Skip to content
Snippets Groups Projects
Select Git revision
  • 75cb8d20c112aba70f23d98e3f8d0a38ace16006
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

pci-imx6.c

Blame
  • rtc-ds1305.c 20.29 KiB
    /*
     * rtc-ds1305.c -- driver for DS1305 and DS1306 SPI RTC chips
     *
     * Copyright (C) 2008 David Brownell
     *
     * This program is free software; you can redistribute it and/or modify
     * it under the terms of the GNU General Public License version 2 as
     * published by the Free Software Foundation.
     *
     */
    #include <linux/kernel.h>
    #include <linux/init.h>
    #include <linux/bcd.h>
    #include <linux/slab.h>
    #include <linux/rtc.h>
    #include <linux/workqueue.h>
    
    #include <linux/spi/spi.h>
    #include <linux/spi/ds1305.h>
    #include <linux/module.h>
    
    
    /*
     * Registers ... mask DS1305_WRITE into register address to write,
     * otherwise you're reading it.  All non-bitmask values are BCD.
     */
    #define DS1305_WRITE		0x80
    
    
    /* RTC date/time ... the main special cases are that we:
     *  - Need fancy "hours" encoding in 12hour mode
     *  - Don't rely on the "day-of-week" field (or tm_wday)
     *  - Are a 21st-century clock (2000 <= year < 2100)
     */
    #define DS1305_RTC_LEN		7		/* bytes for RTC regs */
    
    #define DS1305_SEC		0x00		/* register addresses */
    #define DS1305_MIN		0x01
    #define DS1305_HOUR		0x02
    #	define DS1305_HR_12		0x40	/* set == 12 hr mode */
    #	define DS1305_HR_PM		0x20	/* set == PM (12hr mode) */
    #define DS1305_WDAY		0x03
    #define DS1305_MDAY		0x04
    #define DS1305_MON		0x05
    #define DS1305_YEAR		0x06
    
    
    /* The two alarms have only sec/min/hour/wday fields (ALM_LEN).
     * DS1305_ALM_DISABLE disables a match field (some combos are bad).
     *
     * NOTE that since we don't use WDAY, we limit ourselves to alarms
     * only one day into the future (vs potentially up to a week).
     *
     * NOTE ALSO that while we could generate once-a-second IRQs (UIE), we
     * don't currently support them.  We'd either need to do it only when
     * no alarm is pending (not the standard model), or to use the second
     * alarm (implying that this is a DS1305 not DS1306, *and* that either
     * it's wired up a second IRQ we know, or that INTCN is set)
     */
    #define DS1305_ALM_LEN		4		/* bytes for ALM regs */
    #define DS1305_ALM_DISABLE	0x80
    
    #define DS1305_ALM0(r)		(0x07 + (r))	/* register addresses */
    #define DS1305_ALM1(r)		(0x0b + (r))
    
    
    /* three control registers */
    #define DS1305_CONTROL_LEN	3		/* bytes of control regs */
    
    #define DS1305_CONTROL		0x0f		/* register addresses */
    #	define DS1305_nEOSC		0x80	/* low enables oscillator */
    #	define DS1305_WP		0x40	/* write protect */
    #	define DS1305_INTCN		0x04	/* clear == only int0 used */
    #	define DS1306_1HZ		0x04	/* enable 1Hz output */
    #	define DS1305_AEI1		0x02	/* enable ALM1 IRQ */
    #	define DS1305_AEI0		0x01	/* enable ALM0 IRQ */
    #define DS1305_STATUS		0x10
    /* status has just AEIx bits, mirrored as IRQFx */
    #define DS1305_TRICKLE		0x11
    /* trickle bits are defined in <linux/spi/ds1305.h> */
    
    /* a bunch of NVRAM */
    #define DS1305_NVRAM_LEN	96		/* bytes of NVRAM */
    
    #define DS1305_NVRAM		0x20		/* register addresses */
    
    
    struct ds1305 {
    	struct spi_device	*spi;
    	struct rtc_device	*rtc;
    
    	struct work_struct	work;
    
    	unsigned long		flags;
    #define FLAG_EXITING	0
    
    	bool			hr12;
    	u8			ctrl[DS1305_CONTROL_LEN];
    };
    
    
    /*----------------------------------------------------------------------*/
    
    /*
     * Utilities ...  tolerate 12-hour AM/PM notation in case of non-Linux
     * software (like a bootloader) which may require it.
     */
    
    static unsigned bcd2hour(u8 bcd)
    {
    	if (bcd & DS1305_HR_12) {
    		unsigned	hour = 0;
    
    		bcd &= ~DS1305_HR_12;
    		if (bcd & DS1305_HR_PM) {
    			hour = 12;
    			bcd &= ~DS1305_HR_PM;
    		}
    		hour += bcd2bin(bcd);
    		return hour - 1;
    	}
    	return bcd2bin(bcd);
    }
    
    static u8 hour2bcd(bool hr12, int hour)
    {
    	if (hr12) {
    		hour++;
    		if (hour <= 12)
    			return DS1305_HR_12 | bin2bcd(hour);
    		hour -= 12;
    		return DS1305_HR_12 | DS1305_HR_PM | bin2bcd(hour);
    	}
    	return bin2bcd(hour);
    }
    
    /*----------------------------------------------------------------------*/
    
    /*
     * Interface to RTC framework
     */
    
    static int ds1305_alarm_irq_enable(struct device *dev, unsigned int enabled)
    {
    	struct ds1305	*ds1305 = dev_get_drvdata(dev);
    	u8		buf[2];
    	long		err = -EINVAL;
    
    	buf[0] = DS1305_WRITE | DS1305_CONTROL;
    	buf[1] = ds1305->ctrl[0];
    
    	if (enabled) {
    		if (ds1305->ctrl[0] & DS1305_AEI0)
    			goto done;
    		buf[1] |= DS1305_AEI0;
    	} else {
    		if (!(buf[1] & DS1305_AEI0))
    			goto done;
    		buf[1] &= ~DS1305_AEI0;
    	}
    	err = spi_write_then_read(ds1305->spi, buf, sizeof(buf), NULL, 0);
    	if (err >= 0)
    		ds1305->ctrl[0] = buf[1];
    done:
    	return err;
    
    }
    
    
    /*
     * Get/set of date and time is pretty normal.
     */
    
    static int ds1305_get_time(struct device *dev, struct rtc_time *time)
    {
    	struct ds1305	*ds1305 = dev_get_drvdata(dev);
    	u8		addr = DS1305_SEC;
    	u8		buf[DS1305_RTC_LEN];
    	int		status;
    
    	/* Use write-then-read to get all the date/time registers
    	 * since dma from stack is nonportable
    	 */
    	status = spi_write_then_read(ds1305->spi, &addr, sizeof(addr),
    			buf, sizeof(buf));
    	if (status < 0)
    		return status;
    
    	dev_vdbg(dev, "%s: %3ph, %4ph\n", "read", &buf[0], &buf[3]);
    
    	/* Decode the registers */
    	time->tm_sec = bcd2bin(buf[DS1305_SEC]);
    	time->tm_min = bcd2bin(buf[DS1305_MIN]);
    	time->tm_hour = bcd2hour(buf[DS1305_HOUR]);
    	time->tm_wday = buf[DS1305_WDAY] - 1;
    	time->tm_mday = bcd2bin(buf[DS1305_MDAY]);
    	time->tm_mon = bcd2bin(buf[DS1305_MON]) - 1;
    	time->tm_year = bcd2bin(buf[DS1305_YEAR]) + 100;
    
    	dev_vdbg(dev, "%s secs=%d, mins=%d, "
    		"hours=%d, mday=%d, mon=%d, year=%d, wday=%d\n",
    		"read", time->tm_sec, time->tm_min,
    		time->tm_hour, time->tm_mday,
    		time->tm_mon, time->tm_year, time->tm_wday);
    
    	/* Time may not be set */
    	return rtc_valid_tm(time);
    }
    
    static int ds1305_set_time(struct device *dev, struct rtc_time *time)
    {
    	struct ds1305	*ds1305 = dev_get_drvdata(dev);
    	u8		buf[1 + DS1305_RTC_LEN];
    	u8		*bp = buf;
    
    	dev_vdbg(dev, "%s secs=%d, mins=%d, "
    		"hours=%d, mday=%d, mon=%d, year=%d, wday=%d\n",
    		"write", time->tm_sec, time->tm_min,
    		time->tm_hour, time->tm_mday,
    		time->tm_mon, time->tm_year, time->tm_wday);
    
    	/* Write registers starting at the first time/date address. */
    	*bp++ = DS1305_WRITE | DS1305_SEC;
    
    	*bp++ = bin2bcd(time->tm_sec);
    	*bp++ = bin2bcd(time->tm_min);
    	*bp++ = hour2bcd(ds1305->hr12, time->tm_hour);
    	*bp++ = (time->tm_wday < 7) ? (time->tm_wday + 1) : 1;
    	*bp++ = bin2bcd(time->tm_mday);
    	*bp++ = bin2bcd(time->tm_mon + 1);
    	*bp++ = bin2bcd(time->tm_year - 100);
    
    	dev_dbg(dev, "%s: %3ph, %4ph\n", "write", &buf[1], &buf[4]);
    
    	/* use write-then-read since dma from stack is nonportable */
    	return spi_write_then_read(ds1305->spi, buf, sizeof(buf),
    			NULL, 0);
    }
    
    /*
     * Get/set of alarm is a bit funky:
     *
     * - First there's the inherent raciness of getting the (partitioned)
     *   status of an alarm that could trigger while we're reading parts
     *   of that status.
     *
     * - Second there's its limited range (we could increase it a bit by
     *   relying on WDAY), which means it will easily roll over.
     *
     * - Third there's the choice of two alarms and alarm signals.
     *   Here we use ALM0 and expect that nINT0 (open drain) is used;
     *   that's the only real option for DS1306 runtime alarms, and is
     *   natural on DS1305.
     *
     * - Fourth, there's also ALM1, and a second interrupt signal:
     *     + On DS1305 ALM1 uses nINT1 (when INTCN=1) else nINT0;
     *     + On DS1306 ALM1 only uses INT1 (an active high pulse)
     *       and it won't work when VCC1 is active.
     *
     *   So to be most general, we should probably set both alarms to the
     *   same value, letting ALM1 be the wakeup event source on DS1306
     *   and handling several wiring options on DS1305.
     *
     * - Fifth, we support the polled mode (as well as possible; why not?)
     *   even when no interrupt line is wired to an IRQ.
     */
    
    /*
     * Context: caller holds rtc->ops_lock (to protect ds1305->ctrl)
     */
    static int ds1305_get_alarm(struct device *dev, struct rtc_wkalrm *alm)
    {
    	struct ds1305	*ds1305 = dev_get_drvdata(dev);
    	struct spi_device *spi = ds1305->spi;
    	u8		addr;
    	int		status;
    	u8		buf[DS1305_ALM_LEN];
    
    	/* Refresh control register cache BEFORE reading ALM0 registers,
    	 * since reading alarm registers acks any pending IRQ.  That
    	 * makes returning "pending" status a bit of a lie, but that bit
    	 * of EFI status is at best fragile anyway (given IRQ handlers).
    	 */
    	addr = DS1305_CONTROL;
    	status = spi_write_then_read(spi, &addr, sizeof(addr),
    			ds1305->ctrl, sizeof(ds1305->ctrl));
    	if (status < 0)
    		return status;
    
    	alm->enabled = !!(ds1305->ctrl[0] & DS1305_AEI0);
    	alm->pending = !!(ds1305->ctrl[1] & DS1305_AEI0);
    
    	/* get and check ALM0 registers */
    	addr = DS1305_ALM0(DS1305_SEC);
    	status = spi_write_then_read(spi, &addr, sizeof(addr),
    			buf, sizeof(buf));
    	if (status < 0)
    		return status;
    
    	dev_vdbg(dev, "%s: %02x %02x %02x %02x\n",
    		"alm0 read", buf[DS1305_SEC], buf[DS1305_MIN],
    		buf[DS1305_HOUR], buf[DS1305_WDAY]);
    
    	if ((DS1305_ALM_DISABLE & buf[DS1305_SEC])
    			|| (DS1305_ALM_DISABLE & buf[DS1305_MIN])
    			|| (DS1305_ALM_DISABLE & buf[DS1305_HOUR]))
    		return -EIO;
    
    	/* Stuff these values into alm->time and let RTC framework code
    	 * fill in the rest ... and also handle rollover to tomorrow when
    	 * that's needed.
    	 */
    	alm->time.tm_sec = bcd2bin(buf[DS1305_SEC]);
    	alm->time.tm_min = bcd2bin(buf[DS1305_MIN]);
    	alm->time.tm_hour = bcd2hour(buf[DS1305_HOUR]);
    	alm->time.tm_mday = -1;
    	alm->time.tm_mon = -1;
    	alm->time.tm_year = -1;
    	/* next three fields are unused by Linux */
    	alm->time.tm_wday = -1;
    	alm->time.tm_mday = -1;
    	alm->time.tm_isdst = -1;
    
    	return 0;
    }
    
    /*
     * Context: caller holds rtc->ops_lock (to protect ds1305->ctrl)
     */
    static int ds1305_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
    {
    	struct ds1305	*ds1305 = dev_get_drvdata(dev);
    	struct spi_device *spi = ds1305->spi;
    	unsigned long	now, later;
    	struct rtc_time	tm;
    	int		status;
    	u8		buf[1 + DS1305_ALM_LEN];
    
    	/* convert desired alarm to time_t */
    	status = rtc_tm_to_time(&alm->time, &later);
    	if (status < 0)
    		return status;
    
    	/* Read current time as time_t */
    	status = ds1305_get_time(dev, &tm);
    	if (status < 0)
    		return status;
    	status = rtc_tm_to_time(&tm, &now);
    	if (status < 0)
    		return status;
    
    	/* make sure alarm fires within the next 24 hours */
    	if (later <= now)
    		return -EINVAL;
    	if ((later - now) > 24 * 60 * 60)
    		return -EDOM;
    
    	/* disable alarm if needed */
    	if (ds1305->ctrl[0] & DS1305_AEI0) {
    		ds1305->ctrl[0] &= ~DS1305_AEI0;
    
    		buf[0] = DS1305_WRITE | DS1305_CONTROL;
    		buf[1] = ds1305->ctrl[0];
    		status = spi_write_then_read(ds1305->spi, buf, 2, NULL, 0);
    		if (status < 0)
    			return status;
    	}
    
    	/* write alarm */
    	buf[0] = DS1305_WRITE | DS1305_ALM0(DS1305_SEC);
    	buf[1 + DS1305_SEC] = bin2bcd(alm->time.tm_sec);
    	buf[1 + DS1305_MIN] = bin2bcd(alm->time.tm_min);
    	buf[1 + DS1305_HOUR] = hour2bcd(ds1305->hr12, alm->time.tm_hour);
    	buf[1 + DS1305_WDAY] = DS1305_ALM_DISABLE;
    
    	dev_dbg(dev, "%s: %02x %02x %02x %02x\n",
    		"alm0 write", buf[1 + DS1305_SEC], buf[1 + DS1305_MIN],
    		buf[1 + DS1305_HOUR], buf[1 + DS1305_WDAY]);
    
    	status = spi_write_then_read(spi, buf, sizeof(buf), NULL, 0);
    	if (status < 0)
    		return status;
    
    	/* enable alarm if requested */
    	if (alm->enabled) {
    		ds1305->ctrl[0] |= DS1305_AEI0;
    
    		buf[0] = DS1305_WRITE | DS1305_CONTROL;
    		buf[1] = ds1305->ctrl[0];
    		status = spi_write_then_read(ds1305->spi, buf, 2, NULL, 0);
    	}
    
    	return status;
    }
    
    #ifdef CONFIG_PROC_FS
    
    static int ds1305_proc(struct device *dev, struct seq_file *seq)
    {
    	struct ds1305	*ds1305 = dev_get_drvdata(dev);
    	char		*diodes = "no";
    	char		*resistors = "";
    
    	/* ctrl[2] is treated as read-only; no locking needed */
    	if ((ds1305->ctrl[2] & 0xf0) == DS1305_TRICKLE_MAGIC) {
    		switch (ds1305->ctrl[2] & 0x0c) {
    		case DS1305_TRICKLE_DS2:
    			diodes = "2 diodes, ";
    			break;
    		case DS1305_TRICKLE_DS1:
    			diodes = "1 diode, ";
    			break;
    		default:
    			goto done;
    		}
    		switch (ds1305->ctrl[2] & 0x03) {
    		case DS1305_TRICKLE_2K:
    			resistors = "2k Ohm";
    			break;
    		case DS1305_TRICKLE_4K:
    			resistors = "4k Ohm";
    			break;
    		case DS1305_TRICKLE_8K:
    			resistors = "8k Ohm";
    			break;
    		default:
    			diodes = "no";
    			break;
    		}
    	}
    
    done:
    	seq_printf(seq, "trickle_charge\t: %s%s\n", diodes, resistors);
    
    	return 0;
    }
    
    #else
    #define ds1305_proc	NULL
    #endif
    
    static const struct rtc_class_ops ds1305_ops = {
    	.read_time	= ds1305_get_time,
    	.set_time	= ds1305_set_time,
    	.read_alarm	= ds1305_get_alarm,
    	.set_alarm	= ds1305_set_alarm,
    	.proc		= ds1305_proc,
    	.alarm_irq_enable = ds1305_alarm_irq_enable,
    };
    
    static void ds1305_work(struct work_struct *work)
    {
    	struct ds1305	*ds1305 = container_of(work, struct ds1305, work);
    	struct mutex	*lock = &ds1305->rtc->ops_lock;
    	struct spi_device *spi = ds1305->spi;
    	u8		buf[3];
    	int		status;
    
    	/* lock to protect ds1305->ctrl */
    	mutex_lock(lock);
    
    	/* Disable the IRQ, and clear its status ... for now, we "know"
    	 * that if more than one alarm is active, they're in sync.
    	 * Note that reading ALM data registers also clears IRQ status.
    	 */
    	ds1305->ctrl[0] &= ~(DS1305_AEI1 | DS1305_AEI0);
    	ds1305->ctrl[1] = 0;
    
    	buf[0] = DS1305_WRITE | DS1305_CONTROL;
    	buf[1] = ds1305->ctrl[0];
    	buf[2] = 0;
    
    	status = spi_write_then_read(spi, buf, sizeof(buf),
    			NULL, 0);
    	if (status < 0)
    		dev_dbg(&spi->dev, "clear irq --> %d\n", status);
    
    	mutex_unlock(lock);
    
    	if (!test_bit(FLAG_EXITING, &ds1305->flags))
    		enable_irq(spi->irq);
    
    	rtc_update_irq(ds1305->rtc, 1, RTC_AF | RTC_IRQF);
    }
    
    /*
     * This "real" IRQ handler hands off to a workqueue mostly to allow
     * mutex locking for ds1305->ctrl ... unlike I2C, we could issue async
     * I/O requests in IRQ context (to clear the IRQ status).
     */
    static irqreturn_t ds1305_irq(int irq, void *p)
    {
    	struct ds1305		*ds1305 = p;
    
    	disable_irq(irq);
    	schedule_work(&ds1305->work);
    	return IRQ_HANDLED;
    }
    
    /*----------------------------------------------------------------------*/
    
    /*
     * Interface for NVRAM
     */
    
    static void msg_init(struct spi_message *m, struct spi_transfer *x,
    		u8 *addr, size_t count, char *tx, char *rx)
    {
    	spi_message_init(m);
    	memset(x, 0, 2 * sizeof(*x));
    
    	x->tx_buf = addr;
    	x->len = 1;
    	spi_message_add_tail(x, m);
    
    	x++;
    
    	x->tx_buf = tx;
    	x->rx_buf = rx;
    	x->len = count;
    	spi_message_add_tail(x, m);
    }
    
    static ssize_t
    ds1305_nvram_read(struct file *filp, struct kobject *kobj,
    		struct bin_attribute *attr,
    		char *buf, loff_t off, size_t count)
    {
    	struct spi_device	*spi;
    	u8			addr;
    	struct spi_message	m;
    	struct spi_transfer	x[2];
    	int			status;
    
    	spi = to_spi_device(kobj_to_dev(kobj));
    
    	addr = DS1305_NVRAM + off;
    	msg_init(&m, x, &addr, count, NULL, buf);
    
    	status = spi_sync(spi, &m);
    	if (status < 0)
    		dev_err(&spi->dev, "nvram %s error %d\n", "read", status);
    	return (status < 0) ? status : count;
    }
    
    static ssize_t
    ds1305_nvram_write(struct file *filp, struct kobject *kobj,
    		struct bin_attribute *attr,
    		char *buf, loff_t off, size_t count)
    {
    	struct spi_device	*spi;
    	u8			addr;
    	struct spi_message	m;
    	struct spi_transfer	x[2];
    	int			status;
    
    	spi = to_spi_device(kobj_to_dev(kobj));
    
    	addr = (DS1305_WRITE | DS1305_NVRAM) + off;
    	msg_init(&m, x, &addr, count, buf, NULL);
    
    	status = spi_sync(spi, &m);
    	if (status < 0)
    		dev_err(&spi->dev, "nvram %s error %d\n", "write", status);
    	return (status < 0) ? status : count;
    }
    
    static struct bin_attribute nvram = {
    	.attr.name	= "nvram",
    	.attr.mode	= S_IRUGO | S_IWUSR,
    	.read		= ds1305_nvram_read,
    	.write		= ds1305_nvram_write,
    	.size		= DS1305_NVRAM_LEN,
    };
    
    /*----------------------------------------------------------------------*/
    
    /*
     * Interface to SPI stack
     */
    
    static int ds1305_probe(struct spi_device *spi)
    {
    	struct ds1305			*ds1305;
    	int				status;
    	u8				addr, value;
    	struct ds1305_platform_data	*pdata = dev_get_platdata(&spi->dev);
    	bool				write_ctrl = false;
    
    	/* Sanity check board setup data.  This may be hooked up
    	 * in 3wire mode, but we don't care.  Note that unless
    	 * there's an inverter in place, this needs SPI_CS_HIGH!
    	 */
    	if ((spi->bits_per_word && spi->bits_per_word != 8)
    			|| (spi->max_speed_hz > 2000000)
    			|| !(spi->mode & SPI_CPHA))
    		return -EINVAL;
    
    	/* set up driver data */
    	ds1305 = devm_kzalloc(&spi->dev, sizeof(*ds1305), GFP_KERNEL);
    	if (!ds1305)
    		return -ENOMEM;
    	ds1305->spi = spi;
    	spi_set_drvdata(spi, ds1305);
    
    	/* read and cache control registers */
    	addr = DS1305_CONTROL;
    	status = spi_write_then_read(spi, &addr, sizeof(addr),
    			ds1305->ctrl, sizeof(ds1305->ctrl));
    	if (status < 0) {
    		dev_dbg(&spi->dev, "can't %s, %d\n",
    				"read", status);
    		return status;
    	}
    
    	dev_dbg(&spi->dev, "ctrl %s: %3ph\n", "read", ds1305->ctrl);
    
    	/* Sanity check register values ... partially compensating for the
    	 * fact that SPI has no device handshake.  A pullup on MISO would
    	 * make these tests fail; but not all systems will have one.  If
    	 * some register is neither 0x00 nor 0xff, a chip is likely there.
    	 */
    	if ((ds1305->ctrl[0] & 0x38) != 0 || (ds1305->ctrl[1] & 0xfc) != 0) {
    		dev_dbg(&spi->dev, "RTC chip is not present\n");
    		return -ENODEV;
    	}
    	if (ds1305->ctrl[2] == 0)
    		dev_dbg(&spi->dev, "chip may not be present\n");
    
    	/* enable writes if needed ... if we were paranoid it would
    	 * make sense to enable them only when absolutely necessary.
    	 */
    	if (ds1305->ctrl[0] & DS1305_WP) {
    		u8		buf[2];
    
    		ds1305->ctrl[0] &= ~DS1305_WP;
    
    		buf[0] = DS1305_WRITE | DS1305_CONTROL;
    		buf[1] = ds1305->ctrl[0];
    		status = spi_write_then_read(spi, buf, sizeof(buf), NULL, 0);
    
    		dev_dbg(&spi->dev, "clear WP --> %d\n", status);
    		if (status < 0)
    			return status;
    	}
    
    	/* on DS1305, maybe start oscillator; like most low power
    	 * oscillators, it may take a second to stabilize
    	 */
    	if (ds1305->ctrl[0] & DS1305_nEOSC) {
    		ds1305->ctrl[0] &= ~DS1305_nEOSC;
    		write_ctrl = true;
    		dev_warn(&spi->dev, "SET TIME!\n");
    	}
    
    	/* ack any pending IRQs */
    	if (ds1305->ctrl[1]) {
    		ds1305->ctrl[1] = 0;
    		write_ctrl = true;
    	}
    
    	/* this may need one-time (re)init */
    	if (pdata) {
    		/* maybe enable trickle charge */
    		if (((ds1305->ctrl[2] & 0xf0) != DS1305_TRICKLE_MAGIC)) {
    			ds1305->ctrl[2] = DS1305_TRICKLE_MAGIC
    						| pdata->trickle;
    			write_ctrl = true;
    		}
    
    		/* on DS1306, configure 1 Hz signal */
    		if (pdata->is_ds1306) {
    			if (pdata->en_1hz) {
    				if (!(ds1305->ctrl[0] & DS1306_1HZ)) {
    					ds1305->ctrl[0] |= DS1306_1HZ;
    					write_ctrl = true;
    				}
    			} else {
    				if (ds1305->ctrl[0] & DS1306_1HZ) {
    					ds1305->ctrl[0] &= ~DS1306_1HZ;
    					write_ctrl = true;
    				}
    			}
    		}
    	}
    
    	if (write_ctrl) {
    		u8		buf[4];
    
    		buf[0] = DS1305_WRITE | DS1305_CONTROL;
    		buf[1] = ds1305->ctrl[0];
    		buf[2] = ds1305->ctrl[1];
    		buf[3] = ds1305->ctrl[2];
    		status = spi_write_then_read(spi, buf, sizeof(buf), NULL, 0);
    		if (status < 0) {
    			dev_dbg(&spi->dev, "can't %s, %d\n",
    					"write", status);
    			return status;
    		}
    
    		dev_dbg(&spi->dev, "ctrl %s: %3ph\n", "write", ds1305->ctrl);
    	}
    
    	/* see if non-Linux software set up AM/PM mode */
    	addr = DS1305_HOUR;
    	status = spi_write_then_read(spi, &addr, sizeof(addr),
    				&value, sizeof(value));
    	if (status < 0) {
    		dev_dbg(&spi->dev, "read HOUR --> %d\n", status);
    		return status;
    	}
    
    	ds1305->hr12 = (DS1305_HR_12 & value) != 0;
    	if (ds1305->hr12)
    		dev_dbg(&spi->dev, "AM/PM\n");
    
    	/* register RTC ... from here on, ds1305->ctrl needs locking */
    	ds1305->rtc = devm_rtc_device_register(&spi->dev, "ds1305",
    			&ds1305_ops, THIS_MODULE);
    	if (IS_ERR(ds1305->rtc)) {
    		status = PTR_ERR(ds1305->rtc);
    		dev_dbg(&spi->dev, "register rtc --> %d\n", status);
    		return status;
    	}
    
    	/* Maybe set up alarm IRQ; be ready to handle it triggering right
    	 * away.  NOTE that we don't share this.  The signal is active low,
    	 * and we can't ack it before a SPI message delay.  We temporarily
    	 * disable the IRQ until it's acked, which lets us work with more
    	 * IRQ trigger modes (not all IRQ controllers can do falling edge).
    	 */
    	if (spi->irq) {
    		INIT_WORK(&ds1305->work, ds1305_work);
    		status = devm_request_irq(&spi->dev, spi->irq, ds1305_irq,
    				0, dev_name(&ds1305->rtc->dev), ds1305);
    		if (status < 0) {
    			dev_err(&spi->dev, "request_irq %d --> %d\n",
    					spi->irq, status);
    		} else {
    			device_set_wakeup_capable(&spi->dev, 1);
    		}
    	}
    
    	/* export NVRAM */
    	status = sysfs_create_bin_file(&spi->dev.kobj, &nvram);
    	if (status < 0) {
    		dev_err(&spi->dev, "register nvram --> %d\n", status);
    	}
    
    	return 0;
    }
    
    static int ds1305_remove(struct spi_device *spi)
    {
    	struct ds1305 *ds1305 = spi_get_drvdata(spi);
    
    	sysfs_remove_bin_file(&spi->dev.kobj, &nvram);
    
    	/* carefully shut down irq and workqueue, if present */
    	if (spi->irq) {
    		set_bit(FLAG_EXITING, &ds1305->flags);
    		devm_free_irq(&spi->dev, spi->irq, ds1305);
    		cancel_work_sync(&ds1305->work);
    	}
    
    	return 0;
    }
    
    static struct spi_driver ds1305_driver = {
    	.driver.name	= "rtc-ds1305",
    	.probe		= ds1305_probe,
    	.remove		= ds1305_remove,
    	/* REVISIT add suspend/resume */
    };
    
    module_spi_driver(ds1305_driver);
    
    MODULE_DESCRIPTION("RTC driver for DS1305 and DS1306 chips");
    MODULE_LICENSE("GPL");
    MODULE_ALIAS("spi:rtc-ds1305");