Skip to content
Snippets Groups Projects
Select Git revision
  • 77783d06427293b2d711c45cfd4abc6494a1af9c
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

truncate.c

Blame
  • mm.h 73.20 KiB
    #ifndef _LINUX_MM_H
    #define _LINUX_MM_H
    
    #include <linux/errno.h>
    
    #ifdef __KERNEL__
    
    #include <linux/mmdebug.h>
    #include <linux/gfp.h>
    #include <linux/bug.h>
    #include <linux/list.h>
    #include <linux/mmzone.h>
    #include <linux/rbtree.h>
    #include <linux/atomic.h>
    #include <linux/debug_locks.h>
    #include <linux/mm_types.h>
    #include <linux/range.h>
    #include <linux/pfn.h>
    #include <linux/percpu-refcount.h>
    #include <linux/bit_spinlock.h>
    #include <linux/shrinker.h>
    #include <linux/resource.h>
    #include <linux/page_ext.h>
    #include <linux/err.h>
    
    struct mempolicy;
    struct anon_vma;
    struct anon_vma_chain;
    struct file_ra_state;
    struct user_struct;
    struct writeback_control;
    struct bdi_writeback;
    
    #ifndef CONFIG_NEED_MULTIPLE_NODES	/* Don't use mapnrs, do it properly */
    extern unsigned long max_mapnr;
    
    static inline void set_max_mapnr(unsigned long limit)
    {
    	max_mapnr = limit;
    }
    #else
    static inline void set_max_mapnr(unsigned long limit) { }
    #endif
    
    extern unsigned long totalram_pages;
    extern void * high_memory;
    extern int page_cluster;
    
    #ifdef CONFIG_SYSCTL
    extern int sysctl_legacy_va_layout;
    #else
    #define sysctl_legacy_va_layout 0
    #endif
    
    #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
    extern const int mmap_rnd_bits_min;
    extern const int mmap_rnd_bits_max;
    extern int mmap_rnd_bits __read_mostly;
    #endif
    #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
    extern const int mmap_rnd_compat_bits_min;
    extern const int mmap_rnd_compat_bits_max;
    extern int mmap_rnd_compat_bits __read_mostly;
    #endif
    
    #include <asm/page.h>
    #include <asm/pgtable.h>
    #include <asm/processor.h>
    
    #ifndef __pa_symbol
    #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
    #endif
    
    /*
     * To prevent common memory management code establishing
     * a zero page mapping on a read fault.
     * This macro should be defined within <asm/pgtable.h>.
     * s390 does this to prevent multiplexing of hardware bits
     * related to the physical page in case of virtualization.
     */
    #ifndef mm_forbids_zeropage
    #define mm_forbids_zeropage(X)	(0)
    #endif
    
    extern unsigned long sysctl_user_reserve_kbytes;
    extern unsigned long sysctl_admin_reserve_kbytes;
    
    extern int sysctl_overcommit_memory;
    extern int sysctl_overcommit_ratio;
    extern unsigned long sysctl_overcommit_kbytes;
    
    extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
    				    size_t *, loff_t *);
    extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
    				    size_t *, loff_t *);
    
    #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
    
    /* to align the pointer to the (next) page boundary */
    #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
    
    /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
    #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
    
    /*
     * Linux kernel virtual memory manager primitives.
     * The idea being to have a "virtual" mm in the same way
     * we have a virtual fs - giving a cleaner interface to the
     * mm details, and allowing different kinds of memory mappings
     * (from shared memory to executable loading to arbitrary
     * mmap() functions).
     */
    
    extern struct kmem_cache *vm_area_cachep;
    
    #ifndef CONFIG_MMU
    extern struct rb_root nommu_region_tree;
    extern struct rw_semaphore nommu_region_sem;
    
    extern unsigned int kobjsize(const void *objp);
    #endif
    
    /*
     * vm_flags in vm_area_struct, see mm_types.h.
     */
    #define VM_NONE		0x00000000
    
    #define VM_READ		0x00000001	/* currently active flags */
    #define VM_WRITE	0x00000002
    #define VM_EXEC		0x00000004
    #define VM_SHARED	0x00000008
    
    /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
    #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
    #define VM_MAYWRITE	0x00000020
    #define VM_MAYEXEC	0x00000040
    #define VM_MAYSHARE	0x00000080
    
    #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
    #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
    #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
    #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
    #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
    
    #define VM_LOCKED	0x00002000
    #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
    
    					/* Used by sys_madvise() */
    #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
    #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
    
    #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
    #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
    #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
    #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
    #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
    #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
    #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
    #define VM_ARCH_2	0x02000000
    #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
    
    #ifdef CONFIG_MEM_SOFT_DIRTY
    # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
    #else
    # define VM_SOFTDIRTY	0
    #endif
    
    #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
    #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
    #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
    #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
    
    #if defined(CONFIG_X86)
    # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
    #elif defined(CONFIG_PPC)
    # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
    #elif defined(CONFIG_PARISC)
    # define VM_GROWSUP	VM_ARCH_1
    #elif defined(CONFIG_METAG)
    # define VM_GROWSUP	VM_ARCH_1
    #elif defined(CONFIG_IA64)
    # define VM_GROWSUP	VM_ARCH_1
    #elif !defined(CONFIG_MMU)
    # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
    #endif
    
    #if defined(CONFIG_X86)
    /* MPX specific bounds table or bounds directory */
    # define VM_MPX		VM_ARCH_2
    #endif
    
    #ifndef VM_GROWSUP
    # define VM_GROWSUP	VM_NONE
    #endif
    
    /* Bits set in the VMA until the stack is in its final location */
    #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
    
    #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
    #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
    #endif
    
    #ifdef CONFIG_STACK_GROWSUP
    #define VM_STACK	VM_GROWSUP
    #else
    #define VM_STACK	VM_GROWSDOWN
    #endif
    
    #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
    
    /*
     * Special vmas that are non-mergable, non-mlock()able.
     * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
     */
    #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
    
    /* This mask defines which mm->def_flags a process can inherit its parent */
    #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
    
    /* This mask is used to clear all the VMA flags used by mlock */
    #define VM_LOCKED_CLEAR_MASK	(~(VM_LOCKED | VM_LOCKONFAULT))
    
    /*
     * mapping from the currently active vm_flags protection bits (the
     * low four bits) to a page protection mask..
     */
    extern pgprot_t protection_map[16];
    
    #define FAULT_FLAG_WRITE	0x01	/* Fault was a write access */
    #define FAULT_FLAG_MKWRITE	0x02	/* Fault was mkwrite of existing pte */
    #define FAULT_FLAG_ALLOW_RETRY	0x04	/* Retry fault if blocking */
    #define FAULT_FLAG_RETRY_NOWAIT	0x08	/* Don't drop mmap_sem and wait when retrying */
    #define FAULT_FLAG_KILLABLE	0x10	/* The fault task is in SIGKILL killable region */
    #define FAULT_FLAG_TRIED	0x20	/* Second try */
    #define FAULT_FLAG_USER		0x40	/* The fault originated in userspace */
    
    /*
     * vm_fault is filled by the the pagefault handler and passed to the vma's
     * ->fault function. The vma's ->fault is responsible for returning a bitmask
     * of VM_FAULT_xxx flags that give details about how the fault was handled.
     *
     * MM layer fills up gfp_mask for page allocations but fault handler might
     * alter it if its implementation requires a different allocation context.
     *
     * pgoff should be used in favour of virtual_address, if possible.
     */
    struct vm_fault {
    	unsigned int flags;		/* FAULT_FLAG_xxx flags */
    	gfp_t gfp_mask;			/* gfp mask to be used for allocations */
    	pgoff_t pgoff;			/* Logical page offset based on vma */
    	void __user *virtual_address;	/* Faulting virtual address */
    
    	struct page *cow_page;		/* Handler may choose to COW */
    	struct page *page;		/* ->fault handlers should return a
    					 * page here, unless VM_FAULT_NOPAGE
    					 * is set (which is also implied by
    					 * VM_FAULT_ERROR).
    					 */
    	/* for ->map_pages() only */
    	pgoff_t max_pgoff;		/* map pages for offset from pgoff till
    					 * max_pgoff inclusive */
    	pte_t *pte;			/* pte entry associated with ->pgoff */
    };
    
    /*
     * These are the virtual MM functions - opening of an area, closing and
     * unmapping it (needed to keep files on disk up-to-date etc), pointer
     * to the functions called when a no-page or a wp-page exception occurs. 
     */
    struct vm_operations_struct {
    	void (*open)(struct vm_area_struct * area);
    	void (*close)(struct vm_area_struct * area);
    	int (*mremap)(struct vm_area_struct * area);
    	int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
    	int (*pmd_fault)(struct vm_area_struct *, unsigned long address,
    						pmd_t *, unsigned int flags);
    	void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
    
    	/* notification that a previously read-only page is about to become
    	 * writable, if an error is returned it will cause a SIGBUS */
    	int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
    
    	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
    	int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
    
    	/* called by access_process_vm when get_user_pages() fails, typically
    	 * for use by special VMAs that can switch between memory and hardware
    	 */
    	int (*access)(struct vm_area_struct *vma, unsigned long addr,
    		      void *buf, int len, int write);
    
    	/* Called by the /proc/PID/maps code to ask the vma whether it
    	 * has a special name.  Returning non-NULL will also cause this
    	 * vma to be dumped unconditionally. */
    	const char *(*name)(struct vm_area_struct *vma);
    
    #ifdef CONFIG_NUMA
    	/*
    	 * set_policy() op must add a reference to any non-NULL @new mempolicy
    	 * to hold the policy upon return.  Caller should pass NULL @new to
    	 * remove a policy and fall back to surrounding context--i.e. do not
    	 * install a MPOL_DEFAULT policy, nor the task or system default
    	 * mempolicy.
    	 */
    	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
    
    	/*
    	 * get_policy() op must add reference [mpol_get()] to any policy at
    	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
    	 * in mm/mempolicy.c will do this automatically.
    	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
    	 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
    	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
    	 * must return NULL--i.e., do not "fallback" to task or system default
    	 * policy.
    	 */
    	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
    					unsigned long addr);
    #endif
    	/*
    	 * Called by vm_normal_page() for special PTEs to find the
    	 * page for @addr.  This is useful if the default behavior
    	 * (using pte_page()) would not find the correct page.
    	 */
    	struct page *(*find_special_page)(struct vm_area_struct *vma,
    					  unsigned long addr);
    };
    
    struct mmu_gather;
    struct inode;
    
    #define page_private(page)		((page)->private)
    #define set_page_private(page, v)	((page)->private = (v))
    
    #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
    static inline int pmd_devmap(pmd_t pmd)
    {
    	return 0;
    }
    #endif
    
    /*
     * FIXME: take this include out, include page-flags.h in
     * files which need it (119 of them)
     */
    #include <linux/page-flags.h>
    #include <linux/huge_mm.h>
    
    /*
     * Methods to modify the page usage count.
     *
     * What counts for a page usage:
     * - cache mapping   (page->mapping)
     * - private data    (page->private)
     * - page mapped in a task's page tables, each mapping
     *   is counted separately
     *
     * Also, many kernel routines increase the page count before a critical
     * routine so they can be sure the page doesn't go away from under them.
     */
    
    /*
     * Drop a ref, return true if the refcount fell to zero (the page has no users)
     */
    static inline int put_page_testzero(struct page *page)
    {
    	VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
    	return atomic_dec_and_test(&page->_count);
    }
    
    /*
     * Try to grab a ref unless the page has a refcount of zero, return false if
     * that is the case.
     * This can be called when MMU is off so it must not access
     * any of the virtual mappings.
     */
    static inline int get_page_unless_zero(struct page *page)
    {
    	return atomic_inc_not_zero(&page->_count);
    }
    
    extern int page_is_ram(unsigned long pfn);
    
    enum {
    	REGION_INTERSECTS,
    	REGION_DISJOINT,
    	REGION_MIXED,
    };
    
    int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
    		      unsigned long desc);
    
    /* Support for virtually mapped pages */
    struct page *vmalloc_to_page(const void *addr);
    unsigned long vmalloc_to_pfn(const void *addr);
    
    /*
     * Determine if an address is within the vmalloc range
     *
     * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
     * is no special casing required.
     */
    static inline int is_vmalloc_addr(const void *x)
    {
    #ifdef CONFIG_MMU
    	unsigned long addr = (unsigned long)x;
    
    	return addr >= VMALLOC_START && addr < VMALLOC_END;
    #else
    	return 0;
    #endif
    }
    #ifdef CONFIG_MMU
    extern int is_vmalloc_or_module_addr(const void *x);
    #else
    static inline int is_vmalloc_or_module_addr(const void *x)
    {
    	return 0;
    }
    #endif
    
    extern void kvfree(const void *addr);
    
    static inline atomic_t *compound_mapcount_ptr(struct page *page)
    {
    	return &page[1].compound_mapcount;
    }
    
    static inline int compound_mapcount(struct page *page)
    {
    	if (!PageCompound(page))
    		return 0;
    	page = compound_head(page);
    	return atomic_read(compound_mapcount_ptr(page)) + 1;
    }
    
    /*
     * The atomic page->_mapcount, starts from -1: so that transitions
     * both from it and to it can be tracked, using atomic_inc_and_test
     * and atomic_add_negative(-1).
     */
    static inline void page_mapcount_reset(struct page *page)
    {
    	atomic_set(&(page)->_mapcount, -1);
    }
    
    int __page_mapcount(struct page *page);
    
    static inline int page_mapcount(struct page *page)
    {
    	VM_BUG_ON_PAGE(PageSlab(page), page);
    
    	if (unlikely(PageCompound(page)))
    		return __page_mapcount(page);
    	return atomic_read(&page->_mapcount) + 1;
    }
    
    #ifdef CONFIG_TRANSPARENT_HUGEPAGE
    int total_mapcount(struct page *page);
    #else
    static inline int total_mapcount(struct page *page)
    {
    	return page_mapcount(page);
    }
    #endif
    
    static inline int page_count(struct page *page)
    {
    	return atomic_read(&compound_head(page)->_count);
    }
    
    static inline struct page *virt_to_head_page(const void *x)
    {
    	struct page *page = virt_to_page(x);
    
    	return compound_head(page);
    }
    
    /*
     * Setup the page count before being freed into the page allocator for
     * the first time (boot or memory hotplug)
     */
    static inline void init_page_count(struct page *page)
    {
    	atomic_set(&page->_count, 1);
    }
    
    void __put_page(struct page *page);
    
    void put_pages_list(struct list_head *pages);
    
    void split_page(struct page *page, unsigned int order);
    int split_free_page(struct page *page);
    
    /*
     * Compound pages have a destructor function.  Provide a
     * prototype for that function and accessor functions.
     * These are _only_ valid on the head of a compound page.
     */
    typedef void compound_page_dtor(struct page *);
    
    /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
    enum compound_dtor_id {
    	NULL_COMPOUND_DTOR,
    	COMPOUND_PAGE_DTOR,
    #ifdef CONFIG_HUGETLB_PAGE
    	HUGETLB_PAGE_DTOR,
    #endif
    #ifdef CONFIG_TRANSPARENT_HUGEPAGE
    	TRANSHUGE_PAGE_DTOR,
    #endif
    	NR_COMPOUND_DTORS,
    };
    extern compound_page_dtor * const compound_page_dtors[];
    
    static inline void set_compound_page_dtor(struct page *page,
    		enum compound_dtor_id compound_dtor)
    {
    	VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
    	page[1].compound_dtor = compound_dtor;
    }
    
    static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
    {
    	VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
    	return compound_page_dtors[page[1].compound_dtor];
    }
    
    static inline unsigned int compound_order(struct page *page)
    {
    	if (!PageHead(page))
    		return 0;
    	return page[1].compound_order;
    }
    
    static inline void set_compound_order(struct page *page, unsigned int order)
    {
    	page[1].compound_order = order;
    }
    
    void free_compound_page(struct page *page);
    
    #ifdef CONFIG_MMU
    /*
     * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
     * servicing faults for write access.  In the normal case, do always want
     * pte_mkwrite.  But get_user_pages can cause write faults for mappings
     * that do not have writing enabled, when used by access_process_vm.
     */
    static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
    {
    	if (likely(vma->vm_flags & VM_WRITE))
    		pte = pte_mkwrite(pte);
    	return pte;
    }
    
    void do_set_pte(struct vm_area_struct *vma, unsigned long address,
    		struct page *page, pte_t *pte, bool write, bool anon);
    #endif
    
    /*
     * Multiple processes may "see" the same page. E.g. for untouched
     * mappings of /dev/null, all processes see the same page full of
     * zeroes, and text pages of executables and shared libraries have
     * only one copy in memory, at most, normally.
     *
     * For the non-reserved pages, page_count(page) denotes a reference count.
     *   page_count() == 0 means the page is free. page->lru is then used for
     *   freelist management in the buddy allocator.
     *   page_count() > 0  means the page has been allocated.
     *
     * Pages are allocated by the slab allocator in order to provide memory
     * to kmalloc and kmem_cache_alloc. In this case, the management of the
     * page, and the fields in 'struct page' are the responsibility of mm/slab.c
     * unless a particular usage is carefully commented. (the responsibility of
     * freeing the kmalloc memory is the caller's, of course).
     *
     * A page may be used by anyone else who does a __get_free_page().
     * In this case, page_count still tracks the references, and should only
     * be used through the normal accessor functions. The top bits of page->flags
     * and page->virtual store page management information, but all other fields
     * are unused and could be used privately, carefully. The management of this
     * page is the responsibility of the one who allocated it, and those who have
     * subsequently been given references to it.
     *
     * The other pages (we may call them "pagecache pages") are completely
     * managed by the Linux memory manager: I/O, buffers, swapping etc.
     * The following discussion applies only to them.
     *
     * A pagecache page contains an opaque `private' member, which belongs to the
     * page's address_space. Usually, this is the address of a circular list of
     * the page's disk buffers. PG_private must be set to tell the VM to call
     * into the filesystem to release these pages.
     *
     * A page may belong to an inode's memory mapping. In this case, page->mapping
     * is the pointer to the inode, and page->index is the file offset of the page,
     * in units of PAGE_CACHE_SIZE.
     *
     * If pagecache pages are not associated with an inode, they are said to be
     * anonymous pages. These may become associated with the swapcache, and in that
     * case PG_swapcache is set, and page->private is an offset into the swapcache.
     *
     * In either case (swapcache or inode backed), the pagecache itself holds one
     * reference to the page. Setting PG_private should also increment the
     * refcount. The each user mapping also has a reference to the page.
     *
     * The pagecache pages are stored in a per-mapping radix tree, which is
     * rooted at mapping->page_tree, and indexed by offset.
     * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
     * lists, we instead now tag pages as dirty/writeback in the radix tree.
     *
     * All pagecache pages may be subject to I/O:
     * - inode pages may need to be read from disk,
     * - inode pages which have been modified and are MAP_SHARED may need
     *   to be written back to the inode on disk,
     * - anonymous pages (including MAP_PRIVATE file mappings) which have been
     *   modified may need to be swapped out to swap space and (later) to be read
     *   back into memory.
     */
    
    /*
     * The zone field is never updated after free_area_init_core()
     * sets it, so none of the operations on it need to be atomic.
     */
    
    /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
    #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
    #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
    #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
    #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
    
    /*
     * Define the bit shifts to access each section.  For non-existent
     * sections we define the shift as 0; that plus a 0 mask ensures
     * the compiler will optimise away reference to them.
     */
    #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
    #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
    #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
    #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
    
    /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
    #ifdef NODE_NOT_IN_PAGE_FLAGS
    #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
    #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
    						SECTIONS_PGOFF : ZONES_PGOFF)
    #else
    #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
    #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
    						NODES_PGOFF : ZONES_PGOFF)
    #endif
    
    #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
    
    #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
    #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
    #endif
    
    #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
    #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
    #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
    #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
    #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
    
    static inline enum zone_type page_zonenum(const struct page *page)
    {
    	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
    }
    
    #ifdef CONFIG_ZONE_DEVICE
    void get_zone_device_page(struct page *page);
    void put_zone_device_page(struct page *page);
    static inline bool is_zone_device_page(const struct page *page)
    {
    	return page_zonenum(page) == ZONE_DEVICE;
    }
    #else
    static inline void get_zone_device_page(struct page *page)
    {
    }
    static inline void put_zone_device_page(struct page *page)
    {
    }
    static inline bool is_zone_device_page(const struct page *page)
    {
    	return false;
    }
    #endif
    
    static inline void get_page(struct page *page)
    {
    	page = compound_head(page);
    	/*
    	 * Getting a normal page or the head of a compound page
    	 * requires to already have an elevated page->_count.
    	 */
    	VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
    	atomic_inc(&page->_count);
    
    	if (unlikely(is_zone_device_page(page)))
    		get_zone_device_page(page);
    }
    
    static inline void put_page(struct page *page)
    {
    	page = compound_head(page);
    
    	if (put_page_testzero(page))
    		__put_page(page);
    
    	if (unlikely(is_zone_device_page(page)))
    		put_zone_device_page(page);
    }
    
    #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
    #define SECTION_IN_PAGE_FLAGS
    #endif
    
    /*
     * The identification function is mainly used by the buddy allocator for
     * determining if two pages could be buddies. We are not really identifying
     * the zone since we could be using the section number id if we do not have
     * node id available in page flags.
     * We only guarantee that it will return the same value for two combinable
     * pages in a zone.
     */
    static inline int page_zone_id(struct page *page)
    {
    	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
    }
    
    static inline int zone_to_nid(struct zone *zone)
    {
    #ifdef CONFIG_NUMA
    	return zone->node;
    #else
    	return 0;
    #endif
    }
    
    #ifdef NODE_NOT_IN_PAGE_FLAGS
    extern int page_to_nid(const struct page *page);
    #else
    static inline int page_to_nid(const struct page *page)
    {
    	return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
    }
    #endif
    
    #ifdef CONFIG_NUMA_BALANCING
    static inline int cpu_pid_to_cpupid(int cpu, int pid)
    {
    	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
    }
    
    static inline int cpupid_to_pid(int cpupid)
    {
    	return cpupid & LAST__PID_MASK;
    }
    
    static inline int cpupid_to_cpu(int cpupid)
    {
    	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
    }
    
    static inline int cpupid_to_nid(int cpupid)
    {
    	return cpu_to_node(cpupid_to_cpu(cpupid));
    }
    
    static inline bool cpupid_pid_unset(int cpupid)
    {
    	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
    }
    
    static inline bool cpupid_cpu_unset(int cpupid)
    {
    	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
    }
    
    static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
    {
    	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
    }
    
    #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
    #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
    static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
    {
    	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
    }
    
    static inline int page_cpupid_last(struct page *page)
    {
    	return page->_last_cpupid;
    }
    static inline void page_cpupid_reset_last(struct page *page)
    {
    	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
    }
    #else
    static inline int page_cpupid_last(struct page *page)
    {
    	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
    }
    
    extern int page_cpupid_xchg_last(struct page *page, int cpupid);
    
    static inline void page_cpupid_reset_last(struct page *page)
    {
    	int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
    
    	page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
    	page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
    }
    #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
    #else /* !CONFIG_NUMA_BALANCING */
    static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
    {
    	return page_to_nid(page); /* XXX */
    }
    
    static inline int page_cpupid_last(struct page *page)
    {
    	return page_to_nid(page); /* XXX */
    }
    
    static inline int cpupid_to_nid(int cpupid)
    {
    	return -1;
    }
    
    static inline int cpupid_to_pid(int cpupid)
    {
    	return -1;
    }
    
    static inline int cpupid_to_cpu(int cpupid)
    {
    	return -1;
    }
    
    static inline int cpu_pid_to_cpupid(int nid, int pid)
    {
    	return -1;
    }
    
    static inline bool cpupid_pid_unset(int cpupid)
    {
    	return 1;
    }
    
    static inline void page_cpupid_reset_last(struct page *page)
    {
    }
    
    static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
    {
    	return false;
    }
    #endif /* CONFIG_NUMA_BALANCING */
    
    static inline struct zone *page_zone(const struct page *page)
    {
    	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
    }
    
    #ifdef SECTION_IN_PAGE_FLAGS
    static inline void set_page_section(struct page *page, unsigned long section)
    {
    	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
    	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
    }
    
    static inline unsigned long page_to_section(const struct page *page)
    {
    	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
    }
    #endif
    
    static inline void set_page_zone(struct page *page, enum zone_type zone)
    {
    	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
    	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
    }
    
    static inline void set_page_node(struct page *page, unsigned long node)
    {
    	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
    	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
    }
    
    static inline void set_page_links(struct page *page, enum zone_type zone,
    	unsigned long node, unsigned long pfn)
    {
    	set_page_zone(page, zone);
    	set_page_node(page, node);
    #ifdef SECTION_IN_PAGE_FLAGS
    	set_page_section(page, pfn_to_section_nr(pfn));
    #endif
    }
    
    #ifdef CONFIG_MEMCG
    static inline struct mem_cgroup *page_memcg(struct page *page)
    {
    	return page->mem_cgroup;
    }
    #else
    static inline struct mem_cgroup *page_memcg(struct page *page)
    {
    	return NULL;
    }
    #endif
    
    /*
     * Some inline functions in vmstat.h depend on page_zone()
     */
    #include <linux/vmstat.h>
    
    static __always_inline void *lowmem_page_address(const struct page *page)
    {
    	return __va(PFN_PHYS(page_to_pfn(page)));
    }
    
    #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
    #define HASHED_PAGE_VIRTUAL
    #endif
    
    #if defined(WANT_PAGE_VIRTUAL)
    static inline void *page_address(const struct page *page)
    {
    	return page->virtual;
    }
    static inline void set_page_address(struct page *page, void *address)
    {
    	page->virtual = address;
    }
    #define page_address_init()  do { } while(0)
    #endif
    
    #if defined(HASHED_PAGE_VIRTUAL)
    void *page_address(const struct page *page);
    void set_page_address(struct page *page, void *virtual);
    void page_address_init(void);
    #endif
    
    #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
    #define page_address(page) lowmem_page_address(page)
    #define set_page_address(page, address)  do { } while(0)
    #define page_address_init()  do { } while(0)
    #endif
    
    extern void *page_rmapping(struct page *page);
    extern struct anon_vma *page_anon_vma(struct page *page);
    extern struct address_space *page_mapping(struct page *page);
    
    extern struct address_space *__page_file_mapping(struct page *);
    
    static inline
    struct address_space *page_file_mapping(struct page *page)
    {
    	if (unlikely(PageSwapCache(page)))
    		return __page_file_mapping(page);
    
    	return page->mapping;
    }
    
    /*
     * Return the pagecache index of the passed page.  Regular pagecache pages
     * use ->index whereas swapcache pages use ->private
     */
    static inline pgoff_t page_index(struct page *page)
    {
    	if (unlikely(PageSwapCache(page)))
    		return page_private(page);
    	return page->index;
    }
    
    extern pgoff_t __page_file_index(struct page *page);
    
    /*
     * Return the file index of the page. Regular pagecache pages use ->index
     * whereas swapcache pages use swp_offset(->private)
     */
    static inline pgoff_t page_file_index(struct page *page)
    {
    	if (unlikely(PageSwapCache(page)))
    		return __page_file_index(page);
    
    	return page->index;
    }
    
    /*
     * Return true if this page is mapped into pagetables.
     * For compound page it returns true if any subpage of compound page is mapped.
     */
    static inline bool page_mapped(struct page *page)
    {
    	int i;
    	if (likely(!PageCompound(page)))
    		return atomic_read(&page->_mapcount) >= 0;
    	page = compound_head(page);
    	if (atomic_read(compound_mapcount_ptr(page)) >= 0)
    		return true;
    	for (i = 0; i < hpage_nr_pages(page); i++) {
    		if (atomic_read(&page[i]._mapcount) >= 0)
    			return true;
    	}
    	return false;
    }
    
    /*
     * Return true only if the page has been allocated with
     * ALLOC_NO_WATERMARKS and the low watermark was not
     * met implying that the system is under some pressure.
     */
    static inline bool page_is_pfmemalloc(struct page *page)
    {
    	/*
    	 * Page index cannot be this large so this must be
    	 * a pfmemalloc page.
    	 */
    	return page->index == -1UL;
    }
    
    /*
     * Only to be called by the page allocator on a freshly allocated
     * page.
     */
    static inline void set_page_pfmemalloc(struct page *page)
    {
    	page->index = -1UL;
    }
    
    static inline void clear_page_pfmemalloc(struct page *page)
    {
    	page->index = 0;
    }
    
    /*
     * Different kinds of faults, as returned by handle_mm_fault().
     * Used to decide whether a process gets delivered SIGBUS or
     * just gets major/minor fault counters bumped up.
     */
    
    #define VM_FAULT_MINOR	0 /* For backwards compat. Remove me quickly. */
    
    #define VM_FAULT_OOM	0x0001
    #define VM_FAULT_SIGBUS	0x0002
    #define VM_FAULT_MAJOR	0x0004
    #define VM_FAULT_WRITE	0x0008	/* Special case for get_user_pages */
    #define VM_FAULT_HWPOISON 0x0010	/* Hit poisoned small page */
    #define VM_FAULT_HWPOISON_LARGE 0x0020  /* Hit poisoned large page. Index encoded in upper bits */
    #define VM_FAULT_SIGSEGV 0x0040
    
    #define VM_FAULT_NOPAGE	0x0100	/* ->fault installed the pte, not return page */
    #define VM_FAULT_LOCKED	0x0200	/* ->fault locked the returned page */
    #define VM_FAULT_RETRY	0x0400	/* ->fault blocked, must retry */
    #define VM_FAULT_FALLBACK 0x0800	/* huge page fault failed, fall back to small */
    
    #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
    
    #define VM_FAULT_ERROR	(VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
    			 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
    			 VM_FAULT_FALLBACK)
    
    /* Encode hstate index for a hwpoisoned large page */
    #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
    #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
    
    /*
     * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
     */
    extern void pagefault_out_of_memory(void);
    
    #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
    
    /*
     * Flags passed to show_mem() and show_free_areas() to suppress output in
     * various contexts.
     */
    #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
    
    extern void show_free_areas(unsigned int flags);
    extern bool skip_free_areas_node(unsigned int flags, int nid);
    
    int shmem_zero_setup(struct vm_area_struct *);
    #ifdef CONFIG_SHMEM
    bool shmem_mapping(struct address_space *mapping);
    #else
    static inline bool shmem_mapping(struct address_space *mapping)
    {
    	return false;
    }
    #endif
    
    extern bool can_do_mlock(void);
    extern int user_shm_lock(size_t, struct user_struct *);
    extern void user_shm_unlock(size_t, struct user_struct *);
    
    /*
     * Parameter block passed down to zap_pte_range in exceptional cases.
     */
    struct zap_details {
    	struct address_space *check_mapping;	/* Check page->mapping if set */
    	pgoff_t	first_index;			/* Lowest page->index to unmap */
    	pgoff_t last_index;			/* Highest page->index to unmap */
    };
    
    struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
    		pte_t pte);
    
    int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
    		unsigned long size);
    void zap_page_range(struct vm_area_struct *vma, unsigned long address,
    		unsigned long size, struct zap_details *);
    void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
    		unsigned long start, unsigned long end);
    
    /**
     * mm_walk - callbacks for walk_page_range
     * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
     *	       this handler is required to be able to handle
     *	       pmd_trans_huge() pmds.  They may simply choose to
     *	       split_huge_page() instead of handling it explicitly.
     * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
     * @pte_hole: if set, called for each hole at all levels
     * @hugetlb_entry: if set, called for each hugetlb entry
     * @test_walk: caller specific callback function to determine whether
     *             we walk over the current vma or not. A positive returned
     *             value means "do page table walk over the current vma,"
     *             and a negative one means "abort current page table walk
     *             right now." 0 means "skip the current vma."
     * @mm:        mm_struct representing the target process of page table walk
     * @vma:       vma currently walked (NULL if walking outside vmas)
     * @private:   private data for callbacks' usage
     *
     * (see the comment on walk_page_range() for more details)
     */
    struct mm_walk {
    	int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
    			 unsigned long next, struct mm_walk *walk);
    	int (*pte_entry)(pte_t *pte, unsigned long addr,
    			 unsigned long next, struct mm_walk *walk);
    	int (*pte_hole)(unsigned long addr, unsigned long next,
    			struct mm_walk *walk);
    	int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
    			     unsigned long addr, unsigned long next,
    			     struct mm_walk *walk);
    	int (*test_walk)(unsigned long addr, unsigned long next,
    			struct mm_walk *walk);
    	struct mm_struct *mm;
    	struct vm_area_struct *vma;
    	void *private;
    };
    
    int walk_page_range(unsigned long addr, unsigned long end,
    		struct mm_walk *walk);
    int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
    void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
    		unsigned long end, unsigned long floor, unsigned long ceiling);
    int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
    			struct vm_area_struct *vma);
    void unmap_mapping_range(struct address_space *mapping,
    		loff_t const holebegin, loff_t const holelen, int even_cows);
    int follow_pfn(struct vm_area_struct *vma, unsigned long address,
    	unsigned long *pfn);
    int follow_phys(struct vm_area_struct *vma, unsigned long address,
    		unsigned int flags, unsigned long *prot, resource_size_t *phys);
    int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
    			void *buf, int len, int write);
    
    static inline void unmap_shared_mapping_range(struct address_space *mapping,
    		loff_t const holebegin, loff_t const holelen)
    {
    	unmap_mapping_range(mapping, holebegin, holelen, 0);
    }
    
    extern void truncate_pagecache(struct inode *inode, loff_t new);
    extern void truncate_setsize(struct inode *inode, loff_t newsize);
    void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
    void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
    int truncate_inode_page(struct address_space *mapping, struct page *page);
    int generic_error_remove_page(struct address_space *mapping, struct page *page);
    int invalidate_inode_page(struct page *page);
    
    #ifdef CONFIG_MMU
    extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
    			unsigned long address, unsigned int flags);
    extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
    			    unsigned long address, unsigned int fault_flags,
    			    bool *unlocked);
    #else
    static inline int handle_mm_fault(struct mm_struct *mm,
    			struct vm_area_struct *vma, unsigned long address,
    			unsigned int flags)
    {
    	/* should never happen if there's no MMU */
    	BUG();
    	return VM_FAULT_SIGBUS;
    }
    static inline int fixup_user_fault(struct task_struct *tsk,
    		struct mm_struct *mm, unsigned long address,
    		unsigned int fault_flags, bool *unlocked)
    {
    	/* should never happen if there's no MMU */
    	BUG();
    	return -EFAULT;
    }
    #endif
    
    extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
    extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
    		void *buf, int len, int write);
    
    long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
    		      unsigned long start, unsigned long nr_pages,
    		      unsigned int foll_flags, struct page **pages,
    		      struct vm_area_struct **vmas, int *nonblocking);
    long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
    		    unsigned long start, unsigned long nr_pages,
    		    int write, int force, struct page **pages,
    		    struct vm_area_struct **vmas);
    long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
    		    unsigned long start, unsigned long nr_pages,
    		    int write, int force, struct page **pages,
    		    int *locked);
    long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
    			       unsigned long start, unsigned long nr_pages,
    			       int write, int force, struct page **pages,
    			       unsigned int gup_flags);
    long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
    		    unsigned long start, unsigned long nr_pages,
    		    int write, int force, struct page **pages);
    int get_user_pages_fast(unsigned long start, int nr_pages, int write,
    			struct page **pages);
    
    /* Container for pinned pfns / pages */
    struct frame_vector {
    	unsigned int nr_allocated;	/* Number of frames we have space for */
    	unsigned int nr_frames;	/* Number of frames stored in ptrs array */
    	bool got_ref;		/* Did we pin pages by getting page ref? */
    	bool is_pfns;		/* Does array contain pages or pfns? */
    	void *ptrs[0];		/* Array of pinned pfns / pages. Use
    				 * pfns_vector_pages() or pfns_vector_pfns()
    				 * for access */
    };
    
    struct frame_vector *frame_vector_create(unsigned int nr_frames);
    void frame_vector_destroy(struct frame_vector *vec);
    int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
    		     bool write, bool force, struct frame_vector *vec);
    void put_vaddr_frames(struct frame_vector *vec);
    int frame_vector_to_pages(struct frame_vector *vec);
    void frame_vector_to_pfns(struct frame_vector *vec);
    
    static inline unsigned int frame_vector_count(struct frame_vector *vec)
    {
    	return vec->nr_frames;
    }
    
    static inline struct page **frame_vector_pages(struct frame_vector *vec)
    {
    	if (vec->is_pfns) {
    		int err = frame_vector_to_pages(vec);
    
    		if (err)
    			return ERR_PTR(err);
    	}
    	return (struct page **)(vec->ptrs);
    }
    
    static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
    {
    	if (!vec->is_pfns)
    		frame_vector_to_pfns(vec);
    	return (unsigned long *)(vec->ptrs);
    }
    
    struct kvec;
    int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
    			struct page **pages);
    int get_kernel_page(unsigned long start, int write, struct page **pages);
    struct page *get_dump_page(unsigned long addr);
    
    extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
    extern void do_invalidatepage(struct page *page, unsigned int offset,
    			      unsigned int length);
    
    int __set_page_dirty_nobuffers(struct page *page);
    int __set_page_dirty_no_writeback(struct page *page);
    int redirty_page_for_writepage(struct writeback_control *wbc,
    				struct page *page);
    void account_page_dirtied(struct page *page, struct address_space *mapping,
    			  struct mem_cgroup *memcg);
    void account_page_cleaned(struct page *page, struct address_space *mapping,
    			  struct mem_cgroup *memcg, struct bdi_writeback *wb);
    int set_page_dirty(struct page *page);
    int set_page_dirty_lock(struct page *page);
    void cancel_dirty_page(struct page *page);
    int clear_page_dirty_for_io(struct page *page);
    
    int get_cmdline(struct task_struct *task, char *buffer, int buflen);
    
    /* Is the vma a continuation of the stack vma above it? */
    static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
    {
    	return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
    }
    
    static inline bool vma_is_anonymous(struct vm_area_struct *vma)
    {
    	return !vma->vm_ops;
    }
    
    static inline int stack_guard_page_start(struct vm_area_struct *vma,
    					     unsigned long addr)
    {
    	return (vma->vm_flags & VM_GROWSDOWN) &&
    		(vma->vm_start == addr) &&
    		!vma_growsdown(vma->vm_prev, addr);
    }
    
    /* Is the vma a continuation of the stack vma below it? */
    static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
    {
    	return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
    }
    
    static inline int stack_guard_page_end(struct vm_area_struct *vma,
    					   unsigned long addr)
    {
    	return (vma->vm_flags & VM_GROWSUP) &&
    		(vma->vm_end == addr) &&
    		!vma_growsup(vma->vm_next, addr);
    }
    
    int vma_is_stack_for_task(struct vm_area_struct *vma, struct task_struct *t);
    
    extern unsigned long move_page_tables(struct vm_area_struct *vma,
    		unsigned long old_addr, struct vm_area_struct *new_vma,
    		unsigned long new_addr, unsigned long len,
    		bool need_rmap_locks);
    extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
    			      unsigned long end, pgprot_t newprot,
    			      int dirty_accountable, int prot_numa);
    extern int mprotect_fixup(struct vm_area_struct *vma,
    			  struct vm_area_struct **pprev, unsigned long start,
    			  unsigned long end, unsigned long newflags);
    
    /*
     * doesn't attempt to fault and will return short.
     */
    int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
    			  struct page **pages);
    /*
     * per-process(per-mm_struct) statistics.
     */
    static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
    {
    	long val = atomic_long_read(&mm->rss_stat.count[member]);
    
    #ifdef SPLIT_RSS_COUNTING
    	/*
    	 * counter is updated in asynchronous manner and may go to minus.
    	 * But it's never be expected number for users.
    	 */
    	if (val < 0)
    		val = 0;
    #endif
    	return (unsigned long)val;
    }
    
    static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
    {
    	atomic_long_add(value, &mm->rss_stat.count[member]);
    }
    
    static inline void inc_mm_counter(struct mm_struct *mm, int member)
    {
    	atomic_long_inc(&mm->rss_stat.count[member]);
    }
    
    static inline void dec_mm_counter(struct mm_struct *mm, int member)
    {
    	atomic_long_dec(&mm->rss_stat.count[member]);
    }
    
    /* Optimized variant when page is already known not to be PageAnon */
    static inline int mm_counter_file(struct page *page)
    {
    	if (PageSwapBacked(page))
    		return MM_SHMEMPAGES;
    	return MM_FILEPAGES;
    }
    
    static inline int mm_counter(struct page *page)
    {
    	if (PageAnon(page))
    		return MM_ANONPAGES;
    	return mm_counter_file(page);
    }
    
    static inline unsigned long get_mm_rss(struct mm_struct *mm)
    {
    	return get_mm_counter(mm, MM_FILEPAGES) +
    		get_mm_counter(mm, MM_ANONPAGES) +
    		get_mm_counter(mm, MM_SHMEMPAGES);
    }
    
    static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
    {
    	return max(mm->hiwater_rss, get_mm_rss(mm));
    }
    
    static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
    {
    	return max(mm->hiwater_vm, mm->total_vm);
    }
    
    static inline void update_hiwater_rss(struct mm_struct *mm)
    {
    	unsigned long _rss = get_mm_rss(mm);
    
    	if ((mm)->hiwater_rss < _rss)
    		(mm)->hiwater_rss = _rss;
    }
    
    static inline void update_hiwater_vm(struct mm_struct *mm)
    {
    	if (mm->hiwater_vm < mm->total_vm)
    		mm->hiwater_vm = mm->total_vm;
    }
    
    static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
    {
    	mm->hiwater_rss = get_mm_rss(mm);
    }
    
    static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
    					 struct mm_struct *mm)
    {
    	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
    
    	if (*maxrss < hiwater_rss)
    		*maxrss = hiwater_rss;
    }
    
    #if defined(SPLIT_RSS_COUNTING)
    void sync_mm_rss(struct mm_struct *mm);
    #else
    static inline void sync_mm_rss(struct mm_struct *mm)
    {
    }
    #endif
    
    #ifndef __HAVE_ARCH_PTE_DEVMAP
    static inline int pte_devmap(pte_t pte)
    {
    	return 0;
    }
    #endif
    
    int vma_wants_writenotify(struct vm_area_struct *vma);
    
    extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
    			       spinlock_t **ptl);
    static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
    				    spinlock_t **ptl)
    {
    	pte_t *ptep;
    	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
    	return ptep;
    }
    
    #ifdef __PAGETABLE_PUD_FOLDED
    static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
    						unsigned long address)
    {
    	return 0;
    }
    #else
    int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
    #endif
    
    #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
    static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
    						unsigned long address)
    {
    	return 0;
    }
    
    static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
    
    static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
    {
    	return 0;
    }
    
    static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
    static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
    
    #else
    int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
    
    static inline void mm_nr_pmds_init(struct mm_struct *mm)
    {
    	atomic_long_set(&mm->nr_pmds, 0);
    }
    
    static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
    {
    	return atomic_long_read(&mm->nr_pmds);
    }
    
    static inline void mm_inc_nr_pmds(struct mm_struct *mm)
    {
    	atomic_long_inc(&mm->nr_pmds);
    }
    
    static inline void mm_dec_nr_pmds(struct mm_struct *mm)
    {
    	atomic_long_dec(&mm->nr_pmds);
    }
    #endif
    
    int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
    		pmd_t *pmd, unsigned long address);
    int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
    
    /*
     * The following ifdef needed to get the 4level-fixup.h header to work.
     * Remove it when 4level-fixup.h has been removed.
     */
    #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
    static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
    {
    	return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
    		NULL: pud_offset(pgd, address);
    }
    
    static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
    {
    	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
    		NULL: pmd_offset(pud, address);
    }
    #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
    
    #if USE_SPLIT_PTE_PTLOCKS
    #if ALLOC_SPLIT_PTLOCKS
    void __init ptlock_cache_init(void);
    extern bool ptlock_alloc(struct page *page);
    extern void ptlock_free(struct page *page);
    
    static inline spinlock_t *ptlock_ptr(struct page *page)
    {
    	return page->ptl;
    }
    #else /* ALLOC_SPLIT_PTLOCKS */
    static inline void ptlock_cache_init(void)
    {
    }
    
    static inline bool ptlock_alloc(struct page *page)
    {
    	return true;
    }
    
    static inline void ptlock_free(struct page *page)
    {
    }
    
    static inline spinlock_t *ptlock_ptr(struct page *page)
    {
    	return &page->ptl;
    }
    #endif /* ALLOC_SPLIT_PTLOCKS */
    
    static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
    {
    	return ptlock_ptr(pmd_page(*pmd));
    }
    
    static inline bool ptlock_init(struct page *page)
    {
    	/*
    	 * prep_new_page() initialize page->private (and therefore page->ptl)
    	 * with 0. Make sure nobody took it in use in between.
    	 *
    	 * It can happen if arch try to use slab for page table allocation:
    	 * slab code uses page->slab_cache, which share storage with page->ptl.
    	 */
    	VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
    	if (!ptlock_alloc(page))
    		return false;
    	spin_lock_init(ptlock_ptr(page));
    	return true;
    }
    
    /* Reset page->mapping so free_pages_check won't complain. */
    static inline void pte_lock_deinit(struct page *page)
    {
    	page->mapping = NULL;
    	ptlock_free(page);
    }
    
    #else	/* !USE_SPLIT_PTE_PTLOCKS */
    /*
     * We use mm->page_table_lock to guard all pagetable pages of the mm.
     */
    static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
    {
    	return &mm->page_table_lock;
    }
    static inline void ptlock_cache_init(void) {}
    static inline bool ptlock_init(struct page *page) { return true; }
    static inline void pte_lock_deinit(struct page *page) {}
    #endif /* USE_SPLIT_PTE_PTLOCKS */
    
    static inline void pgtable_init(void)
    {
    	ptlock_cache_init();
    	pgtable_cache_init();
    }
    
    static inline bool pgtable_page_ctor(struct page *page)
    {
    	if (!ptlock_init(page))
    		return false;
    	inc_zone_page_state(page, NR_PAGETABLE);
    	return true;
    }
    
    static inline void pgtable_page_dtor(struct page *page)
    {
    	pte_lock_deinit(page);
    	dec_zone_page_state(page, NR_PAGETABLE);
    }
    
    #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
    ({							\
    	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
    	pte_t *__pte = pte_offset_map(pmd, address);	\
    	*(ptlp) = __ptl;				\
    	spin_lock(__ptl);				\
    	__pte;						\
    })
    
    #define pte_unmap_unlock(pte, ptl)	do {		\
    	spin_unlock(ptl);				\
    	pte_unmap(pte);					\
    } while (0)
    
    #define pte_alloc_map(mm, vma, pmd, address)				\
    	((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma,	\
    							pmd, address))?	\
    	 NULL: pte_offset_map(pmd, address))
    
    #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
    	((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL,	\
    							pmd, address))?	\
    		NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
    
    #define pte_alloc_kernel(pmd, address)			\
    	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
    		NULL: pte_offset_kernel(pmd, address))
    
    #if USE_SPLIT_PMD_PTLOCKS
    
    static struct page *pmd_to_page(pmd_t *pmd)
    {
    	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
    	return virt_to_page((void *)((unsigned long) pmd & mask));
    }
    
    static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
    {
    	return ptlock_ptr(pmd_to_page(pmd));
    }
    
    static inline bool pgtable_pmd_page_ctor(struct page *page)
    {
    #ifdef CONFIG_TRANSPARENT_HUGEPAGE
    	page->pmd_huge_pte = NULL;
    #endif
    	return ptlock_init(page);
    }
    
    static inline void pgtable_pmd_page_dtor(struct page *page)
    {
    #ifdef CONFIG_TRANSPARENT_HUGEPAGE
    	VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
    #endif
    	ptlock_free(page);
    }
    
    #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
    
    #else
    
    static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
    {
    	return &mm->page_table_lock;
    }
    
    static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
    static inline void pgtable_pmd_page_dtor(struct page *page) {}
    
    #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
    
    #endif
    
    static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
    {
    	spinlock_t *ptl = pmd_lockptr(mm, pmd);
    	spin_lock(ptl);
    	return ptl;
    }
    
    extern void free_area_init(unsigned long * zones_size);
    extern void free_area_init_node(int nid, unsigned long * zones_size,
    		unsigned long zone_start_pfn, unsigned long *zholes_size);
    extern void free_initmem(void);
    
    /*
     * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
     * into the buddy system. The freed pages will be poisoned with pattern
     * "poison" if it's within range [0, UCHAR_MAX].
     * Return pages freed into the buddy system.
     */
    extern unsigned long free_reserved_area(void *start, void *end,
    					int poison, char *s);
    
    #ifdef	CONFIG_HIGHMEM
    /*
     * Free a highmem page into the buddy system, adjusting totalhigh_pages
     * and totalram_pages.
     */
    extern void free_highmem_page(struct page *page);
    #endif
    
    extern void adjust_managed_page_count(struct page *page, long count);
    extern void mem_init_print_info(const char *str);
    
    extern void reserve_bootmem_region(unsigned long start, unsigned long end);
    
    /* Free the reserved page into the buddy system, so it gets managed. */
    static inline void __free_reserved_page(struct page *page)
    {
    	ClearPageReserved(page);
    	init_page_count(page);
    	__free_page(page);
    }
    
    static inline void free_reserved_page(struct page *page)
    {
    	__free_reserved_page(page);
    	adjust_managed_page_count(page, 1);
    }
    
    static inline void mark_page_reserved(struct page *page)
    {
    	SetPageReserved(page);
    	adjust_managed_page_count(page, -1);
    }
    
    /*
     * Default method to free all the __init memory into the buddy system.
     * The freed pages will be poisoned with pattern "poison" if it's within
     * range [0, UCHAR_MAX].
     * Return pages freed into the buddy system.
     */
    static inline unsigned long free_initmem_default(int poison)
    {
    	extern char __init_begin[], __init_end[];
    
    	return free_reserved_area(&__init_begin, &__init_end,
    				  poison, "unused kernel");
    }
    
    static inline unsigned long get_num_physpages(void)
    {
    	int nid;
    	unsigned long phys_pages = 0;
    
    	for_each_online_node(nid)
    		phys_pages += node_present_pages(nid);
    
    	return phys_pages;
    }
    
    #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
    /*
     * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
     * zones, allocate the backing mem_map and account for memory holes in a more
     * architecture independent manner. This is a substitute for creating the
     * zone_sizes[] and zholes_size[] arrays and passing them to
     * free_area_init_node()
     *
     * An architecture is expected to register range of page frames backed by
     * physical memory with memblock_add[_node]() before calling
     * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
     * usage, an architecture is expected to do something like
     *
     * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
     * 							 max_highmem_pfn};
     * for_each_valid_physical_page_range()
     * 	memblock_add_node(base, size, nid)
     * free_area_init_nodes(max_zone_pfns);
     *
     * free_bootmem_with_active_regions() calls free_bootmem_node() for each
     * registered physical page range.  Similarly
     * sparse_memory_present_with_active_regions() calls memory_present() for
     * each range when SPARSEMEM is enabled.
     *
     * See mm/page_alloc.c for more information on each function exposed by
     * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
     */
    extern void free_area_init_nodes(unsigned long *max_zone_pfn);
    unsigned long node_map_pfn_alignment(void);
    unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
    						unsigned long end_pfn);
    extern unsigned long absent_pages_in_range(unsigned long start_pfn,
    						unsigned long end_pfn);
    extern void get_pfn_range_for_nid(unsigned int nid,
    			unsigned long *start_pfn, unsigned long *end_pfn);
    extern unsigned long find_min_pfn_with_active_regions(void);
    extern void free_bootmem_with_active_regions(int nid,
    						unsigned long max_low_pfn);
    extern void sparse_memory_present_with_active_regions(int nid);
    
    #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
    
    #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
        !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
    static inline int __early_pfn_to_nid(unsigned long pfn,
    					struct mminit_pfnnid_cache *state)
    {
    	return 0;
    }
    #else
    /* please see mm/page_alloc.c */
    extern int __meminit early_pfn_to_nid(unsigned long pfn);
    /* there is a per-arch backend function. */
    extern int __meminit __early_pfn_to_nid(unsigned long pfn,
    					struct mminit_pfnnid_cache *state);
    #endif
    
    extern void set_dma_reserve(unsigned long new_dma_reserve);
    extern void memmap_init_zone(unsigned long, int, unsigned long,
    				unsigned long, enum memmap_context);
    extern void setup_per_zone_wmarks(void);
    extern int __meminit init_per_zone_wmark_min(void);
    extern void mem_init(void);
    extern void __init mmap_init(void);
    extern void show_mem(unsigned int flags);
    extern void si_meminfo(struct sysinfo * val);
    extern void si_meminfo_node(struct sysinfo *val, int nid);
    
    extern __printf(3, 4)
    void warn_alloc_failed(gfp_t gfp_mask, unsigned int order,
    		const char *fmt, ...);
    
    extern void setup_per_cpu_pageset(void);
    
    extern void zone_pcp_update(struct zone *zone);
    extern void zone_pcp_reset(struct zone *zone);
    
    /* page_alloc.c */
    extern int min_free_kbytes;
    
    /* nommu.c */
    extern atomic_long_t mmap_pages_allocated;
    extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
    
    /* interval_tree.c */
    void vma_interval_tree_insert(struct vm_area_struct *node,
    			      struct rb_root *root);
    void vma_interval_tree_insert_after(struct vm_area_struct *node,
    				    struct vm_area_struct *prev,
    				    struct rb_root *root);
    void vma_interval_tree_remove(struct vm_area_struct *node,
    			      struct rb_root *root);
    struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
    				unsigned long start, unsigned long last);
    struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
    				unsigned long start, unsigned long last);
    
    #define vma_interval_tree_foreach(vma, root, start, last)		\
    	for (vma = vma_interval_tree_iter_first(root, start, last);	\
    	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
    
    void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
    				   struct rb_root *root);
    void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
    				   struct rb_root *root);
    struct anon_vma_chain *anon_vma_interval_tree_iter_first(
    	struct rb_root *root, unsigned long start, unsigned long last);
    struct anon_vma_chain *anon_vma_interval_tree_iter_next(
    	struct anon_vma_chain *node, unsigned long start, unsigned long last);
    #ifdef CONFIG_DEBUG_VM_RB
    void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
    #endif
    
    #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
    	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
    	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
    
    /* mmap.c */
    extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
    extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
    	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
    extern struct vm_area_struct *vma_merge(struct mm_struct *,
    	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
    	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
    	struct mempolicy *, struct vm_userfaultfd_ctx);
    extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
    extern int split_vma(struct mm_struct *,
    	struct vm_area_struct *, unsigned long addr, int new_below);
    extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
    extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
    	struct rb_node **, struct rb_node *);
    extern void unlink_file_vma(struct vm_area_struct *);
    extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
    	unsigned long addr, unsigned long len, pgoff_t pgoff,
    	bool *need_rmap_locks);
    extern void exit_mmap(struct mm_struct *);
    
    static inline int check_data_rlimit(unsigned long rlim,
    				    unsigned long new,
    				    unsigned long start,
    				    unsigned long end_data,
    				    unsigned long start_data)
    {
    	if (rlim < RLIM_INFINITY) {
    		if (((new - start) + (end_data - start_data)) > rlim)
    			return -ENOSPC;
    	}
    
    	return 0;
    }
    
    extern int mm_take_all_locks(struct mm_struct *mm);
    extern void mm_drop_all_locks(struct mm_struct *mm);
    
    extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
    extern struct file *get_mm_exe_file(struct mm_struct *mm);
    
    extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
    extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
    
    extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
    				   unsigned long addr, unsigned long len,
    				   unsigned long flags,
    				   const struct vm_special_mapping *spec);
    /* This is an obsolete alternative to _install_special_mapping. */
    extern int install_special_mapping(struct mm_struct *mm,
    				   unsigned long addr, unsigned long len,
    				   unsigned long flags, struct page **pages);
    
    extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
    
    extern unsigned long mmap_region(struct file *file, unsigned long addr,
    	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
    extern unsigned long do_mmap(struct file *file, unsigned long addr,
    	unsigned long len, unsigned long prot, unsigned long flags,
    	vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate);
    extern int do_munmap(struct mm_struct *, unsigned long, size_t);
    
    static inline unsigned long
    do_mmap_pgoff(struct file *file, unsigned long addr,
    	unsigned long len, unsigned long prot, unsigned long flags,
    	unsigned long pgoff, unsigned long *populate)
    {
    	return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate);
    }
    
    #ifdef CONFIG_MMU
    extern int __mm_populate(unsigned long addr, unsigned long len,
    			 int ignore_errors);
    static inline void mm_populate(unsigned long addr, unsigned long len)
    {
    	/* Ignore errors */
    	(void) __mm_populate(addr, len, 1);
    }
    #else
    static inline void mm_populate(unsigned long addr, unsigned long len) {}
    #endif
    
    /* These take the mm semaphore themselves */
    extern unsigned long vm_brk(unsigned long, unsigned long);
    extern int vm_munmap(unsigned long, size_t);
    extern unsigned long vm_mmap(struct file *, unsigned long,
            unsigned long, unsigned long,
            unsigned long, unsigned long);
    
    struct vm_unmapped_area_info {
    #define VM_UNMAPPED_AREA_TOPDOWN 1
    	unsigned long flags;
    	unsigned long length;
    	unsigned long low_limit;
    	unsigned long high_limit;
    	unsigned long align_mask;
    	unsigned long align_offset;
    };
    
    extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
    extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
    
    /*
     * Search for an unmapped address range.
     *
     * We are looking for a range that:
     * - does not intersect with any VMA;
     * - is contained within the [low_limit, high_limit) interval;
     * - is at least the desired size.
     * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
     */
    static inline unsigned long
    vm_unmapped_area(struct vm_unmapped_area_info *info)
    {
    	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
    		return unmapped_area_topdown(info);
    	else
    		return unmapped_area(info);
    }
    
    /* truncate.c */
    extern void truncate_inode_pages(struct address_space *, loff_t);
    extern void truncate_inode_pages_range(struct address_space *,
    				       loff_t lstart, loff_t lend);
    extern void truncate_inode_pages_final(struct address_space *);
    
    /* generic vm_area_ops exported for stackable file systems */
    extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
    extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
    extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
    
    /* mm/page-writeback.c */
    int write_one_page(struct page *page, int wait);
    void task_dirty_inc(struct task_struct *tsk);
    
    /* readahead.c */
    #define VM_MAX_READAHEAD	128	/* kbytes */
    #define VM_MIN_READAHEAD	16	/* kbytes (includes current page) */
    
    int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
    			pgoff_t offset, unsigned long nr_to_read);
    
    void page_cache_sync_readahead(struct address_space *mapping,
    			       struct file_ra_state *ra,
    			       struct file *filp,
    			       pgoff_t offset,
    			       unsigned long size);
    
    void page_cache_async_readahead(struct address_space *mapping,
    				struct file_ra_state *ra,
    				struct file *filp,
    				struct page *pg,
    				pgoff_t offset,
    				unsigned long size);
    
    /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
    extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
    
    /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
    extern int expand_downwards(struct vm_area_struct *vma,
    		unsigned long address);
    #if VM_GROWSUP
    extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
    #else
      #define expand_upwards(vma, address) (0)
    #endif
    
    /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
    extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
    extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
    					     struct vm_area_struct **pprev);
    
    /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
       NULL if none.  Assume start_addr < end_addr. */
    static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
    {
    	struct vm_area_struct * vma = find_vma(mm,start_addr);
    
    	if (vma && end_addr <= vma->vm_start)
    		vma = NULL;
    	return vma;
    }
    
    static inline unsigned long vma_pages(struct vm_area_struct *vma)
    {
    	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
    }
    
    /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
    static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
    				unsigned long vm_start, unsigned long vm_end)
    {
    	struct vm_area_struct *vma = find_vma(mm, vm_start);
    
    	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
    		vma = NULL;
    
    	return vma;
    }
    
    #ifdef CONFIG_MMU
    pgprot_t vm_get_page_prot(unsigned long vm_flags);
    void vma_set_page_prot(struct vm_area_struct *vma);
    #else
    static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
    {
    	return __pgprot(0);
    }
    static inline void vma_set_page_prot(struct vm_area_struct *vma)
    {
    	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
    }
    #endif
    
    #ifdef CONFIG_NUMA_BALANCING
    unsigned long change_prot_numa(struct vm_area_struct *vma,
    			unsigned long start, unsigned long end);
    #endif
    
    struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
    int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
    			unsigned long pfn, unsigned long size, pgprot_t);
    int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
    int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
    			unsigned long pfn);
    int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
    			pfn_t pfn);
    int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
    
    
    struct page *follow_page_mask(struct vm_area_struct *vma,
    			      unsigned long address, unsigned int foll_flags,
    			      unsigned int *page_mask);
    
    static inline struct page *follow_page(struct vm_area_struct *vma,
    		unsigned long address, unsigned int foll_flags)
    {
    	unsigned int unused_page_mask;
    	return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
    }
    
    #define FOLL_WRITE	0x01	/* check pte is writable */
    #define FOLL_TOUCH	0x02	/* mark page accessed */
    #define FOLL_GET	0x04	/* do get_page on page */
    #define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
    #define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
    #define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO
    				 * and return without waiting upon it */
    #define FOLL_POPULATE	0x40	/* fault in page */
    #define FOLL_SPLIT	0x80	/* don't return transhuge pages, split them */
    #define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */
    #define FOLL_NUMA	0x200	/* force NUMA hinting page fault */
    #define FOLL_MIGRATION	0x400	/* wait for page to replace migration entry */
    #define FOLL_TRIED	0x800	/* a retry, previous pass started an IO */
    #define FOLL_MLOCK	0x1000	/* lock present pages */
    
    typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
    			void *data);
    extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
    			       unsigned long size, pte_fn_t fn, void *data);
    
    
    #ifdef CONFIG_PAGE_POISONING
    extern bool page_poisoning_enabled(void);
    extern void kernel_poison_pages(struct page *page, int numpages, int enable);
    extern bool page_is_poisoned(struct page *page);
    #else
    static inline bool page_poisoning_enabled(void) { return false; }
    static inline void kernel_poison_pages(struct page *page, int numpages,
    					int enable) { }
    static inline bool page_is_poisoned(struct page *page) { return false; }
    #endif
    
    #ifdef CONFIG_DEBUG_PAGEALLOC
    extern bool _debug_pagealloc_enabled;
    extern void __kernel_map_pages(struct page *page, int numpages, int enable);
    
    static inline bool debug_pagealloc_enabled(void)
    {
    	return _debug_pagealloc_enabled;
    }
    
    static inline void
    kernel_map_pages(struct page *page, int numpages, int enable)
    {
    	if (!debug_pagealloc_enabled())
    		return;
    
    	__kernel_map_pages(page, numpages, enable);
    }
    #ifdef CONFIG_HIBERNATION
    extern bool kernel_page_present(struct page *page);
    #endif	/* CONFIG_HIBERNATION */
    #else	/* CONFIG_DEBUG_PAGEALLOC */
    static inline void
    kernel_map_pages(struct page *page, int numpages, int enable) {}
    #ifdef CONFIG_HIBERNATION
    static inline bool kernel_page_present(struct page *page) { return true; }
    #endif	/* CONFIG_HIBERNATION */
    static inline bool debug_pagealloc_enabled(void)
    {
    	return false;
    }
    #endif	/* CONFIG_DEBUG_PAGEALLOC */
    
    #ifdef __HAVE_ARCH_GATE_AREA
    extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
    extern int in_gate_area_no_mm(unsigned long addr);
    extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
    #else
    static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
    {
    	return NULL;
    }
    static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
    static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
    {
    	return 0;
    }
    #endif	/* __HAVE_ARCH_GATE_AREA */
    
    #ifdef CONFIG_SYSCTL
    extern int sysctl_drop_caches;
    int drop_caches_sysctl_handler(struct ctl_table *, int,
    					void __user *, size_t *, loff_t *);
    #endif
    
    void drop_slab(void);
    void drop_slab_node(int nid);
    
    #ifndef CONFIG_MMU
    #define randomize_va_space 0
    #else
    extern int randomize_va_space;
    #endif
    
    const char * arch_vma_name(struct vm_area_struct *vma);
    void print_vma_addr(char *prefix, unsigned long rip);
    
    void sparse_mem_maps_populate_node(struct page **map_map,
    				   unsigned long pnum_begin,
    				   unsigned long pnum_end,
    				   unsigned long map_count,
    				   int nodeid);
    
    struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
    pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
    pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
    pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
    pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
    void *vmemmap_alloc_block(unsigned long size, int node);
    struct vmem_altmap;
    void *__vmemmap_alloc_block_buf(unsigned long size, int node,
    		struct vmem_altmap *altmap);
    static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
    {
    	return __vmemmap_alloc_block_buf(size, node, NULL);
    }
    
    void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
    int vmemmap_populate_basepages(unsigned long start, unsigned long end,
    			       int node);
    int vmemmap_populate(unsigned long start, unsigned long end, int node);
    void vmemmap_populate_print_last(void);
    #ifdef CONFIG_MEMORY_HOTPLUG
    void vmemmap_free(unsigned long start, unsigned long end);
    #endif
    void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
    				  unsigned long size);
    
    enum mf_flags {
    	MF_COUNT_INCREASED = 1 << 0,
    	MF_ACTION_REQUIRED = 1 << 1,
    	MF_MUST_KILL = 1 << 2,
    	MF_SOFT_OFFLINE = 1 << 3,
    };
    extern int memory_failure(unsigned long pfn, int trapno, int flags);
    extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
    extern int unpoison_memory(unsigned long pfn);
    extern int get_hwpoison_page(struct page *page);
    #define put_hwpoison_page(page)	put_page(page)
    extern int sysctl_memory_failure_early_kill;
    extern int sysctl_memory_failure_recovery;
    extern void shake_page(struct page *p, int access);
    extern atomic_long_t num_poisoned_pages;
    extern int soft_offline_page(struct page *page, int flags);
    
    
    /*
     * Error handlers for various types of pages.
     */
    enum mf_result {
    	MF_IGNORED,	/* Error: cannot be handled */
    	MF_FAILED,	/* Error: handling failed */
    	MF_DELAYED,	/* Will be handled later */
    	MF_RECOVERED,	/* Successfully recovered */
    };
    
    enum mf_action_page_type {
    	MF_MSG_KERNEL,
    	MF_MSG_KERNEL_HIGH_ORDER,
    	MF_MSG_SLAB,
    	MF_MSG_DIFFERENT_COMPOUND,
    	MF_MSG_POISONED_HUGE,
    	MF_MSG_HUGE,
    	MF_MSG_FREE_HUGE,
    	MF_MSG_UNMAP_FAILED,
    	MF_MSG_DIRTY_SWAPCACHE,
    	MF_MSG_CLEAN_SWAPCACHE,
    	MF_MSG_DIRTY_MLOCKED_LRU,
    	MF_MSG_CLEAN_MLOCKED_LRU,
    	MF_MSG_DIRTY_UNEVICTABLE_LRU,
    	MF_MSG_CLEAN_UNEVICTABLE_LRU,
    	MF_MSG_DIRTY_LRU,
    	MF_MSG_CLEAN_LRU,
    	MF_MSG_TRUNCATED_LRU,
    	MF_MSG_BUDDY,
    	MF_MSG_BUDDY_2ND,
    	MF_MSG_UNKNOWN,
    };
    
    #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
    extern void clear_huge_page(struct page *page,
    			    unsigned long addr,
    			    unsigned int pages_per_huge_page);
    extern void copy_user_huge_page(struct page *dst, struct page *src,
    				unsigned long addr, struct vm_area_struct *vma,
    				unsigned int pages_per_huge_page);
    #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
    
    extern struct page_ext_operations debug_guardpage_ops;
    extern struct page_ext_operations page_poisoning_ops;
    
    #ifdef CONFIG_DEBUG_PAGEALLOC
    extern unsigned int _debug_guardpage_minorder;
    extern bool _debug_guardpage_enabled;
    
    static inline unsigned int debug_guardpage_minorder(void)
    {
    	return _debug_guardpage_minorder;
    }
    
    static inline bool debug_guardpage_enabled(void)
    {
    	return _debug_guardpage_enabled;
    }
    
    static inline bool page_is_guard(struct page *page)
    {
    	struct page_ext *page_ext;
    
    	if (!debug_guardpage_enabled())
    		return false;
    
    	page_ext = lookup_page_ext(page);
    	return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
    }
    #else
    static inline unsigned int debug_guardpage_minorder(void) { return 0; }
    static inline bool debug_guardpage_enabled(void) { return false; }
    static inline bool page_is_guard(struct page *page) { return false; }
    #endif /* CONFIG_DEBUG_PAGEALLOC */
    
    #if MAX_NUMNODES > 1
    void __init setup_nr_node_ids(void);
    #else
    static inline void setup_nr_node_ids(void) {}
    #endif
    
    #endif /* __KERNEL__ */
    #endif /* _LINUX_MM_H */