Skip to content
Snippets Groups Projects
Select Git revision
  • 60e50f34b13e9e40763be12aa55f2144d8da514c
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

mcf_pgtable.h

Blame
    • Mike Rapoport's avatar
      60e50f34
      m68k: mm: use pgtable-nopXd instead of 4level-fixup · 60e50f34
      Mike Rapoport authored
      m68k has two or three levels of page tables and can use appropriate
      pgtable-nopXd and folding of the upper layers.
      
      Replace usage of include/asm-generic/4level-fixup.h and explicit
      definitions of __PAGETABLE_PxD_FOLDED in m68k with
      include/asm-generic/pgtable-nopmd.h for two-level configurations and
      with include/asm-generic/pgtable-nopud.h for three-lelve configurations
      and adjust page table manipulation macros and functions accordingly.
      
      [akpm@linux-foundation.org: fix merge glitch]
      [geert@linux-m68k.org: more merge glitch fixes]
      [akpm@linux-foundation.org: s/bad_pgd/bad_pud/, per Mike]
      Link: http://lkml.kernel.org/r/1572938135-31886-6-git-send-email-rppt@kernel.org
      
      
      Signed-off-by: default avatarMike Rapoport <rppt@linux.ibm.com>
      Acked-by: default avatarGreg Ungerer <gerg@linux-m68k.org>
      Cc: Anatoly Pugachev <matorola@gmail.com>
      Cc: Anton Ivanov <anton.ivanov@cambridgegreys.com>
      Cc: Arnd Bergmann <arnd@arndb.de>
      Cc: "David S. Miller" <davem@davemloft.net>
      Cc: Geert Uytterhoeven <geert@linux-m68k.org>
      Cc: Greentime Hu <green.hu@gmail.com>
      Cc: Helge Deller <deller@gmx.de>
      Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
      Cc: Jeff Dike <jdike@addtoit.com>
      Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
      Cc: Mark Salter <msalter@redhat.com>
      Cc: Matt Turner <mattst88@gmail.com>
      Cc: Michal Simek <monstr@monstr.eu>
      Cc: Peter Rosin <peda@axentia.se>
      Cc: Richard Weinberger <richard@nod.at>
      Cc: Rolf Eike Beer <eike-kernel@sf-tec.de>
      Cc: Russell King <linux@armlinux.org.uk>
      Cc: Russell King <rmk+kernel@armlinux.org.uk>
      Cc: Sam Creasey <sammy@sammy.net>
      Cc: Vincent Chen <deanbo422@gmail.com>
      Cc: Vineet Gupta <Vineet.Gupta1@synopsys.com>
      Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
      60e50f34
      History
      m68k: mm: use pgtable-nopXd instead of 4level-fixup
      Mike Rapoport authored
      m68k has two or three levels of page tables and can use appropriate
      pgtable-nopXd and folding of the upper layers.
      
      Replace usage of include/asm-generic/4level-fixup.h and explicit
      definitions of __PAGETABLE_PxD_FOLDED in m68k with
      include/asm-generic/pgtable-nopmd.h for two-level configurations and
      with include/asm-generic/pgtable-nopud.h for three-lelve configurations
      and adjust page table manipulation macros and functions accordingly.
      
      [akpm@linux-foundation.org: fix merge glitch]
      [geert@linux-m68k.org: more merge glitch fixes]
      [akpm@linux-foundation.org: s/bad_pgd/bad_pud/, per Mike]
      Link: http://lkml.kernel.org/r/1572938135-31886-6-git-send-email-rppt@kernel.org
      
      
      Signed-off-by: default avatarMike Rapoport <rppt@linux.ibm.com>
      Acked-by: default avatarGreg Ungerer <gerg@linux-m68k.org>
      Cc: Anatoly Pugachev <matorola@gmail.com>
      Cc: Anton Ivanov <anton.ivanov@cambridgegreys.com>
      Cc: Arnd Bergmann <arnd@arndb.de>
      Cc: "David S. Miller" <davem@davemloft.net>
      Cc: Geert Uytterhoeven <geert@linux-m68k.org>
      Cc: Greentime Hu <green.hu@gmail.com>
      Cc: Helge Deller <deller@gmx.de>
      Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
      Cc: Jeff Dike <jdike@addtoit.com>
      Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
      Cc: Mark Salter <msalter@redhat.com>
      Cc: Matt Turner <mattst88@gmail.com>
      Cc: Michal Simek <monstr@monstr.eu>
      Cc: Peter Rosin <peda@axentia.se>
      Cc: Richard Weinberger <richard@nod.at>
      Cc: Rolf Eike Beer <eike-kernel@sf-tec.de>
      Cc: Russell King <linux@armlinux.org.uk>
      Cc: Russell King <rmk+kernel@armlinux.org.uk>
      Cc: Sam Creasey <sammy@sammy.net>
      Cc: Vincent Chen <deanbo422@gmail.com>
      Cc: Vineet Gupta <Vineet.Gupta1@synopsys.com>
      Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
      Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
    vmstat.c 47.33 KiB
    /*
     *  linux/mm/vmstat.c
     *
     *  Manages VM statistics
     *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
     *
     *  zoned VM statistics
     *  Copyright (C) 2006 Silicon Graphics, Inc.,
     *		Christoph Lameter <christoph@lameter.com>
     *  Copyright (C) 2008-2014 Christoph Lameter
     */
    #include <linux/fs.h>
    #include <linux/mm.h>
    #include <linux/err.h>
    #include <linux/module.h>
    #include <linux/slab.h>
    #include <linux/cpu.h>
    #include <linux/cpumask.h>
    #include <linux/vmstat.h>
    #include <linux/proc_fs.h>
    #include <linux/seq_file.h>
    #include <linux/debugfs.h>
    #include <linux/sched.h>
    #include <linux/math64.h>
    #include <linux/writeback.h>
    #include <linux/compaction.h>
    #include <linux/mm_inline.h>
    #include <linux/page_ext.h>
    #include <linux/page_owner.h>
    
    #include "internal.h"
    
    #ifdef CONFIG_VM_EVENT_COUNTERS
    DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
    EXPORT_PER_CPU_SYMBOL(vm_event_states);
    
    static void sum_vm_events(unsigned long *ret)
    {
    	int cpu;
    	int i;
    
    	memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
    
    	for_each_online_cpu(cpu) {
    		struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
    
    		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
    			ret[i] += this->event[i];
    	}
    }
    
    /*
     * Accumulate the vm event counters across all CPUs.
     * The result is unavoidably approximate - it can change
     * during and after execution of this function.
    */
    void all_vm_events(unsigned long *ret)
    {
    	get_online_cpus();
    	sum_vm_events(ret);
    	put_online_cpus();
    }
    EXPORT_SYMBOL_GPL(all_vm_events);
    
    /*
     * Fold the foreign cpu events into our own.
     *
     * This is adding to the events on one processor
     * but keeps the global counts constant.
     */
    void vm_events_fold_cpu(int cpu)
    {
    	struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
    	int i;
    
    	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
    		count_vm_events(i, fold_state->event[i]);
    		fold_state->event[i] = 0;
    	}
    }
    
    #endif /* CONFIG_VM_EVENT_COUNTERS */
    
    /*
     * Manage combined zone based / global counters
     *
     * vm_stat contains the global counters
     */
    atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
    atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
    EXPORT_SYMBOL(vm_zone_stat);
    EXPORT_SYMBOL(vm_node_stat);
    
    #ifdef CONFIG_SMP
    
    int calculate_pressure_threshold(struct zone *zone)
    {
    	int threshold;
    	int watermark_distance;
    
    	/*
    	 * As vmstats are not up to date, there is drift between the estimated
    	 * and real values. For high thresholds and a high number of CPUs, it
    	 * is possible for the min watermark to be breached while the estimated
    	 * value looks fine. The pressure threshold is a reduced value such
    	 * that even the maximum amount of drift will not accidentally breach
    	 * the min watermark
    	 */
    	watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
    	threshold = max(1, (int)(watermark_distance / num_online_cpus()));
    
    	/*
    	 * Maximum threshold is 125
    	 */
    	threshold = min(125, threshold);
    
    	return threshold;
    }
    
    int calculate_normal_threshold(struct zone *zone)
    {
    	int threshold;
    	int mem;	/* memory in 128 MB units */
    
    	/*
    	 * The threshold scales with the number of processors and the amount
    	 * of memory per zone. More memory means that we can defer updates for
    	 * longer, more processors could lead to more contention.
     	 * fls() is used to have a cheap way of logarithmic scaling.
    	 *
    	 * Some sample thresholds:
    	 *
    	 * Threshold	Processors	(fls)	Zonesize	fls(mem+1)
    	 * ------------------------------------------------------------------
    	 * 8		1		1	0.9-1 GB	4
    	 * 16		2		2	0.9-1 GB	4
    	 * 20 		2		2	1-2 GB		5
    	 * 24		2		2	2-4 GB		6
    	 * 28		2		2	4-8 GB		7
    	 * 32		2		2	8-16 GB		8
    	 * 4		2		2	<128M		1
    	 * 30		4		3	2-4 GB		5
    	 * 48		4		3	8-16 GB		8
    	 * 32		8		4	1-2 GB		4
    	 * 32		8		4	0.9-1GB		4
    	 * 10		16		5	<128M		1
    	 * 40		16		5	900M		4
    	 * 70		64		7	2-4 GB		5
    	 * 84		64		7	4-8 GB		6
    	 * 108		512		9	4-8 GB		6
    	 * 125		1024		10	8-16 GB		8
    	 * 125		1024		10	16-32 GB	9
    	 */
    
    	mem = zone->managed_pages >> (27 - PAGE_SHIFT);
    
    	threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
    
    	/*
    	 * Maximum threshold is 125
    	 */
    	threshold = min(125, threshold);
    
    	return threshold;
    }
    
    /*
     * Refresh the thresholds for each zone.
     */
    void refresh_zone_stat_thresholds(void)
    {
    	struct pglist_data *pgdat;
    	struct zone *zone;
    	int cpu;
    	int threshold;
    
    	/* Zero current pgdat thresholds */
    	for_each_online_pgdat(pgdat) {
    		for_each_online_cpu(cpu) {
    			per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
    		}
    	}
    
    	for_each_populated_zone(zone) {
    		struct pglist_data *pgdat = zone->zone_pgdat;
    		unsigned long max_drift, tolerate_drift;
    
    		threshold = calculate_normal_threshold(zone);
    
    		for_each_online_cpu(cpu) {
    			int pgdat_threshold;
    
    			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
    							= threshold;
    
    			/* Base nodestat threshold on the largest populated zone. */
    			pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
    			per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
    				= max(threshold, pgdat_threshold);
    		}
    
    		/*
    		 * Only set percpu_drift_mark if there is a danger that
    		 * NR_FREE_PAGES reports the low watermark is ok when in fact
    		 * the min watermark could be breached by an allocation
    		 */
    		tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
    		max_drift = num_online_cpus() * threshold;
    		if (max_drift > tolerate_drift)
    			zone->percpu_drift_mark = high_wmark_pages(zone) +
    					max_drift;
    	}
    }
    
    void set_pgdat_percpu_threshold(pg_data_t *pgdat,
    				int (*calculate_pressure)(struct zone *))
    {
    	struct zone *zone;
    	int cpu;
    	int threshold;
    	int i;
    
    	for (i = 0; i < pgdat->nr_zones; i++) {
    		zone = &pgdat->node_zones[i];
    		if (!zone->percpu_drift_mark)
    			continue;
    
    		threshold = (*calculate_pressure)(zone);
    		for_each_online_cpu(cpu)
    			per_cpu_ptr(zone->pageset, cpu)->stat_threshold
    							= threshold;
    	}
    }
    
    /*
     * For use when we know that interrupts are disabled,
     * or when we know that preemption is disabled and that
     * particular counter cannot be updated from interrupt context.
     */
    void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
    			   long delta)
    {
    	struct per_cpu_pageset __percpu *pcp = zone->pageset;
    	s8 __percpu *p = pcp->vm_stat_diff + item;
    	long x;
    	long t;
    
    	x = delta + __this_cpu_read(*p);
    
    	t = __this_cpu_read(pcp->stat_threshold);
    
    	if (unlikely(x > t || x < -t)) {
    		zone_page_state_add(x, zone, item);
    		x = 0;
    	}
    	__this_cpu_write(*p, x);
    }
    EXPORT_SYMBOL(__mod_zone_page_state);
    
    void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
    				long delta)
    {
    	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
    	s8 __percpu *p = pcp->vm_node_stat_diff + item;
    	long x;
    	long t;
    
    	x = delta + __this_cpu_read(*p);
    
    	t = __this_cpu_read(pcp->stat_threshold);
    
    	if (unlikely(x > t || x < -t)) {
    		node_page_state_add(x, pgdat, item);
    		x = 0;
    	}
    	__this_cpu_write(*p, x);
    }
    EXPORT_SYMBOL(__mod_node_page_state);
    
    /*
     * Optimized increment and decrement functions.
     *
     * These are only for a single page and therefore can take a struct page *
     * argument instead of struct zone *. This allows the inclusion of the code
     * generated for page_zone(page) into the optimized functions.
     *
     * No overflow check is necessary and therefore the differential can be
     * incremented or decremented in place which may allow the compilers to
     * generate better code.
     * The increment or decrement is known and therefore one boundary check can
     * be omitted.
     *
     * NOTE: These functions are very performance sensitive. Change only
     * with care.
     *
     * Some processors have inc/dec instructions that are atomic vs an interrupt.
     * However, the code must first determine the differential location in a zone
     * based on the processor number and then inc/dec the counter. There is no
     * guarantee without disabling preemption that the processor will not change
     * in between and therefore the atomicity vs. interrupt cannot be exploited
     * in a useful way here.
     */
    void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
    {
    	struct per_cpu_pageset __percpu *pcp = zone->pageset;
    	s8 __percpu *p = pcp->vm_stat_diff + item;
    	s8 v, t;
    
    	v = __this_cpu_inc_return(*p);
    	t = __this_cpu_read(pcp->stat_threshold);
    	if (unlikely(v > t)) {
    		s8 overstep = t >> 1;
    
    		zone_page_state_add(v + overstep, zone, item);
    		__this_cpu_write(*p, -overstep);
    	}
    }
    
    void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
    {
    	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
    	s8 __percpu *p = pcp->vm_node_stat_diff + item;
    	s8 v, t;
    
    	v = __this_cpu_inc_return(*p);
    	t = __this_cpu_read(pcp->stat_threshold);
    	if (unlikely(v > t)) {
    		s8 overstep = t >> 1;
    
    		node_page_state_add(v + overstep, pgdat, item);
    		__this_cpu_write(*p, -overstep);
    	}
    }
    
    void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
    {
    	__inc_zone_state(page_zone(page), item);
    }
    EXPORT_SYMBOL(__inc_zone_page_state);
    
    void __inc_node_page_state(struct page *page, enum node_stat_item item)
    {
    	__inc_node_state(page_pgdat(page), item);
    }
    EXPORT_SYMBOL(__inc_node_page_state);
    
    void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
    {
    	struct per_cpu_pageset __percpu *pcp = zone->pageset;
    	s8 __percpu *p = pcp->vm_stat_diff + item;
    	s8 v, t;
    
    	v = __this_cpu_dec_return(*p);
    	t = __this_cpu_read(pcp->stat_threshold);
    	if (unlikely(v < - t)) {
    		s8 overstep = t >> 1;
    
    		zone_page_state_add(v - overstep, zone, item);
    		__this_cpu_write(*p, overstep);
    	}
    }
    
    void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
    {
    	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
    	s8 __percpu *p = pcp->vm_node_stat_diff + item;
    	s8 v, t;
    
    	v = __this_cpu_dec_return(*p);
    	t = __this_cpu_read(pcp->stat_threshold);
    	if (unlikely(v < - t)) {
    		s8 overstep = t >> 1;
    
    		node_page_state_add(v - overstep, pgdat, item);
    		__this_cpu_write(*p, overstep);
    	}
    }
    
    void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
    {
    	__dec_zone_state(page_zone(page), item);
    }
    EXPORT_SYMBOL(__dec_zone_page_state);
    
    void __dec_node_page_state(struct page *page, enum node_stat_item item)
    {
    	__dec_node_state(page_pgdat(page), item);
    }
    EXPORT_SYMBOL(__dec_node_page_state);
    
    #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
    /*
     * If we have cmpxchg_local support then we do not need to incur the overhead
     * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
     *
     * mod_state() modifies the zone counter state through atomic per cpu
     * operations.
     *
     * Overstep mode specifies how overstep should handled:
     *     0       No overstepping
     *     1       Overstepping half of threshold
     *     -1      Overstepping minus half of threshold
    */
    static inline void mod_zone_state(struct zone *zone,
           enum zone_stat_item item, long delta, int overstep_mode)
    {
    	struct per_cpu_pageset __percpu *pcp = zone->pageset;
    	s8 __percpu *p = pcp->vm_stat_diff + item;
    	long o, n, t, z;
    
    	do {
    		z = 0;  /* overflow to zone counters */
    
    		/*
    		 * The fetching of the stat_threshold is racy. We may apply
    		 * a counter threshold to the wrong the cpu if we get
    		 * rescheduled while executing here. However, the next
    		 * counter update will apply the threshold again and
    		 * therefore bring the counter under the threshold again.
    		 *
    		 * Most of the time the thresholds are the same anyways
    		 * for all cpus in a zone.
    		 */
    		t = this_cpu_read(pcp->stat_threshold);
    
    		o = this_cpu_read(*p);
    		n = delta + o;
    
    		if (n > t || n < -t) {
    			int os = overstep_mode * (t >> 1) ;
    
    			/* Overflow must be added to zone counters */
    			z = n + os;
    			n = -os;
    		}
    	} while (this_cpu_cmpxchg(*p, o, n) != o);
    
    	if (z)
    		zone_page_state_add(z, zone, item);
    }
    
    void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
    			 long delta)
    {
    	mod_zone_state(zone, item, delta, 0);
    }
    EXPORT_SYMBOL(mod_zone_page_state);
    
    void inc_zone_page_state(struct page *page, enum zone_stat_item item)
    {
    	mod_zone_state(page_zone(page), item, 1, 1);
    }
    EXPORT_SYMBOL(inc_zone_page_state);
    
    void dec_zone_page_state(struct page *page, enum zone_stat_item item)
    {
    	mod_zone_state(page_zone(page), item, -1, -1);
    }
    EXPORT_SYMBOL(dec_zone_page_state);
    
    static inline void mod_node_state(struct pglist_data *pgdat,
           enum node_stat_item item, int delta, int overstep_mode)
    {
    	struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
    	s8 __percpu *p = pcp->vm_node_stat_diff + item;
    	long o, n, t, z;
    
    	do {
    		z = 0;  /* overflow to node counters */
    
    		/*
    		 * The fetching of the stat_threshold is racy. We may apply
    		 * a counter threshold to the wrong the cpu if we get
    		 * rescheduled while executing here. However, the next
    		 * counter update will apply the threshold again and
    		 * therefore bring the counter under the threshold again.
    		 *
    		 * Most of the time the thresholds are the same anyways
    		 * for all cpus in a node.
    		 */
    		t = this_cpu_read(pcp->stat_threshold);
    
    		o = this_cpu_read(*p);
    		n = delta + o;
    
    		if (n > t || n < -t) {
    			int os = overstep_mode * (t >> 1) ;
    
    			/* Overflow must be added to node counters */
    			z = n + os;
    			n = -os;
    		}
    	} while (this_cpu_cmpxchg(*p, o, n) != o);
    
    	if (z)
    		node_page_state_add(z, pgdat, item);
    }
    
    void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
    					long delta)
    {
    	mod_node_state(pgdat, item, delta, 0);
    }
    EXPORT_SYMBOL(mod_node_page_state);
    
    void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
    {
    	mod_node_state(pgdat, item, 1, 1);
    }
    
    void inc_node_page_state(struct page *page, enum node_stat_item item)
    {
    	mod_node_state(page_pgdat(page), item, 1, 1);
    }
    EXPORT_SYMBOL(inc_node_page_state);
    
    void dec_node_page_state(struct page *page, enum node_stat_item item)
    {
    	mod_node_state(page_pgdat(page), item, -1, -1);
    }
    EXPORT_SYMBOL(dec_node_page_state);
    #else
    /*
     * Use interrupt disable to serialize counter updates
     */
    void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
    			 long delta)
    {
    	unsigned long flags;
    
    	local_irq_save(flags);
    	__mod_zone_page_state(zone, item, delta);
    	local_irq_restore(flags);
    }
    EXPORT_SYMBOL(mod_zone_page_state);
    
    void inc_zone_page_state(struct page *page, enum zone_stat_item item)
    {
    	unsigned long flags;
    	struct zone *zone;
    
    	zone = page_zone(page);
    	local_irq_save(flags);
    	__inc_zone_state(zone, item);
    	local_irq_restore(flags);
    }
    EXPORT_SYMBOL(inc_zone_page_state);
    
    void dec_zone_page_state(struct page *page, enum zone_stat_item item)
    {
    	unsigned long flags;
    
    	local_irq_save(flags);
    	__dec_zone_page_state(page, item);
    	local_irq_restore(flags);
    }
    EXPORT_SYMBOL(dec_zone_page_state);
    
    void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
    {
    	unsigned long flags;
    
    	local_irq_save(flags);
    	__inc_node_state(pgdat, item);
    	local_irq_restore(flags);
    }
    EXPORT_SYMBOL(inc_node_state);
    
    void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
    					long delta)
    {
    	unsigned long flags;
    
    	local_irq_save(flags);
    	__mod_node_page_state(pgdat, item, delta);
    	local_irq_restore(flags);
    }
    EXPORT_SYMBOL(mod_node_page_state);
    
    void inc_node_page_state(struct page *page, enum node_stat_item item)
    {
    	unsigned long flags;
    	struct pglist_data *pgdat;
    
    	pgdat = page_pgdat(page);
    	local_irq_save(flags);
    	__inc_node_state(pgdat, item);
    	local_irq_restore(flags);
    }
    EXPORT_SYMBOL(inc_node_page_state);
    
    void dec_node_page_state(struct page *page, enum node_stat_item item)
    {
    	unsigned long flags;
    
    	local_irq_save(flags);
    	__dec_node_page_state(page, item);
    	local_irq_restore(flags);
    }
    EXPORT_SYMBOL(dec_node_page_state);
    #endif
    
    /*
     * Fold a differential into the global counters.
     * Returns the number of counters updated.
     */
    static int fold_diff(int *zone_diff, int *node_diff)
    {
    	int i;
    	int changes = 0;
    
    	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
    		if (zone_diff[i]) {
    			atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
    			changes++;
    	}
    
    	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
    		if (node_diff[i]) {
    			atomic_long_add(node_diff[i], &vm_node_stat[i]);
    			changes++;
    	}
    	return changes;
    }
    
    /*
     * Update the zone counters for the current cpu.
     *
     * Note that refresh_cpu_vm_stats strives to only access
     * node local memory. The per cpu pagesets on remote zones are placed
     * in the memory local to the processor using that pageset. So the
     * loop over all zones will access a series of cachelines local to
     * the processor.
     *
     * The call to zone_page_state_add updates the cachelines with the
     * statistics in the remote zone struct as well as the global cachelines
     * with the global counters. These could cause remote node cache line
     * bouncing and will have to be only done when necessary.
     *
     * The function returns the number of global counters updated.
     */
    static int refresh_cpu_vm_stats(bool do_pagesets)
    {
    	struct pglist_data *pgdat;
    	struct zone *zone;
    	int i;
    	int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
    	int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
    	int changes = 0;
    
    	for_each_populated_zone(zone) {
    		struct per_cpu_pageset __percpu *p = zone->pageset;
    
    		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
    			int v;
    
    			v = this_cpu_xchg(p->vm_stat_diff[i], 0);
    			if (v) {
    
    				atomic_long_add(v, &zone->vm_stat[i]);
    				global_zone_diff[i] += v;
    #ifdef CONFIG_NUMA
    				/* 3 seconds idle till flush */
    				__this_cpu_write(p->expire, 3);
    #endif
    			}
    		}
    #ifdef CONFIG_NUMA
    		if (do_pagesets) {
    			cond_resched();
    			/*
    			 * Deal with draining the remote pageset of this
    			 * processor
    			 *
    			 * Check if there are pages remaining in this pageset
    			 * if not then there is nothing to expire.
    			 */
    			if (!__this_cpu_read(p->expire) ||
    			       !__this_cpu_read(p->pcp.count))
    				continue;
    
    			/*
    			 * We never drain zones local to this processor.
    			 */
    			if (zone_to_nid(zone) == numa_node_id()) {
    				__this_cpu_write(p->expire, 0);
    				continue;
    			}
    
    			if (__this_cpu_dec_return(p->expire))
    				continue;
    
    			if (__this_cpu_read(p->pcp.count)) {
    				drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
    				changes++;
    			}
    		}
    #endif
    	}
    
    	for_each_online_pgdat(pgdat) {
    		struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
    
    		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
    			int v;
    
    			v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
    			if (v) {
    				atomic_long_add(v, &pgdat->vm_stat[i]);
    				global_node_diff[i] += v;
    			}
    		}
    	}
    
    	changes += fold_diff(global_zone_diff, global_node_diff);
    	return changes;
    }
    
    /*
     * Fold the data for an offline cpu into the global array.
     * There cannot be any access by the offline cpu and therefore
     * synchronization is simplified.
     */
    void cpu_vm_stats_fold(int cpu)
    {
    	struct pglist_data *pgdat;
    	struct zone *zone;
    	int i;
    	int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
    	int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
    
    	for_each_populated_zone(zone) {
    		struct per_cpu_pageset *p;
    
    		p = per_cpu_ptr(zone->pageset, cpu);
    
    		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
    			if (p->vm_stat_diff[i]) {
    				int v;
    
    				v = p->vm_stat_diff[i];
    				p->vm_stat_diff[i] = 0;
    				atomic_long_add(v, &zone->vm_stat[i]);
    				global_zone_diff[i] += v;
    			}
    	}
    
    	for_each_online_pgdat(pgdat) {
    		struct per_cpu_nodestat *p;
    
    		p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
    
    		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
    			if (p->vm_node_stat_diff[i]) {
    				int v;
    
    				v = p->vm_node_stat_diff[i];
    				p->vm_node_stat_diff[i] = 0;
    				atomic_long_add(v, &pgdat->vm_stat[i]);
    				global_node_diff[i] += v;
    			}
    	}
    
    	fold_diff(global_zone_diff, global_node_diff);
    }
    
    /*
     * this is only called if !populated_zone(zone), which implies no other users of
     * pset->vm_stat_diff[] exsist.
     */
    void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
    {
    	int i;
    
    	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
    		if (pset->vm_stat_diff[i]) {
    			int v = pset->vm_stat_diff[i];
    			pset->vm_stat_diff[i] = 0;
    			atomic_long_add(v, &zone->vm_stat[i]);
    			atomic_long_add(v, &vm_zone_stat[i]);
    		}
    }
    #endif
    
    #ifdef CONFIG_NUMA
    /*
     * Determine the per node value of a stat item. This function
     * is called frequently in a NUMA machine, so try to be as
     * frugal as possible.
     */
    unsigned long sum_zone_node_page_state(int node,
    				 enum zone_stat_item item)
    {
    	struct zone *zones = NODE_DATA(node)->node_zones;
    	int i;
    	unsigned long count = 0;
    
    	for (i = 0; i < MAX_NR_ZONES; i++)
    		count += zone_page_state(zones + i, item);
    
    	return count;
    }
    
    /*
     * Determine the per node value of a stat item.
     */
    unsigned long node_page_state(struct pglist_data *pgdat,
    				enum node_stat_item item)
    {
    	long x = atomic_long_read(&pgdat->vm_stat[item]);
    #ifdef CONFIG_SMP
    	if (x < 0)
    		x = 0;
    #endif
    	return x;
    }
    #endif
    
    #ifdef CONFIG_COMPACTION
    
    struct contig_page_info {
    	unsigned long free_pages;
    	unsigned long free_blocks_total;
    	unsigned long free_blocks_suitable;
    };
    
    /*
     * Calculate the number of free pages in a zone, how many contiguous
     * pages are free and how many are large enough to satisfy an allocation of
     * the target size. Note that this function makes no attempt to estimate
     * how many suitable free blocks there *might* be if MOVABLE pages were
     * migrated. Calculating that is possible, but expensive and can be
     * figured out from userspace
     */
    static void fill_contig_page_info(struct zone *zone,
    				unsigned int suitable_order,
    				struct contig_page_info *info)
    {
    	unsigned int order;
    
    	info->free_pages = 0;
    	info->free_blocks_total = 0;
    	info->free_blocks_suitable = 0;
    
    	for (order = 0; order < MAX_ORDER; order++) {
    		unsigned long blocks;
    
    		/* Count number of free blocks */
    		blocks = zone->free_area[order].nr_free;
    		info->free_blocks_total += blocks;
    
    		/* Count free base pages */
    		info->free_pages += blocks << order;
    
    		/* Count the suitable free blocks */
    		if (order >= suitable_order)
    			info->free_blocks_suitable += blocks <<
    						(order - suitable_order);
    	}
    }
    
    /*
     * A fragmentation index only makes sense if an allocation of a requested
     * size would fail. If that is true, the fragmentation index indicates
     * whether external fragmentation or a lack of memory was the problem.
     * The value can be used to determine if page reclaim or compaction
     * should be used
     */
    static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
    {
    	unsigned long requested = 1UL << order;
    
    	if (!info->free_blocks_total)
    		return 0;
    
    	/* Fragmentation index only makes sense when a request would fail */
    	if (info->free_blocks_suitable)
    		return -1000;
    
    	/*
    	 * Index is between 0 and 1 so return within 3 decimal places
    	 *
    	 * 0 => allocation would fail due to lack of memory
    	 * 1 => allocation would fail due to fragmentation
    	 */
    	return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
    }
    
    /* Same as __fragmentation index but allocs contig_page_info on stack */
    int fragmentation_index(struct zone *zone, unsigned int order)
    {
    	struct contig_page_info info;
    
    	fill_contig_page_info(zone, order, &info);
    	return __fragmentation_index(order, &info);
    }
    #endif
    
    #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
    #ifdef CONFIG_ZONE_DMA
    #define TEXT_FOR_DMA(xx) xx "_dma",
    #else
    #define TEXT_FOR_DMA(xx)
    #endif
    
    #ifdef CONFIG_ZONE_DMA32
    #define TEXT_FOR_DMA32(xx) xx "_dma32",
    #else
    #define TEXT_FOR_DMA32(xx)
    #endif
    
    #ifdef CONFIG_HIGHMEM
    #define TEXT_FOR_HIGHMEM(xx) xx "_high",
    #else
    #define TEXT_FOR_HIGHMEM(xx)
    #endif
    
    #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
    					TEXT_FOR_HIGHMEM(xx) xx "_movable",
    
    const char * const vmstat_text[] = {
    	/* enum zone_stat_item countes */
    	"nr_free_pages",
    	"nr_zone_inactive_anon",
    	"nr_zone_active_anon",
    	"nr_zone_inactive_file",
    	"nr_zone_active_file",
    	"nr_zone_unevictable",
    	"nr_zone_write_pending",
    	"nr_mlock",
    	"nr_slab_reclaimable",
    	"nr_slab_unreclaimable",
    	"nr_page_table_pages",
    	"nr_kernel_stack",
    	"nr_bounce",
    #if IS_ENABLED(CONFIG_ZSMALLOC)
    	"nr_zspages",
    #endif
    #ifdef CONFIG_NUMA
    	"numa_hit",
    	"numa_miss",
    	"numa_foreign",
    	"numa_interleave",
    	"numa_local",
    	"numa_other",
    #endif
    	"nr_free_cma",
    
    	/* Node-based counters */
    	"nr_inactive_anon",
    	"nr_active_anon",
    	"nr_inactive_file",
    	"nr_active_file",
    	"nr_unevictable",
    	"nr_isolated_anon",
    	"nr_isolated_file",
    	"nr_pages_scanned",
    	"workingset_refault",
    	"workingset_activate",
    	"workingset_nodereclaim",
    	"nr_anon_pages",
    	"nr_mapped",
    	"nr_file_pages",
    	"nr_dirty",
    	"nr_writeback",
    	"nr_writeback_temp",
    	"nr_shmem",
    	"nr_shmem_hugepages",
    	"nr_shmem_pmdmapped",
    	"nr_anon_transparent_hugepages",
    	"nr_unstable",
    	"nr_vmscan_write",
    	"nr_vmscan_immediate_reclaim",
    	"nr_dirtied",
    	"nr_written",
    
    	/* enum writeback_stat_item counters */
    	"nr_dirty_threshold",
    	"nr_dirty_background_threshold",
    
    #ifdef CONFIG_VM_EVENT_COUNTERS
    	/* enum vm_event_item counters */
    	"pgpgin",
    	"pgpgout",
    	"pswpin",
    	"pswpout",
    
    	TEXTS_FOR_ZONES("pgalloc")
    	TEXTS_FOR_ZONES("allocstall")
    	TEXTS_FOR_ZONES("pgskip")
    
    	"pgfree",
    	"pgactivate",
    	"pgdeactivate",
    
    	"pgfault",
    	"pgmajfault",
    	"pglazyfreed",
    
    	"pgrefill",
    	"pgsteal_kswapd",
    	"pgsteal_direct",
    	"pgscan_kswapd",
    	"pgscan_direct",
    	"pgscan_direct_throttle",
    
    #ifdef CONFIG_NUMA
    	"zone_reclaim_failed",
    #endif
    	"pginodesteal",
    	"slabs_scanned",
    	"kswapd_inodesteal",
    	"kswapd_low_wmark_hit_quickly",
    	"kswapd_high_wmark_hit_quickly",
    	"pageoutrun",
    
    	"pgrotated",
    
    	"drop_pagecache",
    	"drop_slab",
    
    #ifdef CONFIG_NUMA_BALANCING
    	"numa_pte_updates",
    	"numa_huge_pte_updates",
    	"numa_hint_faults",
    	"numa_hint_faults_local",
    	"numa_pages_migrated",
    #endif
    #ifdef CONFIG_MIGRATION
    	"pgmigrate_success",
    	"pgmigrate_fail",
    #endif
    #ifdef CONFIG_COMPACTION
    	"compact_migrate_scanned",
    	"compact_free_scanned",
    	"compact_isolated",
    	"compact_stall",
    	"compact_fail",
    	"compact_success",
    	"compact_daemon_wake",
    #endif
    
    #ifdef CONFIG_HUGETLB_PAGE
    	"htlb_buddy_alloc_success",
    	"htlb_buddy_alloc_fail",
    #endif
    	"unevictable_pgs_culled",
    	"unevictable_pgs_scanned",
    	"unevictable_pgs_rescued",
    	"unevictable_pgs_mlocked",
    	"unevictable_pgs_munlocked",
    	"unevictable_pgs_cleared",
    	"unevictable_pgs_stranded",
    
    #ifdef CONFIG_TRANSPARENT_HUGEPAGE
    	"thp_fault_alloc",
    	"thp_fault_fallback",
    	"thp_collapse_alloc",
    	"thp_collapse_alloc_failed",
    	"thp_file_alloc",
    	"thp_file_mapped",
    	"thp_split_page",
    	"thp_split_page_failed",
    	"thp_deferred_split_page",
    	"thp_split_pmd",
    	"thp_zero_page_alloc",
    	"thp_zero_page_alloc_failed",
    #endif
    #ifdef CONFIG_MEMORY_BALLOON
    	"balloon_inflate",
    	"balloon_deflate",
    #ifdef CONFIG_BALLOON_COMPACTION
    	"balloon_migrate",
    #endif
    #endif /* CONFIG_MEMORY_BALLOON */
    #ifdef CONFIG_DEBUG_TLBFLUSH
    #ifdef CONFIG_SMP
    	"nr_tlb_remote_flush",
    	"nr_tlb_remote_flush_received",
    #endif /* CONFIG_SMP */
    	"nr_tlb_local_flush_all",
    	"nr_tlb_local_flush_one",
    #endif /* CONFIG_DEBUG_TLBFLUSH */
    
    #ifdef CONFIG_DEBUG_VM_VMACACHE
    	"vmacache_find_calls",
    	"vmacache_find_hits",
    	"vmacache_full_flushes",
    #endif
    #endif /* CONFIG_VM_EVENTS_COUNTERS */
    };
    #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
    
    
    #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
         defined(CONFIG_PROC_FS)
    static void *frag_start(struct seq_file *m, loff_t *pos)
    {
    	pg_data_t *pgdat;
    	loff_t node = *pos;
    
    	for (pgdat = first_online_pgdat();
    	     pgdat && node;
    	     pgdat = next_online_pgdat(pgdat))
    		--node;
    
    	return pgdat;
    }
    
    static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
    {
    	pg_data_t *pgdat = (pg_data_t *)arg;
    
    	(*pos)++;
    	return next_online_pgdat(pgdat);
    }
    
    static void frag_stop(struct seq_file *m, void *arg)
    {
    }
    
    /* Walk all the zones in a node and print using a callback */
    static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
    		void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
    {
    	struct zone *zone;
    	struct zone *node_zones = pgdat->node_zones;
    	unsigned long flags;
    
    	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
    		if (!populated_zone(zone))
    			continue;
    
    		spin_lock_irqsave(&zone->lock, flags);
    		print(m, pgdat, zone);
    		spin_unlock_irqrestore(&zone->lock, flags);
    	}
    }
    #endif
    
    #ifdef CONFIG_PROC_FS
    static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
    						struct zone *zone)
    {
    	int order;
    
    	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
    	for (order = 0; order < MAX_ORDER; ++order)
    		seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
    	seq_putc(m, '\n');
    }
    
    /*
     * This walks the free areas for each zone.
     */
    static int frag_show(struct seq_file *m, void *arg)
    {
    	pg_data_t *pgdat = (pg_data_t *)arg;
    	walk_zones_in_node(m, pgdat, frag_show_print);
    	return 0;
    }
    
    static void pagetypeinfo_showfree_print(struct seq_file *m,
    					pg_data_t *pgdat, struct zone *zone)
    {
    	int order, mtype;
    
    	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
    		seq_printf(m, "Node %4d, zone %8s, type %12s ",
    					pgdat->node_id,
    					zone->name,
    					migratetype_names[mtype]);
    		for (order = 0; order < MAX_ORDER; ++order) {
    			unsigned long freecount = 0;
    			struct free_area *area;
    			struct list_head *curr;
    
    			area = &(zone->free_area[order]);
    
    			list_for_each(curr, &area->free_list[mtype])
    				freecount++;
    			seq_printf(m, "%6lu ", freecount);
    		}
    		seq_putc(m, '\n');
    	}
    }
    
    /* Print out the free pages at each order for each migatetype */
    static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
    {
    	int order;
    	pg_data_t *pgdat = (pg_data_t *)arg;
    
    	/* Print header */
    	seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
    	for (order = 0; order < MAX_ORDER; ++order)
    		seq_printf(m, "%6d ", order);
    	seq_putc(m, '\n');
    
    	walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
    
    	return 0;
    }
    
    static void pagetypeinfo_showblockcount_print(struct seq_file *m,
    					pg_data_t *pgdat, struct zone *zone)
    {
    	int mtype;
    	unsigned long pfn;
    	unsigned long start_pfn = zone->zone_start_pfn;
    	unsigned long end_pfn = zone_end_pfn(zone);
    	unsigned long count[MIGRATE_TYPES] = { 0, };
    
    	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
    		struct page *page;
    
    		if (!pfn_valid(pfn))
    			continue;
    
    		page = pfn_to_page(pfn);
    
    		/* Watch for unexpected holes punched in the memmap */
    		if (!memmap_valid_within(pfn, page, zone))
    			continue;
    
    		if (page_zone(page) != zone)
    			continue;
    
    		mtype = get_pageblock_migratetype(page);
    
    		if (mtype < MIGRATE_TYPES)
    			count[mtype]++;
    	}
    
    	/* Print counts */
    	seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
    	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
    		seq_printf(m, "%12lu ", count[mtype]);
    	seq_putc(m, '\n');
    }
    
    /* Print out the free pages at each order for each migratetype */
    static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
    {
    	int mtype;
    	pg_data_t *pgdat = (pg_data_t *)arg;
    
    	seq_printf(m, "\n%-23s", "Number of blocks type ");
    	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
    		seq_printf(m, "%12s ", migratetype_names[mtype]);
    	seq_putc(m, '\n');
    	walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
    
    	return 0;
    }
    
    /*
     * Print out the number of pageblocks for each migratetype that contain pages
     * of other types. This gives an indication of how well fallbacks are being
     * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
     * to determine what is going on
     */
    static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
    {
    #ifdef CONFIG_PAGE_OWNER
    	int mtype;
    
    	if (!static_branch_unlikely(&page_owner_inited))
    		return;
    
    	drain_all_pages(NULL);
    
    	seq_printf(m, "\n%-23s", "Number of mixed blocks ");
    	for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
    		seq_printf(m, "%12s ", migratetype_names[mtype]);
    	seq_putc(m, '\n');
    
    	walk_zones_in_node(m, pgdat, pagetypeinfo_showmixedcount_print);
    #endif /* CONFIG_PAGE_OWNER */
    }
    
    /*
     * This prints out statistics in relation to grouping pages by mobility.
     * It is expensive to collect so do not constantly read the file.
     */
    static int pagetypeinfo_show(struct seq_file *m, void *arg)
    {
    	pg_data_t *pgdat = (pg_data_t *)arg;
    
    	/* check memoryless node */
    	if (!node_state(pgdat->node_id, N_MEMORY))
    		return 0;
    
    	seq_printf(m, "Page block order: %d\n", pageblock_order);
    	seq_printf(m, "Pages per block:  %lu\n", pageblock_nr_pages);
    	seq_putc(m, '\n');
    	pagetypeinfo_showfree(m, pgdat);
    	pagetypeinfo_showblockcount(m, pgdat);
    	pagetypeinfo_showmixedcount(m, pgdat);
    
    	return 0;
    }
    
    static const struct seq_operations fragmentation_op = {
    	.start	= frag_start,
    	.next	= frag_next,
    	.stop	= frag_stop,
    	.show	= frag_show,
    };
    
    static int fragmentation_open(struct inode *inode, struct file *file)
    {
    	return seq_open(file, &fragmentation_op);
    }
    
    static const struct file_operations fragmentation_file_operations = {
    	.open		= fragmentation_open,
    	.read		= seq_read,
    	.llseek		= seq_lseek,
    	.release	= seq_release,
    };
    
    static const struct seq_operations pagetypeinfo_op = {
    	.start	= frag_start,
    	.next	= frag_next,
    	.stop	= frag_stop,
    	.show	= pagetypeinfo_show,
    };
    
    static int pagetypeinfo_open(struct inode *inode, struct file *file)
    {
    	return seq_open(file, &pagetypeinfo_op);
    }
    
    static const struct file_operations pagetypeinfo_file_ops = {
    	.open		= pagetypeinfo_open,
    	.read		= seq_read,
    	.llseek		= seq_lseek,
    	.release	= seq_release,
    };
    
    static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
    {
    	int zid;
    
    	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
    		struct zone *compare = &pgdat->node_zones[zid];
    
    		if (populated_zone(compare))
    			return zone == compare;
    	}
    
    	/* The zone must be somewhere! */
    	WARN_ON_ONCE(1);
    	return false;
    }
    
    static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
    							struct zone *zone)
    {
    	int i;
    	seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
    	if (is_zone_first_populated(pgdat, zone)) {
    		seq_printf(m, "\n  per-node stats");
    		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
    			seq_printf(m, "\n      %-12s %lu",
    				vmstat_text[i + NR_VM_ZONE_STAT_ITEMS],
    				node_page_state(pgdat, i));
    		}
    	}
    	seq_printf(m,
    		   "\n  pages free     %lu"
    		   "\n        min      %lu"
    		   "\n        low      %lu"
    		   "\n        high     %lu"
    		   "\n   node_scanned  %lu"
    		   "\n        spanned  %lu"
    		   "\n        present  %lu"
    		   "\n        managed  %lu",
    		   zone_page_state(zone, NR_FREE_PAGES),
    		   min_wmark_pages(zone),
    		   low_wmark_pages(zone),
    		   high_wmark_pages(zone),
    		   node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED),
    		   zone->spanned_pages,
    		   zone->present_pages,
    		   zone->managed_pages);
    
    	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
    		seq_printf(m, "\n      %-12s %lu", vmstat_text[i],
    				zone_page_state(zone, i));
    
    	seq_printf(m,
    		   "\n        protection: (%ld",
    		   zone->lowmem_reserve[0]);
    	for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
    		seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
    	seq_printf(m,
    		   ")"
    		   "\n  pagesets");
    	for_each_online_cpu(i) {
    		struct per_cpu_pageset *pageset;
    
    		pageset = per_cpu_ptr(zone->pageset, i);
    		seq_printf(m,
    			   "\n    cpu: %i"
    			   "\n              count: %i"
    			   "\n              high:  %i"
    			   "\n              batch: %i",
    			   i,
    			   pageset->pcp.count,
    			   pageset->pcp.high,
    			   pageset->pcp.batch);
    #ifdef CONFIG_SMP
    		seq_printf(m, "\n  vm stats threshold: %d",
    				pageset->stat_threshold);
    #endif
    	}
    	seq_printf(m,
    		   "\n  node_unreclaimable:  %u"
    		   "\n  start_pfn:           %lu"
    		   "\n  node_inactive_ratio: %u",
    		   !pgdat_reclaimable(zone->zone_pgdat),
    		   zone->zone_start_pfn,
    		   zone->zone_pgdat->inactive_ratio);
    	seq_putc(m, '\n');
    }
    
    /*
     * Output information about zones in @pgdat.
     */
    static int zoneinfo_show(struct seq_file *m, void *arg)
    {
    	pg_data_t *pgdat = (pg_data_t *)arg;
    	walk_zones_in_node(m, pgdat, zoneinfo_show_print);
    	return 0;
    }
    
    static const struct seq_operations zoneinfo_op = {
    	.start	= frag_start, /* iterate over all zones. The same as in
    			       * fragmentation. */
    	.next	= frag_next,
    	.stop	= frag_stop,
    	.show	= zoneinfo_show,
    };
    
    static int zoneinfo_open(struct inode *inode, struct file *file)
    {
    	return seq_open(file, &zoneinfo_op);
    }
    
    static const struct file_operations proc_zoneinfo_file_operations = {
    	.open		= zoneinfo_open,
    	.read		= seq_read,
    	.llseek		= seq_lseek,
    	.release	= seq_release,
    };
    
    enum writeback_stat_item {
    	NR_DIRTY_THRESHOLD,
    	NR_DIRTY_BG_THRESHOLD,
    	NR_VM_WRITEBACK_STAT_ITEMS,
    };
    
    static void *vmstat_start(struct seq_file *m, loff_t *pos)
    {
    	unsigned long *v;
    	int i, stat_items_size;
    
    	if (*pos >= ARRAY_SIZE(vmstat_text))
    		return NULL;
    	stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
    			  NR_VM_NODE_STAT_ITEMS * sizeof(unsigned long) +
    			  NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
    
    #ifdef CONFIG_VM_EVENT_COUNTERS
    	stat_items_size += sizeof(struct vm_event_state);
    #endif
    
    	v = kmalloc(stat_items_size, GFP_KERNEL);
    	m->private = v;
    	if (!v)
    		return ERR_PTR(-ENOMEM);
    	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
    		v[i] = global_page_state(i);
    	v += NR_VM_ZONE_STAT_ITEMS;
    
    	for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
    		v[i] = global_node_page_state(i);
    	v += NR_VM_NODE_STAT_ITEMS;
    
    	global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
    			    v + NR_DIRTY_THRESHOLD);
    	v += NR_VM_WRITEBACK_STAT_ITEMS;
    
    #ifdef CONFIG_VM_EVENT_COUNTERS
    	all_vm_events(v);
    	v[PGPGIN] /= 2;		/* sectors -> kbytes */
    	v[PGPGOUT] /= 2;
    #endif
    	return (unsigned long *)m->private + *pos;
    }
    
    static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
    {
    	(*pos)++;
    	if (*pos >= ARRAY_SIZE(vmstat_text))
    		return NULL;
    	return (unsigned long *)m->private + *pos;
    }
    
    static int vmstat_show(struct seq_file *m, void *arg)
    {
    	unsigned long *l = arg;
    	unsigned long off = l - (unsigned long *)m->private;
    	seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
    	return 0;
    }
    
    static void vmstat_stop(struct seq_file *m, void *arg)
    {
    	kfree(m->private);
    	m->private = NULL;
    }
    
    static const struct seq_operations vmstat_op = {
    	.start	= vmstat_start,
    	.next	= vmstat_next,
    	.stop	= vmstat_stop,
    	.show	= vmstat_show,
    };
    
    static int vmstat_open(struct inode *inode, struct file *file)
    {
    	return seq_open(file, &vmstat_op);
    }
    
    static const struct file_operations proc_vmstat_file_operations = {
    	.open		= vmstat_open,
    	.read		= seq_read,
    	.llseek		= seq_lseek,
    	.release	= seq_release,
    };
    #endif /* CONFIG_PROC_FS */
    
    #ifdef CONFIG_SMP
    static struct workqueue_struct *vmstat_wq;
    static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
    int sysctl_stat_interval __read_mostly = HZ;
    
    #ifdef CONFIG_PROC_FS
    static void refresh_vm_stats(struct work_struct *work)
    {
    	refresh_cpu_vm_stats(true);
    }
    
    int vmstat_refresh(struct ctl_table *table, int write,
    		   void __user *buffer, size_t *lenp, loff_t *ppos)
    {
    	long val;
    	int err;
    	int i;
    
    	/*
    	 * The regular update, every sysctl_stat_interval, may come later
    	 * than expected: leaving a significant amount in per_cpu buckets.
    	 * This is particularly misleading when checking a quantity of HUGE
    	 * pages, immediately after running a test.  /proc/sys/vm/stat_refresh,
    	 * which can equally be echo'ed to or cat'ted from (by root),
    	 * can be used to update the stats just before reading them.
    	 *
    	 * Oh, and since global_page_state() etc. are so careful to hide
    	 * transiently negative values, report an error here if any of
    	 * the stats is negative, so we know to go looking for imbalance.
    	 */
    	err = schedule_on_each_cpu(refresh_vm_stats);
    	if (err)
    		return err;
    	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
    		val = atomic_long_read(&vm_zone_stat[i]);
    		if (val < 0) {
    			switch (i) {
    			case NR_PAGES_SCANNED:
    				/*
    				 * This is often seen to go negative in
    				 * recent kernels, but not to go permanently
    				 * negative.  Whilst it would be nicer not to
    				 * have exceptions, rooting them out would be
    				 * another task, of rather low priority.
    				 */
    				break;
    			default:
    				pr_warn("%s: %s %ld\n",
    					__func__, vmstat_text[i], val);
    				err = -EINVAL;
    				break;
    			}
    		}
    	}
    	if (err)
    		return err;
    	if (write)
    		*ppos += *lenp;
    	else
    		*lenp = 0;
    	return 0;
    }
    #endif /* CONFIG_PROC_FS */
    
    static void vmstat_update(struct work_struct *w)
    {
    	if (refresh_cpu_vm_stats(true)) {
    		/*
    		 * Counters were updated so we expect more updates
    		 * to occur in the future. Keep on running the
    		 * update worker thread.
    		 */
    		queue_delayed_work_on(smp_processor_id(), vmstat_wq,
    				this_cpu_ptr(&vmstat_work),
    				round_jiffies_relative(sysctl_stat_interval));
    	}
    }
    
    /*
     * Switch off vmstat processing and then fold all the remaining differentials
     * until the diffs stay at zero. The function is used by NOHZ and can only be
     * invoked when tick processing is not active.
     */
    /*
     * Check if the diffs for a certain cpu indicate that
     * an update is needed.
     */
    static bool need_update(int cpu)
    {
    	struct zone *zone;
    
    	for_each_populated_zone(zone) {
    		struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu);
    
    		BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1);
    		/*
    		 * The fast way of checking if there are any vmstat diffs.
    		 * This works because the diffs are byte sized items.
    		 */
    		if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS))
    			return true;
    
    	}
    	return false;
    }
    
    /*
     * Switch off vmstat processing and then fold all the remaining differentials
     * until the diffs stay at zero. The function is used by NOHZ and can only be
     * invoked when tick processing is not active.
     */
    void quiet_vmstat(void)
    {
    	if (system_state != SYSTEM_RUNNING)
    		return;
    
    	if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
    		return;
    
    	if (!need_update(smp_processor_id()))
    		return;
    
    	/*
    	 * Just refresh counters and do not care about the pending delayed
    	 * vmstat_update. It doesn't fire that often to matter and canceling
    	 * it would be too expensive from this path.
    	 * vmstat_shepherd will take care about that for us.
    	 */
    	refresh_cpu_vm_stats(false);
    }
    
    /*
     * Shepherd worker thread that checks the
     * differentials of processors that have their worker
     * threads for vm statistics updates disabled because of
     * inactivity.
     */
    static void vmstat_shepherd(struct work_struct *w);
    
    static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
    
    static void vmstat_shepherd(struct work_struct *w)
    {
    	int cpu;
    
    	get_online_cpus();
    	/* Check processors whose vmstat worker threads have been disabled */
    	for_each_online_cpu(cpu) {
    		struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
    
    		if (!delayed_work_pending(dw) && need_update(cpu))
    			queue_delayed_work_on(cpu, vmstat_wq, dw, 0);
    	}
    	put_online_cpus();
    
    	schedule_delayed_work(&shepherd,
    		round_jiffies_relative(sysctl_stat_interval));
    }
    
    static void __init start_shepherd_timer(void)
    {
    	int cpu;
    
    	for_each_possible_cpu(cpu)
    		INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
    			vmstat_update);
    
    	vmstat_wq = alloc_workqueue("vmstat", WQ_FREEZABLE|WQ_MEM_RECLAIM, 0);
    	schedule_delayed_work(&shepherd,
    		round_jiffies_relative(sysctl_stat_interval));
    }
    
    static void __init init_cpu_node_state(void)
    {
    	int cpu;
    
    	get_online_cpus();
    	for_each_online_cpu(cpu)
    		node_set_state(cpu_to_node(cpu), N_CPU);
    	put_online_cpus();
    }
    
    static void vmstat_cpu_dead(int node)
    {
    	int cpu;
    
    	get_online_cpus();
    	for_each_online_cpu(cpu)
    		if (cpu_to_node(cpu) == node)
    			goto end;
    
    	node_clear_state(node, N_CPU);
    end:
    	put_online_cpus();
    }
    
    /*
     * Use the cpu notifier to insure that the thresholds are recalculated
     * when necessary.
     */
    static int vmstat_cpuup_callback(struct notifier_block *nfb,
    		unsigned long action,
    		void *hcpu)
    {
    	long cpu = (long)hcpu;
    
    	switch (action) {
    	case CPU_ONLINE:
    	case CPU_ONLINE_FROZEN:
    		refresh_zone_stat_thresholds();
    		node_set_state(cpu_to_node(cpu), N_CPU);
    		break;
    	case CPU_DOWN_PREPARE:
    	case CPU_DOWN_PREPARE_FROZEN:
    		cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
    		break;
    	case CPU_DOWN_FAILED:
    	case CPU_DOWN_FAILED_FROZEN:
    		break;
    	case CPU_DEAD:
    	case CPU_DEAD_FROZEN:
    		refresh_zone_stat_thresholds();
    		vmstat_cpu_dead(cpu_to_node(cpu));
    		break;
    	default:
    		break;
    	}
    	return NOTIFY_OK;
    }
    
    static struct notifier_block vmstat_notifier =
    	{ &vmstat_cpuup_callback, NULL, 0 };
    #endif
    
    static int __init setup_vmstat(void)
    {
    #ifdef CONFIG_SMP
    	cpu_notifier_register_begin();
    	__register_cpu_notifier(&vmstat_notifier);
    	init_cpu_node_state();
    
    	start_shepherd_timer();
    	cpu_notifier_register_done();
    #endif
    #ifdef CONFIG_PROC_FS
    	proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
    	proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
    	proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
    	proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
    #endif
    	return 0;
    }
    module_init(setup_vmstat)
    
    #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
    
    /*
     * Return an index indicating how much of the available free memory is
     * unusable for an allocation of the requested size.
     */
    static int unusable_free_index(unsigned int order,
    				struct contig_page_info *info)
    {
    	/* No free memory is interpreted as all free memory is unusable */
    	if (info->free_pages == 0)
    		return 1000;
    
    	/*
    	 * Index should be a value between 0 and 1. Return a value to 3
    	 * decimal places.
    	 *
    	 * 0 => no fragmentation
    	 * 1 => high fragmentation
    	 */
    	return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
    
    }
    
    static void unusable_show_print(struct seq_file *m,
    					pg_data_t *pgdat, struct zone *zone)
    {
    	unsigned int order;
    	int index;
    	struct contig_page_info info;
    
    	seq_printf(m, "Node %d, zone %8s ",
    				pgdat->node_id,
    				zone->name);
    	for (order = 0; order < MAX_ORDER; ++order) {
    		fill_contig_page_info(zone, order, &info);
    		index = unusable_free_index(order, &info);
    		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
    	}
    
    	seq_putc(m, '\n');
    }
    
    /*
     * Display unusable free space index
     *
     * The unusable free space index measures how much of the available free
     * memory cannot be used to satisfy an allocation of a given size and is a
     * value between 0 and 1. The higher the value, the more of free memory is
     * unusable and by implication, the worse the external fragmentation is. This
     * can be expressed as a percentage by multiplying by 100.
     */
    static int unusable_show(struct seq_file *m, void *arg)
    {
    	pg_data_t *pgdat = (pg_data_t *)arg;
    
    	/* check memoryless node */
    	if (!node_state(pgdat->node_id, N_MEMORY))
    		return 0;
    
    	walk_zones_in_node(m, pgdat, unusable_show_print);
    
    	return 0;
    }
    
    static const struct seq_operations unusable_op = {
    	.start	= frag_start,
    	.next	= frag_next,
    	.stop	= frag_stop,
    	.show	= unusable_show,
    };
    
    static int unusable_open(struct inode *inode, struct file *file)
    {
    	return seq_open(file, &unusable_op);
    }
    
    static const struct file_operations unusable_file_ops = {
    	.open		= unusable_open,
    	.read		= seq_read,
    	.llseek		= seq_lseek,
    	.release	= seq_release,
    };
    
    static void extfrag_show_print(struct seq_file *m,
    					pg_data_t *pgdat, struct zone *zone)
    {
    	unsigned int order;
    	int index;
    
    	/* Alloc on stack as interrupts are disabled for zone walk */
    	struct contig_page_info info;
    
    	seq_printf(m, "Node %d, zone %8s ",
    				pgdat->node_id,
    				zone->name);
    	for (order = 0; order < MAX_ORDER; ++order) {
    		fill_contig_page_info(zone, order, &info);
    		index = __fragmentation_index(order, &info);
    		seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
    	}
    
    	seq_putc(m, '\n');
    }
    
    /*
     * Display fragmentation index for orders that allocations would fail for
     */
    static int extfrag_show(struct seq_file *m, void *arg)
    {
    	pg_data_t *pgdat = (pg_data_t *)arg;
    
    	walk_zones_in_node(m, pgdat, extfrag_show_print);
    
    	return 0;
    }
    
    static const struct seq_operations extfrag_op = {
    	.start	= frag_start,
    	.next	= frag_next,
    	.stop	= frag_stop,
    	.show	= extfrag_show,
    };
    
    static int extfrag_open(struct inode *inode, struct file *file)
    {
    	return seq_open(file, &extfrag_op);
    }
    
    static const struct file_operations extfrag_file_ops = {
    	.open		= extfrag_open,
    	.read		= seq_read,
    	.llseek		= seq_lseek,
    	.release	= seq_release,
    };
    
    static int __init extfrag_debug_init(void)
    {
    	struct dentry *extfrag_debug_root;
    
    	extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
    	if (!extfrag_debug_root)
    		return -ENOMEM;
    
    	if (!debugfs_create_file("unusable_index", 0444,
    			extfrag_debug_root, NULL, &unusable_file_ops))
    		goto fail;
    
    	if (!debugfs_create_file("extfrag_index", 0444,
    			extfrag_debug_root, NULL, &extfrag_file_ops))
    		goto fail;
    
    	return 0;
    fail:
    	debugfs_remove_recursive(extfrag_debug_root);
    	return -ENOMEM;
    }
    
    module_init(extfrag_debug_init);
    #endif