Skip to content
Snippets Groups Projects
Select Git revision
  • 78ba531ff3ec2a444001853d8636ff39ed11ca28
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

vmscan.c

Blame
  • user avatar
    Liam R. Howlett authored and Andrew Morton committed
    Use the vma iterator in in get_next_vma() instead of the linked list.
    
    [yuzhao@google.com: mm/vmscan: use the proper VMA iterator]
      Link: https://lkml.kernel.org/r/Yx+QGOgHg1Wk8tGK@google.com
    Link: https://lkml.kernel.org/r/20220906194824.2110408-68-Liam.Howlett@oracle.com
    
    
    Signed-off-by: default avatarLiam R. Howlett <Liam.Howlett@oracle.com>
    Signed-off-by: default avatarYu Zhao <yuzhao@google.com>
    Tested-by: default avatarYu Zhao <yuzhao@google.com>
    Cc: Catalin Marinas <catalin.marinas@arm.com>
    Cc: David Hildenbrand <david@redhat.com>
    Cc: David Howells <dhowells@redhat.com>
    Cc: Davidlohr Bueso <dave@stgolabs.net>
    Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
    Cc: SeongJae Park <sj@kernel.org>
    Cc: Sven Schnelle <svens@linux.ibm.com>
    Cc: Vlastimil Babka <vbabka@suse.cz>
    Cc: Will Deacon <will@kernel.org>
    Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
    78ba531f
    History
    vmscan.c 211.32 KiB
    // SPDX-License-Identifier: GPL-2.0
    /*
     *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
     *
     *  Swap reorganised 29.12.95, Stephen Tweedie.
     *  kswapd added: 7.1.96  sct
     *  Removed kswapd_ctl limits, and swap out as many pages as needed
     *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
     *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
     *  Multiqueue VM started 5.8.00, Rik van Riel.
     */
    
    #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
    
    #include <linux/mm.h>
    #include <linux/sched/mm.h>
    #include <linux/module.h>
    #include <linux/gfp.h>
    #include <linux/kernel_stat.h>
    #include <linux/swap.h>
    #include <linux/pagemap.h>
    #include <linux/init.h>
    #include <linux/highmem.h>
    #include <linux/vmpressure.h>
    #include <linux/vmstat.h>
    #include <linux/file.h>
    #include <linux/writeback.h>
    #include <linux/blkdev.h>
    #include <linux/buffer_head.h>	/* for buffer_heads_over_limit */
    #include <linux/mm_inline.h>
    #include <linux/backing-dev.h>
    #include <linux/rmap.h>
    #include <linux/topology.h>
    #include <linux/cpu.h>
    #include <linux/cpuset.h>
    #include <linux/compaction.h>
    #include <linux/notifier.h>
    #include <linux/rwsem.h>
    #include <linux/delay.h>
    #include <linux/kthread.h>
    #include <linux/freezer.h>
    #include <linux/memcontrol.h>
    #include <linux/migrate.h>
    #include <linux/delayacct.h>
    #include <linux/sysctl.h>
    #include <linux/memory-tiers.h>
    #include <linux/oom.h>
    #include <linux/pagevec.h>
    #include <linux/prefetch.h>
    #include <linux/printk.h>
    #include <linux/dax.h>
    #include <linux/psi.h>
    #include <linux/pagewalk.h>
    #include <linux/shmem_fs.h>
    #include <linux/ctype.h>
    #include <linux/debugfs.h>
    
    #include <asm/tlbflush.h>
    #include <asm/div64.h>
    
    #include <linux/swapops.h>
    #include <linux/balloon_compaction.h>
    #include <linux/sched/sysctl.h>
    
    #include "internal.h"
    #include "swap.h"
    
    #define CREATE_TRACE_POINTS
    #include <trace/events/vmscan.h>
    
    struct scan_control {
    	/* How many pages shrink_list() should reclaim */
    	unsigned long nr_to_reclaim;
    
    	/*
    	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
    	 * are scanned.
    	 */
    	nodemask_t	*nodemask;
    
    	/*
    	 * The memory cgroup that hit its limit and as a result is the
    	 * primary target of this reclaim invocation.
    	 */
    	struct mem_cgroup *target_mem_cgroup;
    
    	/*
    	 * Scan pressure balancing between anon and file LRUs
    	 */
    	unsigned long	anon_cost;
    	unsigned long	file_cost;
    
    	/* Can active pages be deactivated as part of reclaim? */
    #define DEACTIVATE_ANON 1
    #define DEACTIVATE_FILE 2
    	unsigned int may_deactivate:2;
    	unsigned int force_deactivate:1;
    	unsigned int skipped_deactivate:1;
    
    	/* Writepage batching in laptop mode; RECLAIM_WRITE */
    	unsigned int may_writepage:1;
    
    	/* Can mapped pages be reclaimed? */
    	unsigned int may_unmap:1;
    
    	/* Can pages be swapped as part of reclaim? */
    	unsigned int may_swap:1;
    
    	/* Proactive reclaim invoked by userspace through memory.reclaim */
    	unsigned int proactive:1;
    
    	/*
    	 * Cgroup memory below memory.low is protected as long as we
    	 * don't threaten to OOM. If any cgroup is reclaimed at
    	 * reduced force or passed over entirely due to its memory.low
    	 * setting (memcg_low_skipped), and nothing is reclaimed as a
    	 * result, then go back for one more cycle that reclaims the protected
    	 * memory (memcg_low_reclaim) to avert OOM.
    	 */
    	unsigned int memcg_low_reclaim:1;
    	unsigned int memcg_low_skipped:1;
    
    	unsigned int hibernation_mode:1;
    
    	/* One of the zones is ready for compaction */
    	unsigned int compaction_ready:1;
    
    	/* There is easily reclaimable cold cache in the current node */
    	unsigned int cache_trim_mode:1;
    
    	/* The file pages on the current node are dangerously low */
    	unsigned int file_is_tiny:1;
    
    	/* Always discard instead of demoting to lower tier memory */
    	unsigned int no_demotion:1;
    
    #ifdef CONFIG_LRU_GEN
    	/* help kswapd make better choices among multiple memcgs */
    	unsigned int memcgs_need_aging:1;
    	unsigned long last_reclaimed;
    #endif
    
    	/* Allocation order */
    	s8 order;
    
    	/* Scan (total_size >> priority) pages at once */
    	s8 priority;
    
    	/* The highest zone to isolate pages for reclaim from */
    	s8 reclaim_idx;
    
    	/* This context's GFP mask */
    	gfp_t gfp_mask;
    
    	/* Incremented by the number of inactive pages that were scanned */
    	unsigned long nr_scanned;
    
    	/* Number of pages freed so far during a call to shrink_zones() */
    	unsigned long nr_reclaimed;
    
    	struct {
    		unsigned int dirty;
    		unsigned int unqueued_dirty;
    		unsigned int congested;
    		unsigned int writeback;
    		unsigned int immediate;
    		unsigned int file_taken;
    		unsigned int taken;
    	} nr;
    
    	/* for recording the reclaimed slab by now */
    	struct reclaim_state reclaim_state;
    };
    
    #ifdef ARCH_HAS_PREFETCHW
    #define prefetchw_prev_lru_folio(_folio, _base, _field)			\
    	do {								\
    		if ((_folio)->lru.prev != _base) {			\
    			struct folio *prev;				\
    									\
    			prev = lru_to_folio(&(_folio->lru));		\
    			prefetchw(&prev->_field);			\
    		}							\
    	} while (0)
    #else
    #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
    #endif
    
    /*
     * From 0 .. 200.  Higher means more swappy.
     */
    int vm_swappiness = 60;
    
    static void set_task_reclaim_state(struct task_struct *task,
    				   struct reclaim_state *rs)
    {
    	/* Check for an overwrite */
    	WARN_ON_ONCE(rs && task->reclaim_state);
    
    	/* Check for the nulling of an already-nulled member */
    	WARN_ON_ONCE(!rs && !task->reclaim_state);
    
    	task->reclaim_state = rs;
    }
    
    LIST_HEAD(shrinker_list);
    DECLARE_RWSEM(shrinker_rwsem);
    
    #ifdef CONFIG_MEMCG
    static int shrinker_nr_max;
    
    /* The shrinker_info is expanded in a batch of BITS_PER_LONG */
    static inline int shrinker_map_size(int nr_items)
    {
    	return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
    }
    
    static inline int shrinker_defer_size(int nr_items)
    {
    	return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
    }
    
    static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
    						     int nid)
    {
    	return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
    					 lockdep_is_held(&shrinker_rwsem));
    }
    
    static int expand_one_shrinker_info(struct mem_cgroup *memcg,
    				    int map_size, int defer_size,
    				    int old_map_size, int old_defer_size)
    {
    	struct shrinker_info *new, *old;
    	struct mem_cgroup_per_node *pn;
    	int nid;
    	int size = map_size + defer_size;
    
    	for_each_node(nid) {
    		pn = memcg->nodeinfo[nid];
    		old = shrinker_info_protected(memcg, nid);
    		/* Not yet online memcg */
    		if (!old)
    			return 0;
    
    		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
    		if (!new)
    			return -ENOMEM;
    
    		new->nr_deferred = (atomic_long_t *)(new + 1);
    		new->map = (void *)new->nr_deferred + defer_size;
    
    		/* map: set all old bits, clear all new bits */
    		memset(new->map, (int)0xff, old_map_size);
    		memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
    		/* nr_deferred: copy old values, clear all new values */
    		memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
    		memset((void *)new->nr_deferred + old_defer_size, 0,
    		       defer_size - old_defer_size);
    
    		rcu_assign_pointer(pn->shrinker_info, new);
    		kvfree_rcu(old, rcu);
    	}
    
    	return 0;
    }
    
    void free_shrinker_info(struct mem_cgroup *memcg)
    {
    	struct mem_cgroup_per_node *pn;
    	struct shrinker_info *info;
    	int nid;
    
    	for_each_node(nid) {
    		pn = memcg->nodeinfo[nid];
    		info = rcu_dereference_protected(pn->shrinker_info, true);
    		kvfree(info);
    		rcu_assign_pointer(pn->shrinker_info, NULL);
    	}
    }
    
    int alloc_shrinker_info(struct mem_cgroup *memcg)
    {
    	struct shrinker_info *info;
    	int nid, size, ret = 0;
    	int map_size, defer_size = 0;
    
    	down_write(&shrinker_rwsem);
    	map_size = shrinker_map_size(shrinker_nr_max);
    	defer_size = shrinker_defer_size(shrinker_nr_max);
    	size = map_size + defer_size;
    	for_each_node(nid) {
    		info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
    		if (!info) {
    			free_shrinker_info(memcg);
    			ret = -ENOMEM;
    			break;
    		}
    		info->nr_deferred = (atomic_long_t *)(info + 1);
    		info->map = (void *)info->nr_deferred + defer_size;
    		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
    	}
    	up_write(&shrinker_rwsem);
    
    	return ret;
    }
    
    static inline bool need_expand(int nr_max)
    {
    	return round_up(nr_max, BITS_PER_LONG) >
    	       round_up(shrinker_nr_max, BITS_PER_LONG);
    }
    
    static int expand_shrinker_info(int new_id)
    {
    	int ret = 0;
    	int new_nr_max = new_id + 1;
    	int map_size, defer_size = 0;
    	int old_map_size, old_defer_size = 0;
    	struct mem_cgroup *memcg;
    
    	if (!need_expand(new_nr_max))
    		goto out;
    
    	if (!root_mem_cgroup)
    		goto out;
    
    	lockdep_assert_held(&shrinker_rwsem);
    
    	map_size = shrinker_map_size(new_nr_max);
    	defer_size = shrinker_defer_size(new_nr_max);
    	old_map_size = shrinker_map_size(shrinker_nr_max);
    	old_defer_size = shrinker_defer_size(shrinker_nr_max);
    
    	memcg = mem_cgroup_iter(NULL, NULL, NULL);
    	do {
    		ret = expand_one_shrinker_info(memcg, map_size, defer_size,
    					       old_map_size, old_defer_size);
    		if (ret) {
    			mem_cgroup_iter_break(NULL, memcg);
    			goto out;
    		}
    	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
    out:
    	if (!ret)
    		shrinker_nr_max = new_nr_max;
    
    	return ret;
    }
    
    void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
    {
    	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
    		struct shrinker_info *info;
    
    		rcu_read_lock();
    		info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
    		/* Pairs with smp mb in shrink_slab() */
    		smp_mb__before_atomic();
    		set_bit(shrinker_id, info->map);
    		rcu_read_unlock();
    	}
    }
    
    static DEFINE_IDR(shrinker_idr);
    
    static int prealloc_memcg_shrinker(struct shrinker *shrinker)
    {
    	int id, ret = -ENOMEM;
    
    	if (mem_cgroup_disabled())
    		return -ENOSYS;
    
    	down_write(&shrinker_rwsem);
    	/* This may call shrinker, so it must use down_read_trylock() */
    	id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
    	if (id < 0)
    		goto unlock;
    
    	if (id >= shrinker_nr_max) {
    		if (expand_shrinker_info(id)) {
    			idr_remove(&shrinker_idr, id);
    			goto unlock;
    		}
    	}
    	shrinker->id = id;
    	ret = 0;
    unlock:
    	up_write(&shrinker_rwsem);
    	return ret;
    }
    
    static void unregister_memcg_shrinker(struct shrinker *shrinker)
    {
    	int id = shrinker->id;
    
    	BUG_ON(id < 0);
    
    	lockdep_assert_held(&shrinker_rwsem);
    
    	idr_remove(&shrinker_idr, id);
    }
    
    static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
    				   struct mem_cgroup *memcg)
    {
    	struct shrinker_info *info;
    
    	info = shrinker_info_protected(memcg, nid);
    	return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
    }
    
    static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
    				  struct mem_cgroup *memcg)
    {
    	struct shrinker_info *info;
    
    	info = shrinker_info_protected(memcg, nid);
    	return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
    }
    
    void reparent_shrinker_deferred(struct mem_cgroup *memcg)
    {
    	int i, nid;
    	long nr;
    	struct mem_cgroup *parent;
    	struct shrinker_info *child_info, *parent_info;
    
    	parent = parent_mem_cgroup(memcg);
    	if (!parent)
    		parent = root_mem_cgroup;
    
    	/* Prevent from concurrent shrinker_info expand */
    	down_read(&shrinker_rwsem);
    	for_each_node(nid) {
    		child_info = shrinker_info_protected(memcg, nid);
    		parent_info = shrinker_info_protected(parent, nid);
    		for (i = 0; i < shrinker_nr_max; i++) {
    			nr = atomic_long_read(&child_info->nr_deferred[i]);
    			atomic_long_add(nr, &parent_info->nr_deferred[i]);
    		}
    	}
    	up_read(&shrinker_rwsem);
    }
    
    static bool cgroup_reclaim(struct scan_control *sc)
    {
    	return sc->target_mem_cgroup;
    }
    
    /**
     * writeback_throttling_sane - is the usual dirty throttling mechanism available?
     * @sc: scan_control in question
     *
     * The normal page dirty throttling mechanism in balance_dirty_pages() is
     * completely broken with the legacy memcg and direct stalling in
     * shrink_page_list() is used for throttling instead, which lacks all the
     * niceties such as fairness, adaptive pausing, bandwidth proportional
     * allocation and configurability.
     *
     * This function tests whether the vmscan currently in progress can assume
     * that the normal dirty throttling mechanism is operational.
     */
    static bool writeback_throttling_sane(struct scan_control *sc)
    {
    	if (!cgroup_reclaim(sc))
    		return true;
    #ifdef CONFIG_CGROUP_WRITEBACK
    	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
    		return true;
    #endif
    	return false;
    }
    #else
    static int prealloc_memcg_shrinker(struct shrinker *shrinker)
    {
    	return -ENOSYS;
    }
    
    static void unregister_memcg_shrinker(struct shrinker *shrinker)
    {
    }
    
    static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
    				   struct mem_cgroup *memcg)
    {
    	return 0;
    }
    
    static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
    				  struct mem_cgroup *memcg)
    {
    	return 0;
    }
    
    static bool cgroup_reclaim(struct scan_control *sc)
    {
    	return false;
    }
    
    static bool writeback_throttling_sane(struct scan_control *sc)
    {
    	return true;
    }
    #endif
    
    static long xchg_nr_deferred(struct shrinker *shrinker,
    			     struct shrink_control *sc)
    {
    	int nid = sc->nid;
    
    	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
    		nid = 0;
    
    	if (sc->memcg &&
    	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
    		return xchg_nr_deferred_memcg(nid, shrinker,
    					      sc->memcg);
    
    	return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
    }
    
    
    static long add_nr_deferred(long nr, struct shrinker *shrinker,
    			    struct shrink_control *sc)
    {
    	int nid = sc->nid;
    
    	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
    		nid = 0;
    
    	if (sc->memcg &&
    	    (shrinker->flags & SHRINKER_MEMCG_AWARE))
    		return add_nr_deferred_memcg(nr, nid, shrinker,
    					     sc->memcg);
    
    	return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
    }
    
    static bool can_demote(int nid, struct scan_control *sc)
    {
    	if (!numa_demotion_enabled)
    		return false;
    	if (sc && sc->no_demotion)
    		return false;
    	if (next_demotion_node(nid) == NUMA_NO_NODE)
    		return false;
    
    	return true;
    }
    
    static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
    					  int nid,
    					  struct scan_control *sc)
    {
    	if (memcg == NULL) {
    		/*
    		 * For non-memcg reclaim, is there
    		 * space in any swap device?
    		 */
    		if (get_nr_swap_pages() > 0)
    			return true;
    	} else {
    		/* Is the memcg below its swap limit? */
    		if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
    			return true;
    	}
    
    	/*
    	 * The page can not be swapped.
    	 *
    	 * Can it be reclaimed from this node via demotion?
    	 */
    	return can_demote(nid, sc);
    }
    
    /*
     * This misses isolated pages which are not accounted for to save counters.
     * As the data only determines if reclaim or compaction continues, it is
     * not expected that isolated pages will be a dominating factor.
     */
    unsigned long zone_reclaimable_pages(struct zone *zone)
    {
    	unsigned long nr;
    
    	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
    		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
    	if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
    		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
    			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
    
    	return nr;
    }
    
    /**
     * lruvec_lru_size -  Returns the number of pages on the given LRU list.
     * @lruvec: lru vector
     * @lru: lru to use
     * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
     */
    static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
    				     int zone_idx)
    {
    	unsigned long size = 0;
    	int zid;
    
    	for (zid = 0; zid <= zone_idx; zid++) {
    		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
    
    		if (!managed_zone(zone))
    			continue;
    
    		if (!mem_cgroup_disabled())
    			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
    		else
    			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
    	}
    	return size;
    }
    
    /*
     * Add a shrinker callback to be called from the vm.
     */
    static int __prealloc_shrinker(struct shrinker *shrinker)
    {
    	unsigned int size;
    	int err;
    
    	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
    		err = prealloc_memcg_shrinker(shrinker);
    		if (err != -ENOSYS)
    			return err;
    
    		shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
    	}
    
    	size = sizeof(*shrinker->nr_deferred);
    	if (shrinker->flags & SHRINKER_NUMA_AWARE)
    		size *= nr_node_ids;
    
    	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
    	if (!shrinker->nr_deferred)
    		return -ENOMEM;
    
    	return 0;
    }
    
    #ifdef CONFIG_SHRINKER_DEBUG
    int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
    {
    	va_list ap;
    	int err;
    
    	va_start(ap, fmt);
    	shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
    	va_end(ap);
    	if (!shrinker->name)
    		return -ENOMEM;
    
    	err = __prealloc_shrinker(shrinker);
    	if (err) {
    		kfree_const(shrinker->name);
    		shrinker->name = NULL;
    	}
    
    	return err;
    }
    #else
    int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
    {
    	return __prealloc_shrinker(shrinker);
    }
    #endif
    
    void free_prealloced_shrinker(struct shrinker *shrinker)
    {
    #ifdef CONFIG_SHRINKER_DEBUG
    	kfree_const(shrinker->name);
    	shrinker->name = NULL;
    #endif
    	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
    		down_write(&shrinker_rwsem);
    		unregister_memcg_shrinker(shrinker);
    		up_write(&shrinker_rwsem);
    		return;
    	}
    
    	kfree(shrinker->nr_deferred);
    	shrinker->nr_deferred = NULL;
    }
    
    void register_shrinker_prepared(struct shrinker *shrinker)
    {
    	down_write(&shrinker_rwsem);
    	list_add_tail(&shrinker->list, &shrinker_list);
    	shrinker->flags |= SHRINKER_REGISTERED;
    	shrinker_debugfs_add(shrinker);
    	up_write(&shrinker_rwsem);
    }
    
    static int __register_shrinker(struct shrinker *shrinker)
    {
    	int err = __prealloc_shrinker(shrinker);
    
    	if (err)
    		return err;
    	register_shrinker_prepared(shrinker);
    	return 0;
    }
    
    #ifdef CONFIG_SHRINKER_DEBUG
    int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
    {
    	va_list ap;
    	int err;
    
    	va_start(ap, fmt);
    	shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
    	va_end(ap);
    	if (!shrinker->name)
    		return -ENOMEM;
    
    	err = __register_shrinker(shrinker);
    	if (err) {
    		kfree_const(shrinker->name);
    		shrinker->name = NULL;
    	}
    	return err;
    }
    #else
    int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
    {
    	return __register_shrinker(shrinker);
    }
    #endif
    EXPORT_SYMBOL(register_shrinker);
    
    /*
     * Remove one
     */
    void unregister_shrinker(struct shrinker *shrinker)
    {
    	if (!(shrinker->flags & SHRINKER_REGISTERED))
    		return;
    
    	down_write(&shrinker_rwsem);
    	list_del(&shrinker->list);
    	shrinker->flags &= ~SHRINKER_REGISTERED;
    	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
    		unregister_memcg_shrinker(shrinker);
    	shrinker_debugfs_remove(shrinker);
    	up_write(&shrinker_rwsem);
    
    	kfree(shrinker->nr_deferred);
    	shrinker->nr_deferred = NULL;
    }
    EXPORT_SYMBOL(unregister_shrinker);
    
    /**
     * synchronize_shrinkers - Wait for all running shrinkers to complete.
     *
     * This is equivalent to calling unregister_shrink() and register_shrinker(),
     * but atomically and with less overhead. This is useful to guarantee that all
     * shrinker invocations have seen an update, before freeing memory, similar to
     * rcu.
     */
    void synchronize_shrinkers(void)
    {
    	down_write(&shrinker_rwsem);
    	up_write(&shrinker_rwsem);
    }
    EXPORT_SYMBOL(synchronize_shrinkers);
    
    #define SHRINK_BATCH 128
    
    static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
    				    struct shrinker *shrinker, int priority)
    {
    	unsigned long freed = 0;
    	unsigned long long delta;
    	long total_scan;
    	long freeable;
    	long nr;
    	long new_nr;
    	long batch_size = shrinker->batch ? shrinker->batch
    					  : SHRINK_BATCH;
    	long scanned = 0, next_deferred;
    
    	freeable = shrinker->count_objects(shrinker, shrinkctl);
    	if (freeable == 0 || freeable == SHRINK_EMPTY)
    		return freeable;
    
    	/*
    	 * copy the current shrinker scan count into a local variable
    	 * and zero it so that other concurrent shrinker invocations
    	 * don't also do this scanning work.
    	 */
    	nr = xchg_nr_deferred(shrinker, shrinkctl);
    
    	if (shrinker->seeks) {
    		delta = freeable >> priority;
    		delta *= 4;
    		do_div(delta, shrinker->seeks);
    	} else {
    		/*
    		 * These objects don't require any IO to create. Trim
    		 * them aggressively under memory pressure to keep
    		 * them from causing refetches in the IO caches.
    		 */
    		delta = freeable / 2;
    	}
    
    	total_scan = nr >> priority;
    	total_scan += delta;
    	total_scan = min(total_scan, (2 * freeable));
    
    	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
    				   freeable, delta, total_scan, priority);
    
    	/*
    	 * Normally, we should not scan less than batch_size objects in one
    	 * pass to avoid too frequent shrinker calls, but if the slab has less
    	 * than batch_size objects in total and we are really tight on memory,
    	 * we will try to reclaim all available objects, otherwise we can end
    	 * up failing allocations although there are plenty of reclaimable
    	 * objects spread over several slabs with usage less than the
    	 * batch_size.
    	 *
    	 * We detect the "tight on memory" situations by looking at the total
    	 * number of objects we want to scan (total_scan). If it is greater
    	 * than the total number of objects on slab (freeable), we must be
    	 * scanning at high prio and therefore should try to reclaim as much as
    	 * possible.
    	 */
    	while (total_scan >= batch_size ||
    	       total_scan >= freeable) {
    		unsigned long ret;
    		unsigned long nr_to_scan = min(batch_size, total_scan);
    
    		shrinkctl->nr_to_scan = nr_to_scan;
    		shrinkctl->nr_scanned = nr_to_scan;
    		ret = shrinker->scan_objects(shrinker, shrinkctl);
    		if (ret == SHRINK_STOP)
    			break;
    		freed += ret;
    
    		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
    		total_scan -= shrinkctl->nr_scanned;
    		scanned += shrinkctl->nr_scanned;
    
    		cond_resched();
    	}
    
    	/*
    	 * The deferred work is increased by any new work (delta) that wasn't
    	 * done, decreased by old deferred work that was done now.
    	 *
    	 * And it is capped to two times of the freeable items.
    	 */
    	next_deferred = max_t(long, (nr + delta - scanned), 0);
    	next_deferred = min(next_deferred, (2 * freeable));
    
    	/*
    	 * move the unused scan count back into the shrinker in a
    	 * manner that handles concurrent updates.
    	 */
    	new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
    
    	trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
    	return freed;
    }
    
    #ifdef CONFIG_MEMCG
    static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
    			struct mem_cgroup *memcg, int priority)
    {
    	struct shrinker_info *info;
    	unsigned long ret, freed = 0;
    	int i;
    
    	if (!mem_cgroup_online(memcg))
    		return 0;
    
    	if (!down_read_trylock(&shrinker_rwsem))
    		return 0;
    
    	info = shrinker_info_protected(memcg, nid);
    	if (unlikely(!info))
    		goto unlock;
    
    	for_each_set_bit(i, info->map, shrinker_nr_max) {
    		struct shrink_control sc = {
    			.gfp_mask = gfp_mask,
    			.nid = nid,
    			.memcg = memcg,
    		};
    		struct shrinker *shrinker;
    
    		shrinker = idr_find(&shrinker_idr, i);
    		if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
    			if (!shrinker)
    				clear_bit(i, info->map);
    			continue;
    		}
    
    		/* Call non-slab shrinkers even though kmem is disabled */
    		if (!memcg_kmem_enabled() &&
    		    !(shrinker->flags & SHRINKER_NONSLAB))
    			continue;
    
    		ret = do_shrink_slab(&sc, shrinker, priority);
    		if (ret == SHRINK_EMPTY) {
    			clear_bit(i, info->map);
    			/*
    			 * After the shrinker reported that it had no objects to
    			 * free, but before we cleared the corresponding bit in
    			 * the memcg shrinker map, a new object might have been
    			 * added. To make sure, we have the bit set in this
    			 * case, we invoke the shrinker one more time and reset
    			 * the bit if it reports that it is not empty anymore.
    			 * The memory barrier here pairs with the barrier in
    			 * set_shrinker_bit():
    			 *
    			 * list_lru_add()     shrink_slab_memcg()
    			 *   list_add_tail()    clear_bit()
    			 *   <MB>               <MB>
    			 *   set_bit()          do_shrink_slab()
    			 */
    			smp_mb__after_atomic();
    			ret = do_shrink_slab(&sc, shrinker, priority);
    			if (ret == SHRINK_EMPTY)
    				ret = 0;
    			else
    				set_shrinker_bit(memcg, nid, i);
    		}
    		freed += ret;
    
    		if (rwsem_is_contended(&shrinker_rwsem)) {
    			freed = freed ? : 1;
    			break;
    		}
    	}
    unlock:
    	up_read(&shrinker_rwsem);
    	return freed;
    }
    #else /* CONFIG_MEMCG */
    static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
    			struct mem_cgroup *memcg, int priority)
    {
    	return 0;
    }
    #endif /* CONFIG_MEMCG */
    
    /**
     * shrink_slab - shrink slab caches
     * @gfp_mask: allocation context
     * @nid: node whose slab caches to target
     * @memcg: memory cgroup whose slab caches to target
     * @priority: the reclaim priority
     *
     * Call the shrink functions to age shrinkable caches.
     *
     * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
     * unaware shrinkers will receive a node id of 0 instead.
     *
     * @memcg specifies the memory cgroup to target. Unaware shrinkers
     * are called only if it is the root cgroup.
     *
     * @priority is sc->priority, we take the number of objects and >> by priority
     * in order to get the scan target.
     *
     * Returns the number of reclaimed slab objects.
     */
    static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
    				 struct mem_cgroup *memcg,
    				 int priority)
    {
    	unsigned long ret, freed = 0;
    	struct shrinker *shrinker;
    
    	/*
    	 * The root memcg might be allocated even though memcg is disabled
    	 * via "cgroup_disable=memory" boot parameter.  This could make
    	 * mem_cgroup_is_root() return false, then just run memcg slab
    	 * shrink, but skip global shrink.  This may result in premature
    	 * oom.
    	 */
    	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
    		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
    
    	if (!down_read_trylock(&shrinker_rwsem))
    		goto out;
    
    	list_for_each_entry(shrinker, &shrinker_list, list) {
    		struct shrink_control sc = {
    			.gfp_mask = gfp_mask,
    			.nid = nid,
    			.memcg = memcg,
    		};
    
    		ret = do_shrink_slab(&sc, shrinker, priority);
    		if (ret == SHRINK_EMPTY)
    			ret = 0;
    		freed += ret;
    		/*
    		 * Bail out if someone want to register a new shrinker to
    		 * prevent the registration from being stalled for long periods
    		 * by parallel ongoing shrinking.
    		 */
    		if (rwsem_is_contended(&shrinker_rwsem)) {
    			freed = freed ? : 1;
    			break;
    		}
    	}
    
    	up_read(&shrinker_rwsem);
    out:
    	cond_resched();
    	return freed;
    }
    
    static void drop_slab_node(int nid)
    {
    	unsigned long freed;
    	int shift = 0;
    
    	do {
    		struct mem_cgroup *memcg = NULL;
    
    		if (fatal_signal_pending(current))
    			return;
    
    		freed = 0;
    		memcg = mem_cgroup_iter(NULL, NULL, NULL);
    		do {
    			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
    		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
    	} while ((freed >> shift++) > 1);
    }
    
    void drop_slab(void)
    {
    	int nid;
    
    	for_each_online_node(nid)
    		drop_slab_node(nid);
    }
    
    static inline int is_page_cache_freeable(struct folio *folio)
    {
    	/*
    	 * A freeable page cache page is referenced only by the caller
    	 * that isolated the page, the page cache and optional buffer
    	 * heads at page->private.
    	 */
    	return folio_ref_count(folio) - folio_test_private(folio) ==
    		1 + folio_nr_pages(folio);
    }
    
    /*
     * We detected a synchronous write error writing a folio out.  Probably
     * -ENOSPC.  We need to propagate that into the address_space for a subsequent
     * fsync(), msync() or close().
     *
     * The tricky part is that after writepage we cannot touch the mapping: nothing
     * prevents it from being freed up.  But we have a ref on the folio and once
     * that folio is locked, the mapping is pinned.
     *
     * We're allowed to run sleeping folio_lock() here because we know the caller has
     * __GFP_FS.
     */
    static void handle_write_error(struct address_space *mapping,
    				struct folio *folio, int error)
    {
    	folio_lock(folio);
    	if (folio_mapping(folio) == mapping)
    		mapping_set_error(mapping, error);
    	folio_unlock(folio);
    }
    
    static bool skip_throttle_noprogress(pg_data_t *pgdat)
    {
    	int reclaimable = 0, write_pending = 0;
    	int i;
    
    	/*
    	 * If kswapd is disabled, reschedule if necessary but do not
    	 * throttle as the system is likely near OOM.
    	 */
    	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
    		return true;
    
    	/*
    	 * If there are a lot of dirty/writeback pages then do not
    	 * throttle as throttling will occur when the pages cycle
    	 * towards the end of the LRU if still under writeback.
    	 */
    	for (i = 0; i < MAX_NR_ZONES; i++) {
    		struct zone *zone = pgdat->node_zones + i;
    
    		if (!managed_zone(zone))
    			continue;
    
    		reclaimable += zone_reclaimable_pages(zone);
    		write_pending += zone_page_state_snapshot(zone,
    						  NR_ZONE_WRITE_PENDING);
    	}
    	if (2 * write_pending <= reclaimable)
    		return true;
    
    	return false;
    }
    
    void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
    {
    	wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
    	long timeout, ret;
    	DEFINE_WAIT(wait);
    
    	/*
    	 * Do not throttle IO workers, kthreads other than kswapd or
    	 * workqueues. They may be required for reclaim to make
    	 * forward progress (e.g. journalling workqueues or kthreads).
    	 */
    	if (!current_is_kswapd() &&
    	    current->flags & (PF_IO_WORKER|PF_KTHREAD)) {
    		cond_resched();
    		return;
    	}
    
    	/*
    	 * These figures are pulled out of thin air.
    	 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
    	 * parallel reclaimers which is a short-lived event so the timeout is
    	 * short. Failing to make progress or waiting on writeback are
    	 * potentially long-lived events so use a longer timeout. This is shaky
    	 * logic as a failure to make progress could be due to anything from
    	 * writeback to a slow device to excessive references pages at the tail
    	 * of the inactive LRU.
    	 */
    	switch(reason) {
    	case VMSCAN_THROTTLE_WRITEBACK:
    		timeout = HZ/10;
    
    		if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
    			WRITE_ONCE(pgdat->nr_reclaim_start,
    				node_page_state(pgdat, NR_THROTTLED_WRITTEN));
    		}
    
    		break;
    	case VMSCAN_THROTTLE_CONGESTED:
    		fallthrough;
    	case VMSCAN_THROTTLE_NOPROGRESS:
    		if (skip_throttle_noprogress(pgdat)) {
    			cond_resched();
    			return;
    		}
    
    		timeout = 1;
    
    		break;
    	case VMSCAN_THROTTLE_ISOLATED:
    		timeout = HZ/50;
    		break;
    	default:
    		WARN_ON_ONCE(1);
    		timeout = HZ;
    		break;
    	}
    
    	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
    	ret = schedule_timeout(timeout);
    	finish_wait(wqh, &wait);
    
    	if (reason == VMSCAN_THROTTLE_WRITEBACK)
    		atomic_dec(&pgdat->nr_writeback_throttled);
    
    	trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
    				jiffies_to_usecs(timeout - ret),
    				reason);
    }
    
    /*
     * Account for pages written if tasks are throttled waiting on dirty
     * pages to clean. If enough pages have been cleaned since throttling
     * started then wakeup the throttled tasks.
     */
    void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
    							int nr_throttled)
    {
    	unsigned long nr_written;
    
    	node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
    
    	/*
    	 * This is an inaccurate read as the per-cpu deltas may not
    	 * be synchronised. However, given that the system is
    	 * writeback throttled, it is not worth taking the penalty
    	 * of getting an accurate count. At worst, the throttle
    	 * timeout guarantees forward progress.
    	 */
    	nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
    		READ_ONCE(pgdat->nr_reclaim_start);
    
    	if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
    		wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
    }
    
    /* possible outcome of pageout() */
    typedef enum {
    	/* failed to write page out, page is locked */
    	PAGE_KEEP,
    	/* move page to the active list, page is locked */
    	PAGE_ACTIVATE,
    	/* page has been sent to the disk successfully, page is unlocked */
    	PAGE_SUCCESS,
    	/* page is clean and locked */
    	PAGE_CLEAN,
    } pageout_t;
    
    /*
     * pageout is called by shrink_page_list() for each dirty page.
     * Calls ->writepage().
     */
    static pageout_t pageout(struct folio *folio, struct address_space *mapping,
    			 struct swap_iocb **plug)
    {
    	/*
    	 * If the folio is dirty, only perform writeback if that write
    	 * will be non-blocking.  To prevent this allocation from being
    	 * stalled by pagecache activity.  But note that there may be
    	 * stalls if we need to run get_block().  We could test
    	 * PagePrivate for that.
    	 *
    	 * If this process is currently in __generic_file_write_iter() against
    	 * this folio's queue, we can perform writeback even if that
    	 * will block.
    	 *
    	 * If the folio is swapcache, write it back even if that would
    	 * block, for some throttling. This happens by accident, because
    	 * swap_backing_dev_info is bust: it doesn't reflect the
    	 * congestion state of the swapdevs.  Easy to fix, if needed.
    	 */
    	if (!is_page_cache_freeable(folio))
    		return PAGE_KEEP;
    	if (!mapping) {
    		/*
    		 * Some data journaling orphaned folios can have
    		 * folio->mapping == NULL while being dirty with clean buffers.
    		 */
    		if (folio_test_private(folio)) {
    			if (try_to_free_buffers(folio)) {
    				folio_clear_dirty(folio);
    				pr_info("%s: orphaned folio\n", __func__);
    				return PAGE_CLEAN;
    			}
    		}
    		return PAGE_KEEP;
    	}
    	if (mapping->a_ops->writepage == NULL)
    		return PAGE_ACTIVATE;
    
    	if (folio_clear_dirty_for_io(folio)) {
    		int res;
    		struct writeback_control wbc = {
    			.sync_mode = WB_SYNC_NONE,
    			.nr_to_write = SWAP_CLUSTER_MAX,
    			.range_start = 0,
    			.range_end = LLONG_MAX,
    			.for_reclaim = 1,
    			.swap_plug = plug,
    		};
    
    		folio_set_reclaim(folio);
    		res = mapping->a_ops->writepage(&folio->page, &wbc);
    		if (res < 0)
    			handle_write_error(mapping, folio, res);
    		if (res == AOP_WRITEPAGE_ACTIVATE) {
    			folio_clear_reclaim(folio);
    			return PAGE_ACTIVATE;
    		}
    
    		if (!folio_test_writeback(folio)) {
    			/* synchronous write or broken a_ops? */
    			folio_clear_reclaim(folio);
    		}
    		trace_mm_vmscan_write_folio(folio);
    		node_stat_add_folio(folio, NR_VMSCAN_WRITE);
    		return PAGE_SUCCESS;
    	}
    
    	return PAGE_CLEAN;
    }
    
    /*
     * Same as remove_mapping, but if the page is removed from the mapping, it
     * gets returned with a refcount of 0.
     */
    static int __remove_mapping(struct address_space *mapping, struct folio *folio,
    			    bool reclaimed, struct mem_cgroup *target_memcg)
    {
    	int refcount;
    	void *shadow = NULL;
    
    	BUG_ON(!folio_test_locked(folio));
    	BUG_ON(mapping != folio_mapping(folio));
    
    	if (!folio_test_swapcache(folio))
    		spin_lock(&mapping->host->i_lock);
    	xa_lock_irq(&mapping->i_pages);
    	/*
    	 * The non racy check for a busy page.
    	 *
    	 * Must be careful with the order of the tests. When someone has
    	 * a ref to the page, it may be possible that they dirty it then
    	 * drop the reference. So if PageDirty is tested before page_count
    	 * here, then the following race may occur:
    	 *
    	 * get_user_pages(&page);
    	 * [user mapping goes away]
    	 * write_to(page);
    	 *				!PageDirty(page)    [good]
    	 * SetPageDirty(page);
    	 * put_page(page);
    	 *				!page_count(page)   [good, discard it]
    	 *
    	 * [oops, our write_to data is lost]
    	 *
    	 * Reversing the order of the tests ensures such a situation cannot
    	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
    	 * load is not satisfied before that of page->_refcount.
    	 *
    	 * Note that if SetPageDirty is always performed via set_page_dirty,
    	 * and thus under the i_pages lock, then this ordering is not required.
    	 */
    	refcount = 1 + folio_nr_pages(folio);
    	if (!folio_ref_freeze(folio, refcount))
    		goto cannot_free;
    	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
    	if (unlikely(folio_test_dirty(folio))) {
    		folio_ref_unfreeze(folio, refcount);
    		goto cannot_free;
    	}
    
    	if (folio_test_swapcache(folio)) {
    		swp_entry_t swap = folio_swap_entry(folio);
    
    		/* get a shadow entry before mem_cgroup_swapout() clears folio_memcg() */
    		if (reclaimed && !mapping_exiting(mapping))
    			shadow = workingset_eviction(folio, target_memcg);
    		mem_cgroup_swapout(folio, swap);
    		__delete_from_swap_cache(folio, swap, shadow);
    		xa_unlock_irq(&mapping->i_pages);
    		put_swap_page(&folio->page, swap);
    	} else {
    		void (*free_folio)(struct folio *);
    
    		free_folio = mapping->a_ops->free_folio;
    		/*
    		 * Remember a shadow entry for reclaimed file cache in
    		 * order to detect refaults, thus thrashing, later on.
    		 *
    		 * But don't store shadows in an address space that is
    		 * already exiting.  This is not just an optimization,
    		 * inode reclaim needs to empty out the radix tree or
    		 * the nodes are lost.  Don't plant shadows behind its
    		 * back.
    		 *
    		 * We also don't store shadows for DAX mappings because the
    		 * only page cache pages found in these are zero pages
    		 * covering holes, and because we don't want to mix DAX
    		 * exceptional entries and shadow exceptional entries in the
    		 * same address_space.
    		 */
    		if (reclaimed && folio_is_file_lru(folio) &&
    		    !mapping_exiting(mapping) && !dax_mapping(mapping))
    			shadow = workingset_eviction(folio, target_memcg);
    		__filemap_remove_folio(folio, shadow);
    		xa_unlock_irq(&mapping->i_pages);
    		if (mapping_shrinkable(mapping))
    			inode_add_lru(mapping->host);
    		spin_unlock(&mapping->host->i_lock);
    
    		if (free_folio)
    			free_folio(folio);
    	}
    
    	return 1;
    
    cannot_free:
    	xa_unlock_irq(&mapping->i_pages);
    	if (!folio_test_swapcache(folio))
    		spin_unlock(&mapping->host->i_lock);
    	return 0;
    }
    
    /**
     * remove_mapping() - Attempt to remove a folio from its mapping.
     * @mapping: The address space.
     * @folio: The folio to remove.
     *
     * If the folio is dirty, under writeback or if someone else has a ref
     * on it, removal will fail.
     * Return: The number of pages removed from the mapping.  0 if the folio
     * could not be removed.
     * Context: The caller should have a single refcount on the folio and
     * hold its lock.
     */
    long remove_mapping(struct address_space *mapping, struct folio *folio)
    {
    	if (__remove_mapping(mapping, folio, false, NULL)) {
    		/*
    		 * Unfreezing the refcount with 1 effectively
    		 * drops the pagecache ref for us without requiring another
    		 * atomic operation.
    		 */
    		folio_ref_unfreeze(folio, 1);
    		return folio_nr_pages(folio);
    	}
    	return 0;
    }
    
    /**
     * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
     * @folio: Folio to be returned to an LRU list.
     *
     * Add previously isolated @folio to appropriate LRU list.
     * The folio may still be unevictable for other reasons.
     *
     * Context: lru_lock must not be held, interrupts must be enabled.
     */
    void folio_putback_lru(struct folio *folio)
    {
    	folio_add_lru(folio);
    	folio_put(folio);		/* drop ref from isolate */
    }
    
    enum page_references {
    	PAGEREF_RECLAIM,
    	PAGEREF_RECLAIM_CLEAN,
    	PAGEREF_KEEP,
    	PAGEREF_ACTIVATE,
    };
    
    static enum page_references folio_check_references(struct folio *folio,
    						  struct scan_control *sc)
    {
    	int referenced_ptes, referenced_folio;
    	unsigned long vm_flags;
    
    	referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
    					   &vm_flags);
    	referenced_folio = folio_test_clear_referenced(folio);
    
    	/*
    	 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
    	 * Let the folio, now marked Mlocked, be moved to the unevictable list.
    	 */
    	if (vm_flags & VM_LOCKED)
    		return PAGEREF_ACTIVATE;
    
    	/* rmap lock contention: rotate */
    	if (referenced_ptes == -1)
    		return PAGEREF_KEEP;
    
    	if (referenced_ptes) {
    		/*
    		 * All mapped folios start out with page table
    		 * references from the instantiating fault, so we need
    		 * to look twice if a mapped file/anon folio is used more
    		 * than once.
    		 *
    		 * Mark it and spare it for another trip around the
    		 * inactive list.  Another page table reference will
    		 * lead to its activation.
    		 *
    		 * Note: the mark is set for activated folios as well
    		 * so that recently deactivated but used folios are
    		 * quickly recovered.
    		 */
    		folio_set_referenced(folio);
    
    		if (referenced_folio || referenced_ptes > 1)
    			return PAGEREF_ACTIVATE;
    
    		/*
    		 * Activate file-backed executable folios after first usage.
    		 */
    		if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
    			return PAGEREF_ACTIVATE;
    
    		return PAGEREF_KEEP;
    	}
    
    	/* Reclaim if clean, defer dirty folios to writeback */
    	if (referenced_folio && folio_is_file_lru(folio))
    		return PAGEREF_RECLAIM_CLEAN;
    
    	return PAGEREF_RECLAIM;
    }
    
    /* Check if a page is dirty or under writeback */
    static void folio_check_dirty_writeback(struct folio *folio,
    				       bool *dirty, bool *writeback)
    {
    	struct address_space *mapping;
    
    	/*
    	 * Anonymous pages are not handled by flushers and must be written
    	 * from reclaim context. Do not stall reclaim based on them.
    	 * MADV_FREE anonymous pages are put into inactive file list too.
    	 * They could be mistakenly treated as file lru. So further anon
    	 * test is needed.
    	 */
    	if (!folio_is_file_lru(folio) ||
    	    (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
    		*dirty = false;
    		*writeback = false;
    		return;
    	}
    
    	/* By default assume that the folio flags are accurate */
    	*dirty = folio_test_dirty(folio);
    	*writeback = folio_test_writeback(folio);
    
    	/* Verify dirty/writeback state if the filesystem supports it */
    	if (!folio_test_private(folio))
    		return;
    
    	mapping = folio_mapping(folio);
    	if (mapping && mapping->a_ops->is_dirty_writeback)
    		mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
    }
    
    static struct page *alloc_demote_page(struct page *page, unsigned long private)
    {
    	struct page *target_page;
    	nodemask_t *allowed_mask;
    	struct migration_target_control *mtc;
    
    	mtc = (struct migration_target_control *)private;
    
    	allowed_mask = mtc->nmask;
    	/*
    	 * make sure we allocate from the target node first also trying to
    	 * demote or reclaim pages from the target node via kswapd if we are
    	 * low on free memory on target node. If we don't do this and if
    	 * we have free memory on the slower(lower) memtier, we would start
    	 * allocating pages from slower(lower) memory tiers without even forcing
    	 * a demotion of cold pages from the target memtier. This can result
    	 * in the kernel placing hot pages in slower(lower) memory tiers.
    	 */
    	mtc->nmask = NULL;
    	mtc->gfp_mask |= __GFP_THISNODE;
    	target_page = alloc_migration_target(page, (unsigned long)mtc);
    	if (target_page)
    		return target_page;
    
    	mtc->gfp_mask &= ~__GFP_THISNODE;
    	mtc->nmask = allowed_mask;
    
    	return alloc_migration_target(page, (unsigned long)mtc);
    }
    
    /*
     * Take pages on @demote_list and attempt to demote them to
     * another node.  Pages which are not demoted are left on
     * @demote_pages.
     */
    static unsigned int demote_page_list(struct list_head *demote_pages,
    				     struct pglist_data *pgdat)
    {
    	int target_nid = next_demotion_node(pgdat->node_id);
    	unsigned int nr_succeeded;
    	nodemask_t allowed_mask;
    
    	struct migration_target_control mtc = {
    		/*
    		 * Allocate from 'node', or fail quickly and quietly.
    		 * When this happens, 'page' will likely just be discarded
    		 * instead of migrated.
    		 */
    		.gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN |
    			__GFP_NOMEMALLOC | GFP_NOWAIT,
    		.nid = target_nid,
    		.nmask = &allowed_mask
    	};
    
    	if (list_empty(demote_pages))
    		return 0;
    
    	if (target_nid == NUMA_NO_NODE)
    		return 0;
    
    	node_get_allowed_targets(pgdat, &allowed_mask);
    
    	/* Demotion ignores all cpuset and mempolicy settings */
    	migrate_pages(demote_pages, alloc_demote_page, NULL,
    		      (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION,
    		      &nr_succeeded);
    
    	if (current_is_kswapd())
    		__count_vm_events(PGDEMOTE_KSWAPD, nr_succeeded);
    	else
    		__count_vm_events(PGDEMOTE_DIRECT, nr_succeeded);
    
    	return nr_succeeded;
    }
    
    static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
    {
    	if (gfp_mask & __GFP_FS)
    		return true;
    	if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
    		return false;
    	/*
    	 * We can "enter_fs" for swap-cache with only __GFP_IO
    	 * providing this isn't SWP_FS_OPS.
    	 * ->flags can be updated non-atomicially (scan_swap_map_slots),
    	 * but that will never affect SWP_FS_OPS, so the data_race
    	 * is safe.
    	 */
    	return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
    }
    
    /*
     * shrink_page_list() returns the number of reclaimed pages
     */
    static unsigned int shrink_page_list(struct list_head *page_list,
    				     struct pglist_data *pgdat,
    				     struct scan_control *sc,
    				     struct reclaim_stat *stat,
    				     bool ignore_references)
    {
    	LIST_HEAD(ret_pages);
    	LIST_HEAD(free_pages);
    	LIST_HEAD(demote_pages);
    	unsigned int nr_reclaimed = 0;
    	unsigned int pgactivate = 0;
    	bool do_demote_pass;
    	struct swap_iocb *plug = NULL;
    
    	memset(stat, 0, sizeof(*stat));
    	cond_resched();
    	do_demote_pass = can_demote(pgdat->node_id, sc);
    
    retry:
    	while (!list_empty(page_list)) {
    		struct address_space *mapping;
    		struct folio *folio;
    		enum page_references references = PAGEREF_RECLAIM;
    		bool dirty, writeback;
    		unsigned int nr_pages;
    
    		cond_resched();
    
    		folio = lru_to_folio(page_list);
    		list_del(&folio->lru);
    
    		if (!folio_trylock(folio))
    			goto keep;
    
    		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
    
    		nr_pages = folio_nr_pages(folio);
    
    		/* Account the number of base pages */
    		sc->nr_scanned += nr_pages;
    
    		if (unlikely(!folio_evictable(folio)))
    			goto activate_locked;
    
    		if (!sc->may_unmap && folio_mapped(folio))
    			goto keep_locked;
    
    		/* folio_update_gen() tried to promote this page? */
    		if (lru_gen_enabled() && !ignore_references &&
    		    folio_mapped(folio) && folio_test_referenced(folio))
    			goto keep_locked;
    
    		/*
    		 * The number of dirty pages determines if a node is marked
    		 * reclaim_congested. kswapd will stall and start writing
    		 * folios if the tail of the LRU is all dirty unqueued folios.
    		 */
    		folio_check_dirty_writeback(folio, &dirty, &writeback);
    		if (dirty || writeback)
    			stat->nr_dirty += nr_pages;
    
    		if (dirty && !writeback)
    			stat->nr_unqueued_dirty += nr_pages;
    
    		/*
    		 * Treat this folio as congested if folios are cycling
    		 * through the LRU so quickly that the folios marked
    		 * for immediate reclaim are making it to the end of
    		 * the LRU a second time.
    		 */
    		if (writeback && folio_test_reclaim(folio))
    			stat->nr_congested += nr_pages;
    
    		/*
    		 * If a folio at the tail of the LRU is under writeback, there
    		 * are three cases to consider.
    		 *
    		 * 1) If reclaim is encountering an excessive number
    		 *    of folios under writeback and this folio has both
    		 *    the writeback and reclaim flags set, then it
    		 *    indicates that folios are being queued for I/O but
    		 *    are being recycled through the LRU before the I/O
    		 *    can complete. Waiting on the folio itself risks an
    		 *    indefinite stall if it is impossible to writeback
    		 *    the folio due to I/O error or disconnected storage
    		 *    so instead note that the LRU is being scanned too
    		 *    quickly and the caller can stall after the folio
    		 *    list has been processed.
    		 *
    		 * 2) Global or new memcg reclaim encounters a folio that is
    		 *    not marked for immediate reclaim, or the caller does not
    		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
    		 *    not to fs). In this case mark the folio for immediate
    		 *    reclaim and continue scanning.
    		 *
    		 *    Require may_enter_fs() because we would wait on fs, which
    		 *    may not have submitted I/O yet. And the loop driver might
    		 *    enter reclaim, and deadlock if it waits on a folio for
    		 *    which it is needed to do the write (loop masks off
    		 *    __GFP_IO|__GFP_FS for this reason); but more thought
    		 *    would probably show more reasons.
    		 *
    		 * 3) Legacy memcg encounters a folio that already has the
    		 *    reclaim flag set. memcg does not have any dirty folio
    		 *    throttling so we could easily OOM just because too many
    		 *    folios are in writeback and there is nothing else to
    		 *    reclaim. Wait for the writeback to complete.
    		 *
    		 * In cases 1) and 2) we activate the folios to get them out of
    		 * the way while we continue scanning for clean folios on the
    		 * inactive list and refilling from the active list. The
    		 * observation here is that waiting for disk writes is more
    		 * expensive than potentially causing reloads down the line.
    		 * Since they're marked for immediate reclaim, they won't put
    		 * memory pressure on the cache working set any longer than it
    		 * takes to write them to disk.
    		 */
    		if (folio_test_writeback(folio)) {
    			/* Case 1 above */
    			if (current_is_kswapd() &&
    			    folio_test_reclaim(folio) &&
    			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
    				stat->nr_immediate += nr_pages;
    				goto activate_locked;
    
    			/* Case 2 above */
    			} else if (writeback_throttling_sane(sc) ||
    			    !folio_test_reclaim(folio) ||
    			    !may_enter_fs(folio, sc->gfp_mask)) {
    				/*
    				 * This is slightly racy -
    				 * folio_end_writeback() might have
    				 * just cleared the reclaim flag, then
    				 * setting the reclaim flag here ends up
    				 * interpreted as the readahead flag - but
    				 * that does not matter enough to care.
    				 * What we do want is for this folio to
    				 * have the reclaim flag set next time
    				 * memcg reclaim reaches the tests above,
    				 * so it will then wait for writeback to
    				 * avoid OOM; and it's also appropriate
    				 * in global reclaim.
    				 */
    				folio_set_reclaim(folio);
    				stat->nr_writeback += nr_pages;
    				goto activate_locked;
    
    			/* Case 3 above */
    			} else {
    				folio_unlock(folio);
    				folio_wait_writeback(folio);
    				/* then go back and try same folio again */
    				list_add_tail(&folio->lru, page_list);
    				continue;
    			}
    		}
    
    		if (!ignore_references)
    			references = folio_check_references(folio, sc);
    
    		switch (references) {
    		case PAGEREF_ACTIVATE:
    			goto activate_locked;
    		case PAGEREF_KEEP:
    			stat->nr_ref_keep += nr_pages;
    			goto keep_locked;
    		case PAGEREF_RECLAIM:
    		case PAGEREF_RECLAIM_CLEAN:
    			; /* try to reclaim the folio below */
    		}
    
    		/*
    		 * Before reclaiming the folio, try to relocate
    		 * its contents to another node.
    		 */
    		if (do_demote_pass &&
    		    (thp_migration_supported() || !folio_test_large(folio))) {
    			list_add(&folio->lru, &demote_pages);
    			folio_unlock(folio);
    			continue;
    		}
    
    		/*
    		 * Anonymous process memory has backing store?
    		 * Try to allocate it some swap space here.
    		 * Lazyfree folio could be freed directly
    		 */
    		if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
    			if (!folio_test_swapcache(folio)) {
    				if (!(sc->gfp_mask & __GFP_IO))
    					goto keep_locked;
    				if (folio_maybe_dma_pinned(folio))
    					goto keep_locked;
    				if (folio_test_large(folio)) {
    					/* cannot split folio, skip it */
    					if (!can_split_folio(folio, NULL))
    						goto activate_locked;
    					/*
    					 * Split folios without a PMD map right
    					 * away. Chances are some or all of the
    					 * tail pages can be freed without IO.
    					 */
    					if (!folio_entire_mapcount(folio) &&
    					    split_folio_to_list(folio,
    								page_list))
    						goto activate_locked;
    				}
    				if (!add_to_swap(folio)) {
    					if (!folio_test_large(folio))
    						goto activate_locked_split;
    					/* Fallback to swap normal pages */
    					if (split_folio_to_list(folio,
    								page_list))
    						goto activate_locked;
    #ifdef CONFIG_TRANSPARENT_HUGEPAGE
    					count_vm_event(THP_SWPOUT_FALLBACK);
    #endif
    					if (!add_to_swap(folio))
    						goto activate_locked_split;
    				}
    			}
    		} else if (folio_test_swapbacked(folio) &&
    			   folio_test_large(folio)) {
    			/* Split shmem folio */
    			if (split_folio_to_list(folio, page_list))
    				goto keep_locked;
    		}
    
    		/*
    		 * If the folio was split above, the tail pages will make
    		 * their own pass through this function and be accounted
    		 * then.
    		 */
    		if ((nr_pages > 1) && !folio_test_large(folio)) {
    			sc->nr_scanned -= (nr_pages - 1);
    			nr_pages = 1;
    		}
    
    		/*
    		 * The folio is mapped into the page tables of one or more
    		 * processes. Try to unmap it here.
    		 */
    		if (folio_mapped(folio)) {
    			enum ttu_flags flags = TTU_BATCH_FLUSH;
    			bool was_swapbacked = folio_test_swapbacked(folio);
    
    			if (folio_test_pmd_mappable(folio))
    				flags |= TTU_SPLIT_HUGE_PMD;
    
    			try_to_unmap(folio, flags);
    			if (folio_mapped(folio)) {
    				stat->nr_unmap_fail += nr_pages;
    				if (!was_swapbacked &&
    				    folio_test_swapbacked(folio))
    					stat->nr_lazyfree_fail += nr_pages;
    				goto activate_locked;
    			}
    		}
    
    		mapping = folio_mapping(folio);
    		if (folio_test_dirty(folio)) {
    			/*
    			 * Only kswapd can writeback filesystem folios
    			 * to avoid risk of stack overflow. But avoid
    			 * injecting inefficient single-folio I/O into
    			 * flusher writeback as much as possible: only
    			 * write folios when we've encountered many
    			 * dirty folios, and when we've already scanned
    			 * the rest of the LRU for clean folios and see
    			 * the same dirty folios again (with the reclaim
    			 * flag set).
    			 */
    			if (folio_is_file_lru(folio) &&
    			    (!current_is_kswapd() ||
    			     !folio_test_reclaim(folio) ||
    			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
    				/*
    				 * Immediately reclaim when written back.
    				 * Similar in principle to deactivate_page()
    				 * except we already have the folio isolated
    				 * and know it's dirty
    				 */
    				node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
    						nr_pages);
    				folio_set_reclaim(folio);
    
    				goto activate_locked;
    			}
    
    			if (references == PAGEREF_RECLAIM_CLEAN)
    				goto keep_locked;
    			if (!may_enter_fs(folio, sc->gfp_mask))
    				goto keep_locked;
    			if (!sc->may_writepage)
    				goto keep_locked;
    
    			/*
    			 * Folio is dirty. Flush the TLB if a writable entry
    			 * potentially exists to avoid CPU writes after I/O
    			 * starts and then write it out here.
    			 */
    			try_to_unmap_flush_dirty();
    			switch (pageout(folio, mapping, &plug)) {
    			case PAGE_KEEP:
    				goto keep_locked;
    			case PAGE_ACTIVATE:
    				goto activate_locked;
    			case PAGE_SUCCESS:
    				stat->nr_pageout += nr_pages;
    
    				if (folio_test_writeback(folio))
    					goto keep;
    				if (folio_test_dirty(folio))
    					goto keep;
    
    				/*
    				 * A synchronous write - probably a ramdisk.  Go
    				 * ahead and try to reclaim the folio.
    				 */
    				if (!folio_trylock(folio))
    					goto keep;
    				if (folio_test_dirty(folio) ||
    				    folio_test_writeback(folio))
    					goto keep_locked;
    				mapping = folio_mapping(folio);
    				fallthrough;
    			case PAGE_CLEAN:
    				; /* try to free the folio below */
    			}
    		}
    
    		/*
    		 * If the folio has buffers, try to free the buffer
    		 * mappings associated with this folio. If we succeed
    		 * we try to free the folio as well.
    		 *
    		 * We do this even if the folio is dirty.
    		 * filemap_release_folio() does not perform I/O, but it
    		 * is possible for a folio to have the dirty flag set,
    		 * but it is actually clean (all its buffers are clean).
    		 * This happens if the buffers were written out directly,
    		 * with submit_bh(). ext3 will do this, as well as
    		 * the blockdev mapping.  filemap_release_folio() will
    		 * discover that cleanness and will drop the buffers
    		 * and mark the folio clean - it can be freed.
    		 *
    		 * Rarely, folios can have buffers and no ->mapping.
    		 * These are the folios which were not successfully
    		 * invalidated in truncate_cleanup_folio().  We try to
    		 * drop those buffers here and if that worked, and the
    		 * folio is no longer mapped into process address space
    		 * (refcount == 1) it can be freed.  Otherwise, leave
    		 * the folio on the LRU so it is swappable.
    		 */
    		if (folio_has_private(folio)) {
    			if (!filemap_release_folio(folio, sc->gfp_mask))
    				goto activate_locked;
    			if (!mapping && folio_ref_count(folio) == 1) {
    				folio_unlock(folio);
    				if (folio_put_testzero(folio))
    					goto free_it;
    				else {
    					/*
    					 * rare race with speculative reference.
    					 * the speculative reference will free
    					 * this folio shortly, so we may
    					 * increment nr_reclaimed here (and
    					 * leave it off the LRU).
    					 */
    					nr_reclaimed += nr_pages;
    					continue;
    				}
    			}
    		}
    
    		if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
    			/* follow __remove_mapping for reference */
    			if (!folio_ref_freeze(folio, 1))
    				goto keep_locked;
    			/*
    			 * The folio has only one reference left, which is
    			 * from the isolation. After the caller puts the
    			 * folio back on the lru and drops the reference, the
    			 * folio will be freed anyway. It doesn't matter
    			 * which lru it goes on. So we don't bother checking
    			 * the dirty flag here.
    			 */
    			count_vm_events(PGLAZYFREED, nr_pages);
    			count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
    		} else if (!mapping || !__remove_mapping(mapping, folio, true,
    							 sc->target_mem_cgroup))
    			goto keep_locked;
    
    		folio_unlock(folio);
    free_it:
    		/*
    		 * Folio may get swapped out as a whole, need to account
    		 * all pages in it.
    		 */
    		nr_reclaimed += nr_pages;
    
    		/*
    		 * Is there need to periodically free_page_list? It would
    		 * appear not as the counts should be low
    		 */
    		if (unlikely(folio_test_large(folio)))
    			destroy_large_folio(folio);
    		else
    			list_add(&folio->lru, &free_pages);
    		continue;
    
    activate_locked_split:
    		/*
    		 * The tail pages that are failed to add into swap cache
    		 * reach here.  Fixup nr_scanned and nr_pages.
    		 */
    		if (nr_pages > 1) {
    			sc->nr_scanned -= (nr_pages - 1);
    			nr_pages = 1;
    		}
    activate_locked:
    		/* Not a candidate for swapping, so reclaim swap space. */
    		if (folio_test_swapcache(folio) &&
    		    (mem_cgroup_swap_full(&folio->page) ||
    		     folio_test_mlocked(folio)))
    			try_to_free_swap(&folio->page);
    		VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
    		if (!folio_test_mlocked(folio)) {
    			int type = folio_is_file_lru(folio);
    			folio_set_active(folio);
    			stat->nr_activate[type] += nr_pages;
    			count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
    		}
    keep_locked:
    		folio_unlock(folio);
    keep:
    		list_add(&folio->lru, &ret_pages);
    		VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
    				folio_test_unevictable(folio), folio);
    	}
    	/* 'page_list' is always empty here */
    
    	/* Migrate folios selected for demotion */
    	nr_reclaimed += demote_page_list(&demote_pages, pgdat);
    	/* Folios that could not be demoted are still in @demote_pages */
    	if (!list_empty(&demote_pages)) {
    		/* Folios which weren't demoted go back on @page_list for retry: */
    		list_splice_init(&demote_pages, page_list);
    		do_demote_pass = false;
    		goto retry;
    	}
    
    	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
    
    	mem_cgroup_uncharge_list(&free_pages);
    	try_to_unmap_flush();
    	free_unref_page_list(&free_pages);
    
    	list_splice(&ret_pages, page_list);
    	count_vm_events(PGACTIVATE, pgactivate);
    
    	if (plug)
    		swap_write_unplug(plug);
    	return nr_reclaimed;
    }
    
    unsigned int reclaim_clean_pages_from_list(struct zone *zone,
    					    struct list_head *folio_list)
    {
    	struct scan_control sc = {
    		.gfp_mask = GFP_KERNEL,
    		.may_unmap = 1,
    	};
    	struct reclaim_stat stat;
    	unsigned int nr_reclaimed;
    	struct folio *folio, *next;
    	LIST_HEAD(clean_folios);
    	unsigned int noreclaim_flag;
    
    	list_for_each_entry_safe(folio, next, folio_list, lru) {
    		if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
    		    !folio_test_dirty(folio) && !__folio_test_movable(folio) &&
    		    !folio_test_unevictable(folio)) {
    			folio_clear_active(folio);
    			list_move(&folio->lru, &clean_folios);
    		}
    	}
    
    	/*
    	 * We should be safe here since we are only dealing with file pages and
    	 * we are not kswapd and therefore cannot write dirty file pages. But
    	 * call memalloc_noreclaim_save() anyway, just in case these conditions
    	 * change in the future.
    	 */
    	noreclaim_flag = memalloc_noreclaim_save();
    	nr_reclaimed = shrink_page_list(&clean_folios, zone->zone_pgdat, &sc,
    					&stat, true);
    	memalloc_noreclaim_restore(noreclaim_flag);
    
    	list_splice(&clean_folios, folio_list);
    	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
    			    -(long)nr_reclaimed);
    	/*
    	 * Since lazyfree pages are isolated from file LRU from the beginning,
    	 * they will rotate back to anonymous LRU in the end if it failed to
    	 * discard so isolated count will be mismatched.
    	 * Compensate the isolated count for both LRU lists.
    	 */
    	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
    			    stat.nr_lazyfree_fail);
    	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
    			    -(long)stat.nr_lazyfree_fail);
    	return nr_reclaimed;
    }
    
    /*
     * Update LRU sizes after isolating pages. The LRU size updates must
     * be complete before mem_cgroup_update_lru_size due to a sanity check.
     */
    static __always_inline void update_lru_sizes(struct lruvec *lruvec,
    			enum lru_list lru, unsigned long *nr_zone_taken)
    {
    	int zid;
    
    	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
    		if (!nr_zone_taken[zid])
    			continue;
    
    		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
    	}
    
    }
    
    /*
     * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
     *
     * lruvec->lru_lock is heavily contended.  Some of the functions that
     * shrink the lists perform better by taking out a batch of pages
     * and working on them outside the LRU lock.
     *
     * For pagecache intensive workloads, this function is the hottest
     * spot in the kernel (apart from copy_*_user functions).
     *
     * Lru_lock must be held before calling this function.
     *
     * @nr_to_scan:	The number of eligible pages to look through on the list.
     * @lruvec:	The LRU vector to pull pages from.
     * @dst:	The temp list to put pages on to.
     * @nr_scanned:	The number of pages that were scanned.
     * @sc:		The scan_control struct for this reclaim session
     * @lru:	LRU list id for isolating
     *
     * returns how many pages were moved onto *@dst.
     */
    static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
    		struct lruvec *lruvec, struct list_head *dst,
    		unsigned long *nr_scanned, struct scan_control *sc,
    		enum lru_list lru)
    {
    	struct list_head *src = &lruvec->lists[lru];
    	unsigned long nr_taken = 0;
    	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
    	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
    	unsigned long skipped = 0;
    	unsigned long scan, total_scan, nr_pages;
    	LIST_HEAD(folios_skipped);
    
    	total_scan = 0;
    	scan = 0;
    	while (scan < nr_to_scan && !list_empty(src)) {
    		struct list_head *move_to = src;
    		struct folio *folio;
    
    		folio = lru_to_folio(src);
    		prefetchw_prev_lru_folio(folio, src, flags);
    
    		nr_pages = folio_nr_pages(folio);
    		total_scan += nr_pages;
    
    		if (folio_zonenum(folio) > sc->reclaim_idx) {
    			nr_skipped[folio_zonenum(folio)] += nr_pages;
    			move_to = &folios_skipped;
    			goto move;
    		}
    
    		/*
    		 * Do not count skipped folios because that makes the function
    		 * return with no isolated folios if the LRU mostly contains
    		 * ineligible folios.  This causes the VM to not reclaim any
    		 * folios, triggering a premature OOM.
    		 * Account all pages in a folio.
    		 */
    		scan += nr_pages;
    
    		if (!folio_test_lru(folio))
    			goto move;
    		if (!sc->may_unmap && folio_mapped(folio))
    			goto move;
    
    		/*
    		 * Be careful not to clear the lru flag until after we're
    		 * sure the folio is not being freed elsewhere -- the
    		 * folio release code relies on it.
    		 */
    		if (unlikely(!folio_try_get(folio)))
    			goto move;
    
    		if (!folio_test_clear_lru(folio)) {
    			/* Another thread is already isolating this folio */
    			folio_put(folio);
    			goto move;
    		}
    
    		nr_taken += nr_pages;
    		nr_zone_taken[folio_zonenum(folio)] += nr_pages;
    		move_to = dst;
    move:
    		list_move(&folio->lru, move_to);
    	}
    
    	/*
    	 * Splice any skipped folios to the start of the LRU list. Note that
    	 * this disrupts the LRU order when reclaiming for lower zones but
    	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
    	 * scanning would soon rescan the same folios to skip and waste lots
    	 * of cpu cycles.
    	 */
    	if (!list_empty(&folios_skipped)) {
    		int zid;
    
    		list_splice(&folios_skipped, src);
    		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
    			if (!nr_skipped[zid])
    				continue;
    
    			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
    			skipped += nr_skipped[zid];
    		}
    	}
    	*nr_scanned = total_scan;
    	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
    				    total_scan, skipped, nr_taken,
    				    sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru);
    	update_lru_sizes(lruvec, lru, nr_zone_taken);
    	return nr_taken;
    }
    
    /**
     * folio_isolate_lru() - Try to isolate a folio from its LRU list.
     * @folio: Folio to isolate from its LRU list.
     *
     * Isolate a @folio from an LRU list and adjust the vmstat statistic
     * corresponding to whatever LRU list the folio was on.
     *
     * The folio will have its LRU flag cleared.  If it was found on the
     * active list, it will have the Active flag set.  If it was found on the
     * unevictable list, it will have the Unevictable flag set.  These flags
     * may need to be cleared by the caller before letting the page go.
     *
     * Context:
     *
     * (1) Must be called with an elevated refcount on the page. This is a
     *     fundamental difference from isolate_lru_pages() (which is called
     *     without a stable reference).
     * (2) The lru_lock must not be held.
     * (3) Interrupts must be enabled.
     *
     * Return: 0 if the folio was removed from an LRU list.
     * -EBUSY if the folio was not on an LRU list.
     */
    int folio_isolate_lru(struct folio *folio)
    {
    	int ret = -EBUSY;
    
    	VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
    
    	if (folio_test_clear_lru(folio)) {
    		struct lruvec *lruvec;
    
    		folio_get(folio);
    		lruvec = folio_lruvec_lock_irq(folio);
    		lruvec_del_folio(lruvec, folio);
    		unlock_page_lruvec_irq(lruvec);
    		ret = 0;
    	}
    
    	return ret;
    }
    
    /*
     * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
     * then get rescheduled. When there are massive number of tasks doing page
     * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
     * the LRU list will go small and be scanned faster than necessary, leading to
     * unnecessary swapping, thrashing and OOM.
     */
    static int too_many_isolated(struct pglist_data *pgdat, int file,
    		struct scan_control *sc)
    {
    	unsigned long inactive, isolated;
    	bool too_many;
    
    	if (current_is_kswapd())
    		return 0;
    
    	if (!writeback_throttling_sane(sc))
    		return 0;
    
    	if (file) {
    		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
    		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
    	} else {
    		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
    		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
    	}
    
    	/*
    	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
    	 * won't get blocked by normal direct-reclaimers, forming a circular
    	 * deadlock.
    	 */
    	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
    		inactive >>= 3;
    
    	too_many = isolated > inactive;
    
    	/* Wake up tasks throttled due to too_many_isolated. */
    	if (!too_many)
    		wake_throttle_isolated(pgdat);
    
    	return too_many;
    }
    
    /*
     * move_pages_to_lru() moves folios from private @list to appropriate LRU list.
     * On return, @list is reused as a list of folios to be freed by the caller.
     *
     * Returns the number of pages moved to the given lruvec.
     */
    static unsigned int move_pages_to_lru(struct lruvec *lruvec,
    				      struct list_head *list)
    {
    	int nr_pages, nr_moved = 0;
    	LIST_HEAD(folios_to_free);
    
    	while (!list_empty(list)) {
    		struct folio *folio = lru_to_folio(list);
    
    		VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
    		list_del(&folio->lru);
    		if (unlikely(!folio_evictable(folio))) {
    			spin_unlock_irq(&lruvec->lru_lock);
    			folio_putback_lru(folio);
    			spin_lock_irq(&lruvec->lru_lock);
    			continue;
    		}
    
    		/*
    		 * The folio_set_lru needs to be kept here for list integrity.
    		 * Otherwise:
    		 *   #0 move_pages_to_lru             #1 release_pages
    		 *   if (!folio_put_testzero())
    		 *				      if (folio_put_testzero())
    		 *				        !lru //skip lru_lock
    		 *     folio_set_lru()
    		 *     list_add(&folio->lru,)
    		 *                                        list_add(&folio->lru,)
    		 */
    		folio_set_lru(folio);
    
    		if (unlikely(folio_put_testzero(folio))) {
    			__folio_clear_lru_flags(folio);
    
    			if (unlikely(folio_test_large(folio))) {
    				spin_unlock_irq(&lruvec->lru_lock);
    				destroy_large_folio(folio);
    				spin_lock_irq(&lruvec->lru_lock);
    			} else
    				list_add(&folio->lru, &folios_to_free);
    
    			continue;
    		}
    
    		/*
    		 * All pages were isolated from the same lruvec (and isolation
    		 * inhibits memcg migration).
    		 */
    		VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
    		lruvec_add_folio(lruvec, folio);
    		nr_pages = folio_nr_pages(folio);
    		nr_moved += nr_pages;
    		if (folio_test_active(folio))
    			workingset_age_nonresident(lruvec, nr_pages);
    	}
    
    	/*
    	 * To save our caller's stack, now use input list for pages to free.
    	 */
    	list_splice(&folios_to_free, list);
    
    	return nr_moved;
    }
    
    /*
     * If a kernel thread (such as nfsd for loop-back mounts) services a backing
     * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
     * we should not throttle.  Otherwise it is safe to do so.
     */
    static int current_may_throttle(void)
    {
    	return !(current->flags & PF_LOCAL_THROTTLE);
    }
    
    /*
     * shrink_inactive_list() is a helper for shrink_node().  It returns the number
     * of reclaimed pages
     */
    static unsigned long
    shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
    		     struct scan_control *sc, enum lru_list lru)
    {
    	LIST_HEAD(page_list);
    	unsigned long nr_scanned;
    	unsigned int nr_reclaimed = 0;
    	unsigned long nr_taken;
    	struct reclaim_stat stat;
    	bool file = is_file_lru(lru);
    	enum vm_event_item item;
    	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
    	bool stalled = false;
    
    	while (unlikely(too_many_isolated(pgdat, file, sc))) {
    		if (stalled)
    			return 0;
    
    		/* wait a bit for the reclaimer. */
    		stalled = true;
    		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
    
    		/* We are about to die and free our memory. Return now. */
    		if (fatal_signal_pending(current))
    			return SWAP_CLUSTER_MAX;
    	}
    
    	lru_add_drain();
    
    	spin_lock_irq(&lruvec->lru_lock);
    
    	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
    				     &nr_scanned, sc, lru);
    
    	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
    	item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
    	if (!cgroup_reclaim(sc))
    		__count_vm_events(item, nr_scanned);
    	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
    	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
    
    	spin_unlock_irq(&lruvec->lru_lock);
    
    	if (nr_taken == 0)
    		return 0;
    
    	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
    
    	spin_lock_irq(&lruvec->lru_lock);
    	move_pages_to_lru(lruvec, &page_list);
    
    	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
    	item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
    	if (!cgroup_reclaim(sc))
    		__count_vm_events(item, nr_reclaimed);
    	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
    	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
    	spin_unlock_irq(&lruvec->lru_lock);
    
    	lru_note_cost(lruvec, file, stat.nr_pageout);
    	mem_cgroup_uncharge_list(&page_list);
    	free_unref_page_list(&page_list);
    
    	/*
    	 * If dirty pages are scanned that are not queued for IO, it
    	 * implies that flushers are not doing their job. This can
    	 * happen when memory pressure pushes dirty pages to the end of
    	 * the LRU before the dirty limits are breached and the dirty
    	 * data has expired. It can also happen when the proportion of
    	 * dirty pages grows not through writes but through memory
    	 * pressure reclaiming all the clean cache. And in some cases,
    	 * the flushers simply cannot keep up with the allocation
    	 * rate. Nudge the flusher threads in case they are asleep.
    	 */
    	if (stat.nr_unqueued_dirty == nr_taken)
    		wakeup_flusher_threads(WB_REASON_VMSCAN);
    
    	sc->nr.dirty += stat.nr_dirty;
    	sc->nr.congested += stat.nr_congested;
    	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
    	sc->nr.writeback += stat.nr_writeback;
    	sc->nr.immediate += stat.nr_immediate;
    	sc->nr.taken += nr_taken;
    	if (file)
    		sc->nr.file_taken += nr_taken;
    
    	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
    			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
    	return nr_reclaimed;
    }
    
    /*
     * shrink_active_list() moves folios from the active LRU to the inactive LRU.
     *
     * We move them the other way if the folio is referenced by one or more
     * processes.
     *
     * If the folios are mostly unmapped, the processing is fast and it is
     * appropriate to hold lru_lock across the whole operation.  But if
     * the folios are mapped, the processing is slow (folio_referenced()), so
     * we should drop lru_lock around each folio.  It's impossible to balance
     * this, so instead we remove the folios from the LRU while processing them.
     * It is safe to rely on the active flag against the non-LRU folios in here
     * because nobody will play with that bit on a non-LRU folio.
     *
     * The downside is that we have to touch folio->_refcount against each folio.
     * But we had to alter folio->flags anyway.
     */
    static void shrink_active_list(unsigned long nr_to_scan,
    			       struct lruvec *lruvec,
    			       struct scan_control *sc,
    			       enum lru_list lru)
    {
    	unsigned long nr_taken;
    	unsigned long nr_scanned;
    	unsigned long vm_flags;
    	LIST_HEAD(l_hold);	/* The folios which were snipped off */
    	LIST_HEAD(l_active);
    	LIST_HEAD(l_inactive);
    	unsigned nr_deactivate, nr_activate;
    	unsigned nr_rotated = 0;
    	int file = is_file_lru(lru);
    	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
    
    	lru_add_drain();
    
    	spin_lock_irq(&lruvec->lru_lock);
    
    	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
    				     &nr_scanned, sc, lru);
    
    	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
    
    	if (!cgroup_reclaim(sc))
    		__count_vm_events(PGREFILL, nr_scanned);
    	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
    
    	spin_unlock_irq(&lruvec->lru_lock);
    
    	while (!list_empty(&l_hold)) {
    		struct folio *folio;
    
    		cond_resched();
    		folio = lru_to_folio(&l_hold);
    		list_del(&folio->lru);
    
    		if (unlikely(!folio_evictable(folio))) {
    			folio_putback_lru(folio);
    			continue;
    		}
    
    		if (unlikely(buffer_heads_over_limit)) {
    			if (folio_test_private(folio) && folio_trylock(folio)) {
    				if (folio_test_private(folio))
    					filemap_release_folio(folio, 0);
    				folio_unlock(folio);
    			}
    		}
    
    		/* Referenced or rmap lock contention: rotate */
    		if (folio_referenced(folio, 0, sc->target_mem_cgroup,
    				     &vm_flags) != 0) {
    			/*
    			 * Identify referenced, file-backed active folios and
    			 * give them one more trip around the active list. So
    			 * that executable code get better chances to stay in
    			 * memory under moderate memory pressure.  Anon folios
    			 * are not likely to be evicted by use-once streaming
    			 * IO, plus JVM can create lots of anon VM_EXEC folios,
    			 * so we ignore them here.
    			 */
    			if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
    				nr_rotated += folio_nr_pages(folio);
    				list_add(&folio->lru, &l_active);
    				continue;
    			}
    		}
    
    		folio_clear_active(folio);	/* we are de-activating */
    		folio_set_workingset(folio);
    		list_add(&folio->lru, &l_inactive);
    	}
    
    	/*
    	 * Move folios back to the lru list.
    	 */
    	spin_lock_irq(&lruvec->lru_lock);
    
    	nr_activate = move_pages_to_lru(lruvec, &l_active);
    	nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
    	/* Keep all free folios in l_active list */
    	list_splice(&l_inactive, &l_active);
    
    	__count_vm_events(PGDEACTIVATE, nr_deactivate);
    	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
    
    	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
    	spin_unlock_irq(&lruvec->lru_lock);
    
    	mem_cgroup_uncharge_list(&l_active);
    	free_unref_page_list(&l_active);
    	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
    			nr_deactivate, nr_rotated, sc->priority, file);
    }
    
    static unsigned int reclaim_page_list(struct list_head *page_list,
    				      struct pglist_data *pgdat)
    {
    	struct reclaim_stat dummy_stat;
    	unsigned int nr_reclaimed;
    	struct folio *folio;
    	struct scan_control sc = {
    		.gfp_mask = GFP_KERNEL,
    		.may_writepage = 1,
    		.may_unmap = 1,
    		.may_swap = 1,
    		.no_demotion = 1,
    	};
    
    	nr_reclaimed = shrink_page_list(page_list, pgdat, &sc, &dummy_stat, false);
    	while (!list_empty(page_list)) {
    		folio = lru_to_folio(page_list);
    		list_del(&folio->lru);
    		folio_putback_lru(folio);
    	}
    
    	return nr_reclaimed;
    }
    
    unsigned long reclaim_pages(struct list_head *folio_list)
    {
    	int nid;
    	unsigned int nr_reclaimed = 0;
    	LIST_HEAD(node_folio_list);
    	unsigned int noreclaim_flag;
    
    	if (list_empty(folio_list))
    		return nr_reclaimed;
    
    	noreclaim_flag = memalloc_noreclaim_save();
    
    	nid = folio_nid(lru_to_folio(folio_list));
    	do {
    		struct folio *folio = lru_to_folio(folio_list);
    
    		if (nid == folio_nid(folio)) {
    			folio_clear_active(folio);
    			list_move(&folio->lru, &node_folio_list);
    			continue;
    		}
    
    		nr_reclaimed += reclaim_page_list(&node_folio_list, NODE_DATA(nid));
    		nid = folio_nid(lru_to_folio(folio_list));
    	} while (!list_empty(folio_list));
    
    	nr_reclaimed += reclaim_page_list(&node_folio_list, NODE_DATA(nid));
    
    	memalloc_noreclaim_restore(noreclaim_flag);
    
    	return nr_reclaimed;
    }
    
    static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
    				 struct lruvec *lruvec, struct scan_control *sc)
    {
    	if (is_active_lru(lru)) {
    		if (sc->may_deactivate & (1 << is_file_lru(lru)))
    			shrink_active_list(nr_to_scan, lruvec, sc, lru);
    		else
    			sc->skipped_deactivate = 1;
    		return 0;
    	}
    
    	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
    }
    
    /*
     * The inactive anon list should be small enough that the VM never has
     * to do too much work.
     *
     * The inactive file list should be small enough to leave most memory
     * to the established workingset on the scan-resistant active list,
     * but large enough to avoid thrashing the aggregate readahead window.
     *
     * Both inactive lists should also be large enough that each inactive
     * page has a chance to be referenced again before it is reclaimed.
     *
     * If that fails and refaulting is observed, the inactive list grows.
     *
     * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
     * on this LRU, maintained by the pageout code. An inactive_ratio
     * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
     *
     * total     target    max
     * memory    ratio     inactive
     * -------------------------------------
     *   10MB       1         5MB
     *  100MB       1        50MB
     *    1GB       3       250MB
     *   10GB      10       0.9GB
     *  100GB      31         3GB
     *    1TB     101        10GB
     *   10TB     320        32GB
     */
    static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
    {
    	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
    	unsigned long inactive, active;
    	unsigned long inactive_ratio;
    	unsigned long gb;
    
    	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
    	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
    
    	gb = (inactive + active) >> (30 - PAGE_SHIFT);
    	if (gb)
    		inactive_ratio = int_sqrt(10 * gb);
    	else
    		inactive_ratio = 1;
    
    	return inactive * inactive_ratio < active;
    }
    
    enum scan_balance {
    	SCAN_EQUAL,
    	SCAN_FRACT,
    	SCAN_ANON,
    	SCAN_FILE,
    };
    
    static void prepare_scan_count(pg_data_t *pgdat, struct scan_control *sc)
    {
    	unsigned long file;
    	struct lruvec *target_lruvec;
    
    	if (lru_gen_enabled())
    		return;
    
    	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
    
    	/*
    	 * Flush the memory cgroup stats, so that we read accurate per-memcg
    	 * lruvec stats for heuristics.
    	 */
    	mem_cgroup_flush_stats();
    
    	/*
    	 * Determine the scan balance between anon and file LRUs.
    	 */
    	spin_lock_irq(&target_lruvec->lru_lock);
    	sc->anon_cost = target_lruvec->anon_cost;
    	sc->file_cost = target_lruvec->file_cost;
    	spin_unlock_irq(&target_lruvec->lru_lock);
    
    	/*
    	 * Target desirable inactive:active list ratios for the anon
    	 * and file LRU lists.
    	 */
    	if (!sc->force_deactivate) {
    		unsigned long refaults;
    
    		/*
    		 * When refaults are being observed, it means a new
    		 * workingset is being established. Deactivate to get
    		 * rid of any stale active pages quickly.
    		 */
    		refaults = lruvec_page_state(target_lruvec,
    				WORKINGSET_ACTIVATE_ANON);
    		if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
    			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
    			sc->may_deactivate |= DEACTIVATE_ANON;
    		else
    			sc->may_deactivate &= ~DEACTIVATE_ANON;
    
    		refaults = lruvec_page_state(target_lruvec,
    				WORKINGSET_ACTIVATE_FILE);
    		if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
    		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
    			sc->may_deactivate |= DEACTIVATE_FILE;
    		else
    			sc->may_deactivate &= ~DEACTIVATE_FILE;
    	} else
    		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
    
    	/*
    	 * If we have plenty of inactive file pages that aren't
    	 * thrashing, try to reclaim those first before touching
    	 * anonymous pages.
    	 */
    	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
    	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
    		sc->cache_trim_mode = 1;
    	else
    		sc->cache_trim_mode = 0;
    
    	/*
    	 * Prevent the reclaimer from falling into the cache trap: as
    	 * cache pages start out inactive, every cache fault will tip
    	 * the scan balance towards the file LRU.  And as the file LRU
    	 * shrinks, so does the window for rotation from references.
    	 * This means we have a runaway feedback loop where a tiny
    	 * thrashing file LRU becomes infinitely more attractive than
    	 * anon pages.  Try to detect this based on file LRU size.
    	 */
    	if (!cgroup_reclaim(sc)) {
    		unsigned long total_high_wmark = 0;
    		unsigned long free, anon;
    		int z;
    
    		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
    		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
    			   node_page_state(pgdat, NR_INACTIVE_FILE);
    
    		for (z = 0; z < MAX_NR_ZONES; z++) {
    			struct zone *zone = &pgdat->node_zones[z];
    
    			if (!managed_zone(zone))
    				continue;
    
    			total_high_wmark += high_wmark_pages(zone);
    		}
    
    		/*
    		 * Consider anon: if that's low too, this isn't a
    		 * runaway file reclaim problem, but rather just
    		 * extreme pressure. Reclaim as per usual then.
    		 */
    		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
    
    		sc->file_is_tiny =
    			file + free <= total_high_wmark &&
    			!(sc->may_deactivate & DEACTIVATE_ANON) &&
    			anon >> sc->priority;
    	}
    }
    
    /*
     * Determine how aggressively the anon and file LRU lists should be
     * scanned.
     *
     * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
     * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
     */
    static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
    			   unsigned long *nr)
    {
    	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
    	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
    	unsigned long anon_cost, file_cost, total_cost;
    	int swappiness = mem_cgroup_swappiness(memcg);
    	u64 fraction[ANON_AND_FILE];
    	u64 denominator = 0;	/* gcc */
    	enum scan_balance scan_balance;
    	unsigned long ap, fp;
    	enum lru_list lru;
    
    	/* If we have no swap space, do not bother scanning anon pages. */
    	if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
    		scan_balance = SCAN_FILE;
    		goto out;
    	}
    
    	/*
    	 * Global reclaim will swap to prevent OOM even with no
    	 * swappiness, but memcg users want to use this knob to
    	 * disable swapping for individual groups completely when
    	 * using the memory controller's swap limit feature would be
    	 * too expensive.
    	 */
    	if (cgroup_reclaim(sc) && !swappiness) {
    		scan_balance = SCAN_FILE;
    		goto out;
    	}
    
    	/*
    	 * Do not apply any pressure balancing cleverness when the
    	 * system is close to OOM, scan both anon and file equally
    	 * (unless the swappiness setting disagrees with swapping).
    	 */
    	if (!sc->priority && swappiness) {
    		scan_balance = SCAN_EQUAL;
    		goto out;
    	}
    
    	/*
    	 * If the system is almost out of file pages, force-scan anon.
    	 */
    	if (sc->file_is_tiny) {
    		scan_balance = SCAN_ANON;
    		goto out;
    	}
    
    	/*
    	 * If there is enough inactive page cache, we do not reclaim
    	 * anything from the anonymous working right now.
    	 */
    	if (sc->cache_trim_mode) {
    		scan_balance = SCAN_FILE;
    		goto out;
    	}
    
    	scan_balance = SCAN_FRACT;
    	/*
    	 * Calculate the pressure balance between anon and file pages.
    	 *
    	 * The amount of pressure we put on each LRU is inversely
    	 * proportional to the cost of reclaiming each list, as
    	 * determined by the share of pages that are refaulting, times
    	 * the relative IO cost of bringing back a swapped out
    	 * anonymous page vs reloading a filesystem page (swappiness).
    	 *
    	 * Although we limit that influence to ensure no list gets
    	 * left behind completely: at least a third of the pressure is
    	 * applied, before swappiness.
    	 *
    	 * With swappiness at 100, anon and file have equal IO cost.
    	 */
    	total_cost = sc->anon_cost + sc->file_cost;
    	anon_cost = total_cost + sc->anon_cost;
    	file_cost = total_cost + sc->file_cost;
    	total_cost = anon_cost + file_cost;
    
    	ap = swappiness * (total_cost + 1);
    	ap /= anon_cost + 1;
    
    	fp = (200 - swappiness) * (total_cost + 1);
    	fp /= file_cost + 1;
    
    	fraction[0] = ap;
    	fraction[1] = fp;
    	denominator = ap + fp;
    out:
    	for_each_evictable_lru(lru) {
    		int file = is_file_lru(lru);
    		unsigned long lruvec_size;
    		unsigned long low, min;
    		unsigned long scan;
    
    		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
    		mem_cgroup_protection(sc->target_mem_cgroup, memcg,
    				      &min, &low);
    
    		if (min || low) {
    			/*
    			 * Scale a cgroup's reclaim pressure by proportioning
    			 * its current usage to its memory.low or memory.min
    			 * setting.
    			 *
    			 * This is important, as otherwise scanning aggression
    			 * becomes extremely binary -- from nothing as we
    			 * approach the memory protection threshold, to totally
    			 * nominal as we exceed it.  This results in requiring
    			 * setting extremely liberal protection thresholds. It
    			 * also means we simply get no protection at all if we
    			 * set it too low, which is not ideal.
    			 *
    			 * If there is any protection in place, we reduce scan
    			 * pressure by how much of the total memory used is
    			 * within protection thresholds.
    			 *
    			 * There is one special case: in the first reclaim pass,
    			 * we skip over all groups that are within their low
    			 * protection. If that fails to reclaim enough pages to
    			 * satisfy the reclaim goal, we come back and override
    			 * the best-effort low protection. However, we still
    			 * ideally want to honor how well-behaved groups are in
    			 * that case instead of simply punishing them all
    			 * equally. As such, we reclaim them based on how much
    			 * memory they are using, reducing the scan pressure
    			 * again by how much of the total memory used is under
    			 * hard protection.
    			 */
    			unsigned long cgroup_size = mem_cgroup_size(memcg);
    			unsigned long protection;
    
    			/* memory.low scaling, make sure we retry before OOM */
    			if (!sc->memcg_low_reclaim && low > min) {
    				protection = low;
    				sc->memcg_low_skipped = 1;
    			} else {
    				protection = min;
    			}
    
    			/* Avoid TOCTOU with earlier protection check */
    			cgroup_size = max(cgroup_size, protection);
    
    			scan = lruvec_size - lruvec_size * protection /
    				(cgroup_size + 1);
    
    			/*
    			 * Minimally target SWAP_CLUSTER_MAX pages to keep
    			 * reclaim moving forwards, avoiding decrementing
    			 * sc->priority further than desirable.
    			 */
    			scan = max(scan, SWAP_CLUSTER_MAX);
    		} else {
    			scan = lruvec_size;
    		}
    
    		scan >>= sc->priority;
    
    		/*
    		 * If the cgroup's already been deleted, make sure to
    		 * scrape out the remaining cache.
    		 */
    		if (!scan && !mem_cgroup_online(memcg))
    			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
    
    		switch (scan_balance) {
    		case SCAN_EQUAL:
    			/* Scan lists relative to size */
    			break;
    		case SCAN_FRACT:
    			/*
    			 * Scan types proportional to swappiness and
    			 * their relative recent reclaim efficiency.
    			 * Make sure we don't miss the last page on
    			 * the offlined memory cgroups because of a
    			 * round-off error.
    			 */
    			scan = mem_cgroup_online(memcg) ?
    			       div64_u64(scan * fraction[file], denominator) :
    			       DIV64_U64_ROUND_UP(scan * fraction[file],
    						  denominator);
    			break;
    		case SCAN_FILE:
    		case SCAN_ANON:
    			/* Scan one type exclusively */
    			if ((scan_balance == SCAN_FILE) != file)
    				scan = 0;
    			break;
    		default:
    			/* Look ma, no brain */
    			BUG();
    		}
    
    		nr[lru] = scan;
    	}
    }
    
    /*
     * Anonymous LRU management is a waste if there is
     * ultimately no way to reclaim the memory.
     */
    static bool can_age_anon_pages(struct pglist_data *pgdat,
    			       struct scan_control *sc)
    {
    	/* Aging the anon LRU is valuable if swap is present: */
    	if (total_swap_pages > 0)
    		return true;
    
    	/* Also valuable if anon pages can be demoted: */
    	return can_demote(pgdat->node_id, sc);
    }
    
    #ifdef CONFIG_LRU_GEN
    
    #ifdef CONFIG_LRU_GEN_ENABLED
    DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
    #define get_cap(cap)	static_branch_likely(&lru_gen_caps[cap])
    #else
    DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
    #define get_cap(cap)	static_branch_unlikely(&lru_gen_caps[cap])
    #endif
    
    /******************************************************************************
     *                          shorthand helpers
     ******************************************************************************/
    
    #define LRU_REFS_FLAGS	(BIT(PG_referenced) | BIT(PG_workingset))
    
    #define DEFINE_MAX_SEQ(lruvec)						\
    	unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
    
    #define DEFINE_MIN_SEQ(lruvec)						\
    	unsigned long min_seq[ANON_AND_FILE] = {			\
    		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]),	\
    		READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]),	\
    	}
    
    #define for_each_gen_type_zone(gen, type, zone)				\
    	for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++)			\
    		for ((type) = 0; (type) < ANON_AND_FILE; (type)++)	\
    			for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
    
    static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
    {
    	struct pglist_data *pgdat = NODE_DATA(nid);
    
    #ifdef CONFIG_MEMCG
    	if (memcg) {
    		struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
    
    		/* for hotadd_new_pgdat() */
    		if (!lruvec->pgdat)
    			lruvec->pgdat = pgdat;
    
    		return lruvec;
    	}
    #endif
    	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
    
    	return pgdat ? &pgdat->__lruvec : NULL;
    }
    
    static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
    {
    	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
    	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
    
    	if (!can_demote(pgdat->node_id, sc) &&
    	    mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH)
    		return 0;
    
    	return mem_cgroup_swappiness(memcg);
    }
    
    static int get_nr_gens(struct lruvec *lruvec, int type)
    {
    	return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
    }
    
    static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
    {
    	/* see the comment on lru_gen_struct */
    	return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS &&
    	       get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) &&
    	       get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS;
    }
    
    /******************************************************************************
     *                          mm_struct list
     ******************************************************************************/
    
    static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
    {
    	static struct lru_gen_mm_list mm_list = {
    		.fifo = LIST_HEAD_INIT(mm_list.fifo),
    		.lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
    	};
    
    #ifdef CONFIG_MEMCG
    	if (memcg)
    		return &memcg->mm_list;
    #endif
    	VM_WARN_ON_ONCE(!mem_cgroup_disabled());
    
    	return &mm_list;
    }
    
    void lru_gen_add_mm(struct mm_struct *mm)
    {
    	int nid;
    	struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
    	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
    
    	VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
    #ifdef CONFIG_MEMCG
    	VM_WARN_ON_ONCE(mm->lru_gen.memcg);
    	mm->lru_gen.memcg = memcg;
    #endif
    	spin_lock(&mm_list->lock);
    
    	for_each_node_state(nid, N_MEMORY) {
    		struct lruvec *lruvec = get_lruvec(memcg, nid);
    
    		if (!lruvec)
    			continue;
    
    		/* the first addition since the last iteration */
    		if (lruvec->mm_state.tail == &mm_list->fifo)
    			lruvec->mm_state.tail = &mm->lru_gen.list;
    	}
    
    	list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
    
    	spin_unlock(&mm_list->lock);
    }
    
    void lru_gen_del_mm(struct mm_struct *mm)
    {
    	int nid;
    	struct lru_gen_mm_list *mm_list;
    	struct mem_cgroup *memcg = NULL;
    
    	if (list_empty(&mm->lru_gen.list))
    		return;
    
    #ifdef CONFIG_MEMCG
    	memcg = mm->lru_gen.memcg;
    #endif
    	mm_list = get_mm_list(memcg);
    
    	spin_lock(&mm_list->lock);
    
    	for_each_node(nid) {
    		struct lruvec *lruvec = get_lruvec(memcg, nid);
    
    		if (!lruvec)
    			continue;
    
    		/* where the last iteration ended (exclusive) */
    		if (lruvec->mm_state.tail == &mm->lru_gen.list)
    			lruvec->mm_state.tail = lruvec->mm_state.tail->next;
    
    		/* where the current iteration continues (inclusive) */
    		if (lruvec->mm_state.head != &mm->lru_gen.list)
    			continue;
    
    		lruvec->mm_state.head = lruvec->mm_state.head->next;
    		/* the deletion ends the current iteration */
    		if (lruvec->mm_state.head == &mm_list->fifo)
    			WRITE_ONCE(lruvec->mm_state.seq, lruvec->mm_state.seq + 1);
    	}
    
    	list_del_init(&mm->lru_gen.list);
    
    	spin_unlock(&mm_list->lock);
    
    #ifdef CONFIG_MEMCG
    	mem_cgroup_put(mm->lru_gen.memcg);
    	mm->lru_gen.memcg = NULL;
    #endif
    }
    
    #ifdef CONFIG_MEMCG
    void lru_gen_migrate_mm(struct mm_struct *mm)
    {
    	struct mem_cgroup *memcg;
    	struct task_struct *task = rcu_dereference_protected(mm->owner, true);
    
    	VM_WARN_ON_ONCE(task->mm != mm);
    	lockdep_assert_held(&task->alloc_lock);
    
    	/* for mm_update_next_owner() */
    	if (mem_cgroup_disabled())
    		return;
    
    	rcu_read_lock();
    	memcg = mem_cgroup_from_task(task);
    	rcu_read_unlock();
    	if (memcg == mm->lru_gen.memcg)
    		return;
    
    	VM_WARN_ON_ONCE(!mm->lru_gen.memcg);
    	VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
    
    	lru_gen_del_mm(mm);
    	lru_gen_add_mm(mm);
    }
    #endif
    
    /*
     * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
     * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
     * bits in a bitmap, k is the number of hash functions and n is the number of
     * inserted items.
     *
     * Page table walkers use one of the two filters to reduce their search space.
     * To get rid of non-leaf entries that no longer have enough leaf entries, the
     * aging uses the double-buffering technique to flip to the other filter each
     * time it produces a new generation. For non-leaf entries that have enough
     * leaf entries, the aging carries them over to the next generation in
     * walk_pmd_range(); the eviction also report them when walking the rmap
     * in lru_gen_look_around().
     *
     * For future optimizations:
     * 1. It's not necessary to keep both filters all the time. The spare one can be
     *    freed after the RCU grace period and reallocated if needed again.
     * 2. And when reallocating, it's worth scaling its size according to the number
     *    of inserted entries in the other filter, to reduce the memory overhead on
     *    small systems and false positives on large systems.
     * 3. Jenkins' hash function is an alternative to Knuth's.
     */
    #define BLOOM_FILTER_SHIFT	15
    
    static inline int filter_gen_from_seq(unsigned long seq)
    {
    	return seq % NR_BLOOM_FILTERS;
    }
    
    static void get_item_key(void *item, int *key)
    {
    	u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
    
    	BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
    
    	key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
    	key[1] = hash >> BLOOM_FILTER_SHIFT;
    }
    
    static void reset_bloom_filter(struct lruvec *lruvec, unsigned long seq)
    {
    	unsigned long *filter;
    	int gen = filter_gen_from_seq(seq);
    
    	filter = lruvec->mm_state.filters[gen];
    	if (filter) {
    		bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
    		return;
    	}
    
    	filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
    			       __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
    	WRITE_ONCE(lruvec->mm_state.filters[gen], filter);
    }
    
    static void update_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
    {
    	int key[2];
    	unsigned long *filter;
    	int gen = filter_gen_from_seq(seq);
    
    	filter = READ_ONCE(lruvec->mm_state.filters[gen]);
    	if (!filter)
    		return;
    
    	get_item_key(item, key);
    
    	if (!test_bit(key[0], filter))
    		set_bit(key[0], filter);
    	if (!test_bit(key[1], filter))
    		set_bit(key[1], filter);
    }
    
    static bool test_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
    {
    	int key[2];
    	unsigned long *filter;
    	int gen = filter_gen_from_seq(seq);
    
    	filter = READ_ONCE(lruvec->mm_state.filters[gen]);
    	if (!filter)
    		return true;
    
    	get_item_key(item, key);
    
    	return test_bit(key[0], filter) && test_bit(key[1], filter);
    }
    
    static void reset_mm_stats(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, bool last)
    {
    	int i;
    	int hist;
    
    	lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
    
    	if (walk) {
    		hist = lru_hist_from_seq(walk->max_seq);
    
    		for (i = 0; i < NR_MM_STATS; i++) {
    			WRITE_ONCE(lruvec->mm_state.stats[hist][i],
    				   lruvec->mm_state.stats[hist][i] + walk->mm_stats[i]);
    			walk->mm_stats[i] = 0;
    		}
    	}
    
    	if (NR_HIST_GENS > 1 && last) {
    		hist = lru_hist_from_seq(lruvec->mm_state.seq + 1);
    
    		for (i = 0; i < NR_MM_STATS; i++)
    			WRITE_ONCE(lruvec->mm_state.stats[hist][i], 0);
    	}
    }
    
    static bool should_skip_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)
    {
    	int type;
    	unsigned long size = 0;
    	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
    	int key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
    
    	if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
    		return true;
    
    	clear_bit(key, &mm->lru_gen.bitmap);
    
    	for (type = !walk->can_swap; type < ANON_AND_FILE; type++) {
    		size += type ? get_mm_counter(mm, MM_FILEPAGES) :
    			       get_mm_counter(mm, MM_ANONPAGES) +
    			       get_mm_counter(mm, MM_SHMEMPAGES);
    	}
    
    	if (size < MIN_LRU_BATCH)
    		return true;
    
    	return !mmget_not_zero(mm);
    }
    
    static bool iterate_mm_list(struct lruvec *lruvec, struct lru_gen_mm_walk *walk,
    			    struct mm_struct **iter)
    {
    	bool first = false;
    	bool last = true;
    	struct mm_struct *mm = NULL;
    	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
    	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
    	struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
    
    	/*
    	 * There are four interesting cases for this page table walker:
    	 * 1. It tries to start a new iteration of mm_list with a stale max_seq;
    	 *    there is nothing left to do.
    	 * 2. It's the first of the current generation, and it needs to reset
    	 *    the Bloom filter for the next generation.
    	 * 3. It reaches the end of mm_list, and it needs to increment
    	 *    mm_state->seq; the iteration is done.
    	 * 4. It's the last of the current generation, and it needs to reset the
    	 *    mm stats counters for the next generation.
    	 */
    	spin_lock(&mm_list->lock);
    
    	VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->max_seq);
    	VM_WARN_ON_ONCE(*iter && mm_state->seq > walk->max_seq);
    	VM_WARN_ON_ONCE(*iter && !mm_state->nr_walkers);
    
    	if (walk->max_seq <= mm_state->seq) {
    		if (!*iter)
    			last = false;
    		goto done;
    	}
    
    	if (!mm_state->nr_walkers) {
    		VM_WARN_ON_ONCE(mm_state->head && mm_state->head != &mm_list->fifo);
    
    		mm_state->head = mm_list->fifo.next;
    		first = true;
    	}
    
    	while (!mm && mm_state->head != &mm_list->fifo) {
    		mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
    
    		mm_state->head = mm_state->head->next;
    
    		/* force scan for those added after the last iteration */
    		if (!mm_state->tail || mm_state->tail == &mm->lru_gen.list) {
    			mm_state->tail = mm_state->head;
    			walk->force_scan = true;
    		}
    
    		if (should_skip_mm(mm, walk))
    			mm = NULL;
    	}
    
    	if (mm_state->head == &mm_list->fifo)
    		WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
    done:
    	if (*iter && !mm)
    		mm_state->nr_walkers--;
    	if (!*iter && mm)
    		mm_state->nr_walkers++;
    
    	if (mm_state->nr_walkers)
    		last = false;
    
    	if (*iter || last)
    		reset_mm_stats(lruvec, walk, last);
    
    	spin_unlock(&mm_list->lock);
    
    	if (mm && first)
    		reset_bloom_filter(lruvec, walk->max_seq + 1);
    
    	if (*iter)
    		mmput_async(*iter);
    
    	*iter = mm;
    
    	return last;
    }
    
    static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long max_seq)
    {
    	bool success = false;
    	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
    	struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
    	struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
    
    	spin_lock(&mm_list->lock);
    
    	VM_WARN_ON_ONCE(mm_state->seq + 1 < max_seq);
    
    	if (max_seq > mm_state->seq && !mm_state->nr_walkers) {
    		VM_WARN_ON_ONCE(mm_state->head && mm_state->head != &mm_list->fifo);
    
    		WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
    		reset_mm_stats(lruvec, NULL, true);
    		success = true;
    	}
    
    	spin_unlock(&mm_list->lock);
    
    	return success;
    }
    
    /******************************************************************************
     *                          refault feedback loop
     ******************************************************************************/
    
    /*
     * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
     *
     * The P term is refaulted/(evicted+protected) from a tier in the generation
     * currently being evicted; the I term is the exponential moving average of the
     * P term over the generations previously evicted, using the smoothing factor
     * 1/2; the D term isn't supported.
     *
     * The setpoint (SP) is always the first tier of one type; the process variable
     * (PV) is either any tier of the other type or any other tier of the same
     * type.
     *
     * The error is the difference between the SP and the PV; the correction is to
     * turn off protection when SP>PV or turn on protection when SP<PV.
     *
     * For future optimizations:
     * 1. The D term may discount the other two terms over time so that long-lived
     *    generations can resist stale information.
     */
    struct ctrl_pos {
    	unsigned long refaulted;
    	unsigned long total;
    	int gain;
    };
    
    static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
    			  struct ctrl_pos *pos)
    {
    	struct lru_gen_struct *lrugen = &lruvec->lrugen;
    	int hist = lru_hist_from_seq(lrugen->min_seq[type]);
    
    	pos->refaulted = lrugen->avg_refaulted[type][tier] +
    			 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
    	pos->total = lrugen->avg_total[type][tier] +
    		     atomic_long_read(&lrugen->evicted[hist][type][tier]);
    	if (tier)
    		pos->total += lrugen->protected[hist][type][tier - 1];
    	pos->gain = gain;
    }
    
    static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
    {
    	int hist, tier;
    	struct lru_gen_struct *lrugen = &lruvec->lrugen;
    	bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
    	unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
    
    	lockdep_assert_held(&lruvec->lru_lock);
    
    	if (!carryover && !clear)
    		return;
    
    	hist = lru_hist_from_seq(seq);
    
    	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
    		if (carryover) {
    			unsigned long sum;
    
    			sum = lrugen->avg_refaulted[type][tier] +
    			      atomic_long_read(&lrugen->refaulted[hist][type][tier]);
    			WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
    
    			sum = lrugen->avg_total[type][tier] +
    			      atomic_long_read(&lrugen->evicted[hist][type][tier]);
    			if (tier)
    				sum += lrugen->protected[hist][type][tier - 1];
    			WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
    		}
    
    		if (clear) {
    			atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
    			atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
    			if (tier)
    				WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0);
    		}
    	}
    }
    
    static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
    {
    	/*
    	 * Return true if the PV has a limited number of refaults or a lower
    	 * refaulted/total than the SP.
    	 */
    	return pv->refaulted < MIN_LRU_BATCH ||
    	       pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
    	       (sp->refaulted + 1) * pv->total * pv->gain;
    }
    
    /******************************************************************************
     *                          the aging
     ******************************************************************************/
    
    /* promote pages accessed through page tables */
    static int folio_update_gen(struct folio *folio, int gen)
    {
    	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
    
    	VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
    	VM_WARN_ON_ONCE(!rcu_read_lock_held());
    
    	do {
    		/* lru_gen_del_folio() has isolated this page? */
    		if (!(old_flags & LRU_GEN_MASK)) {
    			/* for shrink_page_list() */
    			new_flags = old_flags | BIT(PG_referenced);
    			continue;
    		}
    
    		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
    		new_flags |= (gen + 1UL) << LRU_GEN_PGOFF;
    	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
    
    	return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
    }
    
    /* protect pages accessed multiple times through file descriptors */
    static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
    {
    	int type = folio_is_file_lru(folio);
    	struct lru_gen_struct *lrugen = &lruvec->lrugen;
    	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
    	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
    
    	VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio);
    
    	do {
    		new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
    		/* folio_update_gen() has promoted this page? */
    		if (new_gen >= 0 && new_gen != old_gen)
    			return new_gen;
    
    		new_gen = (old_gen + 1) % MAX_NR_GENS;
    
    		new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
    		new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
    		/* for folio_end_writeback() */
    		if (reclaiming)
    			new_flags |= BIT(PG_reclaim);
    	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
    
    	lru_gen_update_size(lruvec, folio, old_gen, new_gen);
    
    	return new_gen;
    }
    
    static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
    			      int old_gen, int new_gen)
    {
    	int type = folio_is_file_lru(folio);
    	int zone = folio_zonenum(folio);
    	int delta = folio_nr_pages(folio);
    
    	VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
    	VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
    
    	walk->batched++;
    
    	walk->nr_pages[old_gen][type][zone] -= delta;
    	walk->nr_pages[new_gen][type][zone] += delta;
    }
    
    static void reset_batch_size(struct lruvec *lruvec, struct lru_gen_mm_walk *walk)
    {
    	int gen, type, zone;
    	struct lru_gen_struct *lrugen = &lruvec->lrugen;
    
    	walk->batched = 0;
    
    	for_each_gen_type_zone(gen, type, zone) {
    		enum lru_list lru = type * LRU_INACTIVE_FILE;
    		int delta = walk->nr_pages[gen][type][zone];
    
    		if (!delta)
    			continue;
    
    		walk->nr_pages[gen][type][zone] = 0;
    		WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
    			   lrugen->nr_pages[gen][type][zone] + delta);
    
    		if (lru_gen_is_active(lruvec, gen))
    			lru += LRU_ACTIVE;
    		__update_lru_size(lruvec, lru, zone, delta);
    	}
    }
    
    static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
    {
    	struct address_space *mapping;
    	struct vm_area_struct *vma = args->vma;
    	struct lru_gen_mm_walk *walk = args->private;
    
    	if (!vma_is_accessible(vma))
    		return true;
    
    	if (is_vm_hugetlb_page(vma))
    		return true;
    
    	if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL | VM_SEQ_READ | VM_RAND_READ))
    		return true;
    
    	if (vma == get_gate_vma(vma->vm_mm))
    		return true;
    
    	if (vma_is_anonymous(vma))
    		return !walk->can_swap;
    
    	if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
    		return true;
    
    	mapping = vma->vm_file->f_mapping;
    	if (mapping_unevictable(mapping))
    		return true;
    
    	if (shmem_mapping(mapping))
    		return !walk->can_swap;
    
    	/* to exclude special mappings like dax, etc. */
    	return !mapping->a_ops->read_folio;
    }
    
    /*
     * Some userspace memory allocators map many single-page VMAs. Instead of
     * returning back to the PGD table for each of such VMAs, finish an entire PMD
     * table to reduce zigzags and improve cache performance.
     */
    static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
    			 unsigned long *vm_start, unsigned long *vm_end)
    {
    	unsigned long start = round_up(*vm_end, size);
    	unsigned long end = (start | ~mask) + 1;
    	VMA_ITERATOR(vmi, args->mm, start);
    
    	VM_WARN_ON_ONCE(mask & size);
    	VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
    
    	for_each_vma(vmi, args->vma) {
    		if (end && end <= args->vma->vm_start)
    			return false;
    
    		if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args))
    			continue;
    
    		*vm_start = max(start, args->vma->vm_start);
    		*vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
    
    		return true;
    	}
    
    	return false;
    }
    
    static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr)
    {
    	unsigned long pfn = pte_pfn(pte);
    
    	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
    
    	if (!pte_present(pte) || is_zero_pfn(pfn))
    		return -1;
    
    	if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte)))
    		return -1;
    
    	if (WARN_ON_ONCE(!pfn_valid(pfn)))
    		return -1;
    
    	return pfn;
    }
    
    #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
    static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr)
    {
    	unsigned long pfn = pmd_pfn(pmd);
    
    	VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
    
    	if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
    		return -1;
    
    	if (WARN_ON_ONCE(pmd_devmap(pmd)))
    		return -1;
    
    	if (WARN_ON_ONCE(!pfn_valid(pfn)))
    		return -1;
    
    	return pfn;
    }
    #endif
    
    static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
    				   struct pglist_data *pgdat, bool can_swap)
    {
    	struct folio *folio;
    
    	/* try to avoid unnecessary memory loads */
    	if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
    		return NULL;
    
    	folio = pfn_folio(pfn);
    	if (folio_nid(folio) != pgdat->node_id)
    		return NULL;
    
    	if (folio_memcg_rcu(folio) != memcg)
    		return NULL;
    
    	/* file VMAs can contain anon pages from COW */
    	if (!folio_is_file_lru(folio) && !can_swap)
    		return NULL;
    
    	return folio;
    }
    
    static bool suitable_to_scan(int total, int young)
    {
    	int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
    
    	/* suitable if the average number of young PTEs per cacheline is >=1 */
    	return young * n >= total;
    }
    
    static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
    			   struct mm_walk *args)
    {
    	int i;
    	pte_t *pte;
    	spinlock_t *ptl;
    	unsigned long addr;
    	int total = 0;
    	int young = 0;
    	struct lru_gen_mm_walk *walk = args->private;
    	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
    	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
    	int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
    
    	VM_WARN_ON_ONCE(pmd_leaf(*pmd));
    
    	ptl = pte_lockptr(args->mm, pmd);
    	if (!spin_trylock(ptl))
    		return false;
    
    	arch_enter_lazy_mmu_mode();
    
    	pte = pte_offset_map(pmd, start & PMD_MASK);
    restart:
    	for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
    		unsigned long pfn;
    		struct folio *folio;
    
    		total++;
    		walk->mm_stats[MM_LEAF_TOTAL]++;
    
    		pfn = get_pte_pfn(pte[i], args->vma, addr);
    		if (pfn == -1)
    			continue;
    
    		if (!pte_young(pte[i])) {
    			walk->mm_stats[MM_LEAF_OLD]++;
    			continue;
    		}
    
    		folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
    		if (!folio)
    			continue;
    
    		if (!ptep_test_and_clear_young(args->vma, addr, pte + i))
    			VM_WARN_ON_ONCE(true);
    
    		young++;
    		walk->mm_stats[MM_LEAF_YOUNG]++;
    
    		if (pte_dirty(pte[i]) && !folio_test_dirty(folio) &&
    		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
    		      !folio_test_swapcache(folio)))
    			folio_mark_dirty(folio);
    
    		old_gen = folio_update_gen(folio, new_gen);
    		if (old_gen >= 0 && old_gen != new_gen)
    			update_batch_size(walk, folio, old_gen, new_gen);
    	}
    
    	if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
    		goto restart;
    
    	pte_unmap(pte);
    
    	arch_leave_lazy_mmu_mode();
    	spin_unlock(ptl);
    
    	return suitable_to_scan(total, young);
    }
    
    #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
    static void walk_pmd_range_locked(pud_t *pud, unsigned long next, struct vm_area_struct *vma,
    				  struct mm_walk *args, unsigned long *bitmap, unsigned long *start)
    {
    	int i;
    	pmd_t *pmd;
    	spinlock_t *ptl;
    	struct lru_gen_mm_walk *walk = args->private;
    	struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
    	struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
    	int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
    
    	VM_WARN_ON_ONCE(pud_leaf(*pud));
    
    	/* try to batch at most 1+MIN_LRU_BATCH+1 entries */
    	if (*start == -1) {
    		*start = next;
    		return;
    	}
    
    	i = next == -1 ? 0 : pmd_index(next) - pmd_index(*start);
    	if (i && i <= MIN_LRU_BATCH) {
    		__set_bit(i - 1, bitmap);
    		return;
    	}
    
    	pmd = pmd_offset(pud, *start);
    
    	ptl = pmd_lockptr(args->mm, pmd);
    	if (!spin_trylock(ptl))
    		goto done;
    
    	arch_enter_lazy_mmu_mode();
    
    	do {
    		unsigned long pfn;
    		struct folio *folio;
    		unsigned long addr = i ? (*start & PMD_MASK) + i * PMD_SIZE : *start;
    
    		pfn = get_pmd_pfn(pmd[i], vma, addr);
    		if (pfn == -1)
    			goto next;
    
    		if (!pmd_trans_huge(pmd[i])) {
    			if (IS_ENABLED(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG) &&
    			    get_cap(LRU_GEN_NONLEAF_YOUNG))
    				pmdp_test_and_clear_young(vma, addr, pmd + i);
    			goto next;
    		}
    
    		folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
    		if (!folio)
    			goto next;
    
    		if (!pmdp_test_and_clear_young(vma, addr, pmd + i))
    			goto next;
    
    		walk->mm_stats[MM_LEAF_YOUNG]++;
    
    		if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) &&
    		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
    		      !folio_test_swapcache(folio)))
    			folio_mark_dirty(folio);
    
    		old_gen = folio_update_gen(folio, new_gen);
    		if (old_gen >= 0 && old_gen != new_gen)
    			update_batch_size(walk, folio, old_gen, new_gen);
    next:
    		i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
    	} while (i <= MIN_LRU_BATCH);
    
    	arch_leave_lazy_mmu_mode();
    	spin_unlock(ptl);
    done:
    	*start = -1;
    	bitmap_zero(bitmap, MIN_LRU_BATCH);
    }
    #else
    static void walk_pmd_range_locked(pud_t *pud, unsigned long next, struct vm_area_struct *vma,
    				  struct mm_walk *args, unsigned long *bitmap, unsigned long *start)
    {
    }
    #endif
    
    static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
    			   struct mm_walk *args)
    {
    	int i;
    	pmd_t *pmd;
    	unsigned long next;
    	unsigned long addr;
    	struct vm_area_struct *vma;
    	unsigned long pos = -1;
    	struct lru_gen_mm_walk *walk = args->private;
    	unsigned long bitmap[BITS_TO_LONGS(MIN_LRU_BATCH)] = {};
    
    	VM_WARN_ON_ONCE(pud_leaf(*pud));
    
    	/*
    	 * Finish an entire PMD in two passes: the first only reaches to PTE
    	 * tables to avoid taking the PMD lock; the second, if necessary, takes
    	 * the PMD lock to clear the accessed bit in PMD entries.
    	 */
    	pmd = pmd_offset(pud, start & PUD_MASK);
    restart:
    	/* walk_pte_range() may call get_next_vma() */
    	vma = args->vma;
    	for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
    		pmd_t val = pmd_read_atomic(pmd + i);
    
    		/* for pmd_read_atomic() */
    		barrier();
    
    		next = pmd_addr_end(addr, end);
    
    		if (!pmd_present(val) || is_huge_zero_pmd(val)) {
    			walk->mm_stats[MM_LEAF_TOTAL]++;
    			continue;
    		}
    
    #ifdef CONFIG_TRANSPARENT_HUGEPAGE
    		if (pmd_trans_huge(val)) {
    			unsigned long pfn = pmd_pfn(val);
    			struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
    
    			walk->mm_stats[MM_LEAF_TOTAL]++;
    
    			if (!pmd_young(val)) {
    				walk->mm_stats[MM_LEAF_OLD]++;
    				continue;
    			}
    
    			/* try to avoid unnecessary memory loads */
    			if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
    				continue;
    
    			walk_pmd_range_locked(pud, addr, vma, args, bitmap, &pos);
    			continue;
    		}
    #endif
    		walk->mm_stats[MM_NONLEAF_TOTAL]++;
    
    #ifdef CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG
    		if (get_cap(LRU_GEN_NONLEAF_YOUNG)) {
    			if (!pmd_young(val))
    				continue;
    
    			walk_pmd_range_locked(pud, addr, vma, args, bitmap, &pos);
    		}
    #endif
    		if (!walk->force_scan && !test_bloom_filter(walk->lruvec, walk->max_seq, pmd + i))
    			continue;
    
    		walk->mm_stats[MM_NONLEAF_FOUND]++;
    
    		if (!walk_pte_range(&val, addr, next, args))
    			continue;
    
    		walk->mm_stats[MM_NONLEAF_ADDED]++;
    
    		/* carry over to the next generation */
    		update_bloom_filter(walk->lruvec, walk->max_seq + 1, pmd + i);
    	}
    
    	walk_pmd_range_locked(pud, -1, vma, args, bitmap, &pos);
    
    	if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
    		goto restart;
    }
    
    static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
    			  struct mm_walk *args)
    {
    	int i;
    	pud_t *pud;
    	unsigned long addr;
    	unsigned long next;
    	struct lru_gen_mm_walk *walk = args->private;
    
    	VM_WARN_ON_ONCE(p4d_leaf(*p4d));
    
    	pud = pud_offset(p4d, start & P4D_MASK);
    restart:
    	for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
    		pud_t val = READ_ONCE(pud[i]);
    
    		next = pud_addr_end(addr, end);
    
    		if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
    			continue;
    
    		walk_pmd_range(&val, addr, next, args);
    
    		/* a racy check to curtail the waiting time */
    		if (wq_has_sleeper(&walk->lruvec->mm_state.wait))
    			return 1;
    
    		if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
    			end = (addr | ~PUD_MASK) + 1;
    			goto done;
    		}
    	}
    
    	if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
    		goto restart;
    
    	end = round_up(end, P4D_SIZE);
    done:
    	if (!end || !args->vma)
    		return 1;
    
    	walk->next_addr = max(end, args->vma->vm_start);
    
    	return -EAGAIN;
    }
    
    static void walk_mm(struct lruvec *lruvec, struct mm_struct *mm, struct lru_gen_mm_walk *walk)
    {
    	static const struct mm_walk_ops mm_walk_ops = {
    		.test_walk = should_skip_vma,
    		.p4d_entry = walk_pud_range,
    	};
    
    	int err;
    	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
    
    	walk->next_addr = FIRST_USER_ADDRESS;
    
    	do {
    		err = -EBUSY;
    
    		/* folio_update_gen() requires stable folio_memcg() */
    		if (!mem_cgroup_trylock_pages(memcg))
    			break;
    
    		/* the caller might be holding the lock for write */
    		if (mmap_read_trylock(mm)) {
    			err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
    
    			mmap_read_unlock(mm);
    		}
    
    		mem_cgroup_unlock_pages();
    
    		if (walk->batched) {
    			spin_lock_irq(&lruvec->lru_lock);
    			reset_batch_size(lruvec, walk);
    			spin_unlock_irq(&lruvec->lru_lock);
    		}
    
    		cond_resched();
    	} while (err == -EAGAIN);
    }
    
    static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat)
    {
    	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
    
    	if (pgdat && current_is_kswapd()) {
    		VM_WARN_ON_ONCE(walk);
    
    		walk = &pgdat->mm_walk;
    	} else if (!pgdat && !walk) {
    		VM_WARN_ON_ONCE(current_is_kswapd());
    
    		walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
    	}
    
    	current->reclaim_state->mm_walk = walk;
    
    	return walk;
    }
    
    static void clear_mm_walk(void)
    {
    	struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
    
    	VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
    	VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
    
    	current->reclaim_state->mm_walk = NULL;
    
    	if (!current_is_kswapd())
    		kfree(walk);
    }
    
    static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap)
    {
    	int zone;
    	int remaining = MAX_LRU_BATCH;
    	struct lru_gen_struct *lrugen = &lruvec->lrugen;
    	int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
    
    	if (type == LRU_GEN_ANON && !can_swap)
    		goto done;
    
    	/* prevent cold/hot inversion if force_scan is true */
    	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
    		struct list_head *head = &lrugen->lists[old_gen][type][zone];
    
    		while (!list_empty(head)) {
    			struct folio *folio = lru_to_folio(head);
    
    			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
    			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
    			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
    			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
    
    			new_gen = folio_inc_gen(lruvec, folio, false);
    			list_move_tail(&folio->lru, &lrugen->lists[new_gen][type][zone]);
    
    			if (!--remaining)
    				return false;
    		}
    	}
    done:
    	reset_ctrl_pos(lruvec, type, true);
    	WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
    
    	return true;
    }
    
    static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap)
    {
    	int gen, type, zone;
    	bool success = false;
    	struct lru_gen_struct *lrugen = &lruvec->lrugen;
    	DEFINE_MIN_SEQ(lruvec);
    
    	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
    
    	/* find the oldest populated generation */
    	for (type = !can_swap; type < ANON_AND_FILE; type++) {
    		while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
    			gen = lru_gen_from_seq(min_seq[type]);
    
    			for (zone = 0; zone < MAX_NR_ZONES; zone++) {
    				if (!list_empty(&lrugen->lists[gen][type][zone]))
    					goto next;
    			}
    
    			min_seq[type]++;
    		}
    next:
    		;
    	}
    
    	/* see the comment on lru_gen_struct */
    	if (can_swap) {
    		min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]);
    		min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]);
    	}
    
    	for (type = !can_swap; type < ANON_AND_FILE; type++) {
    		if (min_seq[type] == lrugen->min_seq[type])
    			continue;
    
    		reset_ctrl_pos(lruvec, type, true);
    		WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
    		success = true;
    	}
    
    	return success;
    }
    
    static void inc_max_seq(struct lruvec *lruvec, bool can_swap, bool force_scan)
    {
    	int prev, next;
    	int type, zone;
    	struct lru_gen_struct *lrugen = &lruvec->lrugen;
    
    	spin_lock_irq(&lruvec->lru_lock);
    
    	VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
    
    	for (type = ANON_AND_FILE - 1; type >= 0; type--) {
    		if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
    			continue;
    
    		VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap));
    
    		while (!inc_min_seq(lruvec, type, can_swap)) {
    			spin_unlock_irq(&lruvec->lru_lock);
    			cond_resched();
    			spin_lock_irq(&lruvec->lru_lock);
    		}
    	}
    
    	/*
    	 * Update the active/inactive LRU sizes for compatibility. Both sides of
    	 * the current max_seq need to be covered, since max_seq+1 can overlap
    	 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
    	 * overlap, cold/hot inversion happens.
    	 */
    	prev = lru_gen_from_seq(lrugen->max_seq - 1);
    	next = lru_gen_from_seq(lrugen->max_seq + 1);
    
    	for (type = 0; type < ANON_AND_FILE; type++) {
    		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
    			enum lru_list lru = type * LRU_INACTIVE_FILE;
    			long delta = lrugen->nr_pages[prev][type][zone] -
    				     lrugen->nr_pages[next][type][zone];
    
    			if (!delta)
    				continue;
    
    			__update_lru_size(lruvec, lru, zone, delta);
    			__update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
    		}
    	}
    
    	for (type = 0; type < ANON_AND_FILE; type++)
    		reset_ctrl_pos(lruvec, type, false);
    
    	WRITE_ONCE(lrugen->timestamps[next], jiffies);
    	/* make sure preceding modifications appear */
    	smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
    
    	spin_unlock_irq(&lruvec->lru_lock);
    }
    
    static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long max_seq,
    			       struct scan_control *sc, bool can_swap, bool force_scan)
    {
    	bool success;
    	struct lru_gen_mm_walk *walk;
    	struct mm_struct *mm = NULL;
    	struct lru_gen_struct *lrugen = &lruvec->lrugen;
    
    	VM_WARN_ON_ONCE(max_seq > READ_ONCE(lrugen->max_seq));
    
    	/* see the comment in iterate_mm_list() */
    	if (max_seq <= READ_ONCE(lruvec->mm_state.seq)) {
    		success = false;
    		goto done;
    	}
    
    	/*
    	 * If the hardware doesn't automatically set the accessed bit, fallback
    	 * to lru_gen_look_around(), which only clears the accessed bit in a
    	 * handful of PTEs. Spreading the work out over a period of time usually
    	 * is less efficient, but it avoids bursty page faults.
    	 */
    	if (!force_scan && !(arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK))) {
    		success = iterate_mm_list_nowalk(lruvec, max_seq);
    		goto done;
    	}
    
    	walk = set_mm_walk(NULL);
    	if (!walk) {
    		success = iterate_mm_list_nowalk(lruvec, max_seq);
    		goto done;
    	}
    
    	walk->lruvec = lruvec;
    	walk->max_seq = max_seq;
    	walk->can_swap = can_swap;
    	walk->force_scan = force_scan;
    
    	do {
    		success = iterate_mm_list(lruvec, walk, &mm);
    		if (mm)
    			walk_mm(lruvec, mm, walk);
    
    		cond_resched();
    	} while (mm);
    done:
    	if (!success) {
    		if (sc->priority <= DEF_PRIORITY - 2)
    			wait_event_killable(lruvec->mm_state.wait,
    					    max_seq < READ_ONCE(lrugen->max_seq));
    
    		return max_seq < READ_ONCE(lrugen->max_seq);
    	}
    
    	VM_WARN_ON_ONCE(max_seq != READ_ONCE(lrugen->max_seq));
    
    	inc_max_seq(lruvec, can_swap, force_scan);
    	/* either this sees any waiters or they will see updated max_seq */
    	if (wq_has_sleeper(&lruvec->mm_state.wait))
    		wake_up_all(&lruvec->mm_state.wait);
    
    	wakeup_flusher_threads(WB_REASON_VMSCAN);
    
    	return true;
    }
    
    static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq, unsigned long *min_seq,
    			     struct scan_control *sc, bool can_swap, unsigned long *nr_to_scan)
    {
    	int gen, type, zone;
    	unsigned long old = 0;
    	unsigned long young = 0;
    	unsigned long total = 0;
    	struct lru_gen_struct *lrugen = &lruvec->lrugen;
    	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
    
    	for (type = !can_swap; type < ANON_AND_FILE; type++) {
    		unsigned long seq;
    
    		for (seq = min_seq[type]; seq <= max_seq; seq++) {
    			unsigned long size = 0;
    
    			gen = lru_gen_from_seq(seq);
    
    			for (zone = 0; zone < MAX_NR_ZONES; zone++)
    				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
    
    			total += size;
    			if (seq == max_seq)
    				young += size;
    			else if (seq + MIN_NR_GENS == max_seq)
    				old += size;
    		}
    	}
    
    	/* try to scrape all its memory if this memcg was deleted */
    	*nr_to_scan = mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
    
    	/*
    	 * The aging tries to be lazy to reduce the overhead, while the eviction
    	 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the
    	 * ideal number of generations is MIN_NR_GENS+1.
    	 */
    	if (min_seq[!can_swap] + MIN_NR_GENS > max_seq)
    		return true;
    	if (min_seq[!can_swap] + MIN_NR_GENS < max_seq)
    		return false;
    
    	/*
    	 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1)
    	 * of the total number of pages for each generation. A reasonable range
    	 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The
    	 * aging cares about the upper bound of hot pages, while the eviction
    	 * cares about the lower bound of cold pages.
    	 */
    	if (young * MIN_NR_GENS > total)
    		return true;
    	if (old * (MIN_NR_GENS + 2) < total)
    		return true;
    
    	return false;
    }
    
    static bool age_lruvec(struct lruvec *lruvec, struct scan_control *sc, unsigned long min_ttl)
    {
    	bool need_aging;
    	unsigned long nr_to_scan;
    	int swappiness = get_swappiness(lruvec, sc);
    	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
    	DEFINE_MAX_SEQ(lruvec);
    	DEFINE_MIN_SEQ(lruvec);
    
    	VM_WARN_ON_ONCE(sc->memcg_low_reclaim);
    
    	mem_cgroup_calculate_protection(NULL, memcg);
    
    	if (mem_cgroup_below_min(memcg))
    		return false;
    
    	need_aging = should_run_aging(lruvec, max_seq, min_seq, sc, swappiness, &nr_to_scan);
    
    	if (min_ttl) {
    		int gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]);
    		unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
    
    		if (time_is_after_jiffies(birth + min_ttl))
    			return false;
    
    		/* the size is likely too small to be helpful */
    		if (!nr_to_scan && sc->priority != DEF_PRIORITY)
    			return false;
    	}
    
    	if (need_aging)
    		try_to_inc_max_seq(lruvec, max_seq, sc, swappiness, false);
    
    	return true;
    }
    
    /* to protect the working set of the last N jiffies */
    static unsigned long lru_gen_min_ttl __read_mostly;
    
    static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
    {
    	struct mem_cgroup *memcg;
    	bool success = false;
    	unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
    
    	VM_WARN_ON_ONCE(!current_is_kswapd());
    
    	sc->last_reclaimed = sc->nr_reclaimed;
    
    	/*
    	 * To reduce the chance of going into the aging path, which can be
    	 * costly, optimistically skip it if the flag below was cleared in the
    	 * eviction path. This improves the overall performance when multiple
    	 * memcgs are available.
    	 */
    	if (!sc->memcgs_need_aging) {
    		sc->memcgs_need_aging = true;
    		return;
    	}
    
    	set_mm_walk(pgdat);
    
    	memcg = mem_cgroup_iter(NULL, NULL, NULL);
    	do {
    		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
    
    		if (age_lruvec(lruvec, sc, min_ttl))
    			success = true;
    
    		cond_resched();
    	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
    
    	clear_mm_walk();
    
    	/* check the order to exclude compaction-induced reclaim */
    	if (success || !min_ttl || sc->order)
    		return;
    
    	/*
    	 * The main goal is to OOM kill if every generation from all memcgs is
    	 * younger than min_ttl. However, another possibility is all memcgs are
    	 * either below min or empty.
    	 */
    	if (mutex_trylock(&oom_lock)) {
    		struct oom_control oc = {
    			.gfp_mask = sc->gfp_mask,
    		};
    
    		out_of_memory(&oc);
    
    		mutex_unlock(&oom_lock);
    	}
    }
    
    /*
     * This function exploits spatial locality when shrink_page_list() walks the
     * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
     * the scan was done cacheline efficiently, it adds the PMD entry pointing to
     * the PTE table to the Bloom filter. This forms a feedback loop between the
     * eviction and the aging.
     */
    void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
    {
    	int i;
    	pte_t *pte;
    	unsigned long start;
    	unsigned long end;
    	unsigned long addr;
    	struct lru_gen_mm_walk *walk;
    	int young = 0;
    	unsigned long bitmap[BITS_TO_LONGS(MIN_LRU_BATCH)] = {};
    	struct folio *folio = pfn_folio(pvmw->pfn);
    	struct mem_cgroup *memcg = folio_memcg(folio);
    	struct pglist_data *pgdat = folio_pgdat(folio);
    	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
    	DEFINE_MAX_SEQ(lruvec);
    	int old_gen, new_gen = lru_gen_from_seq(max_seq);
    
    	lockdep_assert_held(pvmw->ptl);
    	VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio);
    
    	if (spin_is_contended(pvmw->ptl))
    		return;
    
    	/* avoid taking the LRU lock under the PTL when possible */
    	walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
    
    	start = max(pvmw->address & PMD_MASK, pvmw->vma->vm_start);
    	end = min(pvmw->address | ~PMD_MASK, pvmw->vma->vm_end - 1) + 1;
    
    	if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
    		if (pvmw->address - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
    			end = start + MIN_LRU_BATCH * PAGE_SIZE;
    		else if (end - pvmw->address < MIN_LRU_BATCH * PAGE_SIZE / 2)
    			start = end - MIN_LRU_BATCH * PAGE_SIZE;
    		else {
    			start = pvmw->address - MIN_LRU_BATCH * PAGE_SIZE / 2;
    			end = pvmw->address + MIN_LRU_BATCH * PAGE_SIZE / 2;
    		}
    	}
    
    	pte = pvmw->pte - (pvmw->address - start) / PAGE_SIZE;
    
    	rcu_read_lock();
    	arch_enter_lazy_mmu_mode();
    
    	for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
    		unsigned long pfn;
    
    		pfn = get_pte_pfn(pte[i], pvmw->vma, addr);
    		if (pfn == -1)
    			continue;
    
    		if (!pte_young(pte[i]))
    			continue;
    
    		folio = get_pfn_folio(pfn, memcg, pgdat, !walk || walk->can_swap);
    		if (!folio)
    			continue;
    
    		if (!ptep_test_and_clear_young(pvmw->vma, addr, pte + i))
    			VM_WARN_ON_ONCE(true);
    
    		young++;
    
    		if (pte_dirty(pte[i]) && !folio_test_dirty(folio) &&
    		    !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
    		      !folio_test_swapcache(folio)))
    			folio_mark_dirty(folio);
    
    		old_gen = folio_lru_gen(folio);
    		if (old_gen < 0)
    			folio_set_referenced(folio);
    		else if (old_gen != new_gen)
    			__set_bit(i, bitmap);
    	}
    
    	arch_leave_lazy_mmu_mode();
    	rcu_read_unlock();
    
    	/* feedback from rmap walkers to page table walkers */
    	if (suitable_to_scan(i, young))
    		update_bloom_filter(lruvec, max_seq, pvmw->pmd);
    
    	if (!walk && bitmap_weight(bitmap, MIN_LRU_BATCH) < PAGEVEC_SIZE) {
    		for_each_set_bit(i, bitmap, MIN_LRU_BATCH) {
    			folio = pfn_folio(pte_pfn(pte[i]));
    			folio_activate(folio);
    		}
    		return;
    	}
    
    	/* folio_update_gen() requires stable folio_memcg() */
    	if (!mem_cgroup_trylock_pages(memcg))
    		return;
    
    	if (!walk) {
    		spin_lock_irq(&lruvec->lru_lock);
    		new_gen = lru_gen_from_seq(lruvec->lrugen.max_seq);
    	}
    
    	for_each_set_bit(i, bitmap, MIN_LRU_BATCH) {
    		folio = pfn_folio(pte_pfn(pte[i]));
    		if (folio_memcg_rcu(folio) != memcg)
    			continue;
    
    		old_gen = folio_update_gen(folio, new_gen);
    		if (old_gen < 0 || old_gen == new_gen)
    			continue;
    
    		if (walk)
    			update_batch_size(walk, folio, old_gen, new_gen);
    		else
    			lru_gen_update_size(lruvec, folio, old_gen, new_gen);
    	}
    
    	if (!walk)
    		spin_unlock_irq(&lruvec->lru_lock);
    
    	mem_cgroup_unlock_pages();
    }
    
    /******************************************************************************
     *                          the eviction
     ******************************************************************************/
    
    static bool sort_folio(struct lruvec *lruvec, struct folio *folio, int tier_idx)
    {
    	bool success;
    	int gen = folio_lru_gen(folio);
    	int type = folio_is_file_lru(folio);
    	int zone = folio_zonenum(folio);
    	int delta = folio_nr_pages(folio);
    	int refs = folio_lru_refs(folio);
    	int tier = lru_tier_from_refs(refs);
    	struct lru_gen_struct *lrugen = &lruvec->lrugen;
    
    	VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio);
    
    	/* unevictable */
    	if (!folio_evictable(folio)) {
    		success = lru_gen_del_folio(lruvec, folio, true);
    		VM_WARN_ON_ONCE_FOLIO(!success, folio);
    		folio_set_unevictable(folio);
    		lruvec_add_folio(lruvec, folio);
    		__count_vm_events(UNEVICTABLE_PGCULLED, delta);
    		return true;
    	}
    
    	/* dirty lazyfree */
    	if (type == LRU_GEN_FILE && folio_test_anon(folio) && folio_test_dirty(folio)) {
    		success = lru_gen_del_folio(lruvec, folio, true);
    		VM_WARN_ON_ONCE_FOLIO(!success, folio);
    		folio_set_swapbacked(folio);
    		lruvec_add_folio_tail(lruvec, folio);
    		return true;
    	}
    
    	/* promoted */
    	if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
    		list_move(&folio->lru, &lrugen->lists[gen][type][zone]);
    		return true;
    	}
    
    	/* protected */
    	if (tier > tier_idx) {
    		int hist = lru_hist_from_seq(lrugen->min_seq[type]);
    
    		gen = folio_inc_gen(lruvec, folio, false);
    		list_move_tail(&folio->lru, &lrugen->lists[gen][type][zone]);
    
    		WRITE_ONCE(lrugen->protected[hist][type][tier - 1],
    			   lrugen->protected[hist][type][tier - 1] + delta);
    		__mod_lruvec_state(lruvec, WORKINGSET_ACTIVATE_BASE + type, delta);
    		return true;
    	}
    
    	/* waiting for writeback */
    	if (folio_test_locked(folio) || folio_test_writeback(folio) ||
    	    (type == LRU_GEN_FILE && folio_test_dirty(folio))) {
    		gen = folio_inc_gen(lruvec, folio, true);
    		list_move(&folio->lru, &lrugen->lists[gen][type][zone]);
    		return true;
    	}
    
    	return false;
    }
    
    static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
    {
    	bool success;
    
    	/* unmapping inhibited */
    	if (!sc->may_unmap && folio_mapped(folio))
    		return false;
    
    	/* swapping inhibited */
    	if (!(sc->may_writepage && (sc->gfp_mask & __GFP_IO)) &&
    	    (folio_test_dirty(folio) ||
    	     (folio_test_anon(folio) && !folio_test_swapcache(folio))))
    		return false;
    
    	/* raced with release_pages() */
    	if (!folio_try_get(folio))
    		return false;
    
    	/* raced with another isolation */
    	if (!folio_test_clear_lru(folio)) {
    		folio_put(folio);
    		return false;
    	}
    
    	/* see the comment on MAX_NR_TIERS */
    	if (!folio_test_referenced(folio))
    		set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0);
    
    	/* for shrink_page_list() */
    	folio_clear_reclaim(folio);
    	folio_clear_referenced(folio);
    
    	success = lru_gen_del_folio(lruvec, folio, true);
    	VM_WARN_ON_ONCE_FOLIO(!success, folio);
    
    	return true;
    }
    
    static int scan_folios(struct lruvec *lruvec, struct scan_control *sc,
    		       int type, int tier, struct list_head *list)
    {
    	int gen, zone;
    	enum vm_event_item item;
    	int sorted = 0;
    	int scanned = 0;
    	int isolated = 0;
    	int remaining = MAX_LRU_BATCH;
    	struct lru_gen_struct *lrugen = &lruvec->lrugen;
    	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
    
    	VM_WARN_ON_ONCE(!list_empty(list));
    
    	if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
    		return 0;
    
    	gen = lru_gen_from_seq(lrugen->min_seq[type]);
    
    	for (zone = sc->reclaim_idx; zone >= 0; zone--) {
    		LIST_HEAD(moved);
    		int skipped = 0;
    		struct list_head *head = &lrugen->lists[gen][type][zone];
    
    		while (!list_empty(head)) {
    			struct folio *folio = lru_to_folio(head);
    			int delta = folio_nr_pages(folio);
    
    			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
    			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
    			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
    			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
    
    			scanned += delta;
    
    			if (sort_folio(lruvec, folio, tier))
    				sorted += delta;
    			else if (isolate_folio(lruvec, folio, sc)) {
    				list_add(&folio->lru, list);
    				isolated += delta;
    			} else {
    				list_move(&folio->lru, &moved);
    				skipped += delta;
    			}
    
    			if (!--remaining || max(isolated, skipped) >= MIN_LRU_BATCH)
    				break;
    		}
    
    		if (skipped) {
    			list_splice(&moved, head);
    			__count_zid_vm_events(PGSCAN_SKIP, zone, skipped);
    		}
    
    		if (!remaining || isolated >= MIN_LRU_BATCH)
    			break;
    	}
    
    	item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
    	if (!cgroup_reclaim(sc)) {
    		__count_vm_events(item, isolated);
    		__count_vm_events(PGREFILL, sorted);
    	}
    	__count_memcg_events(memcg, item, isolated);
    	__count_memcg_events(memcg, PGREFILL, sorted);
    	__count_vm_events(PGSCAN_ANON + type, isolated);
    
    	/*
    	 * There might not be eligible pages due to reclaim_idx, may_unmap and
    	 * may_writepage. Check the remaining to prevent livelock if it's not
    	 * making progress.
    	 */
    	return isolated || !remaining ? scanned : 0;
    }
    
    static int get_tier_idx(struct lruvec *lruvec, int type)
    {
    	int tier;
    	struct ctrl_pos sp, pv;
    
    	/*
    	 * To leave a margin for fluctuations, use a larger gain factor (1:2).
    	 * This value is chosen because any other tier would have at least twice
    	 * as many refaults as the first tier.
    	 */
    	read_ctrl_pos(lruvec, type, 0, 1, &sp);
    	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
    		read_ctrl_pos(lruvec, type, tier, 2, &pv);
    		if (!positive_ctrl_err(&sp, &pv))
    			break;
    	}
    
    	return tier - 1;
    }
    
    static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx)
    {
    	int type, tier;
    	struct ctrl_pos sp, pv;
    	int gain[ANON_AND_FILE] = { swappiness, 200 - swappiness };
    
    	/*
    	 * Compare the first tier of anon with that of file to determine which
    	 * type to scan. Also need to compare other tiers of the selected type
    	 * with the first tier of the other type to determine the last tier (of
    	 * the selected type) to evict.
    	 */
    	read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp);
    	read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv);
    	type = positive_ctrl_err(&sp, &pv);
    
    	read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp);
    	for (tier = 1; tier < MAX_NR_TIERS; tier++) {
    		read_ctrl_pos(lruvec, type, tier, gain[type], &pv);
    		if (!positive_ctrl_err(&sp, &pv))
    			break;
    	}
    
    	*tier_idx = tier - 1;
    
    	return type;
    }
    
    static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
    			  int *type_scanned, struct list_head *list)
    {
    	int i;
    	int type;
    	int scanned;
    	int tier = -1;
    	DEFINE_MIN_SEQ(lruvec);
    
    	/*
    	 * Try to make the obvious choice first. When anon and file are both
    	 * available from the same generation, interpret swappiness 1 as file
    	 * first and 200 as anon first.
    	 */
    	if (!swappiness)
    		type = LRU_GEN_FILE;
    	else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE])
    		type = LRU_GEN_ANON;
    	else if (swappiness == 1)
    		type = LRU_GEN_FILE;
    	else if (swappiness == 200)
    		type = LRU_GEN_ANON;
    	else
    		type = get_type_to_scan(lruvec, swappiness, &tier);
    
    	for (i = !swappiness; i < ANON_AND_FILE; i++) {
    		if (tier < 0)
    			tier = get_tier_idx(lruvec, type);
    
    		scanned = scan_folios(lruvec, sc, type, tier, list);
    		if (scanned)
    			break;
    
    		type = !type;
    		tier = -1;
    	}
    
    	*type_scanned = type;
    
    	return scanned;
    }
    
    static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
    			bool *need_swapping)
    {
    	int type;
    	int scanned;
    	int reclaimed;
    	LIST_HEAD(list);
    	struct folio *folio;
    	enum vm_event_item item;
    	struct reclaim_stat stat;
    	struct lru_gen_mm_walk *walk;
    	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
    	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
    
    	spin_lock_irq(&lruvec->lru_lock);
    
    	scanned = isolate_folios(lruvec, sc, swappiness, &type, &list);
    
    	scanned += try_to_inc_min_seq(lruvec, swappiness);
    
    	if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS)
    		scanned = 0;
    
    	spin_unlock_irq(&lruvec->lru_lock);
    
    	if (list_empty(&list))
    		return scanned;
    
    	reclaimed = shrink_page_list(&list, pgdat, sc, &stat, false);
    
    	list_for_each_entry(folio, &list, lru) {
    		/* restore LRU_REFS_FLAGS cleared by isolate_folio() */
    		if (folio_test_workingset(folio))
    			folio_set_referenced(folio);
    
    		/* don't add rejected pages to the oldest generation */
    		if (folio_test_reclaim(folio) &&
    		    (folio_test_dirty(folio) || folio_test_writeback(folio)))
    			folio_clear_active(folio);
    		else
    			folio_set_active(folio);
    	}
    
    	spin_lock_irq(&lruvec->lru_lock);
    
    	move_pages_to_lru(lruvec, &list);
    
    	walk = current->reclaim_state->mm_walk;
    	if (walk && walk->batched)
    		reset_batch_size(lruvec, walk);
    
    	item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
    	if (!cgroup_reclaim(sc))
    		__count_vm_events(item, reclaimed);
    	__count_memcg_events(memcg, item, reclaimed);
    	__count_vm_events(PGSTEAL_ANON + type, reclaimed);
    
    	spin_unlock_irq(&lruvec->lru_lock);
    
    	mem_cgroup_uncharge_list(&list);
    	free_unref_page_list(&list);
    
    	sc->nr_reclaimed += reclaimed;
    
    	if (need_swapping && type == LRU_GEN_ANON)
    		*need_swapping = true;
    
    	return scanned;
    }
    
    /*
     * For future optimizations:
     * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
     *    reclaim.
     */
    static unsigned long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc,
    				    bool can_swap, bool *need_aging)
    {
    	unsigned long nr_to_scan;
    	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
    	DEFINE_MAX_SEQ(lruvec);
    	DEFINE_MIN_SEQ(lruvec);
    
    	if (mem_cgroup_below_min(memcg) ||
    	    (mem_cgroup_below_low(memcg) && !sc->memcg_low_reclaim))
    		return 0;
    
    	*need_aging = should_run_aging(lruvec, max_seq, min_seq, sc, can_swap, &nr_to_scan);
    	if (!*need_aging)
    		return nr_to_scan;
    
    	/* skip the aging path at the default priority */
    	if (sc->priority == DEF_PRIORITY)
    		goto done;
    
    	/* leave the work to lru_gen_age_node() */
    	if (current_is_kswapd())
    		return 0;
    
    	if (try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, false))
    		return nr_to_scan;
    done:
    	return min_seq[!can_swap] + MIN_NR_GENS <= max_seq ? nr_to_scan : 0;
    }
    
    static bool should_abort_scan(struct lruvec *lruvec, unsigned long seq,
    			      struct scan_control *sc, bool need_swapping)
    {
    	int i;
    	DEFINE_MAX_SEQ(lruvec);
    
    	if (!current_is_kswapd()) {
    		/* age each memcg once to ensure fairness */
    		if (max_seq - seq > 1)
    			return true;
    
    		/* over-swapping can increase allocation latency */
    		if (sc->nr_reclaimed >= sc->nr_to_reclaim && need_swapping)
    			return true;
    
    		/* give this thread a chance to exit and free its memory */
    		if (fatal_signal_pending(current)) {
    			sc->nr_reclaimed += MIN_LRU_BATCH;
    			return true;
    		}
    
    		if (cgroup_reclaim(sc))
    			return false;
    	} else if (sc->nr_reclaimed - sc->last_reclaimed < sc->nr_to_reclaim)
    		return false;
    
    	/* keep scanning at low priorities to ensure fairness */
    	if (sc->priority > DEF_PRIORITY - 2)
    		return false;
    
    	/*
    	 * A minimum amount of work was done under global memory pressure. For
    	 * kswapd, it may be overshooting. For direct reclaim, the target isn't
    	 * met, and yet the allocation may still succeed, since kswapd may have
    	 * caught up. In either case, it's better to stop now, and restart if
    	 * necessary.
    	 */
    	for (i = 0; i <= sc->reclaim_idx; i++) {
    		unsigned long wmark;
    		struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i;
    
    		if (!managed_zone(zone))
    			continue;
    
    		wmark = current_is_kswapd() ? high_wmark_pages(zone) : low_wmark_pages(zone);
    		if (wmark > zone_page_state(zone, NR_FREE_PAGES))
    			return false;
    	}
    
    	sc->nr_reclaimed += MIN_LRU_BATCH;
    
    	return true;
    }
    
    static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
    {
    	struct blk_plug plug;
    	bool need_aging = false;
    	bool need_swapping = false;
    	unsigned long scanned = 0;
    	unsigned long reclaimed = sc->nr_reclaimed;
    	DEFINE_MAX_SEQ(lruvec);
    
    	lru_add_drain();
    
    	blk_start_plug(&plug);
    
    	set_mm_walk(lruvec_pgdat(lruvec));
    
    	while (true) {
    		int delta;
    		int swappiness;
    		unsigned long nr_to_scan;
    
    		if (sc->may_swap)
    			swappiness = get_swappiness(lruvec, sc);
    		else if (!cgroup_reclaim(sc) && get_swappiness(lruvec, sc))
    			swappiness = 1;
    		else
    			swappiness = 0;
    
    		nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness, &need_aging);
    		if (!nr_to_scan)
    			goto done;
    
    		delta = evict_folios(lruvec, sc, swappiness, &need_swapping);
    		if (!delta)
    			goto done;
    
    		scanned += delta;
    		if (scanned >= nr_to_scan)
    			break;
    
    		if (should_abort_scan(lruvec, max_seq, sc, need_swapping))
    			break;
    
    		cond_resched();
    	}
    
    	/* see the comment in lru_gen_age_node() */
    	if (sc->nr_reclaimed - reclaimed >= MIN_LRU_BATCH && !need_aging)
    		sc->memcgs_need_aging = false;
    done:
    	clear_mm_walk();
    
    	blk_finish_plug(&plug);
    }
    
    /******************************************************************************
     *                          state change
     ******************************************************************************/
    
    static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
    {
    	struct lru_gen_struct *lrugen = &lruvec->lrugen;
    
    	if (lrugen->enabled) {
    		enum lru_list lru;
    
    		for_each_evictable_lru(lru) {
    			if (!list_empty(&lruvec->lists[lru]))
    				return false;
    		}
    	} else {
    		int gen, type, zone;
    
    		for_each_gen_type_zone(gen, type, zone) {
    			if (!list_empty(&lrugen->lists[gen][type][zone]))
    				return false;
    		}
    	}
    
    	return true;
    }
    
    static bool fill_evictable(struct lruvec *lruvec)
    {
    	enum lru_list lru;
    	int remaining = MAX_LRU_BATCH;
    
    	for_each_evictable_lru(lru) {
    		int type = is_file_lru(lru);
    		bool active = is_active_lru(lru);
    		struct list_head *head = &lruvec->lists[lru];
    
    		while (!list_empty(head)) {
    			bool success;
    			struct folio *folio = lru_to_folio(head);
    
    			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
    			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio);
    			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
    			VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio);
    
    			lruvec_del_folio(lruvec, folio);
    			success = lru_gen_add_folio(lruvec, folio, false);
    			VM_WARN_ON_ONCE(!success);
    
    			if (!--remaining)
    				return false;
    		}
    	}
    
    	return true;
    }
    
    static bool drain_evictable(struct lruvec *lruvec)
    {
    	int gen, type, zone;
    	int remaining = MAX_LRU_BATCH;
    
    	for_each_gen_type_zone(gen, type, zone) {
    		struct list_head *head = &lruvec->lrugen.lists[gen][type][zone];
    
    		while (!list_empty(head)) {
    			bool success;
    			struct folio *folio = lru_to_folio(head);
    
    			VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
    			VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
    			VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
    			VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
    
    			success = lru_gen_del_folio(lruvec, folio, false);
    			VM_WARN_ON_ONCE(!success);
    			lruvec_add_folio(lruvec, folio);
    
    			if (!--remaining)
    				return false;
    		}
    	}
    
    	return true;
    }
    
    static void lru_gen_change_state(bool enabled)
    {
    	static DEFINE_MUTEX(state_mutex);
    
    	struct mem_cgroup *memcg;
    
    	cgroup_lock();
    	cpus_read_lock();
    	get_online_mems();
    	mutex_lock(&state_mutex);
    
    	if (enabled == lru_gen_enabled())
    		goto unlock;
    
    	if (enabled)
    		static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
    	else
    		static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
    
    	memcg = mem_cgroup_iter(NULL, NULL, NULL);
    	do {
    		int nid;
    
    		for_each_node(nid) {
    			struct lruvec *lruvec = get_lruvec(memcg, nid);
    
    			if (!lruvec)
    				continue;
    
    			spin_lock_irq(&lruvec->lru_lock);
    
    			VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
    			VM_WARN_ON_ONCE(!state_is_valid(lruvec));
    
    			lruvec->lrugen.enabled = enabled;
    
    			while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
    				spin_unlock_irq(&lruvec->lru_lock);
    				cond_resched();
    				spin_lock_irq(&lruvec->lru_lock);
    			}
    
    			spin_unlock_irq(&lruvec->lru_lock);
    		}
    
    		cond_resched();
    	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
    unlock:
    	mutex_unlock(&state_mutex);
    	put_online_mems();
    	cpus_read_unlock();
    	cgroup_unlock();
    }
    
    /******************************************************************************
     *                          sysfs interface
     ******************************************************************************/
    
    static ssize_t show_min_ttl(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
    {
    	return sprintf(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
    }
    
    /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
    static ssize_t store_min_ttl(struct kobject *kobj, struct kobj_attribute *attr,
    			     const char *buf, size_t len)
    {
    	unsigned int msecs;
    
    	if (kstrtouint(buf, 0, &msecs))
    		return -EINVAL;
    
    	WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
    
    	return len;
    }
    
    static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR(
    	min_ttl_ms, 0644, show_min_ttl, store_min_ttl
    );
    
    static ssize_t show_enabled(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
    {
    	unsigned int caps = 0;
    
    	if (get_cap(LRU_GEN_CORE))
    		caps |= BIT(LRU_GEN_CORE);
    
    	if (arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK))
    		caps |= BIT(LRU_GEN_MM_WALK);
    
    	if (IS_ENABLED(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG) && get_cap(LRU_GEN_NONLEAF_YOUNG))
    		caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
    
    	return snprintf(buf, PAGE_SIZE, "0x%04x\n", caps);
    }
    
    /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
    static ssize_t store_enabled(struct kobject *kobj, struct kobj_attribute *attr,
    			     const char *buf, size_t len)
    {
    	int i;
    	unsigned int caps;
    
    	if (tolower(*buf) == 'n')
    		caps = 0;
    	else if (tolower(*buf) == 'y')
    		caps = -1;
    	else if (kstrtouint(buf, 0, &caps))
    		return -EINVAL;
    
    	for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
    		bool enabled = caps & BIT(i);
    
    		if (i == LRU_GEN_CORE)
    			lru_gen_change_state(enabled);
    		else if (enabled)
    			static_branch_enable(&lru_gen_caps[i]);
    		else
    			static_branch_disable(&lru_gen_caps[i]);
    	}
    
    	return len;
    }
    
    static struct kobj_attribute lru_gen_enabled_attr = __ATTR(
    	enabled, 0644, show_enabled, store_enabled
    );
    
    static struct attribute *lru_gen_attrs[] = {
    	&lru_gen_min_ttl_attr.attr,
    	&lru_gen_enabled_attr.attr,
    	NULL
    };
    
    static struct attribute_group lru_gen_attr_group = {
    	.name = "lru_gen",
    	.attrs = lru_gen_attrs,
    };
    
    /******************************************************************************
     *                          debugfs interface
     ******************************************************************************/
    
    static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
    {
    	struct mem_cgroup *memcg;
    	loff_t nr_to_skip = *pos;
    
    	m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
    	if (!m->private)
    		return ERR_PTR(-ENOMEM);
    
    	memcg = mem_cgroup_iter(NULL, NULL, NULL);
    	do {
    		int nid;
    
    		for_each_node_state(nid, N_MEMORY) {
    			if (!nr_to_skip--)
    				return get_lruvec(memcg, nid);
    		}
    	} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
    
    	return NULL;
    }
    
    static void lru_gen_seq_stop(struct seq_file *m, void *v)
    {
    	if (!IS_ERR_OR_NULL(v))
    		mem_cgroup_iter_break(NULL, lruvec_memcg(v));
    
    	kvfree(m->private);
    	m->private = NULL;
    }
    
    static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
    {
    	int nid = lruvec_pgdat(v)->node_id;
    	struct mem_cgroup *memcg = lruvec_memcg(v);
    
    	++*pos;
    
    	nid = next_memory_node(nid);
    	if (nid == MAX_NUMNODES) {
    		memcg = mem_cgroup_iter(NULL, memcg, NULL);
    		if (!memcg)
    			return NULL;
    
    		nid = first_memory_node;
    	}
    
    	return get_lruvec(memcg, nid);
    }
    
    static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
    				  unsigned long max_seq, unsigned long *min_seq,
    				  unsigned long seq)
    {
    	int i;
    	int type, tier;
    	int hist = lru_hist_from_seq(seq);
    	struct lru_gen_struct *lrugen = &lruvec->lrugen;
    
    	for (tier = 0; tier < MAX_NR_TIERS; tier++) {
    		seq_printf(m, "            %10d", tier);
    		for (type = 0; type < ANON_AND_FILE; type++) {
    			const char *s = "   ";
    			unsigned long n[3] = {};
    
    			if (seq == max_seq) {
    				s = "RT ";
    				n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
    				n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
    			} else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
    				s = "rep";
    				n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
    				n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
    				if (tier)
    					n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]);
    			}
    
    			for (i = 0; i < 3; i++)
    				seq_printf(m, " %10lu%c", n[i], s[i]);
    		}
    		seq_putc(m, '\n');
    	}
    
    	seq_puts(m, "                      ");
    	for (i = 0; i < NR_MM_STATS; i++) {
    		const char *s = "      ";
    		unsigned long n = 0;
    
    		if (seq == max_seq && NR_HIST_GENS == 1) {
    			s = "LOYNFA";
    			n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
    		} else if (seq != max_seq && NR_HIST_GENS > 1) {
    			s = "loynfa";
    			n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
    		}
    
    		seq_printf(m, " %10lu%c", n, s[i]);
    	}
    	seq_putc(m, '\n');
    }
    
    /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
    static int lru_gen_seq_show(struct seq_file *m, void *v)
    {
    	unsigned long seq;
    	bool full = !debugfs_real_fops(m->file)->write;
    	struct lruvec *lruvec = v;
    	struct lru_gen_struct *lrugen = &lruvec->lrugen;
    	int nid = lruvec_pgdat(lruvec)->node_id;
    	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
    	DEFINE_MAX_SEQ(lruvec);
    	DEFINE_MIN_SEQ(lruvec);
    
    	if (nid == first_memory_node) {
    		const char *path = memcg ? m->private : "";
    
    #ifdef CONFIG_MEMCG
    		if (memcg)
    			cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
    #endif
    		seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
    	}
    
    	seq_printf(m, " node %5d\n", nid);
    
    	if (!full)
    		seq = min_seq[LRU_GEN_ANON];
    	else if (max_seq >= MAX_NR_GENS)
    		seq = max_seq - MAX_NR_GENS + 1;
    	else
    		seq = 0;
    
    	for (; seq <= max_seq; seq++) {
    		int type, zone;
    		int gen = lru_gen_from_seq(seq);
    		unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
    
    		seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
    
    		for (type = 0; type < ANON_AND_FILE; type++) {
    			unsigned long size = 0;
    			char mark = full && seq < min_seq[type] ? 'x' : ' ';
    
    			for (zone = 0; zone < MAX_NR_ZONES; zone++)
    				size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
    
    			seq_printf(m, " %10lu%c", size, mark);
    		}
    
    		seq_putc(m, '\n');
    
    		if (full)
    			lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
    	}
    
    	return 0;
    }
    
    static const struct seq_operations lru_gen_seq_ops = {
    	.start = lru_gen_seq_start,
    	.stop = lru_gen_seq_stop,
    	.next = lru_gen_seq_next,
    	.show = lru_gen_seq_show,
    };
    
    static int run_aging(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
    		     bool can_swap, bool force_scan)
    {
    	DEFINE_MAX_SEQ(lruvec);
    	DEFINE_MIN_SEQ(lruvec);
    
    	if (seq < max_seq)
    		return 0;
    
    	if (seq > max_seq)
    		return -EINVAL;
    
    	if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq)
    		return -ERANGE;
    
    	try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, force_scan);
    
    	return 0;
    }
    
    static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
    			int swappiness, unsigned long nr_to_reclaim)
    {
    	DEFINE_MAX_SEQ(lruvec);
    
    	if (seq + MIN_NR_GENS > max_seq)
    		return -EINVAL;
    
    	sc->nr_reclaimed = 0;
    
    	while (!signal_pending(current)) {
    		DEFINE_MIN_SEQ(lruvec);
    
    		if (seq < min_seq[!swappiness])
    			return 0;
    
    		if (sc->nr_reclaimed >= nr_to_reclaim)
    			return 0;
    
    		if (!evict_folios(lruvec, sc, swappiness, NULL))
    			return 0;
    
    		cond_resched();
    	}
    
    	return -EINTR;
    }
    
    static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
    		   struct scan_control *sc, int swappiness, unsigned long opt)
    {
    	struct lruvec *lruvec;
    	int err = -EINVAL;
    	struct mem_cgroup *memcg = NULL;
    
    	if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
    		return -EINVAL;
    
    	if (!mem_cgroup_disabled()) {
    		rcu_read_lock();
    		memcg = mem_cgroup_from_id(memcg_id);
    #ifdef CONFIG_MEMCG
    		if (memcg && !css_tryget(&memcg->css))
    			memcg = NULL;
    #endif
    		rcu_read_unlock();
    
    		if (!memcg)
    			return -EINVAL;
    	}
    
    	if (memcg_id != mem_cgroup_id(memcg))
    		goto done;
    
    	lruvec = get_lruvec(memcg, nid);
    
    	if (swappiness < 0)
    		swappiness = get_swappiness(lruvec, sc);
    	else if (swappiness > 200)
    		goto done;
    
    	switch (cmd) {
    	case '+':
    		err = run_aging(lruvec, seq, sc, swappiness, opt);
    		break;
    	case '-':
    		err = run_eviction(lruvec, seq, sc, swappiness, opt);
    		break;
    	}
    done:
    	mem_cgroup_put(memcg);
    
    	return err;
    }
    
    /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
    static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
    				 size_t len, loff_t *pos)
    {
    	void *buf;
    	char *cur, *next;
    	unsigned int flags;
    	struct blk_plug plug;
    	int err = -EINVAL;
    	struct scan_control sc = {
    		.may_writepage = true,
    		.may_unmap = true,
    		.may_swap = true,
    		.reclaim_idx = MAX_NR_ZONES - 1,
    		.gfp_mask = GFP_KERNEL,
    	};
    
    	buf = kvmalloc(len + 1, GFP_KERNEL);
    	if (!buf)
    		return -ENOMEM;
    
    	if (copy_from_user(buf, src, len)) {
    		kvfree(buf);
    		return -EFAULT;
    	}
    
    	set_task_reclaim_state(current, &sc.reclaim_state);
    	flags = memalloc_noreclaim_save();
    	blk_start_plug(&plug);
    	if (!set_mm_walk(NULL)) {
    		err = -ENOMEM;
    		goto done;
    	}
    
    	next = buf;
    	next[len] = '\0';
    
    	while ((cur = strsep(&next, ",;\n"))) {
    		int n;
    		int end;
    		char cmd;
    		unsigned int memcg_id;
    		unsigned int nid;
    		unsigned long seq;
    		unsigned int swappiness = -1;
    		unsigned long opt = -1;
    
    		cur = skip_spaces(cur);
    		if (!*cur)
    			continue;
    
    		n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid,
    			   &seq, &end, &swappiness, &end, &opt, &end);
    		if (n < 4 || cur[end]) {
    			err = -EINVAL;
    			break;
    		}
    
    		err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
    		if (err)
    			break;
    	}
    done:
    	clear_mm_walk();
    	blk_finish_plug(&plug);
    	memalloc_noreclaim_restore(flags);
    	set_task_reclaim_state(current, NULL);
    
    	kvfree(buf);
    
    	return err ? : len;
    }
    
    static int lru_gen_seq_open(struct inode *inode, struct file *file)
    {
    	return seq_open(file, &lru_gen_seq_ops);
    }
    
    static const struct file_operations lru_gen_rw_fops = {
    	.open = lru_gen_seq_open,
    	.read = seq_read,
    	.write = lru_gen_seq_write,
    	.llseek = seq_lseek,
    	.release = seq_release,
    };
    
    static const struct file_operations lru_gen_ro_fops = {
    	.open = lru_gen_seq_open,
    	.read = seq_read,
    	.llseek = seq_lseek,
    	.release = seq_release,
    };
    
    /******************************************************************************
     *                          initialization
     ******************************************************************************/
    
    void lru_gen_init_lruvec(struct lruvec *lruvec)
    {
    	int i;
    	int gen, type, zone;
    	struct lru_gen_struct *lrugen = &lruvec->lrugen;
    
    	lrugen->max_seq = MIN_NR_GENS + 1;
    	lrugen->enabled = lru_gen_enabled();
    
    	for (i = 0; i <= MIN_NR_GENS + 1; i++)
    		lrugen->timestamps[i] = jiffies;
    
    	for_each_gen_type_zone(gen, type, zone)
    		INIT_LIST_HEAD(&lrugen->lists[gen][type][zone]);
    
    	lruvec->mm_state.seq = MIN_NR_GENS;
    	init_waitqueue_head(&lruvec->mm_state.wait);
    }
    
    #ifdef CONFIG_MEMCG
    void lru_gen_init_memcg(struct mem_cgroup *memcg)
    {
    	INIT_LIST_HEAD(&memcg->mm_list.fifo);
    	spin_lock_init(&memcg->mm_list.lock);
    }
    
    void lru_gen_exit_memcg(struct mem_cgroup *memcg)
    {
    	int i;
    	int nid;
    
    	for_each_node(nid) {
    		struct lruvec *lruvec = get_lruvec(memcg, nid);
    
    		VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
    					   sizeof(lruvec->lrugen.nr_pages)));
    
    		for (i = 0; i < NR_BLOOM_FILTERS; i++) {
    			bitmap_free(lruvec->mm_state.filters[i]);
    			lruvec->mm_state.filters[i] = NULL;
    		}
    	}
    }
    #endif
    
    static int __init init_lru_gen(void)
    {
    	BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
    	BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
    
    	if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
    		pr_err("lru_gen: failed to create sysfs group\n");
    
    	debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops);
    	debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops);
    
    	return 0;
    };
    late_initcall(init_lru_gen);
    
    #else /* !CONFIG_LRU_GEN */
    
    static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
    {
    }
    
    static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
    {
    }
    
    #endif /* CONFIG_LRU_GEN */
    
    static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
    {
    	unsigned long nr[NR_LRU_LISTS];
    	unsigned long targets[NR_LRU_LISTS];
    	unsigned long nr_to_scan;
    	enum lru_list lru;
    	unsigned long nr_reclaimed = 0;
    	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
    	struct blk_plug plug;
    	bool scan_adjusted;
    
    	if (lru_gen_enabled()) {
    		lru_gen_shrink_lruvec(lruvec, sc);
    		return;
    	}
    
    	get_scan_count(lruvec, sc, nr);
    
    	/* Record the original scan target for proportional adjustments later */
    	memcpy(targets, nr, sizeof(nr));
    
    	/*
    	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
    	 * event that can occur when there is little memory pressure e.g.
    	 * multiple streaming readers/writers. Hence, we do not abort scanning
    	 * when the requested number of pages are reclaimed when scanning at
    	 * DEF_PRIORITY on the assumption that the fact we are direct
    	 * reclaiming implies that kswapd is not keeping up and it is best to
    	 * do a batch of work at once. For memcg reclaim one check is made to
    	 * abort proportional reclaim if either the file or anon lru has already
    	 * dropped to zero at the first pass.
    	 */
    	scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
    			 sc->priority == DEF_PRIORITY);
    
    	blk_start_plug(&plug);
    	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
    					nr[LRU_INACTIVE_FILE]) {
    		unsigned long nr_anon, nr_file, percentage;
    		unsigned long nr_scanned;
    
    		for_each_evictable_lru(lru) {
    			if (nr[lru]) {
    				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
    				nr[lru] -= nr_to_scan;
    
    				nr_reclaimed += shrink_list(lru, nr_to_scan,
    							    lruvec, sc);
    			}
    		}
    
    		cond_resched();
    
    		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
    			continue;
    
    		/*
    		 * For kswapd and memcg, reclaim at least the number of pages
    		 * requested. Ensure that the anon and file LRUs are scanned
    		 * proportionally what was requested by get_scan_count(). We
    		 * stop reclaiming one LRU and reduce the amount scanning
    		 * proportional to the original scan target.
    		 */
    		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
    		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
    
    		/*
    		 * It's just vindictive to attack the larger once the smaller
    		 * has gone to zero.  And given the way we stop scanning the
    		 * smaller below, this makes sure that we only make one nudge
    		 * towards proportionality once we've got nr_to_reclaim.
    		 */
    		if (!nr_file || !nr_anon)
    			break;
    
    		if (nr_file > nr_anon) {
    			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
    						targets[LRU_ACTIVE_ANON] + 1;
    			lru = LRU_BASE;
    			percentage = nr_anon * 100 / scan_target;
    		} else {
    			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
    						targets[LRU_ACTIVE_FILE] + 1;
    			lru = LRU_FILE;
    			percentage = nr_file * 100 / scan_target;
    		}
    
    		/* Stop scanning the smaller of the LRU */
    		nr[lru] = 0;
    		nr[lru + LRU_ACTIVE] = 0;
    
    		/*
    		 * Recalculate the other LRU scan count based on its original
    		 * scan target and the percentage scanning already complete
    		 */
    		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
    		nr_scanned = targets[lru] - nr[lru];
    		nr[lru] = targets[lru] * (100 - percentage) / 100;
    		nr[lru] -= min(nr[lru], nr_scanned);
    
    		lru += LRU_ACTIVE;
    		nr_scanned = targets[lru] - nr[lru];
    		nr[lru] = targets[lru] * (100 - percentage) / 100;
    		nr[lru] -= min(nr[lru], nr_scanned);
    
    		scan_adjusted = true;
    	}
    	blk_finish_plug(&plug);
    	sc->nr_reclaimed += nr_reclaimed;
    
    	/*
    	 * Even if we did not try to evict anon pages at all, we want to
    	 * rebalance the anon lru active/inactive ratio.
    	 */
    	if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
    	    inactive_is_low(lruvec, LRU_INACTIVE_ANON))
    		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
    				   sc, LRU_ACTIVE_ANON);
    }
    
    /* Use reclaim/compaction for costly allocs or under memory pressure */
    static bool in_reclaim_compaction(struct scan_control *sc)
    {
    	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
    			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
    			 sc->priority < DEF_PRIORITY - 2))
    		return true;
    
    	return false;
    }
    
    /*
     * Reclaim/compaction is used for high-order allocation requests. It reclaims
     * order-0 pages before compacting the zone. should_continue_reclaim() returns
     * true if more pages should be reclaimed such that when the page allocator
     * calls try_to_compact_pages() that it will have enough free pages to succeed.
     * It will give up earlier than that if there is difficulty reclaiming pages.
     */
    static inline bool should_continue_reclaim(struct pglist_data *pgdat,
    					unsigned long nr_reclaimed,
    					struct scan_control *sc)
    {
    	unsigned long pages_for_compaction;
    	unsigned long inactive_lru_pages;
    	int z;
    
    	/* If not in reclaim/compaction mode, stop */
    	if (!in_reclaim_compaction(sc))
    		return false;
    
    	/*
    	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
    	 * number of pages that were scanned. This will return to the caller
    	 * with the risk reclaim/compaction and the resulting allocation attempt
    	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
    	 * allocations through requiring that the full LRU list has been scanned
    	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
    	 * scan, but that approximation was wrong, and there were corner cases
    	 * where always a non-zero amount of pages were scanned.
    	 */
    	if (!nr_reclaimed)
    		return false;
    
    	/* If compaction would go ahead or the allocation would succeed, stop */
    	for (z = 0; z <= sc->reclaim_idx; z++) {
    		struct zone *zone = &pgdat->node_zones[z];
    		if (!managed_zone(zone))
    			continue;
    
    		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
    		case COMPACT_SUCCESS:
    		case COMPACT_CONTINUE:
    			return false;
    		default:
    			/* check next zone */
    			;
    		}
    	}
    
    	/*
    	 * If we have not reclaimed enough pages for compaction and the
    	 * inactive lists are large enough, continue reclaiming
    	 */
    	pages_for_compaction = compact_gap(sc->order);
    	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
    	if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
    		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
    
    	return inactive_lru_pages > pages_for_compaction;
    }
    
    static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
    {
    	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
    	struct mem_cgroup *memcg;
    
    	memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
    	do {
    		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
    		unsigned long reclaimed;
    		unsigned long scanned;
    
    		/*
    		 * This loop can become CPU-bound when target memcgs
    		 * aren't eligible for reclaim - either because they
    		 * don't have any reclaimable pages, or because their
    		 * memory is explicitly protected. Avoid soft lockups.
    		 */
    		cond_resched();
    
    		mem_cgroup_calculate_protection(target_memcg, memcg);
    
    		if (mem_cgroup_below_min(memcg)) {
    			/*
    			 * Hard protection.
    			 * If there is no reclaimable memory, OOM.
    			 */
    			continue;
    		} else if (mem_cgroup_below_low(memcg)) {
    			/*
    			 * Soft protection.
    			 * Respect the protection only as long as
    			 * there is an unprotected supply
    			 * of reclaimable memory from other cgroups.
    			 */
    			if (!sc->memcg_low_reclaim) {
    				sc->memcg_low_skipped = 1;
    				continue;
    			}
    			memcg_memory_event(memcg, MEMCG_LOW);
    		}
    
    		reclaimed = sc->nr_reclaimed;
    		scanned = sc->nr_scanned;
    
    		shrink_lruvec(lruvec, sc);
    
    		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
    			    sc->priority);
    
    		/* Record the group's reclaim efficiency */
    		if (!sc->proactive)
    			vmpressure(sc->gfp_mask, memcg, false,
    				   sc->nr_scanned - scanned,
    				   sc->nr_reclaimed - reclaimed);
    
    	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
    }
    
    static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
    {
    	struct reclaim_state *reclaim_state = current->reclaim_state;
    	unsigned long nr_reclaimed, nr_scanned;
    	struct lruvec *target_lruvec;
    	bool reclaimable = false;
    
    	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
    
    again:
    	memset(&sc->nr, 0, sizeof(sc->nr));
    
    	nr_reclaimed = sc->nr_reclaimed;
    	nr_scanned = sc->nr_scanned;
    
    	prepare_scan_count(pgdat, sc);
    
    	shrink_node_memcgs(pgdat, sc);
    
    	if (reclaim_state) {
    		sc->nr_reclaimed += reclaim_state->reclaimed_slab;
    		reclaim_state->reclaimed_slab = 0;
    	}
    
    	/* Record the subtree's reclaim efficiency */
    	if (!sc->proactive)
    		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
    			   sc->nr_scanned - nr_scanned,
    			   sc->nr_reclaimed - nr_reclaimed);
    
    	if (sc->nr_reclaimed - nr_reclaimed)
    		reclaimable = true;
    
    	if (current_is_kswapd()) {
    		/*
    		 * If reclaim is isolating dirty pages under writeback,
    		 * it implies that the long-lived page allocation rate
    		 * is exceeding the page laundering rate. Either the
    		 * global limits are not being effective at throttling
    		 * processes due to the page distribution throughout
    		 * zones or there is heavy usage of a slow backing
    		 * device. The only option is to throttle from reclaim
    		 * context which is not ideal as there is no guarantee
    		 * the dirtying process is throttled in the same way
    		 * balance_dirty_pages() manages.
    		 *
    		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
    		 * count the number of pages under pages flagged for
    		 * immediate reclaim and stall if any are encountered
    		 * in the nr_immediate check below.
    		 */
    		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
    			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
    
    		/* Allow kswapd to start writing pages during reclaim.*/
    		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
    			set_bit(PGDAT_DIRTY, &pgdat->flags);
    
    		/*
    		 * If kswapd scans pages marked for immediate
    		 * reclaim and under writeback (nr_immediate), it
    		 * implies that pages are cycling through the LRU
    		 * faster than they are written so forcibly stall
    		 * until some pages complete writeback.
    		 */
    		if (sc->nr.immediate)
    			reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
    	}
    
    	/*
    	 * Tag a node/memcg as congested if all the dirty pages were marked
    	 * for writeback and immediate reclaim (counted in nr.congested).
    	 *
    	 * Legacy memcg will stall in page writeback so avoid forcibly
    	 * stalling in reclaim_throttle().
    	 */
    	if ((current_is_kswapd() ||
    	     (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
    	    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
    		set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
    
    	/*
    	 * Stall direct reclaim for IO completions if the lruvec is
    	 * node is congested. Allow kswapd to continue until it
    	 * starts encountering unqueued dirty pages or cycling through
    	 * the LRU too quickly.
    	 */
    	if (!current_is_kswapd() && current_may_throttle() &&
    	    !sc->hibernation_mode &&
    	    test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
    		reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
    
    	if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
    				    sc))
    		goto again;
    
    	/*
    	 * Kswapd gives up on balancing particular nodes after too
    	 * many failures to reclaim anything from them and goes to
    	 * sleep. On reclaim progress, reset the failure counter. A
    	 * successful direct reclaim run will revive a dormant kswapd.
    	 */
    	if (reclaimable)
    		pgdat->kswapd_failures = 0;
    }
    
    /*
     * Returns true if compaction should go ahead for a costly-order request, or
     * the allocation would already succeed without compaction. Return false if we
     * should reclaim first.
     */
    static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
    {
    	unsigned long watermark;
    	enum compact_result suitable;
    
    	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
    	if (suitable == COMPACT_SUCCESS)
    		/* Allocation should succeed already. Don't reclaim. */
    		return true;
    	if (suitable == COMPACT_SKIPPED)
    		/* Compaction cannot yet proceed. Do reclaim. */
    		return false;
    
    	/*
    	 * Compaction is already possible, but it takes time to run and there
    	 * are potentially other callers using the pages just freed. So proceed
    	 * with reclaim to make a buffer of free pages available to give
    	 * compaction a reasonable chance of completing and allocating the page.
    	 * Note that we won't actually reclaim the whole buffer in one attempt
    	 * as the target watermark in should_continue_reclaim() is lower. But if
    	 * we are already above the high+gap watermark, don't reclaim at all.
    	 */
    	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
    
    	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
    }
    
    static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
    {
    	/*
    	 * If reclaim is making progress greater than 12% efficiency then
    	 * wake all the NOPROGRESS throttled tasks.
    	 */
    	if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
    		wait_queue_head_t *wqh;
    
    		wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
    		if (waitqueue_active(wqh))
    			wake_up(wqh);
    
    		return;
    	}
    
    	/*
    	 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
    	 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
    	 * under writeback and marked for immediate reclaim at the tail of the
    	 * LRU.
    	 */
    	if (current_is_kswapd() || cgroup_reclaim(sc))
    		return;
    
    	/* Throttle if making no progress at high prioities. */
    	if (sc->priority == 1 && !sc->nr_reclaimed)
    		reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
    }
    
    /*
     * This is the direct reclaim path, for page-allocating processes.  We only
     * try to reclaim pages from zones which will satisfy the caller's allocation
     * request.
     *
     * If a zone is deemed to be full of pinned pages then just give it a light
     * scan then give up on it.
     */
    static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
    {
    	struct zoneref *z;
    	struct zone *zone;
    	unsigned long nr_soft_reclaimed;
    	unsigned long nr_soft_scanned;
    	gfp_t orig_mask;
    	pg_data_t *last_pgdat = NULL;
    	pg_data_t *first_pgdat = NULL;
    
    	/*
    	 * If the number of buffer_heads in the machine exceeds the maximum
    	 * allowed level, force direct reclaim to scan the highmem zone as
    	 * highmem pages could be pinning lowmem pages storing buffer_heads
    	 */
    	orig_mask = sc->gfp_mask;
    	if (buffer_heads_over_limit) {
    		sc->gfp_mask |= __GFP_HIGHMEM;
    		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
    	}
    
    	for_each_zone_zonelist_nodemask(zone, z, zonelist,
    					sc->reclaim_idx, sc->nodemask) {
    		/*
    		 * Take care memory controller reclaiming has small influence
    		 * to global LRU.
    		 */
    		if (!cgroup_reclaim(sc)) {
    			if (!cpuset_zone_allowed(zone,
    						 GFP_KERNEL | __GFP_HARDWALL))
    				continue;
    
    			/*
    			 * If we already have plenty of memory free for
    			 * compaction in this zone, don't free any more.
    			 * Even though compaction is invoked for any
    			 * non-zero order, only frequent costly order
    			 * reclamation is disruptive enough to become a
    			 * noticeable problem, like transparent huge
    			 * page allocations.
    			 */
    			if (IS_ENABLED(CONFIG_COMPACTION) &&
    			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
    			    compaction_ready(zone, sc)) {
    				sc->compaction_ready = true;
    				continue;
    			}
    
    			/*
    			 * Shrink each node in the zonelist once. If the
    			 * zonelist is ordered by zone (not the default) then a
    			 * node may be shrunk multiple times but in that case
    			 * the user prefers lower zones being preserved.
    			 */
    			if (zone->zone_pgdat == last_pgdat)
    				continue;
    
    			/*
    			 * This steals pages from memory cgroups over softlimit
    			 * and returns the number of reclaimed pages and
    			 * scanned pages. This works for global memory pressure
    			 * and balancing, not for a memcg's limit.
    			 */
    			nr_soft_scanned = 0;
    			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
    						sc->order, sc->gfp_mask,
    						&nr_soft_scanned);
    			sc->nr_reclaimed += nr_soft_reclaimed;
    			sc->nr_scanned += nr_soft_scanned;
    			/* need some check for avoid more shrink_zone() */
    		}
    
    		if (!first_pgdat)
    			first_pgdat = zone->zone_pgdat;
    
    		/* See comment about same check for global reclaim above */
    		if (zone->zone_pgdat == last_pgdat)
    			continue;
    		last_pgdat = zone->zone_pgdat;
    		shrink_node(zone->zone_pgdat, sc);
    	}
    
    	if (first_pgdat)
    		consider_reclaim_throttle(first_pgdat, sc);
    
    	/*
    	 * Restore to original mask to avoid the impact on the caller if we
    	 * promoted it to __GFP_HIGHMEM.
    	 */
    	sc->gfp_mask = orig_mask;
    }
    
    static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
    {
    	struct lruvec *target_lruvec;
    	unsigned long refaults;
    
    	if (lru_gen_enabled())
    		return;
    
    	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
    	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
    	target_lruvec->refaults[WORKINGSET_ANON] = refaults;
    	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
    	target_lruvec->refaults[WORKINGSET_FILE] = refaults;
    }
    
    /*
     * This is the main entry point to direct page reclaim.
     *
     * If a full scan of the inactive list fails to free enough memory then we
     * are "out of memory" and something needs to be killed.
     *
     * If the caller is !__GFP_FS then the probability of a failure is reasonably
     * high - the zone may be full of dirty or under-writeback pages, which this
     * caller can't do much about.  We kick the writeback threads and take explicit
     * naps in the hope that some of these pages can be written.  But if the
     * allocating task holds filesystem locks which prevent writeout this might not
     * work, and the allocation attempt will fail.
     *
     * returns:	0, if no pages reclaimed
     * 		else, the number of pages reclaimed
     */
    static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
    					  struct scan_control *sc)
    {
    	int initial_priority = sc->priority;
    	pg_data_t *last_pgdat;
    	struct zoneref *z;
    	struct zone *zone;
    retry:
    	delayacct_freepages_start();
    
    	if (!cgroup_reclaim(sc))
    		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
    
    	do {
    		if (!sc->proactive)
    			vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
    					sc->priority);
    		sc->nr_scanned = 0;
    		shrink_zones(zonelist, sc);
    
    		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
    			break;
    
    		if (sc->compaction_ready)
    			break;
    
    		/*
    		 * If we're getting trouble reclaiming, start doing
    		 * writepage even in laptop mode.
    		 */
    		if (sc->priority < DEF_PRIORITY - 2)
    			sc->may_writepage = 1;
    	} while (--sc->priority >= 0);
    
    	last_pgdat = NULL;
    	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
    					sc->nodemask) {
    		if (zone->zone_pgdat == last_pgdat)
    			continue;
    		last_pgdat = zone->zone_pgdat;
    
    		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
    
    		if (cgroup_reclaim(sc)) {
    			struct lruvec *lruvec;
    
    			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
    						   zone->zone_pgdat);
    			clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
    		}
    	}
    
    	delayacct_freepages_end();
    
    	if (sc->nr_reclaimed)
    		return sc->nr_reclaimed;
    
    	/* Aborted reclaim to try compaction? don't OOM, then */
    	if (sc->compaction_ready)
    		return 1;
    
    	/*
    	 * We make inactive:active ratio decisions based on the node's
    	 * composition of memory, but a restrictive reclaim_idx or a
    	 * memory.low cgroup setting can exempt large amounts of
    	 * memory from reclaim. Neither of which are very common, so
    	 * instead of doing costly eligibility calculations of the
    	 * entire cgroup subtree up front, we assume the estimates are
    	 * good, and retry with forcible deactivation if that fails.
    	 */
    	if (sc->skipped_deactivate) {
    		sc->priority = initial_priority;
    		sc->force_deactivate = 1;
    		sc->skipped_deactivate = 0;
    		goto retry;
    	}
    
    	/* Untapped cgroup reserves?  Don't OOM, retry. */
    	if (sc->memcg_low_skipped) {
    		sc->priority = initial_priority;
    		sc->force_deactivate = 0;
    		sc->memcg_low_reclaim = 1;
    		sc->memcg_low_skipped = 0;
    		goto retry;
    	}
    
    	return 0;
    }
    
    static bool allow_direct_reclaim(pg_data_t *pgdat)
    {
    	struct zone *zone;
    	unsigned long pfmemalloc_reserve = 0;
    	unsigned long free_pages = 0;
    	int i;
    	bool wmark_ok;
    
    	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
    		return true;
    
    	for (i = 0; i <= ZONE_NORMAL; i++) {
    		zone = &pgdat->node_zones[i];
    		if (!managed_zone(zone))
    			continue;
    
    		if (!zone_reclaimable_pages(zone))
    			continue;
    
    		pfmemalloc_reserve += min_wmark_pages(zone);
    		free_pages += zone_page_state(zone, NR_FREE_PAGES);
    	}
    
    	/* If there are no reserves (unexpected config) then do not throttle */
    	if (!pfmemalloc_reserve)
    		return true;
    
    	wmark_ok = free_pages > pfmemalloc_reserve / 2;
    
    	/* kswapd must be awake if processes are being throttled */
    	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
    		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
    			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
    
    		wake_up_interruptible(&pgdat->kswapd_wait);
    	}
    
    	return wmark_ok;
    }
    
    /*
     * Throttle direct reclaimers if backing storage is backed by the network
     * and the PFMEMALLOC reserve for the preferred node is getting dangerously
     * depleted. kswapd will continue to make progress and wake the processes
     * when the low watermark is reached.
     *
     * Returns true if a fatal signal was delivered during throttling. If this
     * happens, the page allocator should not consider triggering the OOM killer.
     */
    static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
    					nodemask_t *nodemask)
    {
    	struct zoneref *z;
    	struct zone *zone;
    	pg_data_t *pgdat = NULL;
    
    	/*
    	 * Kernel threads should not be throttled as they may be indirectly
    	 * responsible for cleaning pages necessary for reclaim to make forward
    	 * progress. kjournald for example may enter direct reclaim while
    	 * committing a transaction where throttling it could forcing other
    	 * processes to block on log_wait_commit().
    	 */
    	if (current->flags & PF_KTHREAD)
    		goto out;
    
    	/*
    	 * If a fatal signal is pending, this process should not throttle.
    	 * It should return quickly so it can exit and free its memory
    	 */
    	if (fatal_signal_pending(current))
    		goto out;
    
    	/*
    	 * Check if the pfmemalloc reserves are ok by finding the first node
    	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
    	 * GFP_KERNEL will be required for allocating network buffers when
    	 * swapping over the network so ZONE_HIGHMEM is unusable.
    	 *
    	 * Throttling is based on the first usable node and throttled processes
    	 * wait on a queue until kswapd makes progress and wakes them. There
    	 * is an affinity then between processes waking up and where reclaim
    	 * progress has been made assuming the process wakes on the same node.
    	 * More importantly, processes running on remote nodes will not compete
    	 * for remote pfmemalloc reserves and processes on different nodes
    	 * should make reasonable progress.
    	 */
    	for_each_zone_zonelist_nodemask(zone, z, zonelist,
    					gfp_zone(gfp_mask), nodemask) {
    		if (zone_idx(zone) > ZONE_NORMAL)
    			continue;
    
    		/* Throttle based on the first usable node */
    		pgdat = zone->zone_pgdat;
    		if (allow_direct_reclaim(pgdat))
    			goto out;
    		break;
    	}
    
    	/* If no zone was usable by the allocation flags then do not throttle */
    	if (!pgdat)
    		goto out;
    
    	/* Account for the throttling */
    	count_vm_event(PGSCAN_DIRECT_THROTTLE);
    
    	/*
    	 * If the caller cannot enter the filesystem, it's possible that it
    	 * is due to the caller holding an FS lock or performing a journal
    	 * transaction in the case of a filesystem like ext[3|4]. In this case,
    	 * it is not safe to block on pfmemalloc_wait as kswapd could be
    	 * blocked waiting on the same lock. Instead, throttle for up to a
    	 * second before continuing.
    	 */
    	if (!(gfp_mask & __GFP_FS))
    		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
    			allow_direct_reclaim(pgdat), HZ);
    	else
    		/* Throttle until kswapd wakes the process */
    		wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
    			allow_direct_reclaim(pgdat));
    
    	if (fatal_signal_pending(current))
    		return true;
    
    out:
    	return false;
    }
    
    unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
    				gfp_t gfp_mask, nodemask_t *nodemask)
    {
    	unsigned long nr_reclaimed;
    	struct scan_control sc = {
    		.nr_to_reclaim = SWAP_CLUSTER_MAX,
    		.gfp_mask = current_gfp_context(gfp_mask),
    		.reclaim_idx = gfp_zone(gfp_mask),
    		.order = order,
    		.nodemask = nodemask,
    		.priority = DEF_PRIORITY,
    		.may_writepage = !laptop_mode,
    		.may_unmap = 1,
    		.may_swap = 1,
    	};
    
    	/*
    	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
    	 * Confirm they are large enough for max values.
    	 */
    	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
    	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
    	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
    
    	/*
    	 * Do not enter reclaim if fatal signal was delivered while throttled.
    	 * 1 is returned so that the page allocator does not OOM kill at this
    	 * point.
    	 */
    	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
    		return 1;
    
    	set_task_reclaim_state(current, &sc.reclaim_state);
    	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
    
    	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
    
    	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
    	set_task_reclaim_state(current, NULL);
    
    	return nr_reclaimed;
    }
    
    #ifdef CONFIG_MEMCG
    
    /* Only used by soft limit reclaim. Do not reuse for anything else. */
    unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
    						gfp_t gfp_mask, bool noswap,
    						pg_data_t *pgdat,
    						unsigned long *nr_scanned)
    {
    	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
    	struct scan_control sc = {
    		.nr_to_reclaim = SWAP_CLUSTER_MAX,
    		.target_mem_cgroup = memcg,
    		.may_writepage = !laptop_mode,
    		.may_unmap = 1,
    		.reclaim_idx = MAX_NR_ZONES - 1,
    		.may_swap = !noswap,
    	};
    
    	WARN_ON_ONCE(!current->reclaim_state);
    
    	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
    			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
    
    	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
    						      sc.gfp_mask);
    
    	/*
    	 * NOTE: Although we can get the priority field, using it
    	 * here is not a good idea, since it limits the pages we can scan.
    	 * if we don't reclaim here, the shrink_node from balance_pgdat
    	 * will pick up pages from other mem cgroup's as well. We hack
    	 * the priority and make it zero.
    	 */
    	shrink_lruvec(lruvec, &sc);
    
    	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
    
    	*nr_scanned = sc.nr_scanned;
    
    	return sc.nr_reclaimed;
    }
    
    unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
    					   unsigned long nr_pages,
    					   gfp_t gfp_mask,
    					   unsigned int reclaim_options)
    {
    	unsigned long nr_reclaimed;
    	unsigned int noreclaim_flag;
    	struct scan_control sc = {
    		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
    		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
    				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
    		.reclaim_idx = MAX_NR_ZONES - 1,
    		.target_mem_cgroup = memcg,
    		.priority = DEF_PRIORITY,
    		.may_writepage = !laptop_mode,
    		.may_unmap = 1,
    		.may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
    		.proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
    	};
    	/*
    	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
    	 * equal pressure on all the nodes. This is based on the assumption that
    	 * the reclaim does not bail out early.
    	 */
    	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
    
    	set_task_reclaim_state(current, &sc.reclaim_state);
    	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
    	noreclaim_flag = memalloc_noreclaim_save();
    
    	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
    
    	memalloc_noreclaim_restore(noreclaim_flag);
    	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
    	set_task_reclaim_state(current, NULL);
    
    	return nr_reclaimed;
    }
    #endif
    
    static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
    {
    	struct mem_cgroup *memcg;
    	struct lruvec *lruvec;
    
    	if (lru_gen_enabled()) {
    		lru_gen_age_node(pgdat, sc);
    		return;
    	}
    
    	if (!can_age_anon_pages(pgdat, sc))
    		return;
    
    	lruvec = mem_cgroup_lruvec(NULL, pgdat);
    	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
    		return;
    
    	memcg = mem_cgroup_iter(NULL, NULL, NULL);
    	do {
    		lruvec = mem_cgroup_lruvec(memcg, pgdat);
    		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
    				   sc, LRU_ACTIVE_ANON);
    		memcg = mem_cgroup_iter(NULL, memcg, NULL);
    	} while (memcg);
    }
    
    static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
    {
    	int i;
    	struct zone *zone;
    
    	/*
    	 * Check for watermark boosts top-down as the higher zones
    	 * are more likely to be boosted. Both watermarks and boosts
    	 * should not be checked at the same time as reclaim would
    	 * start prematurely when there is no boosting and a lower
    	 * zone is balanced.
    	 */
    	for (i = highest_zoneidx; i >= 0; i--) {
    		zone = pgdat->node_zones + i;
    		if (!managed_zone(zone))
    			continue;
    
    		if (zone->watermark_boost)
    			return true;
    	}
    
    	return false;
    }
    
    /*
     * Returns true if there is an eligible zone balanced for the request order
     * and highest_zoneidx
     */
    static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
    {
    	int i;
    	unsigned long mark = -1;
    	struct zone *zone;
    
    	/*
    	 * Check watermarks bottom-up as lower zones are more likely to
    	 * meet watermarks.
    	 */
    	for (i = 0; i <= highest_zoneidx; i++) {
    		zone = pgdat->node_zones + i;
    
    		if (!managed_zone(zone))
    			continue;
    
    		if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
    			mark = wmark_pages(zone, WMARK_PROMO);
    		else
    			mark = high_wmark_pages(zone);
    		if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
    			return true;
    	}
    
    	/*
    	 * If a node has no managed zone within highest_zoneidx, it does not
    	 * need balancing by definition. This can happen if a zone-restricted
    	 * allocation tries to wake a remote kswapd.
    	 */
    	if (mark == -1)
    		return true;
    
    	return false;
    }
    
    /* Clear pgdat state for congested, dirty or under writeback. */
    static void clear_pgdat_congested(pg_data_t *pgdat)
    {
    	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
    
    	clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
    	clear_bit(PGDAT_DIRTY, &pgdat->flags);
    	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
    }
    
    /*
     * Prepare kswapd for sleeping. This verifies that there are no processes
     * waiting in throttle_direct_reclaim() and that watermarks have been met.
     *
     * Returns true if kswapd is ready to sleep
     */
    static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
    				int highest_zoneidx)
    {
    	/*
    	 * The throttled processes are normally woken up in balance_pgdat() as
    	 * soon as allow_direct_reclaim() is true. But there is a potential
    	 * race between when kswapd checks the watermarks and a process gets
    	 * throttled. There is also a potential race if processes get
    	 * throttled, kswapd wakes, a large process exits thereby balancing the
    	 * zones, which causes kswapd to exit balance_pgdat() before reaching
    	 * the wake up checks. If kswapd is going to sleep, no process should
    	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
    	 * the wake up is premature, processes will wake kswapd and get
    	 * throttled again. The difference from wake ups in balance_pgdat() is
    	 * that here we are under prepare_to_wait().
    	 */
    	if (waitqueue_active(&pgdat->pfmemalloc_wait))
    		wake_up_all(&pgdat->pfmemalloc_wait);
    
    	/* Hopeless node, leave it to direct reclaim */
    	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
    		return true;
    
    	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
    		clear_pgdat_congested(pgdat);
    		return true;
    	}
    
    	return false;
    }
    
    /*
     * kswapd shrinks a node of pages that are at or below the highest usable
     * zone that is currently unbalanced.
     *
     * Returns true if kswapd scanned at least the requested number of pages to
     * reclaim or if the lack of progress was due to pages under writeback.
     * This is used to determine if the scanning priority needs to be raised.
     */
    static bool kswapd_shrink_node(pg_data_t *pgdat,
    			       struct scan_control *sc)
    {
    	struct zone *zone;
    	int z;
    
    	/* Reclaim a number of pages proportional to the number of zones */
    	sc->nr_to_reclaim = 0;
    	for (z = 0; z <= sc->reclaim_idx; z++) {
    		zone = pgdat->node_zones + z;
    		if (!managed_zone(zone))
    			continue;
    
    		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
    	}
    
    	/*
    	 * Historically care was taken to put equal pressure on all zones but
    	 * now pressure is applied based on node LRU order.
    	 */
    	shrink_node(pgdat, sc);
    
    	/*
    	 * Fragmentation may mean that the system cannot be rebalanced for
    	 * high-order allocations. If twice the allocation size has been
    	 * reclaimed then recheck watermarks only at order-0 to prevent
    	 * excessive reclaim. Assume that a process requested a high-order
    	 * can direct reclaim/compact.
    	 */
    	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
    		sc->order = 0;
    
    	return sc->nr_scanned >= sc->nr_to_reclaim;
    }
    
    /* Page allocator PCP high watermark is lowered if reclaim is active. */
    static inline void
    update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
    {
    	int i;
    	struct zone *zone;
    
    	for (i = 0; i <= highest_zoneidx; i++) {
    		zone = pgdat->node_zones + i;
    
    		if (!managed_zone(zone))
    			continue;
    
    		if (active)
    			set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
    		else
    			clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
    	}
    }
    
    static inline void
    set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
    {
    	update_reclaim_active(pgdat, highest_zoneidx, true);
    }
    
    static inline void
    clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
    {
    	update_reclaim_active(pgdat, highest_zoneidx, false);
    }
    
    /*
     * For kswapd, balance_pgdat() will reclaim pages across a node from zones
     * that are eligible for use by the caller until at least one zone is
     * balanced.
     *
     * Returns the order kswapd finished reclaiming at.
     *
     * kswapd scans the zones in the highmem->normal->dma direction.  It skips
     * zones which have free_pages > high_wmark_pages(zone), but once a zone is
     * found to have free_pages <= high_wmark_pages(zone), any page in that zone
     * or lower is eligible for reclaim until at least one usable zone is
     * balanced.
     */
    static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
    {
    	int i;
    	unsigned long nr_soft_reclaimed;
    	unsigned long nr_soft_scanned;
    	unsigned long pflags;
    	unsigned long nr_boost_reclaim;
    	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
    	bool boosted;
    	struct zone *zone;
    	struct scan_control sc = {
    		.gfp_mask = GFP_KERNEL,
    		.order = order,
    		.may_unmap = 1,
    	};
    
    	set_task_reclaim_state(current, &sc.reclaim_state);
    	psi_memstall_enter(&pflags);
    	__fs_reclaim_acquire(_THIS_IP_);
    
    	count_vm_event(PAGEOUTRUN);
    
    	/*
    	 * Account for the reclaim boost. Note that the zone boost is left in
    	 * place so that parallel allocations that are near the watermark will
    	 * stall or direct reclaim until kswapd is finished.
    	 */
    	nr_boost_reclaim = 0;
    	for (i = 0; i <= highest_zoneidx; i++) {
    		zone = pgdat->node_zones + i;
    		if (!managed_zone(zone))
    			continue;
    
    		nr_boost_reclaim += zone->watermark_boost;
    		zone_boosts[i] = zone->watermark_boost;
    	}
    	boosted = nr_boost_reclaim;
    
    restart:
    	set_reclaim_active(pgdat, highest_zoneidx);
    	sc.priority = DEF_PRIORITY;
    	do {
    		unsigned long nr_reclaimed = sc.nr_reclaimed;
    		bool raise_priority = true;
    		bool balanced;
    		bool ret;
    
    		sc.reclaim_idx = highest_zoneidx;
    
    		/*
    		 * If the number of buffer_heads exceeds the maximum allowed
    		 * then consider reclaiming from all zones. This has a dual
    		 * purpose -- on 64-bit systems it is expected that
    		 * buffer_heads are stripped during active rotation. On 32-bit
    		 * systems, highmem pages can pin lowmem memory and shrinking
    		 * buffers can relieve lowmem pressure. Reclaim may still not
    		 * go ahead if all eligible zones for the original allocation
    		 * request are balanced to avoid excessive reclaim from kswapd.
    		 */
    		if (buffer_heads_over_limit) {
    			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
    				zone = pgdat->node_zones + i;
    				if (!managed_zone(zone))
    					continue;
    
    				sc.reclaim_idx = i;
    				break;
    			}
    		}
    
    		/*
    		 * If the pgdat is imbalanced then ignore boosting and preserve
    		 * the watermarks for a later time and restart. Note that the
    		 * zone watermarks will be still reset at the end of balancing
    		 * on the grounds that the normal reclaim should be enough to
    		 * re-evaluate if boosting is required when kswapd next wakes.
    		 */
    		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
    		if (!balanced && nr_boost_reclaim) {
    			nr_boost_reclaim = 0;
    			goto restart;
    		}
    
    		/*
    		 * If boosting is not active then only reclaim if there are no
    		 * eligible zones. Note that sc.reclaim_idx is not used as
    		 * buffer_heads_over_limit may have adjusted it.
    		 */
    		if (!nr_boost_reclaim && balanced)
    			goto out;
    
    		/* Limit the priority of boosting to avoid reclaim writeback */
    		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
    			raise_priority = false;
    
    		/*
    		 * Do not writeback or swap pages for boosted reclaim. The
    		 * intent is to relieve pressure not issue sub-optimal IO
    		 * from reclaim context. If no pages are reclaimed, the
    		 * reclaim will be aborted.
    		 */
    		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
    		sc.may_swap = !nr_boost_reclaim;
    
    		/*
    		 * Do some background aging, to give pages a chance to be
    		 * referenced before reclaiming. All pages are rotated
    		 * regardless of classzone as this is about consistent aging.
    		 */
    		kswapd_age_node(pgdat, &sc);
    
    		/*
    		 * If we're getting trouble reclaiming, start doing writepage
    		 * even in laptop mode.
    		 */
    		if (sc.priority < DEF_PRIORITY - 2)
    			sc.may_writepage = 1;
    
    		/* Call soft limit reclaim before calling shrink_node. */
    		sc.nr_scanned = 0;
    		nr_soft_scanned = 0;
    		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
    						sc.gfp_mask, &nr_soft_scanned);
    		sc.nr_reclaimed += nr_soft_reclaimed;
    
    		/*
    		 * There should be no need to raise the scanning priority if
    		 * enough pages are already being scanned that that high
    		 * watermark would be met at 100% efficiency.
    		 */
    		if (kswapd_shrink_node(pgdat, &sc))
    			raise_priority = false;
    
    		/*
    		 * If the low watermark is met there is no need for processes
    		 * to be throttled on pfmemalloc_wait as they should not be
    		 * able to safely make forward progress. Wake them
    		 */
    		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
    				allow_direct_reclaim(pgdat))
    			wake_up_all(&pgdat->pfmemalloc_wait);
    
    		/* Check if kswapd should be suspending */
    		__fs_reclaim_release(_THIS_IP_);
    		ret = try_to_freeze();
    		__fs_reclaim_acquire(_THIS_IP_);
    		if (ret || kthread_should_stop())
    			break;
    
    		/*
    		 * Raise priority if scanning rate is too low or there was no
    		 * progress in reclaiming pages
    		 */
    		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
    		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
    
    		/*
    		 * If reclaim made no progress for a boost, stop reclaim as
    		 * IO cannot be queued and it could be an infinite loop in
    		 * extreme circumstances.
    		 */
    		if (nr_boost_reclaim && !nr_reclaimed)
    			break;
    
    		if (raise_priority || !nr_reclaimed)
    			sc.priority--;
    	} while (sc.priority >= 1);
    
    	if (!sc.nr_reclaimed)
    		pgdat->kswapd_failures++;
    
    out:
    	clear_reclaim_active(pgdat, highest_zoneidx);
    
    	/* If reclaim was boosted, account for the reclaim done in this pass */
    	if (boosted) {
    		unsigned long flags;
    
    		for (i = 0; i <= highest_zoneidx; i++) {
    			if (!zone_boosts[i])
    				continue;
    
    			/* Increments are under the zone lock */
    			zone = pgdat->node_zones + i;
    			spin_lock_irqsave(&zone->lock, flags);
    			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
    			spin_unlock_irqrestore(&zone->lock, flags);
    		}
    
    		/*
    		 * As there is now likely space, wakeup kcompact to defragment
    		 * pageblocks.
    		 */
    		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
    	}
    
    	snapshot_refaults(NULL, pgdat);
    	__fs_reclaim_release(_THIS_IP_);
    	psi_memstall_leave(&pflags);
    	set_task_reclaim_state(current, NULL);
    
    	/*
    	 * Return the order kswapd stopped reclaiming at as
    	 * prepare_kswapd_sleep() takes it into account. If another caller
    	 * entered the allocator slow path while kswapd was awake, order will
    	 * remain at the higher level.
    	 */
    	return sc.order;
    }
    
    /*
     * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
     * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
     * not a valid index then either kswapd runs for first time or kswapd couldn't
     * sleep after previous reclaim attempt (node is still unbalanced). In that
     * case return the zone index of the previous kswapd reclaim cycle.
     */
    static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
    					   enum zone_type prev_highest_zoneidx)
    {
    	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
    
    	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
    }
    
    static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
    				unsigned int highest_zoneidx)
    {
    	long remaining = 0;
    	DEFINE_WAIT(wait);
    
    	if (freezing(current) || kthread_should_stop())
    		return;
    
    	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
    
    	/*
    	 * Try to sleep for a short interval. Note that kcompactd will only be
    	 * woken if it is possible to sleep for a short interval. This is
    	 * deliberate on the assumption that if reclaim cannot keep an
    	 * eligible zone balanced that it's also unlikely that compaction will
    	 * succeed.
    	 */
    	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
    		/*
    		 * Compaction records what page blocks it recently failed to
    		 * isolate pages from and skips them in the future scanning.
    		 * When kswapd is going to sleep, it is reasonable to assume
    		 * that pages and compaction may succeed so reset the cache.
    		 */
    		reset_isolation_suitable(pgdat);
    
    		/*
    		 * We have freed the memory, now we should compact it to make
    		 * allocation of the requested order possible.
    		 */
    		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
    
    		remaining = schedule_timeout(HZ/10);
    
    		/*
    		 * If woken prematurely then reset kswapd_highest_zoneidx and
    		 * order. The values will either be from a wakeup request or
    		 * the previous request that slept prematurely.
    		 */
    		if (remaining) {
    			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
    					kswapd_highest_zoneidx(pgdat,
    							highest_zoneidx));
    
    			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
    				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
    		}
    
    		finish_wait(&pgdat->kswapd_wait, &wait);
    		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
    	}
    
    	/*
    	 * After a short sleep, check if it was a premature sleep. If not, then
    	 * go fully to sleep until explicitly woken up.
    	 */
    	if (!remaining &&
    	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
    		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
    
    		/*
    		 * vmstat counters are not perfectly accurate and the estimated
    		 * value for counters such as NR_FREE_PAGES can deviate from the
    		 * true value by nr_online_cpus * threshold. To avoid the zone
    		 * watermarks being breached while under pressure, we reduce the
    		 * per-cpu vmstat threshold while kswapd is awake and restore
    		 * them before going back to sleep.
    		 */
    		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
    
    		if (!kthread_should_stop())
    			schedule();
    
    		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
    	} else {
    		if (remaining)
    			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
    		else
    			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
    	}
    	finish_wait(&pgdat->kswapd_wait, &wait);
    }
    
    /*
     * The background pageout daemon, started as a kernel thread
     * from the init process.
     *
     * This basically trickles out pages so that we have _some_
     * free memory available even if there is no other activity
     * that frees anything up. This is needed for things like routing
     * etc, where we otherwise might have all activity going on in
     * asynchronous contexts that cannot page things out.
     *
     * If there are applications that are active memory-allocators
     * (most normal use), this basically shouldn't matter.
     */
    static int kswapd(void *p)
    {
    	unsigned int alloc_order, reclaim_order;
    	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
    	pg_data_t *pgdat = (pg_data_t *)p;
    	struct task_struct *tsk = current;
    	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
    
    	if (!cpumask_empty(cpumask))
    		set_cpus_allowed_ptr(tsk, cpumask);
    
    	/*
    	 * Tell the memory management that we're a "memory allocator",
    	 * and that if we need more memory we should get access to it
    	 * regardless (see "__alloc_pages()"). "kswapd" should
    	 * never get caught in the normal page freeing logic.
    	 *
    	 * (Kswapd normally doesn't need memory anyway, but sometimes
    	 * you need a small amount of memory in order to be able to
    	 * page out something else, and this flag essentially protects
    	 * us from recursively trying to free more memory as we're
    	 * trying to free the first piece of memory in the first place).
    	 */
    	tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
    	set_freezable();
    
    	WRITE_ONCE(pgdat->kswapd_order, 0);
    	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
    	atomic_set(&pgdat->nr_writeback_throttled, 0);
    	for ( ; ; ) {
    		bool ret;
    
    		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
    		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
    							highest_zoneidx);
    
    kswapd_try_sleep:
    		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
    					highest_zoneidx);
    
    		/* Read the new order and highest_zoneidx */
    		alloc_order = READ_ONCE(pgdat->kswapd_order);
    		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
    							highest_zoneidx);
    		WRITE_ONCE(pgdat->kswapd_order, 0);
    		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
    
    		ret = try_to_freeze();
    		if (kthread_should_stop())
    			break;
    
    		/*
    		 * We can speed up thawing tasks if we don't call balance_pgdat
    		 * after returning from the refrigerator
    		 */
    		if (ret)
    			continue;
    
    		/*
    		 * Reclaim begins at the requested order but if a high-order
    		 * reclaim fails then kswapd falls back to reclaiming for
    		 * order-0. If that happens, kswapd will consider sleeping
    		 * for the order it finished reclaiming at (reclaim_order)
    		 * but kcompactd is woken to compact for the original
    		 * request (alloc_order).
    		 */
    		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
    						alloc_order);
    		reclaim_order = balance_pgdat(pgdat, alloc_order,
    						highest_zoneidx);
    		if (reclaim_order < alloc_order)
    			goto kswapd_try_sleep;
    	}
    
    	tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
    
    	return 0;
    }
    
    /*
     * A zone is low on free memory or too fragmented for high-order memory.  If
     * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
     * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
     * has failed or is not needed, still wake up kcompactd if only compaction is
     * needed.
     */
    void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
    		   enum zone_type highest_zoneidx)
    {
    	pg_data_t *pgdat;
    	enum zone_type curr_idx;
    
    	if (!managed_zone(zone))
    		return;
    
    	if (!cpuset_zone_allowed(zone, gfp_flags))
    		return;
    
    	pgdat = zone->zone_pgdat;
    	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
    
    	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
    		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
    
    	if (READ_ONCE(pgdat->kswapd_order) < order)
    		WRITE_ONCE(pgdat->kswapd_order, order);
    
    	if (!waitqueue_active(&pgdat->kswapd_wait))
    		return;
    
    	/* Hopeless node, leave it to direct reclaim if possible */
    	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
    	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
    	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
    		/*
    		 * There may be plenty of free memory available, but it's too
    		 * fragmented for high-order allocations.  Wake up kcompactd
    		 * and rely on compaction_suitable() to determine if it's
    		 * needed.  If it fails, it will defer subsequent attempts to
    		 * ratelimit its work.
    		 */
    		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
    			wakeup_kcompactd(pgdat, order, highest_zoneidx);
    		return;
    	}
    
    	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
    				      gfp_flags);
    	wake_up_interruptible(&pgdat->kswapd_wait);
    }
    
    #ifdef CONFIG_HIBERNATION
    /*
     * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
     * freed pages.
     *
     * Rather than trying to age LRUs the aim is to preserve the overall
     * LRU order by reclaiming preferentially
     * inactive > active > active referenced > active mapped
     */
    unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
    {
    	struct scan_control sc = {
    		.nr_to_reclaim = nr_to_reclaim,
    		.gfp_mask = GFP_HIGHUSER_MOVABLE,
    		.reclaim_idx = MAX_NR_ZONES - 1,
    		.priority = DEF_PRIORITY,
    		.may_writepage = 1,
    		.may_unmap = 1,
    		.may_swap = 1,
    		.hibernation_mode = 1,
    	};
    	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
    	unsigned long nr_reclaimed;
    	unsigned int noreclaim_flag;
    
    	fs_reclaim_acquire(sc.gfp_mask);
    	noreclaim_flag = memalloc_noreclaim_save();
    	set_task_reclaim_state(current, &sc.reclaim_state);
    
    	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
    
    	set_task_reclaim_state(current, NULL);
    	memalloc_noreclaim_restore(noreclaim_flag);
    	fs_reclaim_release(sc.gfp_mask);
    
    	return nr_reclaimed;
    }
    #endif /* CONFIG_HIBERNATION */
    
    /*
     * This kswapd start function will be called by init and node-hot-add.
     */
    void kswapd_run(int nid)
    {
    	pg_data_t *pgdat = NODE_DATA(nid);
    
    	pgdat_kswapd_lock(pgdat);
    	if (!pgdat->kswapd) {
    		pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
    		if (IS_ERR(pgdat->kswapd)) {
    			/* failure at boot is fatal */
    			BUG_ON(system_state < SYSTEM_RUNNING);
    			pr_err("Failed to start kswapd on node %d\n", nid);
    			pgdat->kswapd = NULL;
    		}
    	}
    	pgdat_kswapd_unlock(pgdat);
    }
    
    /*
     * Called by memory hotplug when all memory in a node is offlined.  Caller must
     * be holding mem_hotplug_begin/done().
     */
    void kswapd_stop(int nid)
    {
    	pg_data_t *pgdat = NODE_DATA(nid);
    	struct task_struct *kswapd;
    
    	pgdat_kswapd_lock(pgdat);
    	kswapd = pgdat->kswapd;
    	if (kswapd) {
    		kthread_stop(kswapd);
    		pgdat->kswapd = NULL;
    	}
    	pgdat_kswapd_unlock(pgdat);
    }
    
    static int __init kswapd_init(void)
    {
    	int nid;
    
    	swap_setup();
    	for_each_node_state(nid, N_MEMORY)
     		kswapd_run(nid);
    	return 0;
    }
    
    module_init(kswapd_init)
    
    #ifdef CONFIG_NUMA
    /*
     * Node reclaim mode
     *
     * If non-zero call node_reclaim when the number of free pages falls below
     * the watermarks.
     */
    int node_reclaim_mode __read_mostly;
    
    /*
     * Priority for NODE_RECLAIM. This determines the fraction of pages
     * of a node considered for each zone_reclaim. 4 scans 1/16th of
     * a zone.
     */
    #define NODE_RECLAIM_PRIORITY 4
    
    /*
     * Percentage of pages in a zone that must be unmapped for node_reclaim to
     * occur.
     */
    int sysctl_min_unmapped_ratio = 1;
    
    /*
     * If the number of slab pages in a zone grows beyond this percentage then
     * slab reclaim needs to occur.
     */
    int sysctl_min_slab_ratio = 5;
    
    static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
    {
    	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
    	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
    		node_page_state(pgdat, NR_ACTIVE_FILE);
    
    	/*
    	 * It's possible for there to be more file mapped pages than
    	 * accounted for by the pages on the file LRU lists because
    	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
    	 */
    	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
    }
    
    /* Work out how many page cache pages we can reclaim in this reclaim_mode */
    static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
    {
    	unsigned long nr_pagecache_reclaimable;
    	unsigned long delta = 0;
    
    	/*
    	 * If RECLAIM_UNMAP is set, then all file pages are considered
    	 * potentially reclaimable. Otherwise, we have to worry about
    	 * pages like swapcache and node_unmapped_file_pages() provides
    	 * a better estimate
    	 */
    	if (node_reclaim_mode & RECLAIM_UNMAP)
    		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
    	else
    		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
    
    	/* If we can't clean pages, remove dirty pages from consideration */
    	if (!(node_reclaim_mode & RECLAIM_WRITE))
    		delta += node_page_state(pgdat, NR_FILE_DIRTY);
    
    	/* Watch for any possible underflows due to delta */
    	if (unlikely(delta > nr_pagecache_reclaimable))
    		delta = nr_pagecache_reclaimable;
    
    	return nr_pagecache_reclaimable - delta;
    }
    
    /*
     * Try to free up some pages from this node through reclaim.
     */
    static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
    {
    	/* Minimum pages needed in order to stay on node */
    	const unsigned long nr_pages = 1 << order;
    	struct task_struct *p = current;
    	unsigned int noreclaim_flag;
    	struct scan_control sc = {
    		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
    		.gfp_mask = current_gfp_context(gfp_mask),
    		.order = order,
    		.priority = NODE_RECLAIM_PRIORITY,
    		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
    		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
    		.may_swap = 1,
    		.reclaim_idx = gfp_zone(gfp_mask),
    	};
    	unsigned long pflags;
    
    	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
    					   sc.gfp_mask);
    
    	cond_resched();
    	psi_memstall_enter(&pflags);
    	fs_reclaim_acquire(sc.gfp_mask);
    	/*
    	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
    	 */
    	noreclaim_flag = memalloc_noreclaim_save();
    	set_task_reclaim_state(p, &sc.reclaim_state);
    
    	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
    	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
    		/*
    		 * Free memory by calling shrink node with increasing
    		 * priorities until we have enough memory freed.
    		 */
    		do {
    			shrink_node(pgdat, &sc);
    		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
    	}
    
    	set_task_reclaim_state(p, NULL);
    	memalloc_noreclaim_restore(noreclaim_flag);
    	fs_reclaim_release(sc.gfp_mask);
    	psi_memstall_leave(&pflags);
    
    	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
    
    	return sc.nr_reclaimed >= nr_pages;
    }
    
    int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
    {
    	int ret;
    
    	/*
    	 * Node reclaim reclaims unmapped file backed pages and
    	 * slab pages if we are over the defined limits.
    	 *
    	 * A small portion of unmapped file backed pages is needed for
    	 * file I/O otherwise pages read by file I/O will be immediately
    	 * thrown out if the node is overallocated. So we do not reclaim
    	 * if less than a specified percentage of the node is used by
    	 * unmapped file backed pages.
    	 */
    	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
    	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
    	    pgdat->min_slab_pages)
    		return NODE_RECLAIM_FULL;
    
    	/*
    	 * Do not scan if the allocation should not be delayed.
    	 */
    	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
    		return NODE_RECLAIM_NOSCAN;
    
    	/*
    	 * Only run node reclaim on the local node or on nodes that do not
    	 * have associated processors. This will favor the local processor
    	 * over remote processors and spread off node memory allocations
    	 * as wide as possible.
    	 */
    	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
    		return NODE_RECLAIM_NOSCAN;
    
    	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
    		return NODE_RECLAIM_NOSCAN;
    
    	ret = __node_reclaim(pgdat, gfp_mask, order);
    	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
    
    	if (!ret)
    		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
    
    	return ret;
    }
    #endif
    
    void check_move_unevictable_pages(struct pagevec *pvec)
    {
    	struct folio_batch fbatch;
    	unsigned i;
    
    	folio_batch_init(&fbatch);
    	for (i = 0; i < pvec->nr; i++) {
    		struct page *page = pvec->pages[i];
    
    		if (PageTransTail(page))
    			continue;
    		folio_batch_add(&fbatch, page_folio(page));
    	}
    	check_move_unevictable_folios(&fbatch);
    }
    EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
    
    /**
     * check_move_unevictable_folios - Move evictable folios to appropriate zone
     * lru list
     * @fbatch: Batch of lru folios to check.
     *
     * Checks folios for evictability, if an evictable folio is in the unevictable
     * lru list, moves it to the appropriate evictable lru list. This function
     * should be only used for lru folios.
     */
    void check_move_unevictable_folios(struct folio_batch *fbatch)
    {
    	struct lruvec *lruvec = NULL;
    	int pgscanned = 0;
    	int pgrescued = 0;
    	int i;
    
    	for (i = 0; i < fbatch->nr; i++) {
    		struct folio *folio = fbatch->folios[i];
    		int nr_pages = folio_nr_pages(folio);
    
    		pgscanned += nr_pages;
    
    		/* block memcg migration while the folio moves between lrus */
    		if (!folio_test_clear_lru(folio))
    			continue;
    
    		lruvec = folio_lruvec_relock_irq(folio, lruvec);
    		if (folio_evictable(folio) && folio_test_unevictable(folio)) {
    			lruvec_del_folio(lruvec, folio);
    			folio_clear_unevictable(folio);
    			lruvec_add_folio(lruvec, folio);
    			pgrescued += nr_pages;
    		}
    		folio_set_lru(folio);
    	}
    
    	if (lruvec) {
    		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
    		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
    		unlock_page_lruvec_irq(lruvec);
    	} else if (pgscanned) {
    		count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
    	}
    }
    EXPORT_SYMBOL_GPL(check_move_unevictable_folios);