_release_path(path);
    		key.objectid = key.offset;
    		key.offset = (u64)-1;
    		dirid = key.objectid;
    	}
    	memmove(name, ptr, total_len);
    	name[total_len] = '\0';
    	ret = 0;
    out:
    	btrfs_free_path(path);
    	return ret;
    }
    
    static noinline int btrfs_ioctl_ino_lookup(struct file *file,
    					   void __user *argp)
    {
    	 struct btrfs_ioctl_ino_lookup_args *args;
    	 struct inode *inode;
    	int ret = 0;
    
    	args = memdup_user(argp, sizeof(*args));
    	if (IS_ERR(args))
    		return PTR_ERR(args);
    
    	inode = file_inode(file);
    
    	/*
    	 * Unprivileged query to obtain the containing subvolume root id. The
    	 * path is reset so it's consistent with btrfs_search_path_in_tree.
    	 */
    	if (args->treeid == 0)
    		args->treeid = BTRFS_I(inode)->root->root_key.objectid;
    
    	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
    		args->name[0] = 0;
    		goto out;
    	}
    
    	if (!capable(CAP_SYS_ADMIN)) {
    		ret = -EPERM;
    		goto out;
    	}
    
    	ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
    					args->treeid, args->objectid,
    					args->name);
    
    out:
    	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
    		ret = -EFAULT;
    
    	kfree(args);
    	return ret;
    }
    
    static noinline int btrfs_ioctl_snap_destroy(struct file *file,
    					     void __user *arg)
    {
    	struct dentry *parent = file->f_path.dentry;
    	struct dentry *dentry;
    	struct inode *dir = d_inode(parent);
    	struct inode *inode;
    	struct btrfs_root *root = BTRFS_I(dir)->root;
    	struct btrfs_root *dest = NULL;
    	struct btrfs_ioctl_vol_args *vol_args;
    	struct btrfs_trans_handle *trans;
    	struct btrfs_block_rsv block_rsv;
    	u64 root_flags;
    	u64 qgroup_reserved;
    	int namelen;
    	int ret;
    	int err = 0;
    
    	vol_args = memdup_user(arg, sizeof(*vol_args));
    	if (IS_ERR(vol_args))
    		return PTR_ERR(vol_args);
    
    	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
    	namelen = strlen(vol_args->name);
    	if (strchr(vol_args->name, '/') ||
    	    strncmp(vol_args->name, "..", namelen) == 0) {
    		err = -EINVAL;
    		goto out;
    	}
    
    	err = mnt_want_write_file(file);
    	if (err)
    		goto out;
    
    
    	err = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
    	if (err == -EINTR)
    		goto out_drop_write;
    	dentry = lookup_one_len(vol_args->name, parent, namelen);
    	if (IS_ERR(dentry)) {
    		err = PTR_ERR(dentry);
    		goto out_unlock_dir;
    	}
    
    	if (d_really_is_negative(dentry)) {
    		err = -ENOENT;
    		goto out_dput;
    	}
    
    	inode = d_inode(dentry);
    	dest = BTRFS_I(inode)->root;
    	if (!capable(CAP_SYS_ADMIN)) {
    		/*
    		 * Regular user.  Only allow this with a special mount
    		 * option, when the user has write+exec access to the
    		 * subvol root, and when rmdir(2) would have been
    		 * allowed.
    		 *
    		 * Note that this is _not_ check that the subvol is
    		 * empty or doesn't contain data that we wouldn't
    		 * otherwise be able to delete.
    		 *
    		 * Users who want to delete empty subvols should try
    		 * rmdir(2).
    		 */
    		err = -EPERM;
    		if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
    			goto out_dput;
    
    		/*
    		 * Do not allow deletion if the parent dir is the same
    		 * as the dir to be deleted.  That means the ioctl
    		 * must be called on the dentry referencing the root
    		 * of the subvol, not a random directory contained
    		 * within it.
    		 */
    		err = -EINVAL;
    		if (root == dest)
    			goto out_dput;
    
    		err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
    		if (err)
    			goto out_dput;
    	}
    
    	/* check if subvolume may be deleted by a user */
    	err = btrfs_may_delete(dir, dentry, 1);
    	if (err)
    		goto out_dput;
    
    	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
    		err = -EINVAL;
    		goto out_dput;
    	}
    
    	mutex_lock(&inode->i_mutex);
    
    	/*
    	 * Don't allow to delete a subvolume with send in progress. This is
    	 * inside the i_mutex so the error handling that has to drop the bit
    	 * again is not run concurrently.
    	 */
    	spin_lock(&dest->root_item_lock);
    	root_flags = btrfs_root_flags(&dest->root_item);
    	if (dest->send_in_progress == 0) {
    		btrfs_set_root_flags(&dest->root_item,
    				root_flags | BTRFS_ROOT_SUBVOL_DEAD);
    		spin_unlock(&dest->root_item_lock);
    	} else {
    		spin_unlock(&dest->root_item_lock);
    		btrfs_warn(root->fs_info,
    			"Attempt to delete subvolume %llu during send",
    			dest->root_key.objectid);
    		err = -EPERM;
    		goto out_unlock_inode;
    	}
    
    	down_write(&root->fs_info->subvol_sem);
    
    	err = may_destroy_subvol(dest);
    	if (err)
    		goto out_up_write;
    
    	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
    	/*
    	 * One for dir inode, two for dir entries, two for root
    	 * ref/backref.
    	 */
    	err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
    					       5, &qgroup_reserved, true);
    	if (err)
    		goto out_up_write;
    
    	trans = btrfs_start_transaction(root, 0);
    	if (IS_ERR(trans)) {
    		err = PTR_ERR(trans);
    		goto out_release;
    	}
    	trans->block_rsv = &block_rsv;
    	trans->bytes_reserved = block_rsv.size;
    
    	ret = btrfs_unlink_subvol(trans, root, dir,
    				dest->root_key.objectid,
    				dentry->d_name.name,
    				dentry->d_name.len);
    	if (ret) {
    		err = ret;
    		btrfs_abort_transaction(trans, root, ret);
    		goto out_end_trans;
    	}
    
    	btrfs_record_root_in_trans(trans, dest);
    
    	memset(&dest->root_item.drop_progress, 0,
    		sizeof(dest->root_item.drop_progress));
    	dest->root_item.drop_level = 0;
    	btrfs_set_root_refs(&dest->root_item, 0);
    
    	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
    		ret = btrfs_insert_orphan_item(trans,
    					root->fs_info->tree_root,
    					dest->root_key.objectid);
    		if (ret) {
    			btrfs_abort_transaction(trans, root, ret);
    			err = ret;
    			goto out_end_trans;
    		}
    	}
    
    	ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
    				  dest->root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
    				  dest->root_key.objectid);
    	if (ret && ret != -ENOENT) {
    		btrfs_abort_transaction(trans, root, ret);
    		err = ret;
    		goto out_end_trans;
    	}
    	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
    		ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
    					  dest->root_item.received_uuid,
    					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
    					  dest->root_key.objectid);
    		if (ret && ret != -ENOENT) {
    			btrfs_abort_transaction(trans, root, ret);
    			err = ret;
    			goto out_end_trans;
    		}
    	}
    
    out_end_trans:
    	trans->block_rsv = NULL;
    	trans->bytes_reserved = 0;
    	ret = btrfs_end_transaction(trans, root);
    	if (ret && !err)
    		err = ret;
    	inode->i_flags |= S_DEAD;
    out_release:
    	btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
    out_up_write:
    	up_write(&root->fs_info->subvol_sem);
    	if (err) {
    		spin_lock(&dest->root_item_lock);
    		root_flags = btrfs_root_flags(&dest->root_item);
    		btrfs_set_root_flags(&dest->root_item,
    				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
    		spin_unlock(&dest->root_item_lock);
    	}
    out_unlock_inode:
    	mutex_unlock(&inode->i_mutex);
    	if (!err) {
    		d_invalidate(dentry);
    		btrfs_invalidate_inodes(dest);
    		d_delete(dentry);
    		ASSERT(dest->send_in_progress == 0);
    
    		/* the last ref */
    		if (dest->ino_cache_inode) {
    			iput(dest->ino_cache_inode);
    			dest->ino_cache_inode = NULL;
    		}
    	}
    out_dput:
    	dput(dentry);
    out_unlock_dir:
    	mutex_unlock(&dir->i_mutex);
    out_drop_write:
    	mnt_drop_write_file(file);
    out:
    	kfree(vol_args);
    	return err;
    }
    
    static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
    {
    	struct inode *inode = file_inode(file);
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    	struct btrfs_ioctl_defrag_range_args *range;
    	int ret;
    
    	ret = mnt_want_write_file(file);
    	if (ret)
    		return ret;
    
    	if (btrfs_root_readonly(root)) {
    		ret = -EROFS;
    		goto out;
    	}
    
    	switch (inode->i_mode & S_IFMT) {
    	case S_IFDIR:
    		if (!capable(CAP_SYS_ADMIN)) {
    			ret = -EPERM;
    			goto out;
    		}
    		ret = btrfs_defrag_root(root);
    		if (ret)
    			goto out;
    		ret = btrfs_defrag_root(root->fs_info->extent_root);
    		break;
    	case S_IFREG:
    		if (!(file->f_mode & FMODE_WRITE)) {
    			ret = -EINVAL;
    			goto out;
    		}
    
    		range = kzalloc(sizeof(*range), GFP_KERNEL);
    		if (!range) {
    			ret = -ENOMEM;
    			goto out;
    		}
    
    		if (argp) {
    			if (copy_from_user(range, argp,
    					   sizeof(*range))) {
    				ret = -EFAULT;
    				kfree(range);
    				goto out;
    			}
    			/* compression requires us to start the IO */
    			if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
    				range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
    				range->extent_thresh = (u32)-1;
    			}
    		} else {
    			/* the rest are all set to zero by kzalloc */
    			range->len = (u64)-1;
    		}
    		ret = btrfs_defrag_file(file_inode(file), file,
    					range, 0, 0);
    		if (ret > 0)
    			ret = 0;
    		kfree(range);
    		break;
    	default:
    		ret = -EINVAL;
    	}
    out:
    	mnt_drop_write_file(file);
    	return ret;
    }
    
    static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
    {
    	struct btrfs_ioctl_vol_args *vol_args;
    	int ret;
    
    	if (!capable(CAP_SYS_ADMIN))
    		return -EPERM;
    
    	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
    			1)) {
    		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
    	}
    
    	mutex_lock(&root->fs_info->volume_mutex);
    	vol_args = memdup_user(arg, sizeof(*vol_args));
    	if (IS_ERR(vol_args)) {
    		ret = PTR_ERR(vol_args);
    		goto out;
    	}
    
    	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
    	ret = btrfs_init_new_device(root, vol_args->name);
    
    	if (!ret)
    		btrfs_info(root->fs_info, "disk added %s",vol_args->name);
    
    	kfree(vol_args);
    out:
    	mutex_unlock(&root->fs_info->volume_mutex);
    	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
    	return ret;
    }
    
    static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
    {
    	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
    	struct btrfs_ioctl_vol_args *vol_args;
    	int ret;
    
    	if (!capable(CAP_SYS_ADMIN))
    		return -EPERM;
    
    	ret = mnt_want_write_file(file);
    	if (ret)
    		return ret;
    
    	vol_args = memdup_user(arg, sizeof(*vol_args));
    	if (IS_ERR(vol_args)) {
    		ret = PTR_ERR(vol_args);
    		goto err_drop;
    	}
    
    	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
    
    	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
    			1)) {
    		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
    		goto out;
    	}
    
    	mutex_lock(&root->fs_info->volume_mutex);
    	ret = btrfs_rm_device(root, vol_args->name);
    	mutex_unlock(&root->fs_info->volume_mutex);
    	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
    
    	if (!ret)
    		btrfs_info(root->fs_info, "disk deleted %s",vol_args->name);
    
    out:
    	kfree(vol_args);
    err_drop:
    	mnt_drop_write_file(file);
    	return ret;
    }
    
    static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
    {
    	struct btrfs_ioctl_fs_info_args *fi_args;
    	struct btrfs_device *device;
    	struct btrfs_device *next;
    	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
    	int ret = 0;
    
    	fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
    	if (!fi_args)
    		return -ENOMEM;
    
    	mutex_lock(&fs_devices->device_list_mutex);
    	fi_args->num_devices = fs_devices->num_devices;
    	memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
    
    	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
    		if (device->devid > fi_args->max_id)
    			fi_args->max_id = device->devid;
    	}
    	mutex_unlock(&fs_devices->device_list_mutex);
    
    	fi_args->nodesize = root->fs_info->super_copy->nodesize;
    	fi_args->sectorsize = root->fs_info->super_copy->sectorsize;
    	fi_args->clone_alignment = root->fs_info->super_copy->sectorsize;
    
    	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
    		ret = -EFAULT;
    
    	kfree(fi_args);
    	return ret;
    }
    
    static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
    {
    	struct btrfs_ioctl_dev_info_args *di_args;
    	struct btrfs_device *dev;
    	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
    	int ret = 0;
    	char *s_uuid = NULL;
    
    	di_args = memdup_user(arg, sizeof(*di_args));
    	if (IS_ERR(di_args))
    		return PTR_ERR(di_args);
    
    	if (!btrfs_is_empty_uuid(di_args->uuid))
    		s_uuid = di_args->uuid;
    
    	mutex_lock(&fs_devices->device_list_mutex);
    	dev = btrfs_find_device(root->fs_info, di_args->devid, s_uuid, NULL);
    
    	if (!dev) {
    		ret = -ENODEV;
    		goto out;
    	}
    
    	di_args->devid = dev->devid;
    	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
    	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
    	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
    	if (dev->name) {
    		struct rcu_string *name;
    
    		rcu_read_lock();
    		name = rcu_dereference(dev->name);
    		strncpy(di_args->path, name->str, sizeof(di_args->path));
    		rcu_read_unlock();
    		di_args->path[sizeof(di_args->path) - 1] = 0;
    	} else {
    		di_args->path[0] = '\0';
    	}
    
    out:
    	mutex_unlock(&fs_devices->device_list_mutex);
    	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
    		ret = -EFAULT;
    
    	kfree(di_args);
    	return ret;
    }
    
    static struct page *extent_same_get_page(struct inode *inode, u64 off)
    {
    	struct page *page;
    	pgoff_t index;
    	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
    
    	index = off >> PAGE_CACHE_SHIFT;
    
    	page = grab_cache_page(inode->i_mapping, index);
    	if (!page)
    		return NULL;
    
    	if (!PageUptodate(page)) {
    		if (extent_read_full_page_nolock(tree, page, btrfs_get_extent,
    						 0))
    			return NULL;
    		lock_page(page);
    		if (!PageUptodate(page)) {
    			unlock_page(page);
    			page_cache_release(page);
    			return NULL;
    		}
    	}
    	unlock_page(page);
    
    	return page;
    }
    
    static inline void lock_extent_range(struct inode *inode, u64 off, u64 len)
    {
    	/* do any pending delalloc/csum calc on src, one way or
    	   another, and lock file content */
    	while (1) {
    		struct btrfs_ordered_extent *ordered;
    		lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
    		ordered = btrfs_lookup_first_ordered_extent(inode,
    							    off + len - 1);
    		if ((!ordered ||
    		     ordered->file_offset + ordered->len <= off ||
    		     ordered->file_offset >= off + len) &&
    		    !test_range_bit(&BTRFS_I(inode)->io_tree, off,
    				    off + len - 1, EXTENT_DELALLOC, 0, NULL)) {
    			if (ordered)
    				btrfs_put_ordered_extent(ordered);
    			break;
    		}
    		unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
    		if (ordered)
    			btrfs_put_ordered_extent(ordered);
    		btrfs_wait_ordered_range(inode, off, len);
    	}
    }
    
    static void btrfs_double_unlock(struct inode *inode1, u64 loff1,
    				struct inode *inode2, u64 loff2, u64 len)
    {
    	unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
    	unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
    
    	mutex_unlock(&inode1->i_mutex);
    	mutex_unlock(&inode2->i_mutex);
    }
    
    static void btrfs_double_lock(struct inode *inode1, u64 loff1,
    			      struct inode *inode2, u64 loff2, u64 len)
    {
    	if (inode1 < inode2) {
    		swap(inode1, inode2);
    		swap(loff1, loff2);
    	}
    
    	mutex_lock_nested(&inode1->i_mutex, I_MUTEX_PARENT);
    	lock_extent_range(inode1, loff1, len);
    	if (inode1 != inode2) {
    		mutex_lock_nested(&inode2->i_mutex, I_MUTEX_CHILD);
    		lock_extent_range(inode2, loff2, len);
    	}
    }
    
    static int btrfs_cmp_data(struct inode *src, u64 loff, struct inode *dst,
    			  u64 dst_loff, u64 len)
    {
    	int ret = 0;
    	struct page *src_page, *dst_page;
    	unsigned int cmp_len = PAGE_CACHE_SIZE;
    	void *addr, *dst_addr;
    
    	while (len) {
    		if (len < PAGE_CACHE_SIZE)
    			cmp_len = len;
    
    		src_page = extent_same_get_page(src, loff);
    		if (!src_page)
    			return -EINVAL;
    		dst_page = extent_same_get_page(dst, dst_loff);
    		if (!dst_page) {
    			page_cache_release(src_page);
    			return -EINVAL;
    		}
    		addr = kmap_atomic(src_page);
    		dst_addr = kmap_atomic(dst_page);
    
    		flush_dcache_page(src_page);
    		flush_dcache_page(dst_page);
    
    		if (memcmp(addr, dst_addr, cmp_len))
    			ret = BTRFS_SAME_DATA_DIFFERS;
    
    		kunmap_atomic(addr);
    		kunmap_atomic(dst_addr);
    		page_cache_release(src_page);
    		page_cache_release(dst_page);
    
    		if (ret)
    			break;
    
    		loff += cmp_len;
    		dst_loff += cmp_len;
    		len -= cmp_len;
    	}
    
    	return ret;
    }
    
    static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen,
    				     u64 olen)
    {
    	u64 len = *plen;
    	u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
    
    	if (off + olen > inode->i_size || off + olen < off)
    		return -EINVAL;
    
    	/* if we extend to eof, continue to block boundary */
    	if (off + len == inode->i_size)
    		*plen = len = ALIGN(inode->i_size, bs) - off;
    
    	/* Check that we are block aligned - btrfs_clone() requires this */
    	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
    		return -EINVAL;
    
    	return 0;
    }
    
    static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
    			     struct inode *dst, u64 dst_loff)
    {
    	int ret;
    	u64 len = olen;
    
    	/*
    	 * btrfs_clone() can't handle extents in the same file
    	 * yet. Once that works, we can drop this check and replace it
    	 * with a check for the same inode, but overlapping extents.
    	 */
    	if (src == dst)
    		return -EINVAL;
    
    	if (len == 0)
    		return 0;
    
    	btrfs_double_lock(src, loff, dst, dst_loff, len);
    
    	ret = extent_same_check_offsets(src, loff, &len, olen);
    	if (ret)
    		goto out_unlock;
    
    	ret = extent_same_check_offsets(dst, dst_loff, &len, olen);
    	if (ret)
    		goto out_unlock;
    
    	/* don't make the dst file partly checksummed */
    	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
    	    (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
    		ret = -EINVAL;
    		goto out_unlock;
    	}
    
    	/* pass original length for comparison so we stay within i_size */
    	ret = btrfs_cmp_data(src, loff, dst, dst_loff, olen);
    	if (ret == 0)
    		ret = btrfs_clone(src, dst, loff, olen, len, dst_loff);
    
    out_unlock:
    	btrfs_double_unlock(src, loff, dst, dst_loff, len);
    
    	return ret;
    }
    
    #define BTRFS_MAX_DEDUPE_LEN	(16 * 1024 * 1024)
    
    static long btrfs_ioctl_file_extent_same(struct file *file,
    			struct btrfs_ioctl_same_args __user *argp)
    {
    	struct btrfs_ioctl_same_args *same;
    	struct btrfs_ioctl_same_extent_info *info;
    	struct inode *src = file_inode(file);
    	u64 off;
    	u64 len;
    	int i;
    	int ret;
    	unsigned long size;
    	u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
    	bool is_admin = capable(CAP_SYS_ADMIN);
    	u16 count;
    
    	if (!(file->f_mode & FMODE_READ))
    		return -EINVAL;
    
    	ret = mnt_want_write_file(file);
    	if (ret)
    		return ret;
    
    	if (get_user(count, &argp->dest_count)) {
    		ret = -EFAULT;
    		goto out;
    	}
    
    	size = offsetof(struct btrfs_ioctl_same_args __user, info[count]);
    
    	same = memdup_user(argp, size);
    
    	if (IS_ERR(same)) {
    		ret = PTR_ERR(same);
    		goto out;
    	}
    
    	off = same->logical_offset;
    	len = same->length;
    
    	/*
    	 * Limit the total length we will dedupe for each operation.
    	 * This is intended to bound the total time spent in this
    	 * ioctl to something sane.
    	 */
    	if (len > BTRFS_MAX_DEDUPE_LEN)
    		len = BTRFS_MAX_DEDUPE_LEN;
    
    	if (WARN_ON_ONCE(bs < PAGE_CACHE_SIZE)) {
    		/*
    		 * Btrfs does not support blocksize < page_size. As a
    		 * result, btrfs_cmp_data() won't correctly handle
    		 * this situation without an update.
    		 */
    		ret = -EINVAL;
    		goto out;
    	}
    
    	ret = -EISDIR;
    	if (S_ISDIR(src->i_mode))
    		goto out;
    
    	ret = -EACCES;
    	if (!S_ISREG(src->i_mode))
    		goto out;
    
    	/* pre-format output fields to sane values */
    	for (i = 0; i < count; i++) {
    		same->info[i].bytes_deduped = 0ULL;
    		same->info[i].status = 0;
    	}
    
    	for (i = 0, info = same->info; i < count; i++, info++) {
    		struct inode *dst;
    		struct fd dst_file = fdget(info->fd);
    		if (!dst_file.file) {
    			info->status = -EBADF;
    			continue;
    		}
    		dst = file_inode(dst_file.file);
    
    		if (!(is_admin || (dst_file.file->f_mode & FMODE_WRITE))) {
    			info->status = -EINVAL;
    		} else if (file->f_path.mnt != dst_file.file->f_path.mnt) {
    			info->status = -EXDEV;
    		} else if (S_ISDIR(dst->i_mode)) {
    			info->status = -EISDIR;
    		} else if (!S_ISREG(dst->i_mode)) {
    			info->status = -EACCES;
    		} else {
    			info->status = btrfs_extent_same(src, off, len, dst,
    							info->logical_offset);
    			if (info->status == 0)
    				info->bytes_deduped += len;
    		}
    		fdput(dst_file);
    	}
    
    	ret = copy_to_user(argp, same, size);
    	if (ret)
    		ret = -EFAULT;
    
    out:
    	mnt_drop_write_file(file);
    	return ret;
    }
    
    /* Helper to check and see if this root currently has a ref on the given disk
     * bytenr.  If it does then we need to update the quota for this root.  This
     * doesn't do anything if quotas aren't enabled.
     */
    static int check_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
    		     u64 disko)
    {
    	struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
    	struct ulist *roots;
    	struct ulist_iterator uiter;
    	struct ulist_node *root_node = NULL;
    	int ret;
    
    	if (!root->fs_info->quota_enabled)
    		return 1;
    
    	btrfs_get_tree_mod_seq(root->fs_info, &tree_mod_seq_elem);
    	ret = btrfs_find_all_roots(trans, root->fs_info, disko,
    				   tree_mod_seq_elem.seq, &roots);
    	if (ret < 0)
    		goto out;
    	ret = 0;
    	ULIST_ITER_INIT(&uiter);
    	while ((root_node = ulist_next(roots, &uiter))) {
    		if (root_node->val == root->objectid) {
    			ret = 1;
    			break;
    		}
    	}
    	ulist_free(roots);
    out:
    	btrfs_put_tree_mod_seq(root->fs_info, &tree_mod_seq_elem);
    	return ret;
    }
    
    static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
    				     struct inode *inode,
    				     u64 endoff,
    				     const u64 destoff,
    				     const u64 olen)
    {
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    	int ret;
    
    	inode_inc_iversion(inode);
    	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
    	/*
    	 * We round up to the block size at eof when determining which
    	 * extents to clone above, but shouldn't round up the file size.
    	 */
    	if (endoff > destoff + olen)
    		endoff = destoff + olen;
    	if (endoff > inode->i_size)
    		btrfs_i_size_write(inode, endoff);
    
    	ret = btrfs_update_inode(trans, root, inode);
    	if (ret) {
    		btrfs_abort_transaction(trans, root, ret);
    		btrfs_end_transaction(trans, root);
    		goto out;
    	}
    	ret = btrfs_end_transaction(trans, root);
    out:
    	return ret;
    }
    
    static void clone_update_extent_map(struct inode *inode,
    				    const struct btrfs_trans_handle *trans,
    				    const struct btrfs_path *path,
    				    const u64 hole_offset,
    				    const u64 hole_len)
    {
    	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
    	struct extent_map *em;
    	int ret;
    
    	em = alloc_extent_map();
    	if (!em) {
    		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
    			&BTRFS_I(inode)->runtime_flags);
    		return;
    	}
    
    	if (path) {
    		struct btrfs_file_extent_item *fi;
    
    		fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
    				    struct btrfs_file_extent_item);
    		btrfs_extent_item_to_extent_map(inode, path, fi, false, em);
    		em->generation = -1;
    		if (btrfs_file_extent_type(path->nodes[0], fi) ==
    		    BTRFS_FILE_EXTENT_INLINE)
    			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
    				&BTRFS_I(inode)->runtime_flags);
    	} else {
    		em->start = hole_offset;
    		em->len = hole_len;
    		em->ram_bytes = em->len;
    		em->orig_start = hole_offset;
    		em->block_start = EXTENT_MAP_HOLE;
    		em->block_len = 0;
    		em->orig_block_len = 0;
    		em->compress_type = BTRFS_COMPRESS_NONE;
    		em->generation = trans->transid;
    	}
    
    	while (1) {
    		write_lock(&em_tree->lock);
    		ret = add_extent_mapping(em_tree, em, 1);
    		write_unlock(&em_tree->lock);
    		if (ret != -EEXIST) {
    			free_extent_map(em);
    			break;
    		}
    		btrfs_drop_extent_cache(inode, em->start,
    					em->start + em->len - 1, 0);
    	}
    
    	if (ret)
    		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
    			&BTRFS_I(inode)->runtime_flags);
    }
    
    /**
     * btrfs_clone() - clone a range from inode file to another
     *
     * @src: Inode to clone from
     * @inode: Inode to clone to
     * @off: Offset within source to start clone from
     * @olen: Original length, passed by user, of range to clone
     * @olen_aligned: Block-aligned value of olen, extent_same uses
     *               identical values here
     * @destoff: Offset within @inode to start clone
     */
    static int btrfs_clone(struct inode *src, struct inode *inode,
    		       const u64 off, const u64 olen, const u64 olen_aligned,
    		       const u64 destoff)
    {
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    	struct btrfs_path *path = NULL;
    	struct extent_buffer *leaf;
    	struct btrfs_trans_handle *trans;
    	char *buf = NULL;
    	struct btrfs_key key;
    	u32 nritems;
    	int slot;
    	int ret;
    	int no_quota;
    	const u64 len = olen_aligned;
    	u64 last_disko = 0;
    	u64 last_dest_end = destoff;
    
    	ret = -ENOMEM;
    	buf = vmalloc(root->nodesize);
    	if (!buf)
    		return ret;
    
    	path = btrfs_alloc_path();
    	if (!path) {
    		vfree(buf);
    		return ret;
    	}
    
    	path->reada = 2;
    	/* clone data */
    	key.objectid = btrfs_ino(src);
    	key.type = BTRFS_EXTENT_DATA_KEY;
    	key.offset = off;
    
    	while (1) {
    		u64 next_key_min_offset = key.offset + 1;
    
    		/*
    		 * note the key will change type as we walk through the
    		 * tree.
    		 */
    		path->leave_spinning = 1;
    		ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
    				0, 0);
    		if (ret < 0)
    			goto out;
    		/*
    		 * First search, if no extent item that starts at offset off was
    		 * found but the previous item is an extent item, it's possible
    		 * it might overlap our target range, therefore process it.
    		 */
    		if (key.offset == off && ret > 0 && path->slots[0] > 0) {
    			btrfs_item_key_to_cpu(path->nodes[0], &key,
    					      path->slots[0] - 1);
    			if (key.type == BTRFS_EXTENT_DATA_KEY)
    				path->slots[0]--;
    		}
    
    		nritems = btrfs_header_nritems(path->nodes[0]);
    process_slot:
    		no_quota = 1;
    		if (path->slots[0] >= nritems) {
    			ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
    			if (ret < 0)
    				goto out;
    			if (ret > 0)
    				break;
    			nritems = btrfs_header_nritems(path->nodes[0]);
    		}
    		leaf = path->nodes[0];
    		slot = path->slots[0];
    
    		btrfs_item_key_to_cpu(leaf, &key, slot);
    		if (key.type > BTRFS_EXTENT_DATA_KEY ||
    		    key.objectid != btrfs_ino(src))
    			break;
    
    		if (key.type == BTRFS_EXTENT_DATA_KEY) {
    			struct btrfs_file_extent_item *extent;
    			int type;
    			u32 size;
    			struct btrfs_key new_key;
    			u64 disko = 0, diskl = 0;
    			u64 datao = 0, datal = 0;
    			u8 comp;
    			u64 drop_start;
    
    			extent = btrfs_item_ptr(leaf, slot,
    						struct btrfs_file_extent_item);
    			comp = btrfs_file_extent_compression(leaf, extent);
    			type = btrfs_file_extent_type(leaf, extent);
    			if (type == BTRFS_FILE_EXTENT_REG ||
    			    type == BTRFS_FILE_EXTENT_PREALLOC) {
    				disko = btrfs_file_extent_disk_bytenr(leaf,
    								      extent);
    				diskl = btrfs_file_extent_disk_num_bytes(leaf,
    								 extent);
    				datao = btrfs_file_extent_offset(leaf, extent);
    				datal = btrfs_file_extent_num_bytes(leaf,
    								    extent);
    			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
    				/* take upper bound, may be compressed */
    				datal = btrfs_file_extent_ram_bytes(leaf,
    								    extent);
    			}
    
    			/*
    			 * The first search might have left us at an extent
    			 * item that ends before our target range's start, can
    			 * happen if we have holes and NO_HOLES feature enabled.
    			 */
    			if (key.offset + datal <= off) {
    				path->slots[0]++;
    				goto process_slot;
    			} else if (key.offset >= off + len) {
    				break;
    			}
    			next_key_min_offset = key.offset + datal;
    			size = btrfs_item_size_nr(leaf, slot);
    			read_extent_buffer(leaf, buf,
    					   btrfs_item_ptr_offset(leaf, slot),
    					   size);
    
    			btrfs_release_path(path);
    			path->leave_spinning = 0;
    
    			memcpy(&new_key, &key, sizeof(new_key));
    			new_key.objectid = btrfs_ino(inode);
    			if (off <= key.offset)
    				new_key.offset = key.offset + destoff - off;
    			else
    				new_key.offset = destoff;
    
    			/*
    			 * Deal with a hole that doesn't have an extent item
    			 * that represents it (NO_HOLES feature enabled).
    			 * This hole is either in the middle of the cloning
    			 * range or at the beginning (fully overlaps it or
    			 * partially overlaps it).
    			 */
    			if (new_key.offset != last_dest_end)
    				drop_start = last_dest_end;
    			else
    				drop_start = new_key.offset;
    
    			/*
    			 * 1 - adjusting old extent (we may have to split it)
    			 * 1 - add new extent
    			 * 1 - inode update
    			 */
    			trans = btrfs_start_transaction(root, 3);
    			if (IS_ERR(trans)) {
    				ret = PTR_ERR(trans);
    				goto out;
    			}
    
    			if (type == BTRFS_FILE_EXTENT_REG ||
    			    type == BTRFS_FILE_EXTENT_PREALLOC) {
    				/*
    				 *    a  | --- range to clone ---|  b
    				 * | ------------- extent ------------- |
    				 */
    
    				/* subtract range b */
    				if (key.offset + datal > off + len)
    					datal = off + len - key.offset;
    
    				/* subtract range a */
    				if (off > key.offset) {
    					datao += off - key.offset;
    					datal -= off - key.offset;
    				}
    
    				ret = btrfs_drop_extents(trans, root, inode,
    							 drop_start,
    							 new_key.offset + datal,
    							 1);
    				if (ret) {
    					if (ret != -EOPNOTSUPP)
    						btrfs_abort_transaction(trans,
    								root, ret);
    					btrfs_end_transaction(trans, root);
    					goto out;
    				}
    
    				ret = btrfs_insert_empty_item(trans, root, path,
    							      &new_key, size);
    				if (ret) {
    					btrfs_abort_transaction(trans, root,
    								ret);
    					btrfs_end_transaction(trans, root);
    					goto out;
    				}
    
    				leaf = path->nodes[0];
    				slot = path->slots[0];
    				write_extent_buffer(leaf, buf,
    					    btrfs_item_ptr_offset(leaf, slot),
    					    size);
    
    				extent = btrfs_item_ptr(leaf, slot,
    						struct btrfs_file_extent_item);
    
    				/* disko == 0 means it's a hole */
    				if (!disko)
    					datao = 0;
    
    				btrfs_set_file_extent_offset(leaf, extent,
    							     datao);
    				btrfs_set_file_extent_num_bytes(leaf, extent,
    								datal);
    
    				/*
    				 * We need to look up the roots that point at
    				 * this bytenr and see if the new root does.  If
    				 * it does not we need to make sure we update
    				 * quotas appropriately.
    				 */
    				if (disko && root != BTRFS_I(src)->root &&
    				    disko != last_disko) {
    					no_quota = check_ref(trans, root,
    							     disko);
    					if (no_quota < 0) {
    						btrfs_abort_transaction(trans,
    									root,
    									ret);
    						btrfs_end_transaction(trans,
    								      root);
    						ret = no_quota;
    						goto out;
    					}
    				}
    
    				if (disko) {
    					inode_add_bytes(inode, datal);
    					ret = btrfs_inc_extent_ref(trans, root,
    							disko, diskl, 0,
    							root->root_key.objectid,
    							btrfs_ino(inode),
    							new_key.offset - datao,
    							no_quota);
    					if (ret) {
    						btrfs_abort_transaction(trans,
    									root,
    									ret);
    						btrfs_end_transaction(trans,
    								      root);
    						goto out;
    
    					}
    				}
    			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
    				u64 skip = 0;
    				u64 trim = 0;
    				u64 aligned_end = 0;
    
    				if (off > key.offset) {
    					skip = off - key.offset;
    					new_key.offset += skip;
    				}
    
    				if (key.offset + datal > off + len)
    					trim = key.offset + datal - (off + len);
    
    				if (comp && (skip || trim)) {
    					ret = -EINVAL;
    					btrfs_end_transaction(trans, root);
    					goto out;
    				}
    				size -= skip + trim;
    				datal -= skip + trim;
    
    				aligned_end = ALIGN(new_key.offset + datal,
    						    root->sectorsize);
    				ret = btrfs_drop_extents(trans, root, inode,
    							 drop_start,
    							 aligned_end,
    							 1);
    				if (ret) {
    					if (ret != -EOPNOTSUPP)
    						btrfs_abort_transaction(trans,
    							root, ret);
    					btrfs_end_transaction(trans, root);
    					goto out;
    				}
    
    				ret = btrfs_insert_empty_item(trans, root, path,
    							      &new_key, size);
    				if (ret) {
    					btrfs_abort_transaction(trans, root,
    								ret);
    					btrfs_end_transaction(trans, root);
    					goto out;
    				}
    
    				if (skip) {
    					u32 start =
    					  btrfs_file_extent_calc_inline_size(0);
    					memmove(buf+start, buf+start+skip,
    						datal);
    				}
    
    				leaf = path->nodes[0];
    				slot = path->slots[0];
    				write_extent_buffer(leaf, buf,
    					    btrfs_item_ptr_offset(leaf, slot),
    					    size);
    				inode_add_bytes(inode, datal);
    			}
    
    			/* If we have an implicit hole (NO_HOLES feature). */
    			if (drop_start < new_key.offset)
    				clone_update_extent_map(inode, trans,
    						NULL, drop_start,
    						new_key.offset - drop_start);
    
    			clone_update_extent_map(inode, trans, path, 0, 0);
    
    			btrfs_mark_buffer_dirty(leaf);
    			btrfs_release_path(path);
    
    			last_dest_end = ALIGN(new_key.offset + datal,
    					      root->sectorsize);
    			ret = clone_finish_inode_update(trans, inode,
    							last_dest_end,
    							destoff, olen);
    			if (ret)
    				goto out;
    			if (new_key.offset + datal >= destoff + len)
    				break;
    		}
    		btrfs_release_path(path);
    		key.offset = next_key_min_offset;
    	}
    	ret = 0;
    
    	if (last_dest_end < destoff + len) {
    		/*
    		 * We have an implicit hole (NO_HOLES feature is enabled) that
    		 * fully or partially overlaps our cloning range at its end.
    		 */
    		btrfs_release_path(path);
    
    		/*
    		 * 1 - remove extent(s)
    		 * 1 - inode update
    		 */
    		trans = btrfs_start_transaction(root, 2);
    		if (IS_ERR(trans)) {
    			ret = PTR_ERR(trans);
    			goto out;
    		}
    		ret = btrfs_drop_extents(trans, root, inode,
    					 last_dest_end, destoff + len, 1);
    		if (ret) {
    			if (ret != -EOPNOTSUPP)
    				btrfs_abort_transaction(trans, root, ret);
    			btrfs_end_transaction(trans, root);
    			goto out;
    		}
    		clone_update_extent_map(inode, trans, NULL, last_dest_end,
    					destoff + len - last_dest_end);
    		ret = clone_finish_inode_update(trans, inode, destoff + len,
    						destoff, olen);
    	}
    
    out:
    	btrfs_free_path(path);
    	vfree(buf);
    	return ret;
    }
    
    static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd,
    				       u64 off, u64 olen, u64 destoff)
    {
    	struct inode *inode = file_inode(file);
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    	struct fd src_file;
    	struct inode *src;
    	int ret;
    	u64 len = olen;
    	u64 bs = root->fs_info->sb->s_blocksize;
    	int same_inode = 0;
    
    	/*
    	 * TODO:
    	 * - split compressed inline extents.  annoying: we need to
    	 *   decompress into destination's address_space (the file offset
    	 *   may change, so source mapping won't do), then recompress (or
    	 *   otherwise reinsert) a subrange.
    	 *
    	 * - split destination inode's inline extents.  The inline extents can
    	 *   be either compressed or non-compressed.
    	 */
    
    	/* the destination must be opened for writing */
    	if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND))
    		return -EINVAL;
    
    	if (btrfs_root_readonly(root))
    		return -EROFS;
    
    	ret = mnt_want_write_file(file);
    	if (ret)
    		return ret;
    
    	src_file = fdget(srcfd);
    	if (!src_file.file) {
    		ret = -EBADF;
    		goto out_drop_write;
    	}
    
    	ret = -EXDEV;
    	if (src_file.file->f_path.mnt != file->f_path.mnt)
    		goto out_fput;
    
    	src = file_inode(src_file.file);
    
    	ret = -EINVAL;
    	if (src == inode)
    		same_inode = 1;
    
    	/* the src must be open for reading */
    	if (!(src_file.file->f_mode & FMODE_READ))
    		goto out_fput;
    
    	/* don't make the dst file partly checksummed */
    	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
    	    (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
    		goto out_fput;
    
    	ret = -EISDIR;
    	if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
    		goto out_fput;
    
    	ret = -EXDEV;
    	if (src->i_sb != inode->i_sb)
    		goto out_fput;
    
    	if (!same_inode) {
    		if (inode < src) {
    			mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT);
    			mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD);
    		} else {
    			mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT);
    			mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
    		}
    	} else {
    		mutex_lock(&src->i_mutex);
    	}
    
    	/* determine range to clone */
    	ret = -EINVAL;
    	if (off + len > src->i_size || off + len < off)
    		goto out_unlock;
    	if (len == 0)
    		olen = len = src->i_size - off;
    	/* if we extend to eof, continue to block boundary */
    	if (off + len == src->i_size)
    		len = ALIGN(src->i_size, bs) - off;
    
    	if (len == 0) {
    		ret = 0;
    		goto out_unlock;
    	}
    
    	/* verify the end result is block aligned */
    	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
    	    !IS_ALIGNED(destoff, bs))
    		goto out_unlock;
    
    	/* verify if ranges are overlapped within the same file */
    	if (same_inode) {
    		if (destoff + len > off && destoff < off + len)
    			goto out_unlock;
    	}
    
    	if (destoff > inode->i_size) {
    		ret = btrfs_cont_expand(inode, inode->i_size, destoff);
    		if (ret)
    			goto out_unlock;
    	}
    
    	/*
    	 * Lock the target range too. Right after we replace the file extent
    	 * items in the fs tree (which now point to the cloned data), we might
    	 * have a worker replace them with extent items relative to a write
    	 * operation that was issued before this clone operation (i.e. confront
    	 * with inode.c:btrfs_finish_ordered_io).
    	 */
    	if (same_inode) {
    		u64 lock_start = min_t(u64, off, destoff);
    		u64 lock_len = max_t(u64, off, destoff) + len - lock_start;
    
    		lock_extent_range(src, lock_start, lock_len);
    	} else {
    		lock_extent_range(src, off, len);
    		lock_extent_range(inode, destoff, len);
    	}
    
    	ret = btrfs_clone(src, inode, off, olen, len, destoff);
    
    	if (same_inode) {
    		u64 lock_start = min_t(u64, off, destoff);
    		u64 lock_end = max_t(u64, off, destoff) + len - 1;
    
    		unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end);
    	} else {
    		unlock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1);
    		unlock_extent(&BTRFS_I(inode)->io_tree, destoff,
    			      destoff + len - 1);
    	}
    	/*
    	 * Truncate page cache pages so that future reads will see the cloned
    	 * data immediately and not the previous data.
    	 */
    	truncate_inode_pages_range(&inode->i_data, destoff,
    				   PAGE_CACHE_ALIGN(destoff + len) - 1);
    out_unlock:
    	if (!same_inode) {
    		if (inode < src) {
    			mutex_unlock(&src->i_mutex);
    			mutex_unlock(&inode->i_mutex);
    		} else {
    			mutex_unlock(&inode->i_mutex);
    			mutex_unlock(&src->i_mutex);
    		}
    	} else {
    		mutex_unlock(&src->i_mutex);
    	}
    out_fput:
    	fdput(src_file);
    out_drop_write:
    	mnt_drop_write_file(file);
    	return ret;
    }
    
    static long btrfs_ioctl_clone_range(struct file *file, void __user *argp)
    {
    	struct btrfs_ioctl_clone_range_args args;
    
    	if (copy_from_user(&args, argp, sizeof(args)))
    		return -EFAULT;
    	return btrfs_ioctl_clone(file, args.src_fd, args.src_offset,
    				 args.src_length, args.dest_offset);
    }
    
    /*
     * there are many ways the trans_start and trans_end ioctls can lead
     * to deadlocks.  They should only be used by applications that
     * basically own the machine, and have a very in depth understanding
     * of all the possible deadlocks and enospc problems.
     */
    static long btrfs_ioctl_trans_start(struct file *file)
    {
    	struct inode *inode = file_inode(file);
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    	struct btrfs_trans_handle *trans;
    	int ret;
    
    	ret = -EPERM;
    	if (!capable(CAP_SYS_ADMIN))
    		goto out;
    
    	ret = -EINPROGRESS;
    	if (file->private_data)
    		goto out;
    
    	ret = -EROFS;
    	if (btrfs_root_readonly(root))
    		goto out;
    
    	ret = mnt_want_write_file(file);
    	if (ret)
    		goto out;
    
    	atomic_inc(&root->fs_info->open_ioctl_trans);
    
    	ret = -ENOMEM;
    	trans = btrfs_start_ioctl_transaction(root);
    	if (IS_ERR(trans))
    		goto out_drop;
    
    	file->private_data = trans;
    	return 0;
    
    out_drop:
    	atomic_dec(&root->fs_info->open_ioctl_trans);
    	mnt_drop_write_file(file);
    out:
    	return ret;
    }
    
    static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
    {
    	struct inode *inode = file_inode(file);
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    	struct btrfs_root *new_root;
    	struct btrfs_dir_item *di;
    	struct btrfs_trans_handle *trans;
    	struct btrfs_path *path;
    	struct btrfs_key location;
    	struct btrfs_disk_key disk_key;
    	u64 objectid = 0;
    	u64 dir_id;
    	int ret;
    
    	if (!capable(CAP_SYS_ADMIN))
    		return -EPERM;
    
    	ret = mnt_want_write_file(file);
    	if (ret)
    		return ret;
    
    	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
    		ret = -EFAULT;
    		goto out;
    	}
    
    	if (!objectid)
    		objectid = BTRFS_FS_TREE_OBJECTID;
    
    	location.objectid = objectid;
    	location.type = BTRFS_ROOT_ITEM_KEY;
    	location.offset = (u64)-1;
    
    	new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
    	if (IS_ERR(new_root)) {
    		ret = PTR_ERR(new_root);
    		goto out;
    	}
    
    	path = btrfs_alloc_path();
    	if (!path) {
    		ret = -ENOMEM;
    		goto out;
    	}
    	path->leave_spinning = 1;
    
    	trans = btrfs_start_transaction(root, 1);
    	if (IS_ERR(trans)) {
    		btrfs_free_path(path);
    		ret = PTR_ERR(trans);
    		goto out;
    	}
    
    	dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
    	di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
    				   dir_id, "default", 7, 1);
    	if (IS_ERR_OR_NULL(di)) {
    		btrfs_free_path(path);
    		btrfs_end_transaction(trans, root);
    		btrfs_err(new_root->fs_info, "Umm, you don't have the default dir"
    			   "item, this isn't going to work");
    		ret = -ENOENT;
    		goto out;
    	}
    
    	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
    	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
    	btrfs_mark_buffer_dirty(path->nodes[0]);
    	btrfs_free_path(path);
    
    	btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL);
    	btrfs_end_transaction(trans, root);
    out:
    	mnt_drop_write_file(file);
    	return ret;
    }
    
    void btrfs_get_block_group_info(struct list_head *groups_list,
    				struct btrfs_ioctl_space_info *space)
    {
    	struct btrfs_block_group_cache *block_group;
    
    	space->total_bytes = 0;
    	space->used_bytes = 0;
    	space->flags = 0;
    	list_for_each_entry(block_group, groups_list, list) {
    		space->flags = block_group->flags;
    		space->total_bytes += block_group->key.offset;
    		space->used_bytes +=
    			btrfs_block_group_used(&block_group->item);
    	}
    }
    
    static long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
    {
    	struct btrfs_ioctl_space_args space_args;
    	struct btrfs_ioctl_space_info space;
    	struct btrfs_ioctl_space_info *dest;
    	struct btrfs_ioctl_space_info *dest_orig;
    	struct btrfs_ioctl_space_info __user *user_dest;
    	struct btrfs_space_info *info;
    	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
    		       BTRFS_BLOCK_GROUP_SYSTEM,
    		       BTRFS_BLOCK_GROUP_METADATA,
    		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
    	int num_types = 4;
    	int alloc_size;
    	int ret = 0;
    	u64 slot_count = 0;
    	int i, c;
    
    	if (copy_from_user(&space_args,
    			   (struct btrfs_ioctl_space_args __user *)arg,
    			   sizeof(space_args)))
    		return -EFAULT;
    
    	for (i = 0; i < num_types; i++) {
    		struct btrfs_space_info *tmp;
    
    		info = NULL;
    		rcu_read_lock();
    		list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
    					list) {
    			if (tmp->flags == types[i]) {
    				info = tmp;
    				break;
    			}
    		}
    		rcu_read_unlock();
    
    		if (!info)
    			continue;
    
    		down_read(&info->groups_sem);
    		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
    			if (!list_empty(&info->block_groups[c]))
    				slot_count++;
    		}
    		up_read(&info->groups_sem);
    	}
    
    	/*
    	 * Global block reserve, exported as a space_info
    	 */
    	slot_count++;
    
    	/* space_slots == 0 means they are asking for a count */
    	if (space_args.space_slots == 0) {
    		space_args.total_spaces = slot_count;
    		goto out;
    	}
    
    	slot_count = min_t(u64, space_args.space_slots, slot_count);
    
    	alloc_size = sizeof(*dest) * slot_count;
    
    	/* we generally have at most 6 or so space infos, one for each raid
    	 * level.  So, a whole page should be more than enough for everyone
    	 */
    	if (alloc_size > PAGE_CACHE_SIZE)
    		return -ENOMEM;
    
    	space_args.total_spaces = 0;
    	dest = kmalloc(alloc_size, GFP_NOFS);
    	if (!dest)
    		return -ENOMEM;
    	dest_orig = dest;
    
    	/* now we have a buffer to copy into */
    	for (i = 0; i < num_types; i++) {
    		struct btrfs_space_info *tmp;
    
    		if (!slot_count)
    			break;
    
    		info = NULL;
    		rcu_read_lock();
    		list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
    					list) {
    			if (tmp->flags == types[i]) {
    				info = tmp;
    				break;
    			}
    		}
    		rcu_read_unlock();
    
    		if (!info)
    			continue;
    		down_read(&info->groups_sem);
    		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
    			if (!list_empty(&info->block_groups[c])) {
    				btrfs_get_block_group_info(
    					&info->block_groups[c], &space);
    				memcpy(dest, &space, sizeof(space));
    				dest++;
    				space_args.total_spaces++;
    				slot_count--;
    			}
    			if (!slot_count)
    				break;
    		}
    		up_read(&info->groups_sem);
    	}
    
    	/*
    	 * Add global block reserve
    	 */
    	if (slot_count) {
    		struct btrfs_block_rsv *block_rsv = &root->fs_info->global_block_rsv;
    
    		spin_lock(&block_rsv->lock);
    		space.total_bytes = block_rsv->size;
    		space.used_bytes = block_rsv->size - block_rsv->reserved;
    		spin_unlock(&block_rsv->lock);
    		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
    		memcpy(dest, &space, sizeof(space));
    		space_args.total_spaces++;
    	}
    
    	user_dest = (struct btrfs_ioctl_space_info __user *)
    		(arg + sizeof(struct btrfs_ioctl_space_args));
    
    	if (copy_to_user(user_dest, dest_orig, alloc_size))
    		ret = -EFAULT;
    
    	kfree(dest_orig);
    out:
    	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
    		ret = -EFAULT;
    
    	return ret;
    }
    
    /*
     * there are many ways the trans_start and trans_end ioctls can lead
     * to deadlocks.  They should only be used by applications that
     * basically own the machine, and have a very in depth understanding
     * of all the possible deadlocks and enospc problems.
     */
    long btrfs_ioctl_trans_end(struct file *file)
    {
    	struct inode *inode = file_inode(file);
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    	struct btrfs_trans_handle *trans;
    
    	trans = file->private_data;
    	if (!trans)
    		return -EINVAL;
    	file->private_data = NULL;
    
    	btrfs_end_transaction(trans, root);
    
    	atomic_dec(&root->fs_info->open_ioctl_trans);
    
    	mnt_drop_write_file(file);
    	return 0;
    }
    
    static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
    					    void __user *argp)
    {
    	struct btrfs_trans_handle *trans;
    	u64 transid;
    	int ret;
    
    	trans = btrfs_attach_transaction_barrier(root);
    	if (IS_ERR(trans)) {
    		if (PTR_ERR(trans) != -ENOENT)
    			return PTR_ERR(trans);
    
    		/* No running transaction, don't bother */
    		transid = root->fs_info->last_trans_committed;
    		goto out;
    	}
    	transid = trans->transid;
    	ret = btrfs_commit_transaction_async(trans, root, 0);
    	if (ret) {
    		btrfs_end_transaction(trans, root);
    		return ret;
    	}
    out:
    	if (argp)
    		if (copy_to_user(argp, &transid, sizeof(transid)))
    			return -EFAULT;
    	return 0;
    }
    
    static noinline long btrfs_ioctl_wait_sync(struct btrfs_root *root,
    					   void __user *argp)
    {
    	u64 transid;
    
    	if (argp) {
    		if (copy_from_user(&transid, argp, sizeof(transid)))
    			return -EFAULT;
    	} else {
    		transid = 0;  /* current trans */
    	}
    	return btrfs_wait_for_commit(root, transid);
    }
    
    static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
    {
    	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
    	struct btrfs_ioctl_scrub_args *sa;
    	int ret;
    
    	if (!capable(CAP_SYS_ADMIN))
    		return -EPERM;
    
    	sa = memdup_user(arg, sizeof(*sa));
    	if (IS_ERR(sa))
    		return PTR_ERR(sa);
    
    	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
    		ret = mnt_want_write_file(file);
    		if (ret)
    			goto out;
    	}
    
    	ret = btrfs_scrub_dev(root->fs_info, sa->devid, sa->start, sa->end,
    			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
    			      0);
    
    	if (copy_to_user(arg, sa, sizeof(*sa)))
    		ret = -EFAULT;
    
    	if (!(sa->flags & BTRFS_SCRUB_READONLY))
    		mnt_drop_write_file(file);
    out:
    	kfree(sa);
    	return ret;
    }
    
    static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
    {
    	if (!capable(CAP_SYS_ADMIN))
    		return -EPERM;
    
    	return btrfs_scrub_cancel(root->fs_info);
    }
    
    static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
    				       void __user *arg)
    {
    	struct btrfs_ioctl_scrub_args *sa;
    	int ret;
    
    	if (!capable(CAP_SYS_ADMIN))
    		return -EPERM;
    
    	sa = memdup_user(arg, sizeof(*sa));
    	if (IS_ERR(sa))
    		return PTR_ERR(sa);
    
    	ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
    
    	if (copy_to_user(arg, sa, sizeof(*sa)))
    		ret = -EFAULT;
    
    	kfree(sa);
    	return ret;
    }
    
    static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root,
    				      void __user *arg)
    {
    	struct btrfs_ioctl_get_dev_stats *sa;
    	int ret;
    
    	sa = memdup_user(arg, sizeof(*sa));
    	if (IS_ERR(sa))
    		return PTR_ERR(sa);
    
    	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
    		kfree(sa);
    		return -EPERM;
    	}
    
    	ret = btrfs_get_dev_stats(root, sa);
    
    	if (copy_to_user(arg, sa, sizeof(*sa)))
    		ret = -EFAULT;
    
    	kfree(sa);
    	return ret;
    }
    
    static long btrfs_ioctl_dev_replace(struct btrfs_root *root, void __user *arg)
    {
    	struct btrfs_ioctl_dev_replace_args *p;
    	int ret;
    
    	if (!capable(CAP_SYS_ADMIN))
    		return -EPERM;
    
    	p = memdup_user(arg, sizeof(*p));
    	if (IS_ERR(p))
    		return PTR_ERR(p);
    
    	switch (p->cmd) {
    	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
    		if (root->fs_info->sb->s_flags & MS_RDONLY) {
    			ret = -EROFS;
    			goto out;
    		}
    		if (atomic_xchg(
    			&root->fs_info->mutually_exclusive_operation_running,
    			1)) {
    			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
    		} else {
    			ret = btrfs_dev_replace_start(root, p);
    			atomic_set(
    			 &root->fs_info->mutually_exclusive_operation_running,
    			 0);
    		}
    		break;
    	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
    		btrfs_dev_replace_status(root->fs_info, p);
    		ret = 0;
    		break;
    	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
    		ret = btrfs_dev_replace_cancel(root->fs_info, p);
    		break;
    	default:
    		ret = -EINVAL;
    		break;
    	}
    
    	if (copy_to_user(arg, p, sizeof(*p)))
    		ret = -EFAULT;
    out:
    	kfree(p);
    	return ret;
    }
    
    static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
    {
    	int ret = 0;
    	int i;
    	u64 rel_ptr;
    	int size;
    	struct btrfs_ioctl_ino_path_args *ipa = NULL;
    	struct inode_fs_paths *ipath = NULL;
    	struct btrfs_path *path;
    
    	if (!capable(CAP_DAC_READ_SEARCH))
    		return -EPERM;
    
    	path = btrfs_alloc_path();
    	if (!path) {
    		ret = -ENOMEM;
    		goto out;
    	}
    
    	ipa = memdup_user(arg, sizeof(*ipa));
    	if (IS_ERR(ipa)) {
    		ret = PTR_ERR(ipa);
    		ipa = NULL;
    		goto out;
    	}
    
    	size = min_t(u32, ipa->size, 4096);
    	ipath = init_ipath(size, root, path);
    	if (IS_ERR(ipath)) {
    		ret = PTR_ERR(ipath);
    		ipath = NULL;
    		goto out;
    	}
    
    	ret = paths_from_inode(ipa->inum, ipath);
    	if (ret < 0)
    		goto out;
    
    	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
    		rel_ptr = ipath->fspath->val[i] -
    			  (u64)(unsigned long)ipath->fspath->val;
    		ipath->fspath->val[i] = rel_ptr;
    	}
    
    	ret = copy_to_user((void *)(unsigned long)ipa->fspath,
    			   (void *)(unsigned long)ipath->fspath, size);
    	if (ret) {
    		ret = -EFAULT;
    		goto out;
    	}
    
    out:
    	btrfs_free_path(path);
    	free_ipath(ipath);
    	kfree(ipa);
    
    	return ret;
    }
    
    static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
    {
    	struct btrfs_data_container *inodes = ctx;
    	const size_t c = 3 * sizeof(u64);
    
    	if (inodes->bytes_left >= c) {
    		inodes->bytes_left -= c;
    		inodes->val[inodes->elem_cnt] = inum;
    		inodes->val[inodes->elem_cnt + 1] = offset;
    		inodes->val[inodes->elem_cnt + 2] = root;
    		inodes->elem_cnt += 3;
    	} else {
    		inodes->bytes_missing += c - inodes->bytes_left;
    		inodes->bytes_left = 0;
    		inodes->elem_missed += 3;
    	}
    
    	return 0;
    }
    
    static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root,
    					void __user *arg)
    {
    	int ret = 0;
    	int size;
    	struct btrfs_ioctl_logical_ino_args *loi;
    	struct btrfs_data_container *inodes = NULL;
    	struct btrfs_path *path = NULL;
    
    	if (!capable(CAP_SYS_ADMIN))
    		return -EPERM;
    
    	loi = memdup_user(arg, sizeof(*loi));
    	if (IS_ERR(loi)) {
    		ret = PTR_ERR(loi);
    		loi = NULL;
    		goto out;
    	}
    
    	path = btrfs_alloc_path();
    	if (!path) {
    		ret = -ENOMEM;
    		goto out;
    	}
    
    	size = min_t(u32, loi->size, 64 * 1024);
    	inodes = init_data_container(size);
    	if (IS_ERR(inodes)) {
    		ret = PTR_ERR(inodes);
    		inodes = NULL;
    		goto out;
    	}
    
    	ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path,
    					  build_ino_list, inodes);
    	if (ret == -EINVAL)
    		ret = -ENOENT;
    	if (ret < 0)
    		goto out;
    
    	ret = copy_to_user((void *)(unsigned long)loi->inodes,
    			   (void *)(unsigned long)inodes, size);
    	if (ret)
    		ret = -EFAULT;
    
    out:
    	btrfs_free_path(path);
    	vfree(inodes);
    	kfree(loi);
    
    	return ret;
    }
    
    void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
    			       struct btrfs_ioctl_balance_args *bargs)
    {
    	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
    
    	bargs->flags = bctl->flags;
    
    	if (atomic_read(&fs_info->balance_running))
    		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
    	if (atomic_read(&fs_info->balance_pause_req))
    		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
    	if (atomic_read(&fs_info->balance_cancel_req))
    		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
    
    	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
    	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
    	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
    
    	if (lock) {
    		spin_lock(&fs_info->balance_lock);
    		memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
    		spin_unlock(&fs_info->balance_lock);
    	} else {
    		memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
    	}
    }
    
    static long btrfs_ioctl_balance(struct file *file, void __user *arg)
    {
    	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
    	struct btrfs_fs_info *fs_info = root->fs_info;
    	struct btrfs_ioctl_balance_args *bargs;
    	struct btrfs_balance_control *bctl;
    	bool need_unlock; /* for mut. excl. ops lock */
    	int ret;
    
    	if (!capable(CAP_SYS_ADMIN))
    		return -EPERM;
    
    	ret = mnt_want_write_file(file);
    	if (ret)
    		return ret;
    
    again:
    	if (!atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) {
    		mutex_lock(&fs_info->volume_mutex);
    		mutex_lock(&fs_info->balance_mutex);
    		need_unlock = true;
    		goto locked;
    	}
    
    	/*
    	 * mut. excl. ops lock is locked.  Three possibilites:
    	 *   (1) some other op is running
    	 *   (2) balance is running
    	 *   (3) balance is paused -- special case (think resume)
    	 */
    	mutex_lock(&fs_info->balance_mutex);
    	if (fs_info->balance_ctl) {
    		/* this is either (2) or (3) */
    		if (!atomic_read(&fs_info->balance_running)) {
    			mutex_unlock(&fs_info->balance_mutex);
    			if (!mutex_trylock(&fs_info->volume_mutex))
    				goto again;
    			mutex_lock(&fs_info->balance_mutex);
    
    			if (fs_info->balance_ctl &&
    			    !atomic_read(&fs_info->balance_running)) {
    				/* this is (3) */
    				need_unlock = false;
    				goto locked;
    			}
    
    			mutex_unlock(&fs_info->balance_mutex);
    			mutex_unlock(&fs_info->volume_mutex);
    			goto again;
    		} else {
    			/* this is (2) */
    			mutex_unlock(&fs_info->balance_mutex);
    			ret = -EINPROGRESS;
    			goto out;
    		}
    	} else {
    		/* this is (1) */
    		mutex_unlock(&fs_info->balance_mutex);
    		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
    		goto out;
    	}
    
    locked:
    	BUG_ON(!atomic_read(&fs_info->mutually_exclusive_operation_running));
    
    	if (arg) {
    		bargs = memdup_user(arg, sizeof(*bargs));
    		if (IS_ERR(bargs)) {
    			ret = PTR_ERR(bargs);
    			goto out_unlock;
    		}
    
    		if (bargs->flags & BTRFS_BALANCE_RESUME) {
    			if (!fs_info->balance_ctl) {
    				ret = -ENOTCONN;
    				goto out_bargs;
    			}
    
    			bctl = fs_info->balance_ctl;
    			spin_lock(&fs_info->balance_lock);
    			bctl->flags |= BTRFS_BALANCE_RESUME;
    			spin_unlock(&fs_info->balance_lock);
    
    			goto do_balance;
    		}
    	} else {
    		bargs = NULL;
    	}
    
    	if (fs_info->balance_ctl) {
    		ret = -EINPROGRESS;
    		goto out_bargs;
    	}
    
    	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
    	if (!bctl) {
    		ret = -ENOMEM;
    		goto out_bargs;
    	}
    
    	bctl->fs_info = fs_info;
    	if (arg) {
    		memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
    		memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
    		memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
    
    		bctl->flags = bargs->flags;
    	} else {
    		/* balance everything - no filters */
    		bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
    	}
    
    do_balance:
    	/*
    	 * Ownership of bctl and mutually_exclusive_operation_running
    	 * goes to to btrfs_balance.  bctl is freed in __cancel_balance,
    	 * or, if restriper was paused all the way until unmount, in
    	 * free_fs_info.  mutually_exclusive_operation_running is
    	 * cleared in __cancel_balance.
    	 */
    	need_unlock = false;
    
    	ret = btrfs_balance(bctl, bargs);
    
    	if (arg) {
    		if (copy_to_user(arg, bargs, sizeof(*bargs)))
    			ret = -EFAULT;
    	}
    
    out_bargs:
    	kfree(bargs);
    out_unlock:
    	mutex_unlock(&fs_info->balance_mutex);
    	mutex_unlock(&fs_info->volume_mutex);
    	if (need_unlock)
    		atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
    out:
    	mnt_drop_write_file(file);
    	return ret;
    }
    
    static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd)
    {
    	if (!capable(CAP_SYS_ADMIN))
    		return -EPERM;
    
    	switch (cmd) {
    	case BTRFS_BALANCE_CTL_PAUSE:
    		return btrfs_pause_balance(root->fs_info);
    	case BTRFS_BALANCE_CTL_CANCEL:
    		return btrfs_cancel_balance(root->fs_info);
    	}
    
    	return -EINVAL;
    }
    
    static long btrfs_ioctl_balance_progress(struct btrfs_root *root,
    					 void __user *arg)
    {
    	struct btrfs_fs_info *fs_info = root->fs_info;
    	struct btrfs_ioctl_balance_args *bargs;
    	int ret = 0;
    
    	if (!capable(CAP_SYS_ADMIN))
    		return -EPERM;
    
    	mutex_lock(&fs_info->balance_mutex);
    	if (!fs_info->balance_ctl) {
    		ret = -ENOTCONN;
    		goto out;
    	}
    
    	bargs = kzalloc(sizeof(*bargs), GFP_NOFS);
    	if (!bargs) {
    		ret = -ENOMEM;
    		goto out;
    	}
    
    	update_ioctl_balance_args(fs_info, 1, bargs);
    
    	if (copy_to_user(arg, bargs, sizeof(*bargs)))
    		ret = -EFAULT;
    
    	kfree(bargs);
    out:
    	mutex_unlock(&fs_info->balance_mutex);
    	return ret;
    }
    
    static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
    {
    	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
    	struct btrfs_ioctl_quota_ctl_args *sa;
    	struct btrfs_trans_handle *trans = NULL;
    	int ret;
    	int err;
    
    	if (!capable(CAP_SYS_ADMIN))
    		return -EPERM;
    
    	ret = mnt_want_write_file(file);
    	if (ret)
    		return ret;
    
    	sa = memdup_user(arg, sizeof(*sa));
    	if (IS_ERR(sa)) {
    		ret = PTR_ERR(sa);
    		goto drop_write;
    	}
    
    	down_write(&root->fs_info->subvol_sem);
    	trans = btrfs_start_transaction(root->fs_info->tree_root, 2);
    	if (IS_ERR(trans)) {
    		ret = PTR_ERR(trans);
    		goto out;
    	}
    
    	switch (sa->cmd) {
    	case BTRFS_QUOTA_CTL_ENABLE:
    		ret = btrfs_quota_enable(trans, root->fs_info);
    		break;
    	case BTRFS_QUOTA_CTL_DISABLE:
    		ret = btrfs_quota_disable(trans, root->fs_info);
    		break;
    	default:
    		ret = -EINVAL;
    		break;
    	}
    
    	err = btrfs_commit_transaction(trans, root->fs_info->tree_root);
    	if (err && !ret)
    		ret = err;
    out:
    	kfree(sa);
    	up_write(&root->fs_info->subvol_sem);
    drop_write:
    	mnt_drop_write_file(file);
    	return ret;
    }
    
    static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
    {
    	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
    	struct btrfs_ioctl_qgroup_assign_args *sa;
    	struct btrfs_trans_handle *trans;
    	int ret;
    	int err;
    
    	if (!capable(CAP_SYS_ADMIN))
    		return -EPERM;
    
    	ret = mnt_want_write_file(file);
    	if (ret)
    		return ret;
    
    	sa = memdup_user(arg, sizeof(*sa));
    	if (IS_ERR(sa)) {
    		ret = PTR_ERR(sa);
    		goto drop_write;
    	}
    
    	trans = btrfs_join_transaction(root);
    	if (IS_ERR(trans)) {
    		ret = PTR_ERR(trans);
    		goto out;
    	}
    
    	/* FIXME: check if the IDs really exist */
    	if (sa->assign) {
    		ret = btrfs_add_qgroup_relation(trans, root->fs_info,
    						sa->src, sa->dst);
    	} else {
    		ret = btrfs_del_qgroup_relation(trans, root->fs_info,
    						sa->src, sa->dst);
    	}
    
    	/* update qgroup status and info */
    	err = btrfs_run_qgroups(trans, root->fs_info);
    	if (err < 0)
    		btrfs_error(root->fs_info, ret,
    			    "failed to update qgroup status and info\n");
    	err = btrfs_end_transaction(trans, root);
    	if (err && !ret)
    		ret = err;
    
    out:
    	kfree(sa);
    drop_write:
    	mnt_drop_write_file(file);
    	return ret;
    }
    
    static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
    {
    	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
    	struct btrfs_ioctl_qgroup_create_args *sa;
    	struct btrfs_trans_handle *trans;
    	int ret;
    	int err;
    
    	if (!capable(CAP_SYS_ADMIN))
    		return -EPERM;
    
    	ret = mnt_want_write_file(file);
    	if (ret)
    		return ret;
    
    	sa = memdup_user(arg, sizeof(*sa));
    	if (IS_ERR(sa)) {
    		ret = PTR_ERR(sa);
    		goto drop_write;
    	}
    
    	if (!sa->qgroupid) {
    		ret = -EINVAL;
    		goto out;
    	}
    
    	trans = btrfs_join_transaction(root);
    	if (IS_ERR(trans)) {
    		ret = PTR_ERR(trans);
    		goto out;
    	}
    
    	/* FIXME: check if the IDs really exist */
    	if (sa->create) {
    		ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid);
    	} else {
    		ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid);
    	}
    
    	err = btrfs_end_transaction(trans, root);
    	if (err && !ret)
    		ret = err;
    
    out:
    	kfree(sa);
    drop_write:
    	mnt_drop_write_file(file);
    	return ret;
    }
    
    static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
    {
    	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
    	struct btrfs_ioctl_qgroup_limit_args *sa;
    	struct btrfs_trans_handle *trans;
    	int ret;
    	int err;
    	u64 qgroupid;
    
    	if (!capable(CAP_SYS_ADMIN))
    		return -EPERM;
    
    	ret = mnt_want_write_file(file);
    	if (ret)
    		return ret;
    
    	sa = memdup_user(arg, sizeof(*sa));
    	if (IS_ERR(sa)) {
    		ret = PTR_ERR(sa);
    		goto drop_write;
    	}
    
    	trans = btrfs_join_transaction(root);
    	if (IS_ERR(trans)) {
    		ret = PTR_ERR(trans);
    		goto out;
    	}
    
    	qgroupid = sa->qgroupid;
    	if (!qgroupid) {
    		/* take the current subvol as qgroup */
    		qgroupid = root->root_key.objectid;
    	}
    
    	/* FIXME: check if the IDs really exist */
    	ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim);
    
    	err = btrfs_end_transaction(trans, root);
    	if (err && !ret)
    		ret = err;
    
    out:
    	kfree(sa);
    drop_write:
    	mnt_drop_write_file(file);
    	return ret;
    }
    
    static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
    {
    	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
    	struct btrfs_ioctl_quota_rescan_args *qsa;
    	int ret;
    
    	if (!capable(CAP_SYS_ADMIN))
    		return -EPERM;
    
    	ret = mnt_want_write_file(file);
    	if (ret)
    		return ret;
    
    	qsa = memdup_user(arg, sizeof(*qsa));
    	if (IS_ERR(qsa)) {
    		ret = PTR_ERR(qsa);
    		goto drop_write;
    	}
    
    	if (qsa->flags) {
    		ret = -EINVAL;
    		goto out;
    	}
    
    	ret = btrfs_qgroup_rescan(root->fs_info);
    
    out:
    	kfree(qsa);
    drop_write:
    	mnt_drop_write_file(file);
    	return ret;
    }
    
    static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
    {
    	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
    	struct btrfs_ioctl_quota_rescan_args *qsa;
    	int ret = 0;
    
    	if (!capable(CAP_SYS_ADMIN))
    		return -EPERM;
    
    	qsa = kzalloc(sizeof(*qsa), GFP_NOFS);
    	if (!qsa)
    		return -ENOMEM;
    
    	if (root->fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
    		qsa->flags = 1;
    		qsa->progress = root->fs_info->qgroup_rescan_progress.objectid;
    	}
    
    	if (copy_to_user(arg, qsa, sizeof(*qsa)))
    		ret = -EFAULT;
    
    	kfree(qsa);
    	return ret;
    }
    
    static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
    {
    	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
    
    	if (!capable(CAP_SYS_ADMIN))
    		return -EPERM;
    
    	return btrfs_qgroup_wait_for_completion(root->fs_info);
    }
    
    static long _btrfs_ioctl_set_received_subvol(struct file *file,
    					    struct btrfs_ioctl_received_subvol_args *sa)
    {
    	struct inode *inode = file_inode(file);
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    	struct btrfs_root_item *root_item = &root->root_item;
    	struct btrfs_trans_handle *trans;
    	struct timespec ct = CURRENT_TIME;
    	int ret = 0;
    	int received_uuid_changed;
    
    	if (!inode_owner_or_capable(inode))
    		return -EPERM;
    
    	ret = mnt_want_write_file(file);
    	if (ret < 0)
    		return ret;
    
    	down_write(&root->fs_info->subvol_sem);
    
    	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
    		ret = -EINVAL;
    		goto out;
    	}
    
    	if (btrfs_root_readonly(root)) {
    		ret = -EROFS;
    		goto out;
    	}
    
    	/*
    	 * 1 - root item
    	 * 2 - uuid items (received uuid + subvol uuid)
    	 */
    	trans = btrfs_start_transaction(root, 3);
    	if (IS_ERR(trans)) {
    		ret = PTR_ERR(trans);
    		trans = NULL;
    		goto out;
    	}
    
    	sa->rtransid = trans->transid;
    	sa->rtime.sec = ct.tv_sec;
    	sa->rtime.nsec = ct.tv_nsec;
    
    	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
    				       BTRFS_UUID_SIZE);
    	if (received_uuid_changed &&
    	    !btrfs_is_empty_uuid(root_item->received_uuid))
    		btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
    				    root_item->received_uuid,
    				    BTRFS_UUID_KEY_RECEIVED_SUBVOL,
    				    root->root_key.objectid);
    	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
    	btrfs_set_root_stransid(root_item, sa->stransid);
    	btrfs_set_root_rtransid(root_item, sa->rtransid);
    	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
    	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
    	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
    	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
    
    	ret = btrfs_update_root(trans, root->fs_info->tree_root,
    				&root->root_key, &root->root_item);
    	if (ret < 0) {
    		btrfs_end_transaction(trans, root);
    		goto out;
    	}
    	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
    		ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
    					  sa->uuid,
    					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
    					  root->root_key.objectid);
    		if (ret < 0 && ret != -EEXIST) {
    			btrfs_abort_transaction(trans, root, ret);
    			goto out;
    		}
    	}
    	ret = btrfs_commit_transaction(trans, root);
    	if (ret < 0) {
    		btrfs_abort_transaction(trans, root, ret);
    		goto out;
    	}
    
    out:
    	up_write(&root->fs_info->subvol_sem);
    	mnt_drop_write_file(file);
    	return ret;
    }
    
    #ifdef CONFIG_64BIT
    static long btrfs_ioctl_set_received_subvol_32(struct file *file,
    						void __user *arg)
    {
    	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
    	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
    	int ret = 0;
    
    	args32 = memdup_user(arg, sizeof(*args32));
    	if (IS_ERR(args32)) {
    		ret = PTR_ERR(args32);
    		args32 = NULL;
    		goto out;
    	}
    
    	args64 = kmalloc(sizeof(*args64), GFP_NOFS);
    	if (!args64) {
    		ret = -ENOMEM;
    		goto out;
    	}
    
    	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
    	args64->stransid = args32->stransid;
    	args64->rtransid = args32->rtransid;
    	args64->stime.sec = args32->stime.sec;
    	args64->stime.nsec = args32->stime.nsec;
    	args64->rtime.sec = args32->rtime.sec;
    	args64->rtime.nsec = args32->rtime.nsec;
    	args64->flags = args32->flags;
    
    	ret = _btrfs_ioctl_set_received_subvol(file, args64);
    	if (ret)
    		goto out;
    
    	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
    	args32->stransid = args64->stransid;
    	args32->rtransid = args64->rtransid;
    	args32->stime.sec = args64->stime.sec;
    	args32->stime.nsec = args64->stime.nsec;
    	args32->rtime.sec = args64->rtime.sec;
    	args32->rtime.nsec = args64->rtime.nsec;
    	args32->flags = args64->flags;
    
    	ret = copy_to_user(arg, args32, sizeof(*args32));
    	if (ret)
    		ret = -EFAULT;
    
    out:
    	kfree(args32);
    	kfree(args64);
    	return ret;
    }
    #endif
    
    static long btrfs_ioctl_set_received_subvol(struct file *file,
    					    void __user *arg)
    {
    	struct btrfs_ioctl_received_subvol_args *sa = NULL;
    	int ret = 0;
    
    	sa = memdup_user(arg, sizeof(*sa));
    	if (IS_ERR(sa)) {
    		ret = PTR_ERR(sa);
    		sa = NULL;
    		goto out;
    	}
    
    	ret = _btrfs_ioctl_set_received_subvol(file, sa);
    
    	if (ret)
    		goto out;
    
    	ret = copy_to_user(arg, sa, sizeof(*sa));
    	if (ret)
    		ret = -EFAULT;
    
    out:
    	kfree(sa);
    	return ret;
    }
    
    static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
    {
    	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
    	size_t len;
    	int ret;
    	char label[BTRFS_LABEL_SIZE];
    
    	spin_lock(&root->fs_info->super_lock);
    	memcpy(label, root->fs_info->super_copy->label, BTRFS_LABEL_SIZE);
    	spin_unlock(&root->fs_info->super_lock);
    
    	len = strnlen(label, BTRFS_LABEL_SIZE);
    
    	if (len == BTRFS_LABEL_SIZE) {
    		btrfs_warn(root->fs_info,
    			"label is too long, return the first %zu bytes", --len);
    	}
    
    	ret = copy_to_user(arg, label, len);
    
    	return ret ? -EFAULT : 0;
    }
    
    static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
    {
    	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
    	struct btrfs_super_block *super_block = root->fs_info->super_copy;
    	struct btrfs_trans_handle *trans;
    	char label[BTRFS_LABEL_SIZE];
    	int ret;
    
    	if (!capable(CAP_SYS_ADMIN))
    		return -EPERM;
    
    	if (copy_from_user(label, arg, sizeof(label)))
    		return -EFAULT;
    
    	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
    		btrfs_err(root->fs_info, "unable to set label with more than %d bytes",
    		       BTRFS_LABEL_SIZE - 1);
    		return -EINVAL;
    	}
    
    	ret = mnt_want_write_file(file);
    	if (ret)
    		return ret;
    
    	trans = btrfs_start_transaction(root, 0);
    	if (IS_ERR(trans)) {
    		ret = PTR_ERR(trans);
    		goto out_unlock;
    	}
    
    	spin_lock(&root->fs_info->super_lock);
    	strcpy(super_block->label, label);
    	spin_unlock(&root->fs_info->super_lock);
    	ret = btrfs_commit_transaction(trans, root);
    
    out_unlock:
    	mnt_drop_write_file(file);
    	return ret;
    }
    
    #define INIT_FEATURE_FLAGS(suffix) \
    	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
    	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
    	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
    
    static int btrfs_ioctl_get_supported_features(struct file *file,
    					      void __user *arg)
    {
    	static struct btrfs_ioctl_feature_flags features[3] = {
    		INIT_FEATURE_FLAGS(SUPP),
    		INIT_FEATURE_FLAGS(SAFE_SET),
    		INIT_FEATURE_FLAGS(SAFE_CLEAR)
    	};
    
    	if (copy_to_user(arg, &features, sizeof(features)))
    		return -EFAULT;
    
    	return 0;
    }
    
    static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
    {
    	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
    	struct btrfs_super_block *super_block = root->fs_info->super_copy;
    	struct btrfs_ioctl_feature_flags features;
    
    	features.compat_flags = btrfs_super_compat_flags(super_block);
    	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
    	features.incompat_flags = btrfs_super_incompat_flags(super_block);
    
    	if (copy_to_user(arg, &features, sizeof(features)))
    		return -EFAULT;
    
    	return 0;
    }
    
    static int check_feature_bits(struct btrfs_root *root,
    			      enum btrfs_feature_set set,
    			      u64 change_mask, u64 flags, u64 supported_flags,
    			      u64 safe_set, u64 safe_clear)
    {
    	const char *type = btrfs_feature_set_names[set];
    	char *names;
    	u64 disallowed, unsupported;
    	u64 set_mask = flags & change_mask;
    	u64 clear_mask = ~flags & change_mask;
    
    	unsupported = set_mask & ~supported_flags;
    	if (unsupported) {
    		names = btrfs_printable_features(set, unsupported);
    		if (names) {
    			btrfs_warn(root->fs_info,
    			   "this kernel does not support the %s feature bit%s",
    			   names, strchr(names, ',') ? "s" : "");
    			kfree(names);
    		} else
    			btrfs_warn(root->fs_info,
    			   "this kernel does not support %s bits 0x%llx",
    			   type, unsupported);
    		return -EOPNOTSUPP;
    	}
    
    	disallowed = set_mask & ~safe_set;
    	if (disallowed) {
    		names = btrfs_printable_features(set, disallowed);
    		if (names) {
    			btrfs_warn(root->fs_info,
    			   "can't set the %s feature bit%s while mounted",
    			   names, strchr(names, ',') ? "s" : "");
    			kfree(names);
    		} else
    			btrfs_warn(root->fs_info,
    			   "can't set %s bits 0x%llx while mounted",
    			   type, disallowed);
    		return -EPERM;
    	}
    
    	disallowed = clear_mask & ~safe_clear;
    	if (disallowed) {
    		names = btrfs_printable_features(set, disallowed);
    		if (names) {
    			btrfs_warn(root->fs_info,
    			   "can't clear the %s feature bit%s while mounted",
    			   names, strchr(names, ',') ? "s" : "");
    			kfree(names);
    		} else
    			btrfs_warn(root->fs_info,
    			   "can't clear %s bits 0x%llx while mounted",
    			   type, disallowed);
    		return -EPERM;
    	}
    
    	return 0;
    }
    
    #define check_feature(root, change_mask, flags, mask_base)	\
    check_feature_bits(root, FEAT_##mask_base, change_mask, flags,	\
    		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
    		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
    		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
    
    static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
    {
    	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
    	struct btrfs_super_block *super_block = root->fs_info->super_copy;
    	struct btrfs_ioctl_feature_flags flags[2];
    	struct btrfs_trans_handle *trans;
    	u64 newflags;
    	int ret;
    
    	if (!capable(CAP_SYS_ADMIN))
    		return -EPERM;
    
    	if (copy_from_user(flags, arg, sizeof(flags)))
    		return -EFAULT;
    
    	/* Nothing to do */
    	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
    	    !flags[0].incompat_flags)
    		return 0;
    
    	ret = check_feature(root, flags[0].compat_flags,
    			    flags[1].compat_flags, COMPAT);
    	if (ret)
    		return ret;
    
    	ret = check_feature(root, flags[0].compat_ro_flags,
    			    flags[1].compat_ro_flags, COMPAT_RO);
    	if (ret)
    		return ret;
    
    	ret = check_feature(root, flags[0].incompat_flags,
    			    flags[1].incompat_flags, INCOMPAT);
    	if (ret)
    		return ret;
    
    	trans = btrfs_start_transaction(root, 0);
    	if (IS_ERR(trans))
    		return PTR_ERR(trans);
    
    	spin_lock(&root->fs_info->super_lock);
    	newflags = btrfs_super_compat_flags(super_block);
    	newflags |= flags[0].compat_flags & flags[1].compat_flags;
    	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
    	btrfs_set_super_compat_flags(super_block, newflags);
    
    	newflags = btrfs_super_compat_ro_flags(super_block);
    	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
    	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
    	btrfs_set_super_compat_ro_flags(super_block, newflags);
    
    	newflags = btrfs_super_incompat_flags(super_block);
    	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
    	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
    	btrfs_set_super_incompat_flags(super_block, newflags);
    	spin_unlock(&root->fs_info->super_lock);
    
    	return btrfs_commit_transaction(trans, root);
    }
    
    long btrfs_ioctl(struct file *file, unsigned int
    		cmd, unsigned long arg)
    {
    	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
    	void __user *argp = (void __user *)arg;
    
    	switch (cmd) {
    	case FS_IOC_GETFLAGS:
    		return btrfs_ioctl_getflags(file, argp);
    	case FS_IOC_SETFLAGS:
    		return btrfs_ioctl_setflags(file, argp);
    	case FS_IOC_GETVERSION:
    		return btrfs_ioctl_getversion(file, argp);
    	case FITRIM:
    		return btrfs_ioctl_fitrim(file, argp);
    	case BTRFS_IOC_SNAP_CREATE:
    		return btrfs_ioctl_snap_create(file, argp, 0);
    	case BTRFS_IOC_SNAP_CREATE_V2:
    		return btrfs_ioctl_snap_create_v2(file, argp, 0);
    	case BTRFS_IOC_SUBVOL_CREATE:
    		return btrfs_ioctl_snap_create(file, argp, 1);
    	case BTRFS_IOC_SUBVOL_CREATE_V2:
    		return btrfs_ioctl_snap_create_v2(file, argp, 1);
    	case BTRFS_IOC_SNAP_DESTROY:
    		return btrfs_ioctl_snap_destroy(file, argp);
    	case BTRFS_IOC_SUBVOL_GETFLAGS:
    		return btrfs_ioctl_subvol_getflags(file, argp);
    	case BTRFS_IOC_SUBVOL_SETFLAGS:
    		return btrfs_ioctl_subvol_setflags(file, argp);
    	case BTRFS_IOC_DEFAULT_SUBVOL:
    		return btrfs_ioctl_default_subvol(file, argp);
    	case BTRFS_IOC_DEFRAG:
    		return btrfs_ioctl_defrag(file, NULL);
    	case BTRFS_IOC_DEFRAG_RANGE:
    		return btrfs_ioctl_defrag(file, argp);
    	case BTRFS_IOC_RESIZE:
    		return btrfs_ioctl_resize(file, argp);
    	case BTRFS_IOC_ADD_DEV:
    		return btrfs_ioctl_add_dev(root, argp);
    	case BTRFS_IOC_RM_DEV:
    		return btrfs_ioctl_rm_dev(file, argp);
    	case BTRFS_IOC_FS_INFO:
    		return btrfs_ioctl_fs_info(root, argp);
    	case BTRFS_IOC_DEV_INFO:
    		return btrfs_ioctl_dev_info(root, argp);
    	case BTRFS_IOC_BALANCE:
    		return btrfs_ioctl_balance(file, NULL);
    	case BTRFS_IOC_CLONE:
    		return btrfs_ioctl_clone(file, arg, 0, 0, 0);
    	case BTRFS_IOC_CLONE_RANGE:
    		return btrfs_ioctl_clone_range(file, argp);
    	case BTRFS_IOC_TRANS_START:
    		return btrfs_ioctl_trans_start(file);
    	case BTRFS_IOC_TRANS_END:
    		return btrfs_ioctl_trans_end(file);
    	case BTRFS_IOC_TREE_SEARCH:
    		return btrfs_ioctl_tree_search(file, argp);
    	case BTRFS_IOC_TREE_SEARCH_V2:
    		return btrfs_ioctl_tree_search_v2(file, argp);
    	case BTRFS_IOC_INO_LOOKUP:
    		return btrfs_ioctl_ino_lookup(file, argp);
    	case BTRFS_IOC_INO_PATHS:
    		return btrfs_ioctl_ino_to_path(root, argp);
    	case BTRFS_IOC_LOGICAL_INO:
    		return btrfs_ioctl_logical_to_ino(root, argp);
    	case BTRFS_IOC_SPACE_INFO:
    		return btrfs_ioctl_space_info(root, argp);
    	case BTRFS_IOC_SYNC: {
    		int ret;
    
    		ret = btrfs_start_delalloc_roots(root->fs_info, 0, -1);
    		if (ret)
    			return ret;
    		ret = btrfs_sync_fs(file_inode(file)->i_sb, 1);
    		/*
    		 * The transaction thread may want to do more work,
    		 * namely it pokes the cleaner ktread that will start
    		 * processing uncleaned subvols.
    		 */
    		wake_up_process(root->fs_info->transaction_kthread);
    		return ret;
    	}
    	case BTRFS_IOC_START_SYNC:
    		return btrfs_ioctl_start_sync(root, argp);
    	case BTRFS_IOC_WAIT_SYNC:
    		return btrfs_ioctl_wait_sync(root, argp);
    	case BTRFS_IOC_SCRUB:
    		return btrfs_ioctl_scrub(file, argp);
    	case BTRFS_IOC_SCRUB_CANCEL:
    		return btrfs_ioctl_scrub_cancel(root, argp);
    	case BTRFS_IOC_SCRUB_PROGRESS:
    		return btrfs_ioctl_scrub_progress(root, argp);
    	case BTRFS_IOC_BALANCE_V2:
    		return btrfs_ioctl_balance(file, argp);
    	case BTRFS_IOC_BALANCE_CTL:
    		return btrfs_ioctl_balance_ctl(root, arg);
    	case BTRFS_IOC_BALANCE_PROGRESS:
    		return btrfs_ioctl_balance_progress(root, argp);
    	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
    		return btrfs_ioctl_set_received_subvol(file, argp);
    #ifdef CONFIG_64BIT
    	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
    		return btrfs_ioctl_set_received_subvol_32(file, argp);
    #endif
    	case BTRFS_IOC_SEND:
    		return btrfs_ioctl_send(file, argp);
    	case BTRFS_IOC_GET_DEV_STATS:
    		return btrfs_ioctl_get_dev_stats(root, argp);
    	case BTRFS_IOC_QUOTA_CTL:
    		return btrfs_ioctl_quota_ctl(file, argp);
    	case BTRFS_IOC_QGROUP_ASSIGN:
    		return btrfs_ioctl_qgroup_assign(file, argp);
    	case BTRFS_IOC_QGROUP_CREATE:
    		return btrfs_ioctl_qgroup_create(file, argp);
    	case BTRFS_IOC_QGROUP_LIMIT:
    		return btrfs_ioctl_qgroup_limit(file, argp);
    	case BTRFS_IOC_QUOTA_RESCAN:
    		return btrfs_ioctl_quota_rescan(file, argp);
    	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
    		return btrfs_ioctl_quota_rescan_status(file, argp);
    	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
    		return btrfs_ioctl_quota_rescan_wait(file, argp);
    	case BTRFS_IOC_DEV_REPLACE:
    		return btrfs_ioctl_dev_replace(root, argp);
    	case BTRFS_IOC_GET_FSLABEL:
    		return btrfs_ioctl_get_fslabel(file, argp);
    	case BTRFS_IOC_SET_FSLABEL:
    		return btrfs_ioctl_set_fslabel(file, argp);
    	case BTRFS_IOC_FILE_EXTENT_SAME:
    		return btrfs_ioctl_file_extent_same(file, argp);
    	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
    		return btrfs_ioctl_get_supported_features(file, argp);
    	case BTRFS_IOC_GET_FEATURES:
    		return btrfs_ioctl_get_features(file, argp);
    	case BTRFS_IOC_SET_FEATURES:
    		return btrfs_ioctl_set_features(file, argp);
    	}
    
    	return -ENOTTY;
    }