Skip to content
Snippets Groups Projects
Select Git revision
  • 5f42aa394e50e4993ec370aca4bb36c3b6a81a60
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

amdgpu_mode.h

Blame
  • hrtimer.c 61.27 KiB
    // SPDX-License-Identifier: GPL-2.0
    /*
     *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
     *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
     *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
     *
     *  High-resolution kernel timers
     *
     *  In contrast to the low-resolution timeout API, aka timer wheel,
     *  hrtimers provide finer resolution and accuracy depending on system
     *  configuration and capabilities.
     *
     *  Started by: Thomas Gleixner and Ingo Molnar
     *
     *  Credits:
     *	Based on the original timer wheel code
     *
     *	Help, testing, suggestions, bugfixes, improvements were
     *	provided by:
     *
     *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
     *	et. al.
     */
    
    #include <linux/cpu.h>
    #include <linux/export.h>
    #include <linux/percpu.h>
    #include <linux/hrtimer.h>
    #include <linux/notifier.h>
    #include <linux/syscalls.h>
    #include <linux/interrupt.h>
    #include <linux/tick.h>
    #include <linux/err.h>
    #include <linux/debugobjects.h>
    #include <linux/sched/signal.h>
    #include <linux/sched/sysctl.h>
    #include <linux/sched/rt.h>
    #include <linux/sched/deadline.h>
    #include <linux/sched/nohz.h>
    #include <linux/sched/debug.h>
    #include <linux/timer.h>
    #include <linux/freezer.h>
    #include <linux/compat.h>
    
    #include <linux/uaccess.h>
    
    #include <trace/events/timer.h>
    
    #include "tick-internal.h"
    
    /*
     * Masks for selecting the soft and hard context timers from
     * cpu_base->active
     */
    #define MASK_SHIFT		(HRTIMER_BASE_MONOTONIC_SOFT)
    #define HRTIMER_ACTIVE_HARD	((1U << MASK_SHIFT) - 1)
    #define HRTIMER_ACTIVE_SOFT	(HRTIMER_ACTIVE_HARD << MASK_SHIFT)
    #define HRTIMER_ACTIVE_ALL	(HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)
    
    /*
     * The timer bases:
     *
     * There are more clockids than hrtimer bases. Thus, we index
     * into the timer bases by the hrtimer_base_type enum. When trying
     * to reach a base using a clockid, hrtimer_clockid_to_base()
     * is used to convert from clockid to the proper hrtimer_base_type.
     */
    DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
    {
    	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
    	.clock_base =
    	{
    		{
    			.index = HRTIMER_BASE_MONOTONIC,
    			.clockid = CLOCK_MONOTONIC,
    			.get_time = &ktime_get,
    		},
    		{
    			.index = HRTIMER_BASE_REALTIME,
    			.clockid = CLOCK_REALTIME,
    			.get_time = &ktime_get_real,
    		},
    		{
    			.index = HRTIMER_BASE_BOOTTIME,
    			.clockid = CLOCK_BOOTTIME,
    			.get_time = &ktime_get_boottime,
    		},
    		{
    			.index = HRTIMER_BASE_TAI,
    			.clockid = CLOCK_TAI,
    			.get_time = &ktime_get_clocktai,
    		},
    		{
    			.index = HRTIMER_BASE_MONOTONIC_SOFT,
    			.clockid = CLOCK_MONOTONIC,
    			.get_time = &ktime_get,
    		},
    		{
    			.index = HRTIMER_BASE_REALTIME_SOFT,
    			.clockid = CLOCK_REALTIME,
    			.get_time = &ktime_get_real,
    		},
    		{
    			.index = HRTIMER_BASE_BOOTTIME_SOFT,
    			.clockid = CLOCK_BOOTTIME,
    			.get_time = &ktime_get_boottime,
    		},
    		{
    			.index = HRTIMER_BASE_TAI_SOFT,
    			.clockid = CLOCK_TAI,
    			.get_time = &ktime_get_clocktai,
    		},
    	}
    };
    
    static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
    	/* Make sure we catch unsupported clockids */
    	[0 ... MAX_CLOCKS - 1]	= HRTIMER_MAX_CLOCK_BASES,
    
    	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
    	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
    	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
    	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
    };
    
    /*
     * Functions and macros which are different for UP/SMP systems are kept in a
     * single place
     */
    #ifdef CONFIG_SMP
    
    /*
     * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
     * such that hrtimer_callback_running() can unconditionally dereference
     * timer->base->cpu_base
     */
    static struct hrtimer_cpu_base migration_cpu_base = {
    	.clock_base = { {
    		.cpu_base = &migration_cpu_base,
    		.seq      = SEQCNT_RAW_SPINLOCK_ZERO(migration_cpu_base.seq,
    						     &migration_cpu_base.lock),
    	}, },
    };
    
    #define migration_base	migration_cpu_base.clock_base[0]
    
    static inline bool is_migration_base(struct hrtimer_clock_base *base)
    {
    	return base == &migration_base;
    }
    
    /*
     * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
     * means that all timers which are tied to this base via timer->base are
     * locked, and the base itself is locked too.
     *
     * So __run_timers/migrate_timers can safely modify all timers which could
     * be found on the lists/queues.
     *
     * When the timer's base is locked, and the timer removed from list, it is
     * possible to set timer->base = &migration_base and drop the lock: the timer
     * remains locked.
     */
    static
    struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
    					     unsigned long *flags)
    {
    	struct hrtimer_clock_base *base;
    
    	for (;;) {
    		base = READ_ONCE(timer->base);
    		if (likely(base != &migration_base)) {
    			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
    			if (likely(base == timer->base))
    				return base;
    			/* The timer has migrated to another CPU: */
    			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
    		}
    		cpu_relax();
    	}
    }
    
    /*
     * We do not migrate the timer when it is expiring before the next
     * event on the target cpu. When high resolution is enabled, we cannot
     * reprogram the target cpu hardware and we would cause it to fire
     * late. To keep it simple, we handle the high resolution enabled and
     * disabled case similar.
     *
     * Called with cpu_base->lock of target cpu held.
     */
    static int
    hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
    {
    	ktime_t expires;
    
    	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
    	return expires < new_base->cpu_base->expires_next;
    }
    
    static inline
    struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
    					 int pinned)
    {
    #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
    	if (static_branch_likely(&timers_migration_enabled) && !pinned)
    		return &per_cpu(hrtimer_bases, get_nohz_timer_target());
    #endif
    	return base;
    }
    
    /*
     * We switch the timer base to a power-optimized selected CPU target,
     * if:
     *	- NO_HZ_COMMON is enabled
     *	- timer migration is enabled
     *	- the timer callback is not running
     *	- the timer is not the first expiring timer on the new target
     *
     * If one of the above requirements is not fulfilled we move the timer
     * to the current CPU or leave it on the previously assigned CPU if
     * the timer callback is currently running.
     */
    static inline struct hrtimer_clock_base *
    switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
    		    int pinned)
    {
    	struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
    	struct hrtimer_clock_base *new_base;
    	int basenum = base->index;
    
    	this_cpu_base = this_cpu_ptr(&hrtimer_bases);
    	new_cpu_base = get_target_base(this_cpu_base, pinned);
    again:
    	new_base = &new_cpu_base->clock_base[basenum];
    
    	if (base != new_base) {
    		/*
    		 * We are trying to move timer to new_base.
    		 * However we can't change timer's base while it is running,
    		 * so we keep it on the same CPU. No hassle vs. reprogramming
    		 * the event source in the high resolution case. The softirq
    		 * code will take care of this when the timer function has
    		 * completed. There is no conflict as we hold the lock until
    		 * the timer is enqueued.
    		 */
    		if (unlikely(hrtimer_callback_running(timer)))
    			return base;
    
    		/* See the comment in lock_hrtimer_base() */
    		WRITE_ONCE(timer->base, &migration_base);
    		raw_spin_unlock(&base->cpu_base->lock);
    		raw_spin_lock(&new_base->cpu_base->lock);
    
    		if (new_cpu_base != this_cpu_base &&
    		    hrtimer_check_target(timer, new_base)) {
    			raw_spin_unlock(&new_base->cpu_base->lock);
    			raw_spin_lock(&base->cpu_base->lock);
    			new_cpu_base = this_cpu_base;
    			WRITE_ONCE(timer->base, base);
    			goto again;
    		}
    		WRITE_ONCE(timer->base, new_base);
    	} else {
    		if (new_cpu_base != this_cpu_base &&
    		    hrtimer_check_target(timer, new_base)) {
    			new_cpu_base = this_cpu_base;
    			goto again;
    		}
    	}
    	return new_base;
    }
    
    #else /* CONFIG_SMP */
    
    static inline bool is_migration_base(struct hrtimer_clock_base *base)
    {
    	return false;
    }
    
    static inline struct hrtimer_clock_base *
    lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
    {
    	struct hrtimer_clock_base *base = timer->base;
    
    	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
    
    	return base;
    }
    
    # define switch_hrtimer_base(t, b, p)	(b)
    
    #endif	/* !CONFIG_SMP */
    
    /*
     * Functions for the union type storage format of ktime_t which are
     * too large for inlining:
     */
    #if BITS_PER_LONG < 64
    /*
     * Divide a ktime value by a nanosecond value
     */
    s64 __ktime_divns(const ktime_t kt, s64 div)
    {
    	int sft = 0;
    	s64 dclc;
    	u64 tmp;
    
    	dclc = ktime_to_ns(kt);
    	tmp = dclc < 0 ? -dclc : dclc;
    
    	/* Make sure the divisor is less than 2^32: */
    	while (div >> 32) {
    		sft++;
    		div >>= 1;
    	}
    	tmp >>= sft;
    	do_div(tmp, (u32) div);
    	return dclc < 0 ? -tmp : tmp;
    }
    EXPORT_SYMBOL_GPL(__ktime_divns);
    #endif /* BITS_PER_LONG >= 64 */
    
    /*
     * Add two ktime values and do a safety check for overflow:
     */
    ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
    {
    	ktime_t res = ktime_add_unsafe(lhs, rhs);
    
    	/*
    	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
    	 * return to user space in a timespec:
    	 */
    	if (res < 0 || res < lhs || res < rhs)
    		res = ktime_set(KTIME_SEC_MAX, 0);
    
    	return res;
    }
    
    EXPORT_SYMBOL_GPL(ktime_add_safe);
    
    #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
    
    static const struct debug_obj_descr hrtimer_debug_descr;
    
    static void *hrtimer_debug_hint(void *addr)
    {
    	return ((struct hrtimer *) addr)->function;
    }
    
    /*
     * fixup_init is called when:
     * - an active object is initialized
     */
    static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
    {
    	struct hrtimer *timer = addr;
    
    	switch (state) {
    	case ODEBUG_STATE_ACTIVE:
    		hrtimer_cancel(timer);
    		debug_object_init(timer, &hrtimer_debug_descr);
    		return true;
    	default:
    		return false;
    	}
    }
    
    /*
     * fixup_activate is called when:
     * - an active object is activated
     * - an unknown non-static object is activated
     */
    static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
    {
    	switch (state) {
    	case ODEBUG_STATE_ACTIVE:
    		WARN_ON(1);
    		fallthrough;
    	default:
    		return false;
    	}
    }
    
    /*
     * fixup_free is called when:
     * - an active object is freed
     */
    static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
    {
    	struct hrtimer *timer = addr;
    
    	switch (state) {
    	case ODEBUG_STATE_ACTIVE:
    		hrtimer_cancel(timer);
    		debug_object_free(timer, &hrtimer_debug_descr);
    		return true;
    	default:
    		return false;
    	}
    }
    
    static const struct debug_obj_descr hrtimer_debug_descr = {
    	.name		= "hrtimer",
    	.debug_hint	= hrtimer_debug_hint,
    	.fixup_init	= hrtimer_fixup_init,
    	.fixup_activate	= hrtimer_fixup_activate,
    	.fixup_free	= hrtimer_fixup_free,
    };
    
    static inline void debug_hrtimer_init(struct hrtimer *timer)
    {
    	debug_object_init(timer, &hrtimer_debug_descr);
    }
    
    static inline void debug_hrtimer_activate(struct hrtimer *timer,
    					  enum hrtimer_mode mode)
    {
    	debug_object_activate(timer, &hrtimer_debug_descr);
    }
    
    static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
    {
    	debug_object_deactivate(timer, &hrtimer_debug_descr);
    }
    
    static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
    			   enum hrtimer_mode mode);
    
    void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
    			   enum hrtimer_mode mode)
    {
    	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
    	__hrtimer_init(timer, clock_id, mode);
    }
    EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
    
    static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
    				   clockid_t clock_id, enum hrtimer_mode mode);
    
    void hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper *sl,
    				   clockid_t clock_id, enum hrtimer_mode mode)
    {
    	debug_object_init_on_stack(&sl->timer, &hrtimer_debug_descr);
    	__hrtimer_init_sleeper(sl, clock_id, mode);
    }
    EXPORT_SYMBOL_GPL(hrtimer_init_sleeper_on_stack);
    
    void destroy_hrtimer_on_stack(struct hrtimer *timer)
    {
    	debug_object_free(timer, &hrtimer_debug_descr);
    }
    EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
    
    #else
    
    static inline void debug_hrtimer_init(struct hrtimer *timer) { }
    static inline void debug_hrtimer_activate(struct hrtimer *timer,
    					  enum hrtimer_mode mode) { }
    static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
    #endif
    
    static inline void
    debug_init(struct hrtimer *timer, clockid_t clockid,
    	   enum hrtimer_mode mode)
    {
    	debug_hrtimer_init(timer);
    	trace_hrtimer_init(timer, clockid, mode);
    }
    
    static inline void debug_activate(struct hrtimer *timer,
    				  enum hrtimer_mode mode)
    {
    	debug_hrtimer_activate(timer, mode);
    	trace_hrtimer_start(timer, mode);
    }
    
    static inline void debug_deactivate(struct hrtimer *timer)
    {
    	debug_hrtimer_deactivate(timer);
    	trace_hrtimer_cancel(timer);
    }
    
    static struct hrtimer_clock_base *
    __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
    {
    	unsigned int idx;
    
    	if (!*active)
    		return NULL;
    
    	idx = __ffs(*active);
    	*active &= ~(1U << idx);
    
    	return &cpu_base->clock_base[idx];
    }
    
    #define for_each_active_base(base, cpu_base, active)	\
    	while ((base = __next_base((cpu_base), &(active))))
    
    static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
    					 const struct hrtimer *exclude,
    					 unsigned int active,
    					 ktime_t expires_next)
    {
    	struct hrtimer_clock_base *base;
    	ktime_t expires;
    
    	for_each_active_base(base, cpu_base, active) {
    		struct timerqueue_node *next;
    		struct hrtimer *timer;
    
    		next = timerqueue_getnext(&base->active);
    		timer = container_of(next, struct hrtimer, node);
    		if (timer == exclude) {
    			/* Get to the next timer in the queue. */
    			next = timerqueue_iterate_next(next);
    			if (!next)
    				continue;
    
    			timer = container_of(next, struct hrtimer, node);
    		}
    		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
    		if (expires < expires_next) {
    			expires_next = expires;
    
    			/* Skip cpu_base update if a timer is being excluded. */
    			if (exclude)
    				continue;
    
    			if (timer->is_soft)
    				cpu_base->softirq_next_timer = timer;
    			else
    				cpu_base->next_timer = timer;
    		}
    	}
    	/*
    	 * clock_was_set() might have changed base->offset of any of
    	 * the clock bases so the result might be negative. Fix it up
    	 * to prevent a false positive in clockevents_program_event().
    	 */
    	if (expires_next < 0)
    		expires_next = 0;
    	return expires_next;
    }
    
    /*
     * Recomputes cpu_base::*next_timer and returns the earliest expires_next
     * but does not set cpu_base::*expires_next, that is done by
     * hrtimer[_force]_reprogram and hrtimer_interrupt only. When updating
     * cpu_base::*expires_next right away, reprogramming logic would no longer
     * work.
     *
     * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
     * those timers will get run whenever the softirq gets handled, at the end of
     * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
     *
     * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
     * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
     * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
     *
     * @active_mask must be one of:
     *  - HRTIMER_ACTIVE_ALL,
     *  - HRTIMER_ACTIVE_SOFT, or
     *  - HRTIMER_ACTIVE_HARD.
     */
    static ktime_t
    __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask)
    {
    	unsigned int active;
    	struct hrtimer *next_timer = NULL;
    	ktime_t expires_next = KTIME_MAX;
    
    	if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) {
    		active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
    		cpu_base->softirq_next_timer = NULL;
    		expires_next = __hrtimer_next_event_base(cpu_base, NULL,
    							 active, KTIME_MAX);
    
    		next_timer = cpu_base->softirq_next_timer;
    	}
    
    	if (active_mask & HRTIMER_ACTIVE_HARD) {
    		active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
    		cpu_base->next_timer = next_timer;
    		expires_next = __hrtimer_next_event_base(cpu_base, NULL, active,
    							 expires_next);
    	}
    
    	return expires_next;
    }
    
    static ktime_t hrtimer_update_next_event(struct hrtimer_cpu_base *cpu_base)
    {
    	ktime_t expires_next, soft = KTIME_MAX;
    
    	/*
    	 * If the soft interrupt has already been activated, ignore the
    	 * soft bases. They will be handled in the already raised soft
    	 * interrupt.
    	 */
    	if (!cpu_base->softirq_activated) {
    		soft = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
    		/*
    		 * Update the soft expiry time. clock_settime() might have
    		 * affected it.
    		 */
    		cpu_base->softirq_expires_next = soft;
    	}
    
    	expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_HARD);
    	/*
    	 * If a softirq timer is expiring first, update cpu_base->next_timer
    	 * and program the hardware with the soft expiry time.
    	 */
    	if (expires_next > soft) {
    		cpu_base->next_timer = cpu_base->softirq_next_timer;
    		expires_next = soft;
    	}
    
    	return expires_next;
    }
    
    static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
    {
    	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
    	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
    	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
    
    	ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq,
    					    offs_real, offs_boot, offs_tai);
    
    	base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real;
    	base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot;
    	base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai;
    
    	return now;
    }
    
    /*
     * Is the high resolution mode active ?
     */
    static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
    {
    	return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
    		cpu_base->hres_active : 0;
    }
    
    static inline int hrtimer_hres_active(void)
    {
    	return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
    }
    
    /*
     * Reprogram the event source with checking both queues for the
     * next event
     * Called with interrupts disabled and base->lock held
     */
    static void
    hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
    {
    	ktime_t expires_next;
    
    	expires_next = hrtimer_update_next_event(cpu_base);
    
    	if (skip_equal && expires_next == cpu_base->expires_next)
    		return;
    
    	cpu_base->expires_next = expires_next;
    
    	/*
    	 * If hres is not active, hardware does not have to be
    	 * reprogrammed yet.
    	 *
    	 * If a hang was detected in the last timer interrupt then we
    	 * leave the hang delay active in the hardware. We want the
    	 * system to make progress. That also prevents the following
    	 * scenario:
    	 * T1 expires 50ms from now
    	 * T2 expires 5s from now
    	 *
    	 * T1 is removed, so this code is called and would reprogram
    	 * the hardware to 5s from now. Any hrtimer_start after that
    	 * will not reprogram the hardware due to hang_detected being
    	 * set. So we'd effectivly block all timers until the T2 event
    	 * fires.
    	 */
    	if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
    		return;
    
    	tick_program_event(cpu_base->expires_next, 1);
    }
    
    /* High resolution timer related functions */
    #ifdef CONFIG_HIGH_RES_TIMERS
    
    /*
     * High resolution timer enabled ?
     */
    static bool hrtimer_hres_enabled __read_mostly  = true;
    unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
    EXPORT_SYMBOL_GPL(hrtimer_resolution);
    
    /*
     * Enable / Disable high resolution mode
     */
    static int __init setup_hrtimer_hres(char *str)
    {
    	return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
    }
    
    __setup("highres=", setup_hrtimer_hres);
    
    /*
     * hrtimer_high_res_enabled - query, if the highres mode is enabled
     */
    static inline int hrtimer_is_hres_enabled(void)
    {
    	return hrtimer_hres_enabled;
    }
    
    /*
     * Retrigger next event is called after clock was set
     *
     * Called with interrupts disabled via on_each_cpu()
     */
    static void retrigger_next_event(void *arg)
    {
    	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
    
    	if (!__hrtimer_hres_active(base))
    		return;
    
    	raw_spin_lock(&base->lock);
    	hrtimer_update_base(base);
    	hrtimer_force_reprogram(base, 0);
    	raw_spin_unlock(&base->lock);
    }
    
    /*
     * Switch to high resolution mode
     */
    static void hrtimer_switch_to_hres(void)
    {
    	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
    
    	if (tick_init_highres()) {
    		pr_warn("Could not switch to high resolution mode on CPU %u\n",
    			base->cpu);
    		return;
    	}
    	base->hres_active = 1;
    	hrtimer_resolution = HIGH_RES_NSEC;
    
    	tick_setup_sched_timer();
    	/* "Retrigger" the interrupt to get things going */
    	retrigger_next_event(NULL);
    }
    
    static void clock_was_set_work(struct work_struct *work)
    {
    	clock_was_set();
    }
    
    static DECLARE_WORK(hrtimer_work, clock_was_set_work);
    
    /*
     * Called from timekeeping and resume code to reprogram the hrtimer
     * interrupt device on all cpus.
     */
    void clock_was_set_delayed(void)
    {
    	schedule_work(&hrtimer_work);
    }
    
    #else
    
    static inline int hrtimer_is_hres_enabled(void) { return 0; }
    static inline void hrtimer_switch_to_hres(void) { }
    static inline void retrigger_next_event(void *arg) { }
    
    #endif /* CONFIG_HIGH_RES_TIMERS */
    
    /*
     * When a timer is enqueued and expires earlier than the already enqueued
     * timers, we have to check, whether it expires earlier than the timer for
     * which the clock event device was armed.
     *
     * Called with interrupts disabled and base->cpu_base.lock held
     */
    static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram)
    {
    	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
    	struct hrtimer_clock_base *base = timer->base;
    	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
    
    	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
    
    	/*
    	 * CLOCK_REALTIME timer might be requested with an absolute
    	 * expiry time which is less than base->offset. Set it to 0.
    	 */
    	if (expires < 0)
    		expires = 0;
    
    	if (timer->is_soft) {
    		/*
    		 * soft hrtimer could be started on a remote CPU. In this
    		 * case softirq_expires_next needs to be updated on the
    		 * remote CPU. The soft hrtimer will not expire before the
    		 * first hard hrtimer on the remote CPU -
    		 * hrtimer_check_target() prevents this case.
    		 */
    		struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base;
    
    		if (timer_cpu_base->softirq_activated)
    			return;
    
    		if (!ktime_before(expires, timer_cpu_base->softirq_expires_next))
    			return;
    
    		timer_cpu_base->softirq_next_timer = timer;
    		timer_cpu_base->softirq_expires_next = expires;
    
    		if (!ktime_before(expires, timer_cpu_base->expires_next) ||
    		    !reprogram)
    			return;
    	}
    
    	/*
    	 * If the timer is not on the current cpu, we cannot reprogram
    	 * the other cpus clock event device.
    	 */
    	if (base->cpu_base != cpu_base)
    		return;
    
    	/*
    	 * If the hrtimer interrupt is running, then it will
    	 * reevaluate the clock bases and reprogram the clock event
    	 * device. The callbacks are always executed in hard interrupt
    	 * context so we don't need an extra check for a running
    	 * callback.
    	 */
    	if (cpu_base->in_hrtirq)
    		return;
    
    	if (expires >= cpu_base->expires_next)
    		return;
    
    	/* Update the pointer to the next expiring timer */
    	cpu_base->next_timer = timer;
    	cpu_base->expires_next = expires;
    
    	/*
    	 * If hres is not active, hardware does not have to be
    	 * programmed yet.
    	 *
    	 * If a hang was detected in the last timer interrupt then we
    	 * do not schedule a timer which is earlier than the expiry
    	 * which we enforced in the hang detection. We want the system
    	 * to make progress.
    	 */
    	if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
    		return;
    
    	/*
    	 * Program the timer hardware. We enforce the expiry for
    	 * events which are already in the past.
    	 */
    	tick_program_event(expires, 1);
    }
    
    /*
     * Clock realtime was set
     *
     * Change the offset of the realtime clock vs. the monotonic
     * clock.
     *
     * We might have to reprogram the high resolution timer interrupt. On
     * SMP we call the architecture specific code to retrigger _all_ high
     * resolution timer interrupts. On UP we just disable interrupts and
     * call the high resolution interrupt code.
     */
    void clock_was_set(void)
    {
    #ifdef CONFIG_HIGH_RES_TIMERS
    	/* Retrigger the CPU local events everywhere */
    	on_each_cpu(retrigger_next_event, NULL, 1);
    #endif
    	timerfd_clock_was_set();
    }
    
    /*
     * During resume we might have to reprogram the high resolution timer
     * interrupt on all online CPUs.  However, all other CPUs will be
     * stopped with IRQs interrupts disabled so the clock_was_set() call
     * must be deferred.
     */
    void hrtimers_resume(void)
    {
    	lockdep_assert_irqs_disabled();
    	/* Retrigger on the local CPU */
    	retrigger_next_event(NULL);
    	/* And schedule a retrigger for all others */
    	clock_was_set_delayed();
    }
    
    /*
     * Counterpart to lock_hrtimer_base above:
     */
    static inline
    void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
    {
    	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
    }
    
    /**
     * hrtimer_forward - forward the timer expiry
     * @timer:	hrtimer to forward
     * @now:	forward past this time
     * @interval:	the interval to forward
     *
     * Forward the timer expiry so it will expire in the future.
     * Returns the number of overruns.
     *
     * Can be safely called from the callback function of @timer. If
     * called from other contexts @timer must neither be enqueued nor
     * running the callback and the caller needs to take care of
     * serialization.
     *
     * Note: This only updates the timer expiry value and does not requeue
     * the timer.
     */
    u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
    {
    	u64 orun = 1;
    	ktime_t delta;
    
    	delta = ktime_sub(now, hrtimer_get_expires(timer));
    
    	if (delta < 0)
    		return 0;
    
    	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
    		return 0;
    
    	if (interval < hrtimer_resolution)
    		interval = hrtimer_resolution;
    
    	if (unlikely(delta >= interval)) {
    		s64 incr = ktime_to_ns(interval);
    
    		orun = ktime_divns(delta, incr);
    		hrtimer_add_expires_ns(timer, incr * orun);
    		if (hrtimer_get_expires_tv64(timer) > now)
    			return orun;
    		/*
    		 * This (and the ktime_add() below) is the
    		 * correction for exact:
    		 */
    		orun++;
    	}
    	hrtimer_add_expires(timer, interval);
    
    	return orun;
    }
    EXPORT_SYMBOL_GPL(hrtimer_forward);
    
    /*
     * enqueue_hrtimer - internal function to (re)start a timer
     *
     * The timer is inserted in expiry order. Insertion into the
     * red black tree is O(log(n)). Must hold the base lock.
     *
     * Returns 1 when the new timer is the leftmost timer in the tree.
     */
    static int enqueue_hrtimer(struct hrtimer *timer,
    			   struct hrtimer_clock_base *base,
    			   enum hrtimer_mode mode)
    {
    	debug_activate(timer, mode);
    
    	base->cpu_base->active_bases |= 1 << base->index;
    
    	/* Pairs with the lockless read in hrtimer_is_queued() */
    	WRITE_ONCE(timer->state, HRTIMER_STATE_ENQUEUED);
    
    	return timerqueue_add(&base->active, &timer->node);
    }
    
    /*
     * __remove_hrtimer - internal function to remove a timer
     *
     * Caller must hold the base lock.
     *
     * High resolution timer mode reprograms the clock event device when the
     * timer is the one which expires next. The caller can disable this by setting
     * reprogram to zero. This is useful, when the context does a reprogramming
     * anyway (e.g. timer interrupt)
     */
    static void __remove_hrtimer(struct hrtimer *timer,
    			     struct hrtimer_clock_base *base,
    			     u8 newstate, int reprogram)
    {
    	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
    	u8 state = timer->state;
    
    	/* Pairs with the lockless read in hrtimer_is_queued() */
    	WRITE_ONCE(timer->state, newstate);
    	if (!(state & HRTIMER_STATE_ENQUEUED))
    		return;
    
    	if (!timerqueue_del(&base->active, &timer->node))
    		cpu_base->active_bases &= ~(1 << base->index);
    
    	/*
    	 * Note: If reprogram is false we do not update
    	 * cpu_base->next_timer. This happens when we remove the first
    	 * timer on a remote cpu. No harm as we never dereference
    	 * cpu_base->next_timer. So the worst thing what can happen is
    	 * an superflous call to hrtimer_force_reprogram() on the
    	 * remote cpu later on if the same timer gets enqueued again.
    	 */
    	if (reprogram && timer == cpu_base->next_timer)
    		hrtimer_force_reprogram(cpu_base, 1);
    }
    
    /*
     * remove hrtimer, called with base lock held
     */
    static inline int
    remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
    {
    	u8 state = timer->state;
    
    	if (state & HRTIMER_STATE_ENQUEUED) {
    		int reprogram;
    
    		/*
    		 * Remove the timer and force reprogramming when high
    		 * resolution mode is active and the timer is on the current
    		 * CPU. If we remove a timer on another CPU, reprogramming is
    		 * skipped. The interrupt event on this CPU is fired and
    		 * reprogramming happens in the interrupt handler. This is a
    		 * rare case and less expensive than a smp call.
    		 */
    		debug_deactivate(timer);
    		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
    
    		if (!restart)
    			state = HRTIMER_STATE_INACTIVE;
    
    		__remove_hrtimer(timer, base, state, reprogram);
    		return 1;
    	}
    	return 0;
    }
    
    static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
    					    const enum hrtimer_mode mode)
    {
    #ifdef CONFIG_TIME_LOW_RES
    	/*
    	 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
    	 * granular time values. For relative timers we add hrtimer_resolution
    	 * (i.e. one jiffie) to prevent short timeouts.
    	 */
    	timer->is_rel = mode & HRTIMER_MODE_REL;
    	if (timer->is_rel)
    		tim = ktime_add_safe(tim, hrtimer_resolution);
    #endif
    	return tim;
    }
    
    static void
    hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram)
    {
    	ktime_t expires;
    
    	/*
    	 * Find the next SOFT expiration.
    	 */
    	expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
    
    	/*
    	 * reprogramming needs to be triggered, even if the next soft
    	 * hrtimer expires at the same time than the next hard
    	 * hrtimer. cpu_base->softirq_expires_next needs to be updated!
    	 */
    	if (expires == KTIME_MAX)
    		return;
    
    	/*
    	 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
    	 * cpu_base->*expires_next is only set by hrtimer_reprogram()
    	 */
    	hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram);
    }
    
    static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
    				    u64 delta_ns, const enum hrtimer_mode mode,
    				    struct hrtimer_clock_base *base)
    {
    	struct hrtimer_clock_base *new_base;
    
    	/* Remove an active timer from the queue: */
    	remove_hrtimer(timer, base, true);
    
    	if (mode & HRTIMER_MODE_REL)
    		tim = ktime_add_safe(tim, base->get_time());
    
    	tim = hrtimer_update_lowres(timer, tim, mode);
    
    	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
    
    	/* Switch the timer base, if necessary: */
    	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
    
    	return enqueue_hrtimer(timer, new_base, mode);
    }
    
    /**
     * hrtimer_start_range_ns - (re)start an hrtimer
     * @timer:	the timer to be added
     * @tim:	expiry time
     * @delta_ns:	"slack" range for the timer
     * @mode:	timer mode: absolute (HRTIMER_MODE_ABS) or
     *		relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
     *		softirq based mode is considered for debug purpose only!
     */
    void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
    			    u64 delta_ns, const enum hrtimer_mode mode)
    {
    	struct hrtimer_clock_base *base;
    	unsigned long flags;
    
    	/*
    	 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
    	 * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard
    	 * expiry mode because unmarked timers are moved to softirq expiry.
    	 */
    	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
    		WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft);
    	else
    		WARN_ON_ONCE(!(mode & HRTIMER_MODE_HARD) ^ !timer->is_hard);
    
    	base = lock_hrtimer_base(timer, &flags);
    
    	if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
    		hrtimer_reprogram(timer, true);
    
    	unlock_hrtimer_base(timer, &flags);
    }
    EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
    
    /**
     * hrtimer_try_to_cancel - try to deactivate a timer
     * @timer:	hrtimer to stop
     *
     * Returns:
     *
     *  *  0 when the timer was not active
     *  *  1 when the timer was active
     *  * -1 when the timer is currently executing the callback function and
     *    cannot be stopped
     */
    int hrtimer_try_to_cancel(struct hrtimer *timer)
    {
    	struct hrtimer_clock_base *base;
    	unsigned long flags;
    	int ret = -1;
    
    	/*
    	 * Check lockless first. If the timer is not active (neither
    	 * enqueued nor running the callback, nothing to do here.  The
    	 * base lock does not serialize against a concurrent enqueue,
    	 * so we can avoid taking it.
    	 */
    	if (!hrtimer_active(timer))
    		return 0;
    
    	base = lock_hrtimer_base(timer, &flags);
    
    	if (!hrtimer_callback_running(timer))
    		ret = remove_hrtimer(timer, base, false);
    
    	unlock_hrtimer_base(timer, &flags);
    
    	return ret;
    
    }
    EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
    
    #ifdef CONFIG_PREEMPT_RT
    static void hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base)
    {
    	spin_lock_init(&base->softirq_expiry_lock);
    }
    
    static void hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base)
    {
    	spin_lock(&base->softirq_expiry_lock);
    }
    
    static void hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base)
    {
    	spin_unlock(&base->softirq_expiry_lock);
    }
    
    /*
     * The counterpart to hrtimer_cancel_wait_running().
     *
     * If there is a waiter for cpu_base->expiry_lock, then it was waiting for
     * the timer callback to finish. Drop expiry_lock and reaquire it. That
     * allows the waiter to acquire the lock and make progress.
     */
    static void hrtimer_sync_wait_running(struct hrtimer_cpu_base *cpu_base,
    				      unsigned long flags)
    {
    	if (atomic_read(&cpu_base->timer_waiters)) {
    		raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
    		spin_unlock(&cpu_base->softirq_expiry_lock);
    		spin_lock(&cpu_base->softirq_expiry_lock);
    		raw_spin_lock_irq(&cpu_base->lock);
    	}
    }
    
    /*
     * This function is called on PREEMPT_RT kernels when the fast path
     * deletion of a timer failed because the timer callback function was
     * running.
     *
     * This prevents priority inversion: if the soft irq thread is preempted
     * in the middle of a timer callback, then calling del_timer_sync() can
     * lead to two issues:
     *
     *  - If the caller is on a remote CPU then it has to spin wait for the timer
     *    handler to complete. This can result in unbound priority inversion.
     *
     *  - If the caller originates from the task which preempted the timer
     *    handler on the same CPU, then spin waiting for the timer handler to
     *    complete is never going to end.
     */
    void hrtimer_cancel_wait_running(const struct hrtimer *timer)
    {
    	/* Lockless read. Prevent the compiler from reloading it below */
    	struct hrtimer_clock_base *base = READ_ONCE(timer->base);
    
    	/*
    	 * Just relax if the timer expires in hard interrupt context or if
    	 * it is currently on the migration base.
    	 */
    	if (!timer->is_soft || is_migration_base(base)) {
    		cpu_relax();
    		return;
    	}
    
    	/*
    	 * Mark the base as contended and grab the expiry lock, which is
    	 * held by the softirq across the timer callback. Drop the lock
    	 * immediately so the softirq can expire the next timer. In theory
    	 * the timer could already be running again, but that's more than
    	 * unlikely and just causes another wait loop.
    	 */
    	atomic_inc(&base->cpu_base->timer_waiters);
    	spin_lock_bh(&base->cpu_base->softirq_expiry_lock);
    	atomic_dec(&base->cpu_base->timer_waiters);
    	spin_unlock_bh(&base->cpu_base->softirq_expiry_lock);
    }
    #else
    static inline void
    hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) { }
    static inline void
    hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) { }
    static inline void
    hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) { }
    static inline void hrtimer_sync_wait_running(struct hrtimer_cpu_base *base,
    					     unsigned long flags) { }
    #endif
    
    /**
     * hrtimer_cancel - cancel a timer and wait for the handler to finish.
     * @timer:	the timer to be cancelled
     *
     * Returns:
     *  0 when the timer was not active
     *  1 when the timer was active
     */
    int hrtimer_cancel(struct hrtimer *timer)
    {
    	int ret;
    
    	do {
    		ret = hrtimer_try_to_cancel(timer);
    
    		if (ret < 0)
    			hrtimer_cancel_wait_running(timer);
    	} while (ret < 0);
    	return ret;
    }
    EXPORT_SYMBOL_GPL(hrtimer_cancel);
    
    /**
     * __hrtimer_get_remaining - get remaining time for the timer
     * @timer:	the timer to read
     * @adjust:	adjust relative timers when CONFIG_TIME_LOW_RES=y
     */
    ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
    {
    	unsigned long flags;
    	ktime_t rem;
    
    	lock_hrtimer_base(timer, &flags);
    	if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
    		rem = hrtimer_expires_remaining_adjusted(timer);
    	else
    		rem = hrtimer_expires_remaining(timer);
    	unlock_hrtimer_base(timer, &flags);
    
    	return rem;
    }
    EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
    
    #ifdef CONFIG_NO_HZ_COMMON
    /**
     * hrtimer_get_next_event - get the time until next expiry event
     *
     * Returns the next expiry time or KTIME_MAX if no timer is pending.
     */
    u64 hrtimer_get_next_event(void)
    {
    	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
    	u64 expires = KTIME_MAX;
    	unsigned long flags;
    
    	raw_spin_lock_irqsave(&cpu_base->lock, flags);
    
    	if (!__hrtimer_hres_active(cpu_base))
    		expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
    
    	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
    
    	return expires;
    }
    
    /**
     * hrtimer_next_event_without - time until next expiry event w/o one timer
     * @exclude:	timer to exclude
     *
     * Returns the next expiry time over all timers except for the @exclude one or
     * KTIME_MAX if none of them is pending.
     */
    u64 hrtimer_next_event_without(const struct hrtimer *exclude)
    {
    	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
    	u64 expires = KTIME_MAX;
    	unsigned long flags;
    
    	raw_spin_lock_irqsave(&cpu_base->lock, flags);
    
    	if (__hrtimer_hres_active(cpu_base)) {
    		unsigned int active;
    
    		if (!cpu_base->softirq_activated) {
    			active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
    			expires = __hrtimer_next_event_base(cpu_base, exclude,
    							    active, KTIME_MAX);
    		}
    		active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
    		expires = __hrtimer_next_event_base(cpu_base, exclude, active,
    						    expires);
    	}
    
    	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
    
    	return expires;
    }
    #endif
    
    static inline int hrtimer_clockid_to_base(clockid_t clock_id)
    {
    	if (likely(clock_id < MAX_CLOCKS)) {
    		int base = hrtimer_clock_to_base_table[clock_id];
    
    		if (likely(base != HRTIMER_MAX_CLOCK_BASES))
    			return base;
    	}
    	WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
    	return HRTIMER_BASE_MONOTONIC;
    }
    
    static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
    			   enum hrtimer_mode mode)
    {
    	bool softtimer = !!(mode & HRTIMER_MODE_SOFT);
    	struct hrtimer_cpu_base *cpu_base;
    	int base;
    
    	/*
    	 * On PREEMPT_RT enabled kernels hrtimers which are not explicitely
    	 * marked for hard interrupt expiry mode are moved into soft
    	 * interrupt context for latency reasons and because the callbacks
    	 * can invoke functions which might sleep on RT, e.g. spin_lock().
    	 */
    	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(mode & HRTIMER_MODE_HARD))
    		softtimer = true;
    
    	memset(timer, 0, sizeof(struct hrtimer));
    
    	cpu_base = raw_cpu_ptr(&hrtimer_bases);
    
    	/*
    	 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
    	 * clock modifications, so they needs to become CLOCK_MONOTONIC to
    	 * ensure POSIX compliance.
    	 */
    	if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
    		clock_id = CLOCK_MONOTONIC;
    
    	base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0;
    	base += hrtimer_clockid_to_base(clock_id);
    	timer->is_soft = softtimer;
    	timer->is_hard = !!(mode & HRTIMER_MODE_HARD);
    	timer->base = &cpu_base->clock_base[base];
    	timerqueue_init(&timer->node);
    }
    
    /**
     * hrtimer_init - initialize a timer to the given clock
     * @timer:	the timer to be initialized
     * @clock_id:	the clock to be used
     * @mode:       The modes which are relevant for intitialization:
     *              HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
     *              HRTIMER_MODE_REL_SOFT
     *
     *              The PINNED variants of the above can be handed in,
     *              but the PINNED bit is ignored as pinning happens
     *              when the hrtimer is started
     */
    void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
    		  enum hrtimer_mode mode)
    {
    	debug_init(timer, clock_id, mode);
    	__hrtimer_init(timer, clock_id, mode);
    }
    EXPORT_SYMBOL_GPL(hrtimer_init);
    
    /*
     * A timer is active, when it is enqueued into the rbtree or the
     * callback function is running or it's in the state of being migrated
     * to another cpu.
     *
     * It is important for this function to not return a false negative.
     */
    bool hrtimer_active(const struct hrtimer *timer)
    {
    	struct hrtimer_clock_base *base;
    	unsigned int seq;
    
    	do {
    		base = READ_ONCE(timer->base);
    		seq = raw_read_seqcount_begin(&base->seq);
    
    		if (timer->state != HRTIMER_STATE_INACTIVE ||
    		    base->running == timer)
    			return true;
    
    	} while (read_seqcount_retry(&base->seq, seq) ||
    		 base != READ_ONCE(timer->base));
    
    	return false;
    }
    EXPORT_SYMBOL_GPL(hrtimer_active);
    
    /*
     * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
     * distinct sections:
     *
     *  - queued:	the timer is queued
     *  - callback:	the timer is being ran
     *  - post:	the timer is inactive or (re)queued
     *
     * On the read side we ensure we observe timer->state and cpu_base->running
     * from the same section, if anything changed while we looked at it, we retry.
     * This includes timer->base changing because sequence numbers alone are
     * insufficient for that.
     *
     * The sequence numbers are required because otherwise we could still observe
     * a false negative if the read side got smeared over multiple consequtive
     * __run_hrtimer() invocations.
     */
    
    static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
    			  struct hrtimer_clock_base *base,
    			  struct hrtimer *timer, ktime_t *now,
    			  unsigned long flags) __must_hold(&cpu_base->lock)
    {
    	enum hrtimer_restart (*fn)(struct hrtimer *);
    	bool expires_in_hardirq;
    	int restart;
    
    	lockdep_assert_held(&cpu_base->lock);
    
    	debug_deactivate(timer);
    	base->running = timer;
    
    	/*
    	 * Separate the ->running assignment from the ->state assignment.
    	 *
    	 * As with a regular write barrier, this ensures the read side in
    	 * hrtimer_active() cannot observe base->running == NULL &&
    	 * timer->state == INACTIVE.
    	 */
    	raw_write_seqcount_barrier(&base->seq);
    
    	__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
    	fn = timer->function;
    
    	/*
    	 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
    	 * timer is restarted with a period then it becomes an absolute
    	 * timer. If its not restarted it does not matter.
    	 */
    	if (IS_ENABLED(CONFIG_TIME_LOW_RES))
    		timer->is_rel = false;
    
    	/*
    	 * The timer is marked as running in the CPU base, so it is
    	 * protected against migration to a different CPU even if the lock
    	 * is dropped.
    	 */
    	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
    	trace_hrtimer_expire_entry(timer, now);
    	expires_in_hardirq = lockdep_hrtimer_enter(timer);
    
    	restart = fn(timer);
    
    	lockdep_hrtimer_exit(expires_in_hardirq);
    	trace_hrtimer_expire_exit(timer);
    	raw_spin_lock_irq(&cpu_base->lock);
    
    	/*
    	 * Note: We clear the running state after enqueue_hrtimer and
    	 * we do not reprogram the event hardware. Happens either in
    	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
    	 *
    	 * Note: Because we dropped the cpu_base->lock above,
    	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
    	 * for us already.
    	 */
    	if (restart != HRTIMER_NORESTART &&
    	    !(timer->state & HRTIMER_STATE_ENQUEUED))
    		enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
    
    	/*
    	 * Separate the ->running assignment from the ->state assignment.
    	 *
    	 * As with a regular write barrier, this ensures the read side in
    	 * hrtimer_active() cannot observe base->running.timer == NULL &&
    	 * timer->state == INACTIVE.
    	 */
    	raw_write_seqcount_barrier(&base->seq);
    
    	WARN_ON_ONCE(base->running != timer);
    	base->running = NULL;
    }
    
    static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
    				 unsigned long flags, unsigned int active_mask)
    {
    	struct hrtimer_clock_base *base;
    	unsigned int active = cpu_base->active_bases & active_mask;
    
    	for_each_active_base(base, cpu_base, active) {
    		struct timerqueue_node *node;
    		ktime_t basenow;
    
    		basenow = ktime_add(now, base->offset);
    
    		while ((node = timerqueue_getnext(&base->active))) {
    			struct hrtimer *timer;
    
    			timer = container_of(node, struct hrtimer, node);
    
    			/*
    			 * The immediate goal for using the softexpires is
    			 * minimizing wakeups, not running timers at the
    			 * earliest interrupt after their soft expiration.
    			 * This allows us to avoid using a Priority Search
    			 * Tree, which can answer a stabbing querry for
    			 * overlapping intervals and instead use the simple
    			 * BST we already have.
    			 * We don't add extra wakeups by delaying timers that
    			 * are right-of a not yet expired timer, because that
    			 * timer will have to trigger a wakeup anyway.
    			 */
    			if (basenow < hrtimer_get_softexpires_tv64(timer))
    				break;
    
    			__run_hrtimer(cpu_base, base, timer, &basenow, flags);
    			if (active_mask == HRTIMER_ACTIVE_SOFT)
    				hrtimer_sync_wait_running(cpu_base, flags);
    		}
    	}
    }
    
    static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h)
    {
    	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
    	unsigned long flags;
    	ktime_t now;
    
    	hrtimer_cpu_base_lock_expiry(cpu_base);
    	raw_spin_lock_irqsave(&cpu_base->lock, flags);
    
    	now = hrtimer_update_base(cpu_base);
    	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT);
    
    	cpu_base->softirq_activated = 0;
    	hrtimer_update_softirq_timer(cpu_base, true);
    
    	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
    	hrtimer_cpu_base_unlock_expiry(cpu_base);
    }
    
    #ifdef CONFIG_HIGH_RES_TIMERS
    
    /*
     * High resolution timer interrupt
     * Called with interrupts disabled
     */
    void hrtimer_interrupt(struct clock_event_device *dev)
    {
    	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
    	ktime_t expires_next, now, entry_time, delta;
    	unsigned long flags;
    	int retries = 0;
    
    	BUG_ON(!cpu_base->hres_active);
    	cpu_base->nr_events++;
    	dev->next_event = KTIME_MAX;
    
    	raw_spin_lock_irqsave(&cpu_base->lock, flags);
    	entry_time = now = hrtimer_update_base(cpu_base);
    retry:
    	cpu_base->in_hrtirq = 1;
    	/*
    	 * We set expires_next to KTIME_MAX here with cpu_base->lock
    	 * held to prevent that a timer is enqueued in our queue via
    	 * the migration code. This does not affect enqueueing of
    	 * timers which run their callback and need to be requeued on
    	 * this CPU.
    	 */
    	cpu_base->expires_next = KTIME_MAX;
    
    	if (!ktime_before(now, cpu_base->softirq_expires_next)) {
    		cpu_base->softirq_expires_next = KTIME_MAX;
    		cpu_base->softirq_activated = 1;
    		raise_softirq_irqoff(HRTIMER_SOFTIRQ);
    	}
    
    	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
    
    	/* Reevaluate the clock bases for the [soft] next expiry */
    	expires_next = hrtimer_update_next_event(cpu_base);
    	/*
    	 * Store the new expiry value so the migration code can verify
    	 * against it.
    	 */
    	cpu_base->expires_next = expires_next;
    	cpu_base->in_hrtirq = 0;
    	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
    
    	/* Reprogramming necessary ? */
    	if (!tick_program_event(expires_next, 0)) {
    		cpu_base->hang_detected = 0;
    		return;
    	}
    
    	/*
    	 * The next timer was already expired due to:
    	 * - tracing
    	 * - long lasting callbacks
    	 * - being scheduled away when running in a VM
    	 *
    	 * We need to prevent that we loop forever in the hrtimer
    	 * interrupt routine. We give it 3 attempts to avoid
    	 * overreacting on some spurious event.
    	 *
    	 * Acquire base lock for updating the offsets and retrieving
    	 * the current time.
    	 */
    	raw_spin_lock_irqsave(&cpu_base->lock, flags);
    	now = hrtimer_update_base(cpu_base);
    	cpu_base->nr_retries++;
    	if (++retries < 3)
    		goto retry;
    	/*
    	 * Give the system a chance to do something else than looping
    	 * here. We stored the entry time, so we know exactly how long
    	 * we spent here. We schedule the next event this amount of
    	 * time away.
    	 */
    	cpu_base->nr_hangs++;
    	cpu_base->hang_detected = 1;
    	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
    
    	delta = ktime_sub(now, entry_time);
    	if ((unsigned int)delta > cpu_base->max_hang_time)
    		cpu_base->max_hang_time = (unsigned int) delta;
    	/*
    	 * Limit it to a sensible value as we enforce a longer
    	 * delay. Give the CPU at least 100ms to catch up.
    	 */
    	if (delta > 100 * NSEC_PER_MSEC)
    		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
    	else
    		expires_next = ktime_add(now, delta);
    	tick_program_event(expires_next, 1);
    	pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta));
    }
    
    /* called with interrupts disabled */
    static inline void __hrtimer_peek_ahead_timers(void)
    {
    	struct tick_device *td;
    
    	if (!hrtimer_hres_active())
    		return;
    
    	td = this_cpu_ptr(&tick_cpu_device);
    	if (td && td->evtdev)
    		hrtimer_interrupt(td->evtdev);
    }
    
    #else /* CONFIG_HIGH_RES_TIMERS */
    
    static inline void __hrtimer_peek_ahead_timers(void) { }
    
    #endif	/* !CONFIG_HIGH_RES_TIMERS */
    
    /*
     * Called from run_local_timers in hardirq context every jiffy
     */
    void hrtimer_run_queues(void)
    {
    	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
    	unsigned long flags;
    	ktime_t now;
    
    	if (__hrtimer_hres_active(cpu_base))
    		return;
    
    	/*
    	 * This _is_ ugly: We have to check periodically, whether we
    	 * can switch to highres and / or nohz mode. The clocksource
    	 * switch happens with xtime_lock held. Notification from
    	 * there only sets the check bit in the tick_oneshot code,
    	 * otherwise we might deadlock vs. xtime_lock.
    	 */
    	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
    		hrtimer_switch_to_hres();
    		return;
    	}
    
    	raw_spin_lock_irqsave(&cpu_base->lock, flags);
    	now = hrtimer_update_base(cpu_base);
    
    	if (!ktime_before(now, cpu_base->softirq_expires_next)) {
    		cpu_base->softirq_expires_next = KTIME_MAX;
    		cpu_base->softirq_activated = 1;
    		raise_softirq_irqoff(HRTIMER_SOFTIRQ);
    	}
    
    	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
    	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
    }
    
    /*
     * Sleep related functions:
     */
    static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
    {
    	struct hrtimer_sleeper *t =
    		container_of(timer, struct hrtimer_sleeper, timer);
    	struct task_struct *task = t->task;
    
    	t->task = NULL;
    	if (task)
    		wake_up_process(task);
    
    	return HRTIMER_NORESTART;
    }
    
    /**
     * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer
     * @sl:		sleeper to be started
     * @mode:	timer mode abs/rel
     *
     * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers
     * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context)
     */
    void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl,
    				   enum hrtimer_mode mode)
    {
    	/*
    	 * Make the enqueue delivery mode check work on RT. If the sleeper
    	 * was initialized for hard interrupt delivery, force the mode bit.
    	 * This is a special case for hrtimer_sleepers because
    	 * hrtimer_init_sleeper() determines the delivery mode on RT so the
    	 * fiddling with this decision is avoided at the call sites.
    	 */
    	if (IS_ENABLED(CONFIG_PREEMPT_RT) && sl->timer.is_hard)
    		mode |= HRTIMER_MODE_HARD;
    
    	hrtimer_start_expires(&sl->timer, mode);
    }
    EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires);
    
    static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
    				   clockid_t clock_id, enum hrtimer_mode mode)
    {
    	/*
    	 * On PREEMPT_RT enabled kernels hrtimers which are not explicitely
    	 * marked for hard interrupt expiry mode are moved into soft
    	 * interrupt context either for latency reasons or because the
    	 * hrtimer callback takes regular spinlocks or invokes other
    	 * functions which are not suitable for hard interrupt context on
    	 * PREEMPT_RT.
    	 *
    	 * The hrtimer_sleeper callback is RT compatible in hard interrupt
    	 * context, but there is a latency concern: Untrusted userspace can
    	 * spawn many threads which arm timers for the same expiry time on
    	 * the same CPU. That causes a latency spike due to the wakeup of
    	 * a gazillion threads.
    	 *
    	 * OTOH, priviledged real-time user space applications rely on the
    	 * low latency of hard interrupt wakeups. If the current task is in
    	 * a real-time scheduling class, mark the mode for hard interrupt
    	 * expiry.
    	 */
    	if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
    		if (task_is_realtime(current) && !(mode & HRTIMER_MODE_SOFT))
    			mode |= HRTIMER_MODE_HARD;
    	}
    
    	__hrtimer_init(&sl->timer, clock_id, mode);
    	sl->timer.function = hrtimer_wakeup;
    	sl->task = current;
    }
    
    /**
     * hrtimer_init_sleeper - initialize sleeper to the given clock
     * @sl:		sleeper to be initialized
     * @clock_id:	the clock to be used
     * @mode:	timer mode abs/rel
     */
    void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, clockid_t clock_id,
    			  enum hrtimer_mode mode)
    {
    	debug_init(&sl->timer, clock_id, mode);
    	__hrtimer_init_sleeper(sl, clock_id, mode);
    
    }
    EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
    
    int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
    {
    	switch(restart->nanosleep.type) {
    #ifdef CONFIG_COMPAT_32BIT_TIME
    	case TT_COMPAT:
    		if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp))
    			return -EFAULT;
    		break;
    #endif
    	case TT_NATIVE:
    		if (put_timespec64(ts, restart->nanosleep.rmtp))
    			return -EFAULT;
    		break;
    	default:
    		BUG();
    	}
    	return -ERESTART_RESTARTBLOCK;
    }
    
    static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
    {
    	struct restart_block *restart;
    
    	do {
    		set_current_state(TASK_INTERRUPTIBLE);
    		hrtimer_sleeper_start_expires(t, mode);
    
    		if (likely(t->task))
    			freezable_schedule();
    
    		hrtimer_cancel(&t->timer);
    		mode = HRTIMER_MODE_ABS;
    
    	} while (t->task && !signal_pending(current));
    
    	__set_current_state(TASK_RUNNING);
    
    	if (!t->task)
    		return 0;
    
    	restart = &current->restart_block;
    	if (restart->nanosleep.type != TT_NONE) {
    		ktime_t rem = hrtimer_expires_remaining(&t->timer);
    		struct timespec64 rmt;
    
    		if (rem <= 0)
    			return 0;
    		rmt = ktime_to_timespec64(rem);
    
    		return nanosleep_copyout(restart, &rmt);
    	}
    	return -ERESTART_RESTARTBLOCK;
    }
    
    static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
    {
    	struct hrtimer_sleeper t;
    	int ret;
    
    	hrtimer_init_sleeper_on_stack(&t, restart->nanosleep.clockid,
    				      HRTIMER_MODE_ABS);
    	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
    	ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
    	destroy_hrtimer_on_stack(&t.timer);
    	return ret;
    }
    
    long hrtimer_nanosleep(ktime_t rqtp, const enum hrtimer_mode mode,
    		       const clockid_t clockid)
    {
    	struct restart_block *restart;
    	struct hrtimer_sleeper t;
    	int ret = 0;
    	u64 slack;
    
    	slack = current->timer_slack_ns;
    	if (dl_task(current) || rt_task(current))
    		slack = 0;
    
    	hrtimer_init_sleeper_on_stack(&t, clockid, mode);
    	hrtimer_set_expires_range_ns(&t.timer, rqtp, slack);
    	ret = do_nanosleep(&t, mode);
    	if (ret != -ERESTART_RESTARTBLOCK)
    		goto out;
    
    	/* Absolute timers do not update the rmtp value and restart: */
    	if (mode == HRTIMER_MODE_ABS) {
    		ret = -ERESTARTNOHAND;
    		goto out;
    	}
    
    	restart = &current->restart_block;
    	restart->fn = hrtimer_nanosleep_restart;
    	restart->nanosleep.clockid = t.timer.base->clockid;
    	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
    out:
    	destroy_hrtimer_on_stack(&t.timer);
    	return ret;
    }
    
    #ifdef CONFIG_64BIT
    
    SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp,
    		struct __kernel_timespec __user *, rmtp)
    {
    	struct timespec64 tu;
    
    	if (get_timespec64(&tu, rqtp))
    		return -EFAULT;
    
    	if (!timespec64_valid(&tu))
    		return -EINVAL;
    
    	current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
    	current->restart_block.nanosleep.rmtp = rmtp;
    	return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
    				 CLOCK_MONOTONIC);
    }
    
    #endif
    
    #ifdef CONFIG_COMPAT_32BIT_TIME
    
    SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp,
    		       struct old_timespec32 __user *, rmtp)
    {
    	struct timespec64 tu;
    
    	if (get_old_timespec32(&tu, rqtp))
    		return -EFAULT;
    
    	if (!timespec64_valid(&tu))
    		return -EINVAL;
    
    	current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
    	current->restart_block.nanosleep.compat_rmtp = rmtp;
    	return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
    				 CLOCK_MONOTONIC);
    }
    #endif
    
    /*
     * Functions related to boot-time initialization:
     */
    int hrtimers_prepare_cpu(unsigned int cpu)
    {
    	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
    	int i;
    
    	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
    		struct hrtimer_clock_base *clock_b = &cpu_base->clock_base[i];
    
    		clock_b->cpu_base = cpu_base;
    		seqcount_raw_spinlock_init(&clock_b->seq, &cpu_base->lock);
    		timerqueue_init_head(&clock_b->active);
    	}
    
    	cpu_base->cpu = cpu;
    	cpu_base->active_bases = 0;
    	cpu_base->hres_active = 0;
    	cpu_base->hang_detected = 0;
    	cpu_base->next_timer = NULL;
    	cpu_base->softirq_next_timer = NULL;
    	cpu_base->expires_next = KTIME_MAX;
    	cpu_base->softirq_expires_next = KTIME_MAX;
    	hrtimer_cpu_base_init_expiry_lock(cpu_base);
    	return 0;
    }
    
    #ifdef CONFIG_HOTPLUG_CPU
    
    static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
    				struct hrtimer_clock_base *new_base)
    {
    	struct hrtimer *timer;
    	struct timerqueue_node *node;
    
    	while ((node = timerqueue_getnext(&old_base->active))) {
    		timer = container_of(node, struct hrtimer, node);
    		BUG_ON(hrtimer_callback_running(timer));
    		debug_deactivate(timer);
    
    		/*
    		 * Mark it as ENQUEUED not INACTIVE otherwise the
    		 * timer could be seen as !active and just vanish away
    		 * under us on another CPU
    		 */
    		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
    		timer->base = new_base;
    		/*
    		 * Enqueue the timers on the new cpu. This does not
    		 * reprogram the event device in case the timer
    		 * expires before the earliest on this CPU, but we run
    		 * hrtimer_interrupt after we migrated everything to
    		 * sort out already expired timers and reprogram the
    		 * event device.
    		 */
    		enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
    	}
    }
    
    int hrtimers_dead_cpu(unsigned int scpu)
    {
    	struct hrtimer_cpu_base *old_base, *new_base;
    	int i;
    
    	BUG_ON(cpu_online(scpu));
    	tick_cancel_sched_timer(scpu);
    
    	/*
    	 * this BH disable ensures that raise_softirq_irqoff() does
    	 * not wakeup ksoftirqd (and acquire the pi-lock) while
    	 * holding the cpu_base lock
    	 */
    	local_bh_disable();
    	local_irq_disable();
    	old_base = &per_cpu(hrtimer_bases, scpu);
    	new_base = this_cpu_ptr(&hrtimer_bases);
    	/*
    	 * The caller is globally serialized and nobody else
    	 * takes two locks at once, deadlock is not possible.
    	 */
    	raw_spin_lock(&new_base->lock);
    	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
    
    	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
    		migrate_hrtimer_list(&old_base->clock_base[i],
    				     &new_base->clock_base[i]);
    	}
    
    	/*
    	 * The migration might have changed the first expiring softirq
    	 * timer on this CPU. Update it.
    	 */
    	hrtimer_update_softirq_timer(new_base, false);
    
    	raw_spin_unlock(&old_base->lock);
    	raw_spin_unlock(&new_base->lock);
    
    	/* Check, if we got expired work to do */
    	__hrtimer_peek_ahead_timers();
    	local_irq_enable();
    	local_bh_enable();
    	return 0;
    }
    
    #endif /* CONFIG_HOTPLUG_CPU */
    
    void __init hrtimers_init(void)
    {
    	hrtimers_prepare_cpu(smp_processor_id());
    	open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
    }
    
    /**
     * schedule_hrtimeout_range_clock - sleep until timeout
     * @expires:	timeout value (ktime_t)
     * @delta:	slack in expires timeout (ktime_t)
     * @mode:	timer mode
     * @clock_id:	timer clock to be used
     */
    int __sched
    schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
    			       const enum hrtimer_mode mode, clockid_t clock_id)
    {
    	struct hrtimer_sleeper t;
    
    	/*
    	 * Optimize when a zero timeout value is given. It does not
    	 * matter whether this is an absolute or a relative time.
    	 */
    	if (expires && *expires == 0) {
    		__set_current_state(TASK_RUNNING);
    		return 0;
    	}
    
    	/*
    	 * A NULL parameter means "infinite"
    	 */
    	if (!expires) {
    		schedule();
    		return -EINTR;
    	}
    
    	hrtimer_init_sleeper_on_stack(&t, clock_id, mode);
    	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
    	hrtimer_sleeper_start_expires(&t, mode);
    
    	if (likely(t.task))
    		schedule();
    
    	hrtimer_cancel(&t.timer);
    	destroy_hrtimer_on_stack(&t.timer);
    
    	__set_current_state(TASK_RUNNING);
    
    	return !t.task ? 0 : -EINTR;
    }
    
    /**
     * schedule_hrtimeout_range - sleep until timeout
     * @expires:	timeout value (ktime_t)
     * @delta:	slack in expires timeout (ktime_t)
     * @mode:	timer mode
     *
     * Make the current task sleep until the given expiry time has
     * elapsed. The routine will return immediately unless
     * the current task state has been set (see set_current_state()).
     *
     * The @delta argument gives the kernel the freedom to schedule the
     * actual wakeup to a time that is both power and performance friendly.
     * The kernel give the normal best effort behavior for "@expires+@delta",
     * but may decide to fire the timer earlier, but no earlier than @expires.
     *
     * You can set the task state as follows -
     *
     * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
     * pass before the routine returns unless the current task is explicitly
     * woken up, (e.g. by wake_up_process()).
     *
     * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
     * delivered to the current task or the current task is explicitly woken
     * up.
     *
     * The current task state is guaranteed to be TASK_RUNNING when this
     * routine returns.
     *
     * Returns 0 when the timer has expired. If the task was woken before the
     * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
     * by an explicit wakeup, it returns -EINTR.
     */
    int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
    				     const enum hrtimer_mode mode)
    {
    	return schedule_hrtimeout_range_clock(expires, delta, mode,
    					      CLOCK_MONOTONIC);
    }
    EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
    
    /**
     * schedule_hrtimeout - sleep until timeout
     * @expires:	timeout value (ktime_t)
     * @mode:	timer mode
     *
     * Make the current task sleep until the given expiry time has
     * elapsed. The routine will return immediately unless
     * the current task state has been set (see set_current_state()).
     *
     * You can set the task state as follows -
     *
     * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
     * pass before the routine returns unless the current task is explicitly
     * woken up, (e.g. by wake_up_process()).
     *
     * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
     * delivered to the current task or the current task is explicitly woken
     * up.
     *
     * The current task state is guaranteed to be TASK_RUNNING when this
     * routine returns.
     *
     * Returns 0 when the timer has expired. If the task was woken before the
     * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
     * by an explicit wakeup, it returns -EINTR.
     */
    int __sched schedule_hrtimeout(ktime_t *expires,
    			       const enum hrtimer_mode mode)
    {
    	return schedule_hrtimeout_range(expires, 0, mode);
    }
    EXPORT_SYMBOL_GPL(schedule_hrtimeout);