Skip to content
Snippets Groups Projects
Select Git revision
  • 794fe7891d77fb9ee095313c60805a8ed609e2a7
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

faddr2line

Blame
  • disk-io.c 68.22 KiB
    /*
     * Copyright (C) 2007 Oracle.  All rights reserved.
     *
     * This program is free software; you can redistribute it and/or
     * modify it under the terms of the GNU General Public
     * License v2 as published by the Free Software Foundation.
     *
     * This program is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     * General Public License for more details.
     *
     * You should have received a copy of the GNU General Public
     * License along with this program; if not, write to the
     * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
     * Boston, MA 021110-1307, USA.
     */
    
    #include <linux/fs.h>
    #include <linux/blkdev.h>
    #include <linux/scatterlist.h>
    #include <linux/swap.h>
    #include <linux/radix-tree.h>
    #include <linux/writeback.h>
    #include <linux/buffer_head.h>
    #include <linux/workqueue.h>
    #include <linux/kthread.h>
    #include <linux/freezer.h>
    #include <linux/crc32c.h>
    #include "compat.h"
    #include "ctree.h"
    #include "disk-io.h"
    #include "transaction.h"
    #include "btrfs_inode.h"
    #include "volumes.h"
    #include "print-tree.h"
    #include "async-thread.h"
    #include "locking.h"
    #include "tree-log.h"
    #include "free-space-cache.h"
    
    static struct extent_io_ops btree_extent_io_ops;
    static void end_workqueue_fn(struct btrfs_work *work);
    static void free_fs_root(struct btrfs_root *root);
    
    static atomic_t btrfs_bdi_num = ATOMIC_INIT(0);
    
    /*
     * end_io_wq structs are used to do processing in task context when an IO is
     * complete.  This is used during reads to verify checksums, and it is used
     * by writes to insert metadata for new file extents after IO is complete.
     */
    struct end_io_wq {
    	struct bio *bio;
    	bio_end_io_t *end_io;
    	void *private;
    	struct btrfs_fs_info *info;
    	int error;
    	int metadata;
    	struct list_head list;
    	struct btrfs_work work;
    };
    
    /*
     * async submit bios are used to offload expensive checksumming
     * onto the worker threads.  They checksum file and metadata bios
     * just before they are sent down the IO stack.
     */
    struct async_submit_bio {
    	struct inode *inode;
    	struct bio *bio;
    	struct list_head list;
    	extent_submit_bio_hook_t *submit_bio_start;
    	extent_submit_bio_hook_t *submit_bio_done;
    	int rw;
    	int mirror_num;
    	unsigned long bio_flags;
    	struct btrfs_work work;
    };
    
    /* These are used to set the lockdep class on the extent buffer locks.
     * The class is set by the readpage_end_io_hook after the buffer has
     * passed csum validation but before the pages are unlocked.
     *
     * The lockdep class is also set by btrfs_init_new_buffer on freshly
     * allocated blocks.
     *
     * The class is based on the level in the tree block, which allows lockdep
     * to know that lower nodes nest inside the locks of higher nodes.
     *
     * We also add a check to make sure the highest level of the tree is
     * the same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this
     * code needs update as well.
     */
    #ifdef CONFIG_DEBUG_LOCK_ALLOC
    # if BTRFS_MAX_LEVEL != 8
    #  error
    # endif
    static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1];
    static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = {
    	/* leaf */
    	"btrfs-extent-00",
    	"btrfs-extent-01",
    	"btrfs-extent-02",
    	"btrfs-extent-03",
    	"btrfs-extent-04",
    	"btrfs-extent-05",
    	"btrfs-extent-06",
    	"btrfs-extent-07",
    	/* highest possible level */
    	"btrfs-extent-08",
    };
    #endif
    
    /*
     * extents on the btree inode are pretty simple, there's one extent
     * that covers the entire device
     */
    static struct extent_map *btree_get_extent(struct inode *inode,
    		struct page *page, size_t page_offset, u64 start, u64 len,
    		int create)
    {
    	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
    	struct extent_map *em;
    	int ret;
    
    	read_lock(&em_tree->lock);
    	em = lookup_extent_mapping(em_tree, start, len);
    	if (em) {
    		em->bdev =
    			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
    		read_unlock(&em_tree->lock);
    		goto out;
    	}
    	read_unlock(&em_tree->lock);
    
    	em = alloc_extent_map(GFP_NOFS);
    	if (!em) {
    		em = ERR_PTR(-ENOMEM);
    		goto out;
    	}
    	em->start = 0;
    	em->len = (u64)-1;
    	em->block_len = (u64)-1;
    	em->block_start = 0;
    	em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
    
    	write_lock(&em_tree->lock);
    	ret = add_extent_mapping(em_tree, em);
    	if (ret == -EEXIST) {
    		u64 failed_start = em->start;
    		u64 failed_len = em->len;
    
    		free_extent_map(em);
    		em = lookup_extent_mapping(em_tree, start, len);
    		if (em) {
    			ret = 0;
    		} else {
    			em = lookup_extent_mapping(em_tree, failed_start,
    						   failed_len);
    			ret = -EIO;
    		}
    	} else if (ret) {
    		free_extent_map(em);
    		em = NULL;
    	}
    	write_unlock(&em_tree->lock);
    
    	if (ret)
    		em = ERR_PTR(ret);
    out:
    	return em;
    }
    
    u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
    {
    	return crc32c(seed, data, len);
    }
    
    void btrfs_csum_final(u32 crc, char *result)
    {
    	*(__le32 *)result = ~cpu_to_le32(crc);
    }
    
    /*
     * compute the csum for a btree block, and either verify it or write it
     * into the csum field of the block.
     */
    static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
    			   int verify)
    {
    	u16 csum_size =
    		btrfs_super_csum_size(&root->fs_info->super_copy);
    	char *result = NULL;
    	unsigned long len;
    	unsigned long cur_len;
    	unsigned long offset = BTRFS_CSUM_SIZE;
    	char *map_token = NULL;
    	char *kaddr;
    	unsigned long map_start;
    	unsigned long map_len;
    	int err;
    	u32 crc = ~(u32)0;
    	unsigned long inline_result;
    
    	len = buf->len - offset;
    	while (len > 0) {
    		err = map_private_extent_buffer(buf, offset, 32,
    					&map_token, &kaddr,
    					&map_start, &map_len, KM_USER0);
    		if (err)
    			return 1;
    		cur_len = min(len, map_len - (offset - map_start));
    		crc = btrfs_csum_data(root, kaddr + offset - map_start,
    				      crc, cur_len);
    		len -= cur_len;
    		offset += cur_len;
    		unmap_extent_buffer(buf, map_token, KM_USER0);
    	}
    	if (csum_size > sizeof(inline_result)) {
    		result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
    		if (!result)
    			return 1;
    	} else {
    		result = (char *)&inline_result;
    	}
    
    	btrfs_csum_final(crc, result);
    
    	if (verify) {
    		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
    			u32 val;
    			u32 found = 0;
    			memcpy(&found, result, csum_size);
    
    			read_extent_buffer(buf, &val, 0, csum_size);
    			if (printk_ratelimit()) {
    				printk(KERN_INFO "btrfs: %s checksum verify "
    				       "failed on %llu wanted %X found %X "
    				       "level %d\n",
    				       root->fs_info->sb->s_id,
    				       (unsigned long long)buf->start, val, found,
    				       btrfs_header_level(buf));
    			}
    			if (result != (char *)&inline_result)
    				kfree(result);
    			return 1;
    		}
    	} else {
    		write_extent_buffer(buf, result, 0, csum_size);
    	}
    	if (result != (char *)&inline_result)
    		kfree(result);
    	return 0;
    }
    
    /*
     * we can't consider a given block up to date unless the transid of the
     * block matches the transid in the parent node's pointer.  This is how we
     * detect blocks that either didn't get written at all or got written
     * in the wrong place.
     */
    static int verify_parent_transid(struct extent_io_tree *io_tree,
    				 struct extent_buffer *eb, u64 parent_transid)
    {
    	int ret;
    
    	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
    		return 0;
    
    	lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS);
    	if (extent_buffer_uptodate(io_tree, eb) &&
    	    btrfs_header_generation(eb) == parent_transid) {
    		ret = 0;
    		goto out;
    	}
    	if (printk_ratelimit()) {
    		printk("parent transid verify failed on %llu wanted %llu "
    		       "found %llu\n",
    		       (unsigned long long)eb->start,
    		       (unsigned long long)parent_transid,
    		       (unsigned long long)btrfs_header_generation(eb));
    	}
    	ret = 1;
    	clear_extent_buffer_uptodate(io_tree, eb);
    out:
    	unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
    		      GFP_NOFS);
    	return ret;
    }
    
    /*
     * helper to read a given tree block, doing retries as required when
     * the checksums don't match and we have alternate mirrors to try.
     */
    static int btree_read_extent_buffer_pages(struct btrfs_root *root,
    					  struct extent_buffer *eb,
    					  u64 start, u64 parent_transid)
    {
    	struct extent_io_tree *io_tree;
    	int ret;
    	int num_copies = 0;
    	int mirror_num = 0;
    
    	io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
    	while (1) {
    		ret = read_extent_buffer_pages(io_tree, eb, start, 1,
    					       btree_get_extent, mirror_num);
    		if (!ret &&
    		    !verify_parent_transid(io_tree, eb, parent_transid))
    			return ret;
    
    		num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
    					      eb->start, eb->len);
    		if (num_copies == 1)
    			return ret;
    
    		mirror_num++;
    		if (mirror_num > num_copies)
    			return ret;
    	}
    	return -EIO;
    }
    
    /*
     * checksum a dirty tree block before IO.  This has extra checks to make sure
     * we only fill in the checksum field in the first page of a multi-page block
     */
    
    static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
    {
    	struct extent_io_tree *tree;
    	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
    	u64 found_start;
    	int found_level;
    	unsigned long len;
    	struct extent_buffer *eb;
    	int ret;
    
    	tree = &BTRFS_I(page->mapping->host)->io_tree;
    
    	if (page->private == EXTENT_PAGE_PRIVATE)
    		goto out;
    	if (!page->private)
    		goto out;
    	len = page->private >> 2;
    	WARN_ON(len == 0);
    
    	eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
    	ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
    					     btrfs_header_generation(eb));
    	BUG_ON(ret);
    	found_start = btrfs_header_bytenr(eb);
    	if (found_start != start) {
    		WARN_ON(1);
    		goto err;
    	}
    	if (eb->first_page != page) {
    		WARN_ON(1);
    		goto err;
    	}
    	if (!PageUptodate(page)) {
    		WARN_ON(1);
    		goto err;
    	}
    	found_level = btrfs_header_level(eb);
    
    	csum_tree_block(root, eb, 0);
    err:
    	free_extent_buffer(eb);
    out:
    	return 0;
    }
    
    static int check_tree_block_fsid(struct btrfs_root *root,
    				 struct extent_buffer *eb)
    {
    	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
    	u8 fsid[BTRFS_UUID_SIZE];
    	int ret = 1;
    
    	read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
    			   BTRFS_FSID_SIZE);
    	while (fs_devices) {
    		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
    			ret = 0;
    			break;
    		}
    		fs_devices = fs_devices->seed;
    	}
    	return ret;
    }
    
    #ifdef CONFIG_DEBUG_LOCK_ALLOC
    void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level)
    {
    	lockdep_set_class_and_name(&eb->lock,
    			   &btrfs_eb_class[level],
    			   btrfs_eb_name[level]);
    }
    #endif
    
    static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
    			       struct extent_state *state)
    {
    	struct extent_io_tree *tree;
    	u64 found_start;
    	int found_level;
    	unsigned long len;
    	struct extent_buffer *eb;
    	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
    	int ret = 0;
    
    	tree = &BTRFS_I(page->mapping->host)->io_tree;
    	if (page->private == EXTENT_PAGE_PRIVATE)
    		goto out;
    	if (!page->private)
    		goto out;
    
    	len = page->private >> 2;
    	WARN_ON(len == 0);
    
    	eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
    
    	found_start = btrfs_header_bytenr(eb);
    	if (found_start != start) {
    		if (printk_ratelimit()) {
    			printk(KERN_INFO "btrfs bad tree block start "
    			       "%llu %llu\n",
    			       (unsigned long long)found_start,
    			       (unsigned long long)eb->start);
    		}
    		ret = -EIO;
    		goto err;
    	}
    	if (eb->first_page != page) {
    		printk(KERN_INFO "btrfs bad first page %lu %lu\n",
    		       eb->first_page->index, page->index);
    		WARN_ON(1);
    		ret = -EIO;
    		goto err;
    	}
    	if (check_tree_block_fsid(root, eb)) {
    		if (printk_ratelimit()) {
    			printk(KERN_INFO "btrfs bad fsid on block %llu\n",
    			       (unsigned long long)eb->start);
    		}
    		ret = -EIO;
    		goto err;
    	}
    	found_level = btrfs_header_level(eb);
    
    	btrfs_set_buffer_lockdep_class(eb, found_level);
    
    	ret = csum_tree_block(root, eb, 1);
    	if (ret)
    		ret = -EIO;
    
    	end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
    	end = eb->start + end - 1;
    err:
    	free_extent_buffer(eb);
    out:
    	return ret;
    }
    
    static void end_workqueue_bio(struct bio *bio, int err)
    {
    	struct end_io_wq *end_io_wq = bio->bi_private;
    	struct btrfs_fs_info *fs_info;
    
    	fs_info = end_io_wq->info;
    	end_io_wq->error = err;
    	end_io_wq->work.func = end_workqueue_fn;
    	end_io_wq->work.flags = 0;
    
    	if (bio->bi_rw & (1 << BIO_RW)) {
    		if (end_io_wq->metadata)
    			btrfs_queue_worker(&fs_info->endio_meta_write_workers,
    					   &end_io_wq->work);
    		else
    			btrfs_queue_worker(&fs_info->endio_write_workers,
    					   &end_io_wq->work);
    	} else {
    		if (end_io_wq->metadata)
    			btrfs_queue_worker(&fs_info->endio_meta_workers,
    					   &end_io_wq->work);
    		else
    			btrfs_queue_worker(&fs_info->endio_workers,
    					   &end_io_wq->work);
    	}
    }
    
    int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
    			int metadata)
    {
    	struct end_io_wq *end_io_wq;
    	end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
    	if (!end_io_wq)
    		return -ENOMEM;
    
    	end_io_wq->private = bio->bi_private;
    	end_io_wq->end_io = bio->bi_end_io;
    	end_io_wq->info = info;
    	end_io_wq->error = 0;
    	end_io_wq->bio = bio;
    	end_io_wq->metadata = metadata;
    
    	bio->bi_private = end_io_wq;
    	bio->bi_end_io = end_workqueue_bio;
    	return 0;
    }
    
    unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
    {
    	unsigned long limit = min_t(unsigned long,
    				    info->workers.max_workers,
    				    info->fs_devices->open_devices);
    	return 256 * limit;
    }
    
    int btrfs_congested_async(struct btrfs_fs_info *info, int iodone)
    {
    	return atomic_read(&info->nr_async_bios) >
    		btrfs_async_submit_limit(info);
    }
    
    static void run_one_async_start(struct btrfs_work *work)
    {
    	struct btrfs_fs_info *fs_info;
    	struct async_submit_bio *async;
    
    	async = container_of(work, struct  async_submit_bio, work);
    	fs_info = BTRFS_I(async->inode)->root->fs_info;
    	async->submit_bio_start(async->inode, async->rw, async->bio,
    			       async->mirror_num, async->bio_flags);
    }
    
    static void run_one_async_done(struct btrfs_work *work)
    {
    	struct btrfs_fs_info *fs_info;
    	struct async_submit_bio *async;
    	int limit;
    
    	async = container_of(work, struct  async_submit_bio, work);
    	fs_info = BTRFS_I(async->inode)->root->fs_info;
    
    	limit = btrfs_async_submit_limit(fs_info);
    	limit = limit * 2 / 3;
    
    	atomic_dec(&fs_info->nr_async_submits);
    
    	if (atomic_read(&fs_info->nr_async_submits) < limit &&
    	    waitqueue_active(&fs_info->async_submit_wait))
    		wake_up(&fs_info->async_submit_wait);
    
    	async->submit_bio_done(async->inode, async->rw, async->bio,
    			       async->mirror_num, async->bio_flags);
    }
    
    static void run_one_async_free(struct btrfs_work *work)
    {
    	struct async_submit_bio *async;
    
    	async = container_of(work, struct  async_submit_bio, work);
    	kfree(async);
    }
    
    int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
    			int rw, struct bio *bio, int mirror_num,
    			unsigned long bio_flags,
    			extent_submit_bio_hook_t *submit_bio_start,
    			extent_submit_bio_hook_t *submit_bio_done)
    {
    	struct async_submit_bio *async;
    
    	async = kmalloc(sizeof(*async), GFP_NOFS);
    	if (!async)
    		return -ENOMEM;
    
    	async->inode = inode;
    	async->rw = rw;
    	async->bio = bio;
    	async->mirror_num = mirror_num;
    	async->submit_bio_start = submit_bio_start;
    	async->submit_bio_done = submit_bio_done;
    
    	async->work.func = run_one_async_start;
    	async->work.ordered_func = run_one_async_done;
    	async->work.ordered_free = run_one_async_free;
    
    	async->work.flags = 0;
    	async->bio_flags = bio_flags;
    
    	atomic_inc(&fs_info->nr_async_submits);
    
    	if (rw & (1 << BIO_RW_SYNCIO))
    		btrfs_set_work_high_prio(&async->work);
    
    	btrfs_queue_worker(&fs_info->workers, &async->work);
    
    	while (atomic_read(&fs_info->async_submit_draining) &&
    	      atomic_read(&fs_info->nr_async_submits)) {
    		wait_event(fs_info->async_submit_wait,
    			   (atomic_read(&fs_info->nr_async_submits) == 0));
    	}
    
    	return 0;
    }
    
    static int btree_csum_one_bio(struct bio *bio)
    {
    	struct bio_vec *bvec = bio->bi_io_vec;
    	int bio_index = 0;
    	struct btrfs_root *root;
    
    	WARN_ON(bio->bi_vcnt <= 0);
    	while (bio_index < bio->bi_vcnt) {
    		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
    		csum_dirty_buffer(root, bvec->bv_page);
    		bio_index++;
    		bvec++;
    	}
    	return 0;
    }
    
    static int __btree_submit_bio_start(struct inode *inode, int rw,
    				    struct bio *bio, int mirror_num,
    				    unsigned long bio_flags)
    {
    	/*
    	 * when we're called for a write, we're already in the async
    	 * submission context.  Just jump into btrfs_map_bio
    	 */
    	btree_csum_one_bio(bio);
    	return 0;
    }
    
    static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
    				 int mirror_num, unsigned long bio_flags)
    {
    	/*
    	 * when we're called for a write, we're already in the async
    	 * submission context.  Just jump into btrfs_map_bio
    	 */
    	return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
    }
    
    static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
    				 int mirror_num, unsigned long bio_flags)
    {
    	int ret;
    
    	ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
    					  bio, 1);
    	BUG_ON(ret);
    
    	if (!(rw & (1 << BIO_RW))) {
    		/*
    		 * called for a read, do the setup so that checksum validation
    		 * can happen in the async kernel threads
    		 */
    		return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
    				     mirror_num, 0);
    	}
    
    	/*
    	 * kthread helpers are used to submit writes so that checksumming
    	 * can happen in parallel across all CPUs
    	 */
    	return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
    				   inode, rw, bio, mirror_num, 0,
    				   __btree_submit_bio_start,
    				   __btree_submit_bio_done);
    }
    
    static int btree_writepage(struct page *page, struct writeback_control *wbc)
    {
    	struct extent_io_tree *tree;
    	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
    	struct extent_buffer *eb;
    	int was_dirty;
    
    	tree = &BTRFS_I(page->mapping->host)->io_tree;
    	if (!(current->flags & PF_MEMALLOC)) {
    		return extent_write_full_page(tree, page,
    					      btree_get_extent, wbc);
    	}
    
    	redirty_page_for_writepage(wbc, page);
    	eb = btrfs_find_tree_block(root, page_offset(page),
    				      PAGE_CACHE_SIZE);
    	WARN_ON(!eb);
    
    	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
    	if (!was_dirty) {
    		spin_lock(&root->fs_info->delalloc_lock);
    		root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
    		spin_unlock(&root->fs_info->delalloc_lock);
    	}
    	free_extent_buffer(eb);
    
    	unlock_page(page);
    	return 0;
    }
    
    static int btree_writepages(struct address_space *mapping,
    			    struct writeback_control *wbc)
    {
    	struct extent_io_tree *tree;
    	tree = &BTRFS_I(mapping->host)->io_tree;
    	if (wbc->sync_mode == WB_SYNC_NONE) {
    		struct btrfs_root *root = BTRFS_I(mapping->host)->root;
    		u64 num_dirty;
    		unsigned long thresh = 32 * 1024 * 1024;
    
    		if (wbc->for_kupdate)
    			return 0;
    
    		/* this is a bit racy, but that's ok */
    		num_dirty = root->fs_info->dirty_metadata_bytes;
    		if (num_dirty < thresh)
    			return 0;
    	}
    	return extent_writepages(tree, mapping, btree_get_extent, wbc);
    }
    
    static int btree_readpage(struct file *file, struct page *page)
    {
    	struct extent_io_tree *tree;
    	tree = &BTRFS_I(page->mapping->host)->io_tree;
    	return extent_read_full_page(tree, page, btree_get_extent);
    }
    
    static int btree_releasepage(struct page *page, gfp_t gfp_flags)
    {
    	struct extent_io_tree *tree;
    	struct extent_map_tree *map;
    	int ret;
    
    	if (PageWriteback(page) || PageDirty(page))
    		return 0;
    
    	tree = &BTRFS_I(page->mapping->host)->io_tree;
    	map = &BTRFS_I(page->mapping->host)->extent_tree;
    
    	ret = try_release_extent_state(map, tree, page, gfp_flags);
    	if (!ret)
    		return 0;
    
    	ret = try_release_extent_buffer(tree, page);
    	if (ret == 1) {
    		ClearPagePrivate(page);
    		set_page_private(page, 0);
    		page_cache_release(page);
    	}
    
    	return ret;
    }
    
    static void btree_invalidatepage(struct page *page, unsigned long offset)
    {
    	struct extent_io_tree *tree;
    	tree = &BTRFS_I(page->mapping->host)->io_tree;
    	extent_invalidatepage(tree, page, offset);
    	btree_releasepage(page, GFP_NOFS);
    	if (PagePrivate(page)) {
    		printk(KERN_WARNING "btrfs warning page private not zero "
    		       "on page %llu\n", (unsigned long long)page_offset(page));
    		ClearPagePrivate(page);
    		set_page_private(page, 0);
    		page_cache_release(page);
    	}
    }
    
    static const struct address_space_operations btree_aops = {
    	.readpage	= btree_readpage,
    	.writepage	= btree_writepage,
    	.writepages	= btree_writepages,
    	.releasepage	= btree_releasepage,
    	.invalidatepage = btree_invalidatepage,
    	.sync_page	= block_sync_page,
    };
    
    int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
    			 u64 parent_transid)
    {
    	struct extent_buffer *buf = NULL;
    	struct inode *btree_inode = root->fs_info->btree_inode;
    	int ret = 0;
    
    	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
    	if (!buf)
    		return 0;
    	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
    				 buf, 0, 0, btree_get_extent, 0);
    	free_extent_buffer(buf);
    	return ret;
    }
    
    struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
    					    u64 bytenr, u32 blocksize)
    {
    	struct inode *btree_inode = root->fs_info->btree_inode;
    	struct extent_buffer *eb;
    	eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
    				bytenr, blocksize, GFP_NOFS);
    	return eb;
    }
    
    struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
    						 u64 bytenr, u32 blocksize)
    {
    	struct inode *btree_inode = root->fs_info->btree_inode;
    	struct extent_buffer *eb;
    
    	eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
    				 bytenr, blocksize, NULL, GFP_NOFS);
    	return eb;
    }
    
    
    int btrfs_write_tree_block(struct extent_buffer *buf)
    {
    	return filemap_fdatawrite_range(buf->first_page->mapping, buf->start,
    					buf->start + buf->len - 1);
    }
    
    int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
    {
    	return filemap_fdatawait_range(buf->first_page->mapping,
    				       buf->start, buf->start + buf->len - 1);
    }
    
    struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
    				      u32 blocksize, u64 parent_transid)
    {
    	struct extent_buffer *buf = NULL;
    	struct inode *btree_inode = root->fs_info->btree_inode;
    	struct extent_io_tree *io_tree;
    	int ret;
    
    	io_tree = &BTRFS_I(btree_inode)->io_tree;
    
    	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
    	if (!buf)
    		return NULL;
    
    	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
    
    	if (ret == 0)
    		set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
    	return buf;
    
    }
    
    int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
    		     struct extent_buffer *buf)
    {
    	struct inode *btree_inode = root->fs_info->btree_inode;
    	if (btrfs_header_generation(buf) ==
    	    root->fs_info->running_transaction->transid) {
    		btrfs_assert_tree_locked(buf);
    
    		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
    			spin_lock(&root->fs_info->delalloc_lock);
    			if (root->fs_info->dirty_metadata_bytes >= buf->len)
    				root->fs_info->dirty_metadata_bytes -= buf->len;
    			else
    				WARN_ON(1);
    			spin_unlock(&root->fs_info->delalloc_lock);
    		}
    
    		/* ugh, clear_extent_buffer_dirty needs to lock the page */
    		btrfs_set_lock_blocking(buf);
    		clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
    					  buf);
    	}
    	return 0;
    }
    
    static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
    			u32 stripesize, struct btrfs_root *root,
    			struct btrfs_fs_info *fs_info,
    			u64 objectid)
    {
    	root->node = NULL;
    	root->commit_root = NULL;
    	root->sectorsize = sectorsize;
    	root->nodesize = nodesize;
    	root->leafsize = leafsize;
    	root->stripesize = stripesize;
    	root->ref_cows = 0;
    	root->track_dirty = 0;
    
    	root->fs_info = fs_info;
    	root->objectid = objectid;
    	root->last_trans = 0;
    	root->highest_objectid = 0;
    	root->name = NULL;
    	root->in_sysfs = 0;
    	root->inode_tree.rb_node = NULL;
    
    	INIT_LIST_HEAD(&root->dirty_list);
    	INIT_LIST_HEAD(&root->orphan_list);
    	INIT_LIST_HEAD(&root->root_list);
    	spin_lock_init(&root->node_lock);
    	spin_lock_init(&root->list_lock);
    	spin_lock_init(&root->inode_lock);
    	mutex_init(&root->objectid_mutex);
    	mutex_init(&root->log_mutex);
    	init_waitqueue_head(&root->log_writer_wait);
    	init_waitqueue_head(&root->log_commit_wait[0]);
    	init_waitqueue_head(&root->log_commit_wait[1]);
    	atomic_set(&root->log_commit[0], 0);
    	atomic_set(&root->log_commit[1], 0);
    	atomic_set(&root->log_writers, 0);
    	root->log_batch = 0;
    	root->log_transid = 0;
    	extent_io_tree_init(&root->dirty_log_pages,
    			     fs_info->btree_inode->i_mapping, GFP_NOFS);
    
    	memset(&root->root_key, 0, sizeof(root->root_key));
    	memset(&root->root_item, 0, sizeof(root->root_item));
    	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
    	memset(&root->root_kobj, 0, sizeof(root->root_kobj));
    	root->defrag_trans_start = fs_info->generation;
    	init_completion(&root->kobj_unregister);
    	root->defrag_running = 0;
    	root->defrag_level = 0;
    	root->root_key.objectid = objectid;
    	root->anon_super.s_root = NULL;
    	root->anon_super.s_dev = 0;
    	INIT_LIST_HEAD(&root->anon_super.s_list);
    	INIT_LIST_HEAD(&root->anon_super.s_instances);
    	init_rwsem(&root->anon_super.s_umount);
    
    	return 0;
    }
    
    static int find_and_setup_root(struct btrfs_root *tree_root,
    			       struct btrfs_fs_info *fs_info,
    			       u64 objectid,
    			       struct btrfs_root *root)
    {
    	int ret;
    	u32 blocksize;
    	u64 generation;
    
    	__setup_root(tree_root->nodesize, tree_root->leafsize,
    		     tree_root->sectorsize, tree_root->stripesize,
    		     root, fs_info, objectid);
    	ret = btrfs_find_last_root(tree_root, objectid,
    				   &root->root_item, &root->root_key);
    	if (ret > 0)
    		return -ENOENT;
    	BUG_ON(ret);
    
    	generation = btrfs_root_generation(&root->root_item);
    	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
    	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
    				     blocksize, generation);
    	BUG_ON(!root->node);
    	root->commit_root = btrfs_root_node(root);
    	return 0;
    }
    
    int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
    			     struct btrfs_fs_info *fs_info)
    {
    	struct extent_buffer *eb;
    	struct btrfs_root *log_root_tree = fs_info->log_root_tree;
    	u64 start = 0;
    	u64 end = 0;
    	int ret;
    
    	if (!log_root_tree)
    		return 0;
    
    	while (1) {
    		ret = find_first_extent_bit(&log_root_tree->dirty_log_pages,
    				    0, &start, &end, EXTENT_DIRTY);
    		if (ret)
    			break;
    
    		clear_extent_dirty(&log_root_tree->dirty_log_pages,
    				   start, end, GFP_NOFS);
    	}
    	eb = fs_info->log_root_tree->node;
    
    	WARN_ON(btrfs_header_level(eb) != 0);
    	WARN_ON(btrfs_header_nritems(eb) != 0);
    
    	ret = btrfs_free_reserved_extent(fs_info->tree_root,
    				eb->start, eb->len);
    	BUG_ON(ret);
    
    	free_extent_buffer(eb);
    	kfree(fs_info->log_root_tree);
    	fs_info->log_root_tree = NULL;
    	return 0;
    }
    
    static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
    					 struct btrfs_fs_info *fs_info)
    {
    	struct btrfs_root *root;
    	struct btrfs_root *tree_root = fs_info->tree_root;
    	struct extent_buffer *leaf;
    
    	root = kzalloc(sizeof(*root), GFP_NOFS);
    	if (!root)
    		return ERR_PTR(-ENOMEM);
    
    	__setup_root(tree_root->nodesize, tree_root->leafsize,
    		     tree_root->sectorsize, tree_root->stripesize,
    		     root, fs_info, BTRFS_TREE_LOG_OBJECTID);
    
    	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
    	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
    	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
    	/*
    	 * log trees do not get reference counted because they go away
    	 * before a real commit is actually done.  They do store pointers
    	 * to file data extents, and those reference counts still get
    	 * updated (along with back refs to the log tree).
    	 */
    	root->ref_cows = 0;
    
    	leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
    				      BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0);
    	if (IS_ERR(leaf)) {
    		kfree(root);
    		return ERR_CAST(leaf);
    	}
    
    	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
    	btrfs_set_header_bytenr(leaf, leaf->start);
    	btrfs_set_header_generation(leaf, trans->transid);
    	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
    	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
    	root->node = leaf;
    
    	write_extent_buffer(root->node, root->fs_info->fsid,
    			    (unsigned long)btrfs_header_fsid(root->node),
    			    BTRFS_FSID_SIZE);
    	btrfs_mark_buffer_dirty(root->node);
    	btrfs_tree_unlock(root->node);
    	return root;
    }
    
    int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
    			     struct btrfs_fs_info *fs_info)
    {
    	struct btrfs_root *log_root;
    
    	log_root = alloc_log_tree(trans, fs_info);
    	if (IS_ERR(log_root))
    		return PTR_ERR(log_root);
    	WARN_ON(fs_info->log_root_tree);
    	fs_info->log_root_tree = log_root;
    	return 0;
    }
    
    int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
    		       struct btrfs_root *root)
    {
    	struct btrfs_root *log_root;
    	struct btrfs_inode_item *inode_item;
    
    	log_root = alloc_log_tree(trans, root->fs_info);
    	if (IS_ERR(log_root))
    		return PTR_ERR(log_root);
    
    	log_root->last_trans = trans->transid;
    	log_root->root_key.offset = root->root_key.objectid;
    
    	inode_item = &log_root->root_item.inode;
    	inode_item->generation = cpu_to_le64(1);
    	inode_item->size = cpu_to_le64(3);
    	inode_item->nlink = cpu_to_le32(1);
    	inode_item->nbytes = cpu_to_le64(root->leafsize);
    	inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
    
    	btrfs_set_root_node(&log_root->root_item, log_root->node);
    
    	WARN_ON(root->log_root);
    	root->log_root = log_root;
    	root->log_transid = 0;
    	return 0;
    }
    
    struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
    					       struct btrfs_key *location)
    {
    	struct btrfs_root *root;
    	struct btrfs_fs_info *fs_info = tree_root->fs_info;
    	struct btrfs_path *path;
    	struct extent_buffer *l;
    	u64 generation;
    	u32 blocksize;
    	int ret = 0;
    
    	root = kzalloc(sizeof(*root), GFP_NOFS);
    	if (!root)
    		return ERR_PTR(-ENOMEM);
    	if (location->offset == (u64)-1) {
    		ret = find_and_setup_root(tree_root, fs_info,
    					  location->objectid, root);
    		if (ret) {
    			kfree(root);
    			return ERR_PTR(ret);
    		}
    		goto out;
    	}
    
    	__setup_root(tree_root->nodesize, tree_root->leafsize,
    		     tree_root->sectorsize, tree_root->stripesize,
    		     root, fs_info, location->objectid);
    
    	path = btrfs_alloc_path();
    	BUG_ON(!path);
    	ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
    	if (ret == 0) {
    		l = path->nodes[0];
    		read_extent_buffer(l, &root->root_item,
    				btrfs_item_ptr_offset(l, path->slots[0]),
    				sizeof(root->root_item));
    		memcpy(&root->root_key, location, sizeof(*location));
    	}
    	btrfs_free_path(path);
    	if (ret) {
    		if (ret > 0)
    			ret = -ENOENT;
    		return ERR_PTR(ret);
    	}
    
    	generation = btrfs_root_generation(&root->root_item);
    	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
    	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
    				     blocksize, generation);
    	root->commit_root = btrfs_root_node(root);
    	BUG_ON(!root->node);
    out:
    	if (location->objectid != BTRFS_TREE_LOG_OBJECTID)
    		root->ref_cows = 1;
    
    	return root;
    }
    
    struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
    					u64 root_objectid)
    {
    	struct btrfs_root *root;
    
    	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
    		return fs_info->tree_root;
    	if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
    		return fs_info->extent_root;
    
    	root = radix_tree_lookup(&fs_info->fs_roots_radix,
    				 (unsigned long)root_objectid);
    	return root;
    }
    
    struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
    					      struct btrfs_key *location)
    {
    	struct btrfs_root *root;
    	int ret;
    
    	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
    		return fs_info->tree_root;
    	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
    		return fs_info->extent_root;
    	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
    		return fs_info->chunk_root;
    	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
    		return fs_info->dev_root;
    	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
    		return fs_info->csum_root;
    again:
    	spin_lock(&fs_info->fs_roots_radix_lock);
    	root = radix_tree_lookup(&fs_info->fs_roots_radix,
    				 (unsigned long)location->objectid);
    	spin_unlock(&fs_info->fs_roots_radix_lock);
    	if (root)
    		return root;
    
    	ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
    	if (ret == 0)
    		ret = -ENOENT;
    	if (ret < 0)
    		return ERR_PTR(ret);
    
    	root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
    	if (IS_ERR(root))
    		return root;
    
    	WARN_ON(btrfs_root_refs(&root->root_item) == 0);
    	set_anon_super(&root->anon_super, NULL);
    
    	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
    	if (ret)
    		goto fail;
    
    	spin_lock(&fs_info->fs_roots_radix_lock);
    	ret = radix_tree_insert(&fs_info->fs_roots_radix,
    				(unsigned long)root->root_key.objectid,
    				root);
    	if (ret == 0)
    		root->in_radix = 1;
    	spin_unlock(&fs_info->fs_roots_radix_lock);
    	radix_tree_preload_end();
    	if (ret) {
    		if (ret == -EEXIST) {
    			free_fs_root(root);
    			goto again;
    		}
    		goto fail;
    	}
    
    	ret = btrfs_find_dead_roots(fs_info->tree_root,
    				    root->root_key.objectid);
    	WARN_ON(ret);
    
    	if (!(fs_info->sb->s_flags & MS_RDONLY))
    		btrfs_orphan_cleanup(root);
    
    	return root;
    fail:
    	free_fs_root(root);
    	return ERR_PTR(ret);
    }
    
    struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
    				      struct btrfs_key *location,
    				      const char *name, int namelen)
    {
    	return btrfs_read_fs_root_no_name(fs_info, location);
    #if 0
    	struct btrfs_root *root;
    	int ret;
    
    	root = btrfs_read_fs_root_no_name(fs_info, location);
    	if (!root)
    		return NULL;
    
    	if (root->in_sysfs)
    		return root;
    
    	ret = btrfs_set_root_name(root, name, namelen);
    	if (ret) {
    		free_extent_buffer(root->node);
    		kfree(root);
    		return ERR_PTR(ret);
    	}
    
    	ret = btrfs_sysfs_add_root(root);
    	if (ret) {
    		free_extent_buffer(root->node);
    		kfree(root->name);
    		kfree(root);
    		return ERR_PTR(ret);
    	}
    	root->in_sysfs = 1;
    	return root;
    #endif
    }
    
    static int btrfs_congested_fn(void *congested_data, int bdi_bits)
    {
    	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
    	int ret = 0;
    	struct btrfs_device *device;
    	struct backing_dev_info *bdi;
    
    	list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
    		if (!device->bdev)
    			continue;
    		bdi = blk_get_backing_dev_info(device->bdev);
    		if (bdi && bdi_congested(bdi, bdi_bits)) {
    			ret = 1;
    			break;
    		}
    	}
    	return ret;
    }
    
    /*
     * this unplugs every device on the box, and it is only used when page
     * is null
     */
    static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
    {
    	struct btrfs_device *device;
    	struct btrfs_fs_info *info;
    
    	info = (struct btrfs_fs_info *)bdi->unplug_io_data;
    	list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
    		if (!device->bdev)
    			continue;
    
    		bdi = blk_get_backing_dev_info(device->bdev);
    		if (bdi->unplug_io_fn)
    			bdi->unplug_io_fn(bdi, page);
    	}
    }
    
    static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
    {
    	struct inode *inode;
    	struct extent_map_tree *em_tree;
    	struct extent_map *em;
    	struct address_space *mapping;
    	u64 offset;
    
    	/* the generic O_DIRECT read code does this */
    	if (1 || !page) {
    		__unplug_io_fn(bdi, page);
    		return;
    	}
    
    	/*
    	 * page->mapping may change at any time.  Get a consistent copy
    	 * and use that for everything below
    	 */
    	smp_mb();
    	mapping = page->mapping;
    	if (!mapping)
    		return;
    
    	inode = mapping->host;
    
    	/*
    	 * don't do the expensive searching for a small number of
    	 * devices
    	 */
    	if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) {
    		__unplug_io_fn(bdi, page);
    		return;
    	}
    
    	offset = page_offset(page);
    
    	em_tree = &BTRFS_I(inode)->extent_tree;
    	read_lock(&em_tree->lock);
    	em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
    	read_unlock(&em_tree->lock);
    	if (!em) {
    		__unplug_io_fn(bdi, page);
    		return;
    	}
    
    	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
    		free_extent_map(em);
    		__unplug_io_fn(bdi, page);
    		return;
    	}
    	offset = offset - em->start;
    	btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
    			  em->block_start + offset, page);
    	free_extent_map(em);
    }
    
    /*
     * If this fails, caller must call bdi_destroy() to get rid of the
     * bdi again.
     */
    static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
    {
    	int err;
    
    	bdi->name = "btrfs";
    	bdi->capabilities = BDI_CAP_MAP_COPY;
    	err = bdi_init(bdi);
    	if (err)
    		return err;
    
    	err = bdi_register(bdi, NULL, "btrfs-%d",
    				atomic_inc_return(&btrfs_bdi_num));
    	if (err) {
    		bdi_destroy(bdi);
    		return err;
    	}
    
    	bdi->ra_pages	= default_backing_dev_info.ra_pages;
    	bdi->unplug_io_fn	= btrfs_unplug_io_fn;
    	bdi->unplug_io_data	= info;
    	bdi->congested_fn	= btrfs_congested_fn;
    	bdi->congested_data	= info;
    	return 0;
    }
    
    static int bio_ready_for_csum(struct bio *bio)
    {
    	u64 length = 0;
    	u64 buf_len = 0;
    	u64 start = 0;
    	struct page *page;
    	struct extent_io_tree *io_tree = NULL;
    	struct btrfs_fs_info *info = NULL;
    	struct bio_vec *bvec;
    	int i;
    	int ret;
    
    	bio_for_each_segment(bvec, bio, i) {
    		page = bvec->bv_page;
    		if (page->private == EXTENT_PAGE_PRIVATE) {
    			length += bvec->bv_len;
    			continue;
    		}
    		if (!page->private) {
    			length += bvec->bv_len;
    			continue;
    		}
    		length = bvec->bv_len;
    		buf_len = page->private >> 2;
    		start = page_offset(page) + bvec->bv_offset;
    		io_tree = &BTRFS_I(page->mapping->host)->io_tree;
    		info = BTRFS_I(page->mapping->host)->root->fs_info;
    	}
    	/* are we fully contained in this bio? */
    	if (buf_len <= length)
    		return 1;
    
    	ret = extent_range_uptodate(io_tree, start + length,
    				    start + buf_len - 1);
    	return ret;
    }
    
    /*
     * called by the kthread helper functions to finally call the bio end_io
     * functions.  This is where read checksum verification actually happens
     */
    static void end_workqueue_fn(struct btrfs_work *work)
    {
    	struct bio *bio;
    	struct end_io_wq *end_io_wq;
    	struct btrfs_fs_info *fs_info;
    	int error;
    
    	end_io_wq = container_of(work, struct end_io_wq, work);
    	bio = end_io_wq->bio;
    	fs_info = end_io_wq->info;
    
    	/* metadata bio reads are special because the whole tree block must
    	 * be checksummed at once.  This makes sure the entire block is in
    	 * ram and up to date before trying to verify things.  For
    	 * blocksize <= pagesize, it is basically a noop
    	 */
    	if (!(bio->bi_rw & (1 << BIO_RW)) && end_io_wq->metadata &&
    	    !bio_ready_for_csum(bio)) {
    		btrfs_queue_worker(&fs_info->endio_meta_workers,
    				   &end_io_wq->work);
    		return;
    	}
    	error = end_io_wq->error;
    	bio->bi_private = end_io_wq->private;
    	bio->bi_end_io = end_io_wq->end_io;
    	kfree(end_io_wq);
    	bio_endio(bio, error);
    }
    
    static int cleaner_kthread(void *arg)
    {
    	struct btrfs_root *root = arg;
    
    	do {
    		smp_mb();
    		if (root->fs_info->closing)
    			break;
    
    		vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
    
    		if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
    		    mutex_trylock(&root->fs_info->cleaner_mutex)) {
    			btrfs_clean_old_snapshots(root);
    			mutex_unlock(&root->fs_info->cleaner_mutex);
    		}
    
    		if (freezing(current)) {
    			refrigerator();
    		} else {
    			smp_mb();
    			if (root->fs_info->closing)
    				break;
    			set_current_state(TASK_INTERRUPTIBLE);
    			schedule();
    			__set_current_state(TASK_RUNNING);
    		}
    	} while (!kthread_should_stop());
    	return 0;
    }
    
    static int transaction_kthread(void *arg)
    {
    	struct btrfs_root *root = arg;
    	struct btrfs_trans_handle *trans;
    	struct btrfs_transaction *cur;
    	unsigned long now;
    	unsigned long delay;
    	int ret;
    
    	do {
    		smp_mb();
    		if (root->fs_info->closing)
    			break;
    
    		delay = HZ * 30;
    		vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
    		mutex_lock(&root->fs_info->transaction_kthread_mutex);
    
    		mutex_lock(&root->fs_info->trans_mutex);
    		cur = root->fs_info->running_transaction;
    		if (!cur) {
    			mutex_unlock(&root->fs_info->trans_mutex);
    			goto sleep;
    		}
    
    		now = get_seconds();
    		if (now < cur->start_time || now - cur->start_time < 30) {
    			mutex_unlock(&root->fs_info->trans_mutex);
    			delay = HZ * 5;
    			goto sleep;
    		}
    		mutex_unlock(&root->fs_info->trans_mutex);
    		trans = btrfs_start_transaction(root, 1);
    		ret = btrfs_commit_transaction(trans, root);
    
    sleep:
    		wake_up_process(root->fs_info->cleaner_kthread);
    		mutex_unlock(&root->fs_info->transaction_kthread_mutex);
    
    		if (freezing(current)) {
    			refrigerator();
    		} else {
    			if (root->fs_info->closing)
    				break;
    			set_current_state(TASK_INTERRUPTIBLE);
    			schedule_timeout(delay);
    			__set_current_state(TASK_RUNNING);
    		}
    	} while (!kthread_should_stop());
    	return 0;
    }
    
    struct btrfs_root *open_ctree(struct super_block *sb,
    			      struct btrfs_fs_devices *fs_devices,
    			      char *options)
    {
    	u32 sectorsize;
    	u32 nodesize;
    	u32 leafsize;
    	u32 blocksize;
    	u32 stripesize;
    	u64 generation;
    	u64 features;
    	struct btrfs_key location;
    	struct buffer_head *bh;
    	struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
    						 GFP_NOFS);
    	struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
    						 GFP_NOFS);
    	struct btrfs_root *tree_root = kzalloc(sizeof(struct btrfs_root),
    					       GFP_NOFS);
    	struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
    						GFP_NOFS);
    	struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
    						GFP_NOFS);
    	struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
    					      GFP_NOFS);
    	struct btrfs_root *log_tree_root;
    
    	int ret;
    	int err = -EINVAL;
    
    	struct btrfs_super_block *disk_super;
    
    	if (!extent_root || !tree_root || !fs_info ||
    	    !chunk_root || !dev_root || !csum_root) {
    		err = -ENOMEM;
    		goto fail;
    	}
    
    	ret = init_srcu_struct(&fs_info->subvol_srcu);
    	if (ret) {
    		err = ret;
    		goto fail;
    	}
    
    	ret = setup_bdi(fs_info, &fs_info->bdi);
    	if (ret) {
    		err = ret;
    		goto fail_srcu;
    	}
    
    	fs_info->btree_inode = new_inode(sb);
    	if (!fs_info->btree_inode) {
    		err = -ENOMEM;
    		goto fail_bdi;
    	}
    
    	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
    	INIT_LIST_HEAD(&fs_info->trans_list);
    	INIT_LIST_HEAD(&fs_info->dead_roots);
    	INIT_LIST_HEAD(&fs_info->hashers);
    	INIT_LIST_HEAD(&fs_info->delalloc_inodes);
    	INIT_LIST_HEAD(&fs_info->ordered_operations);
    	INIT_LIST_HEAD(&fs_info->caching_block_groups);
    	spin_lock_init(&fs_info->delalloc_lock);
    	spin_lock_init(&fs_info->new_trans_lock);
    	spin_lock_init(&fs_info->ref_cache_lock);
    	spin_lock_init(&fs_info->fs_roots_radix_lock);
    
    	init_completion(&fs_info->kobj_unregister);
    	fs_info->tree_root = tree_root;
    	fs_info->extent_root = extent_root;
    	fs_info->csum_root = csum_root;
    	fs_info->chunk_root = chunk_root;
    	fs_info->dev_root = dev_root;
    	fs_info->fs_devices = fs_devices;
    	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
    	INIT_LIST_HEAD(&fs_info->space_info);
    	btrfs_mapping_init(&fs_info->mapping_tree);
    	atomic_set(&fs_info->nr_async_submits, 0);
    	atomic_set(&fs_info->async_delalloc_pages, 0);
    	atomic_set(&fs_info->async_submit_draining, 0);
    	atomic_set(&fs_info->nr_async_bios, 0);
    	fs_info->sb = sb;
    	fs_info->max_extent = (u64)-1;
    	fs_info->max_inline = 8192 * 1024;
    	fs_info->metadata_ratio = 0;
    
    	fs_info->thread_pool_size = min_t(unsigned long,
    					  num_online_cpus() + 2, 8);
    
    	INIT_LIST_HEAD(&fs_info->ordered_extents);
    	spin_lock_init(&fs_info->ordered_extent_lock);
    
    	sb->s_blocksize = 4096;
    	sb->s_blocksize_bits = blksize_bits(4096);
    	sb->s_bdi = &fs_info->bdi;
    
    	fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
    	fs_info->btree_inode->i_nlink = 1;
    	/*
    	 * we set the i_size on the btree inode to the max possible int.
    	 * the real end of the address space is determined by all of
    	 * the devices in the system
    	 */
    	fs_info->btree_inode->i_size = OFFSET_MAX;
    	fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
    	fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
    
    	RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
    	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
    			     fs_info->btree_inode->i_mapping,
    			     GFP_NOFS);
    	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
    			     GFP_NOFS);
    
    	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
    
    	BTRFS_I(fs_info->btree_inode)->root = tree_root;
    	memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
    	       sizeof(struct btrfs_key));
    	BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
    	insert_inode_hash(fs_info->btree_inode);
    
    	spin_lock_init(&fs_info->block_group_cache_lock);
    	fs_info->block_group_cache_tree.rb_node = NULL;
    
    	extent_io_tree_init(&fs_info->freed_extents[0],
    			     fs_info->btree_inode->i_mapping, GFP_NOFS);
    	extent_io_tree_init(&fs_info->freed_extents[1],
    			     fs_info->btree_inode->i_mapping, GFP_NOFS);
    	fs_info->pinned_extents = &fs_info->freed_extents[0];
    	fs_info->do_barriers = 1;
    
    
    	mutex_init(&fs_info->trans_mutex);
    	mutex_init(&fs_info->ordered_operations_mutex);
    	mutex_init(&fs_info->tree_log_mutex);
    	mutex_init(&fs_info->chunk_mutex);
    	mutex_init(&fs_info->transaction_kthread_mutex);
    	mutex_init(&fs_info->cleaner_mutex);
    	mutex_init(&fs_info->volume_mutex);
    	init_rwsem(&fs_info->extent_commit_sem);
    	init_rwsem(&fs_info->subvol_sem);
    
    	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
    	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
    
    	init_waitqueue_head(&fs_info->transaction_throttle);
    	init_waitqueue_head(&fs_info->transaction_wait);
    	init_waitqueue_head(&fs_info->async_submit_wait);
    
    	__setup_root(4096, 4096, 4096, 4096, tree_root,
    		     fs_info, BTRFS_ROOT_TREE_OBJECTID);
    
    
    	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
    	if (!bh)
    		goto fail_iput;
    
    	memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
    	memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
    	       sizeof(fs_info->super_for_commit));
    	brelse(bh);
    
    	memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
    
    	disk_super = &fs_info->super_copy;
    	if (!btrfs_super_root(disk_super))
    		goto fail_iput;
    
    	ret = btrfs_parse_options(tree_root, options);
    	if (ret) {
    		err = ret;
    		goto fail_iput;
    	}
    
    	features = btrfs_super_incompat_flags(disk_super) &
    		~BTRFS_FEATURE_INCOMPAT_SUPP;
    	if (features) {
    		printk(KERN_ERR "BTRFS: couldn't mount because of "
    		       "unsupported optional features (%Lx).\n",
    		       (unsigned long long)features);
    		err = -EINVAL;
    		goto fail_iput;
    	}
    
    	features = btrfs_super_incompat_flags(disk_super);
    	if (!(features & BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF)) {
    		features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
    		btrfs_set_super_incompat_flags(disk_super, features);
    	}
    
    	features = btrfs_super_compat_ro_flags(disk_super) &
    		~BTRFS_FEATURE_COMPAT_RO_SUPP;
    	if (!(sb->s_flags & MS_RDONLY) && features) {
    		printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
    		       "unsupported option features (%Lx).\n",
    		       (unsigned long long)features);
    		err = -EINVAL;
    		goto fail_iput;
    	}
    printk("thread pool is %d\n", fs_info->thread_pool_size);
    	/*
    	 * we need to start all the end_io workers up front because the
    	 * queue work function gets called at interrupt time, and so it
    	 * cannot dynamically grow.
    	 */
    	btrfs_init_workers(&fs_info->workers, "worker",
    			   fs_info->thread_pool_size);
    
    	btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
    			   fs_info->thread_pool_size);
    
    	btrfs_init_workers(&fs_info->submit_workers, "submit",
    			   min_t(u64, fs_devices->num_devices,
    			   fs_info->thread_pool_size));
    
    	/* a higher idle thresh on the submit workers makes it much more
    	 * likely that bios will be send down in a sane order to the
    	 * devices
    	 */
    	fs_info->submit_workers.idle_thresh = 64;
    
    	fs_info->workers.idle_thresh = 16;
    	fs_info->workers.ordered = 1;
    
    	fs_info->delalloc_workers.idle_thresh = 2;
    	fs_info->delalloc_workers.ordered = 1;
    
    	btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1);
    	btrfs_init_workers(&fs_info->endio_workers, "endio",
    			   fs_info->thread_pool_size);
    	btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
    			   fs_info->thread_pool_size);
    	btrfs_init_workers(&fs_info->endio_meta_write_workers,
    			   "endio-meta-write", fs_info->thread_pool_size);
    	btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
    			   fs_info->thread_pool_size);
    
    	/*
    	 * endios are largely parallel and should have a very
    	 * low idle thresh
    	 */
    	fs_info->endio_workers.idle_thresh = 4;
    	fs_info->endio_meta_workers.idle_thresh = 4;
    
    	fs_info->endio_write_workers.idle_thresh = 2;
    	fs_info->endio_meta_write_workers.idle_thresh = 2;
    
    	fs_info->endio_workers.atomic_worker_start = 1;
    	fs_info->endio_meta_workers.atomic_worker_start = 1;
    	fs_info->endio_write_workers.atomic_worker_start = 1;
    	fs_info->endio_meta_write_workers.atomic_worker_start = 1;
    
    	btrfs_start_workers(&fs_info->workers, 1);
    	btrfs_start_workers(&fs_info->submit_workers, 1);
    	btrfs_start_workers(&fs_info->delalloc_workers, 1);
    	btrfs_start_workers(&fs_info->fixup_workers, 1);
    	btrfs_start_workers(&fs_info->endio_workers, 1);
    	btrfs_start_workers(&fs_info->endio_meta_workers, 1);
    	btrfs_start_workers(&fs_info->endio_meta_write_workers, 1);
    	btrfs_start_workers(&fs_info->endio_write_workers, 1);
    
    	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
    	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
    				    4 * 1024 * 1024 / PAGE_CACHE_SIZE);
    
    	nodesize = btrfs_super_nodesize(disk_super);
    	leafsize = btrfs_super_leafsize(disk_super);
    	sectorsize = btrfs_super_sectorsize(disk_super);
    	stripesize = btrfs_super_stripesize(disk_super);
    	tree_root->nodesize = nodesize;
    	tree_root->leafsize = leafsize;
    	tree_root->sectorsize = sectorsize;
    	tree_root->stripesize = stripesize;
    
    	sb->s_blocksize = sectorsize;
    	sb->s_blocksize_bits = blksize_bits(sectorsize);
    
    	if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
    		    sizeof(disk_super->magic))) {
    		printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
    		goto fail_sb_buffer;
    	}
    
    	mutex_lock(&fs_info->chunk_mutex);
    	ret = btrfs_read_sys_array(tree_root);
    	mutex_unlock(&fs_info->chunk_mutex);
    	if (ret) {
    		printk(KERN_WARNING "btrfs: failed to read the system "
    		       "array on %s\n", sb->s_id);
    		goto fail_sb_buffer;
    	}
    
    	blocksize = btrfs_level_size(tree_root,
    				     btrfs_super_chunk_root_level(disk_super));
    	generation = btrfs_super_chunk_root_generation(disk_super);
    
    	__setup_root(nodesize, leafsize, sectorsize, stripesize,
    		     chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
    
    	chunk_root->node = read_tree_block(chunk_root,
    					   btrfs_super_chunk_root(disk_super),
    					   blocksize, generation);
    	BUG_ON(!chunk_root->node);
    	if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
    		printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
    		       sb->s_id);
    		goto fail_chunk_root;
    	}
    	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
    	chunk_root->commit_root = btrfs_root_node(chunk_root);
    
    	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
    	   (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
    	   BTRFS_UUID_SIZE);
    
    	mutex_lock(&fs_info->chunk_mutex);
    	ret = btrfs_read_chunk_tree(chunk_root);
    	mutex_unlock(&fs_info->chunk_mutex);
    	if (ret) {
    		printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
    		       sb->s_id);
    		goto fail_chunk_root;
    	}
    
    	btrfs_close_extra_devices(fs_devices);
    
    	blocksize = btrfs_level_size(tree_root,
    				     btrfs_super_root_level(disk_super));
    	generation = btrfs_super_generation(disk_super);
    
    	tree_root->node = read_tree_block(tree_root,
    					  btrfs_super_root(disk_super),
    					  blocksize, generation);
    	if (!tree_root->node)
    		goto fail_chunk_root;
    	if (!test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
    		printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
    		       sb->s_id);
    		goto fail_tree_root;
    	}
    	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
    	tree_root->commit_root = btrfs_root_node(tree_root);
    
    	ret = find_and_setup_root(tree_root, fs_info,
    				  BTRFS_EXTENT_TREE_OBJECTID, extent_root);
    	if (ret)
    		goto fail_tree_root;
    	extent_root->track_dirty = 1;
    
    	ret = find_and_setup_root(tree_root, fs_info,
    				  BTRFS_DEV_TREE_OBJECTID, dev_root);
    	if (ret)
    		goto fail_extent_root;
    	dev_root->track_dirty = 1;
    
    	ret = find_and_setup_root(tree_root, fs_info,
    				  BTRFS_CSUM_TREE_OBJECTID, csum_root);
    	if (ret)
    		goto fail_dev_root;
    
    	csum_root->track_dirty = 1;
    
    	btrfs_read_block_groups(extent_root);
    
    	fs_info->generation = generation;
    	fs_info->last_trans_committed = generation;
    	fs_info->data_alloc_profile = (u64)-1;
    	fs_info->metadata_alloc_profile = (u64)-1;
    	fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
    	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
    					       "btrfs-cleaner");
    	if (IS_ERR(fs_info->cleaner_kthread))
    		goto fail_csum_root;
    
    	fs_info->transaction_kthread = kthread_run(transaction_kthread,
    						   tree_root,
    						   "btrfs-transaction");
    	if (IS_ERR(fs_info->transaction_kthread))
    		goto fail_cleaner;
    
    	if (!btrfs_test_opt(tree_root, SSD) &&
    	    !btrfs_test_opt(tree_root, NOSSD) &&
    	    !fs_info->fs_devices->rotating) {
    		printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
    		       "mode\n");
    		btrfs_set_opt(fs_info->mount_opt, SSD);
    	}
    
    	if (btrfs_super_log_root(disk_super) != 0) {
    		u64 bytenr = btrfs_super_log_root(disk_super);
    
    		if (fs_devices->rw_devices == 0) {
    			printk(KERN_WARNING "Btrfs log replay required "
    			       "on RO media\n");
    			err = -EIO;
    			goto fail_trans_kthread;
    		}
    		blocksize =
    		     btrfs_level_size(tree_root,
    				      btrfs_super_log_root_level(disk_super));
    
    		log_tree_root = kzalloc(sizeof(struct btrfs_root),
    						      GFP_NOFS);
    
    		__setup_root(nodesize, leafsize, sectorsize, stripesize,
    			     log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
    
    		log_tree_root->node = read_tree_block(tree_root, bytenr,
    						      blocksize,
    						      generation + 1);
    		ret = btrfs_recover_log_trees(log_tree_root);
    		BUG_ON(ret);
    
    		if (sb->s_flags & MS_RDONLY) {
    			ret =  btrfs_commit_super(tree_root);
    			BUG_ON(ret);
    		}
    	}
    
    	ret = btrfs_find_orphan_roots(tree_root);
    	BUG_ON(ret);
    
    	if (!(sb->s_flags & MS_RDONLY)) {
    		ret = btrfs_recover_relocation(tree_root);
    		BUG_ON(ret);
    	}
    
    	location.objectid = BTRFS_FS_TREE_OBJECTID;
    	location.type = BTRFS_ROOT_ITEM_KEY;
    	location.offset = (u64)-1;
    
    	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
    	if (!fs_info->fs_root)
    		goto fail_trans_kthread;
    
    	return tree_root;
    
    fail_trans_kthread:
    	kthread_stop(fs_info->transaction_kthread);
    fail_cleaner:
    	kthread_stop(fs_info->cleaner_kthread);
    
    	/*
    	 * make sure we're done with the btree inode before we stop our
    	 * kthreads
    	 */
    	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
    	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
    
    fail_csum_root:
    	free_extent_buffer(csum_root->node);
    	free_extent_buffer(csum_root->commit_root);
    fail_dev_root:
    	free_extent_buffer(dev_root->node);
    	free_extent_buffer(dev_root->commit_root);
    fail_extent_root:
    	free_extent_buffer(extent_root->node);
    	free_extent_buffer(extent_root->commit_root);
    fail_tree_root:
    	free_extent_buffer(tree_root->node);
    	free_extent_buffer(tree_root->commit_root);
    fail_chunk_root:
    	free_extent_buffer(chunk_root->node);
    	free_extent_buffer(chunk_root->commit_root);
    fail_sb_buffer:
    	btrfs_stop_workers(&fs_info->fixup_workers);
    	btrfs_stop_workers(&fs_info->delalloc_workers);
    	btrfs_stop_workers(&fs_info->workers);
    	btrfs_stop_workers(&fs_info->endio_workers);
    	btrfs_stop_workers(&fs_info->endio_meta_workers);
    	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
    	btrfs_stop_workers(&fs_info->endio_write_workers);
    	btrfs_stop_workers(&fs_info->submit_workers);
    fail_iput:
    	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
    	iput(fs_info->btree_inode);
    
    	btrfs_close_devices(fs_info->fs_devices);
    	btrfs_mapping_tree_free(&fs_info->mapping_tree);
    fail_bdi:
    	bdi_destroy(&fs_info->bdi);
    fail_srcu:
    	cleanup_srcu_struct(&fs_info->subvol_srcu);
    fail:
    	kfree(extent_root);
    	kfree(tree_root);
    	kfree(fs_info);
    	kfree(chunk_root);
    	kfree(dev_root);
    	kfree(csum_root);
    	return ERR_PTR(err);
    }
    
    static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
    {
    	char b[BDEVNAME_SIZE];
    
    	if (uptodate) {
    		set_buffer_uptodate(bh);
    	} else {
    		if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
    			printk(KERN_WARNING "lost page write due to "
    					"I/O error on %s\n",
    				       bdevname(bh->b_bdev, b));
    		}
    		/* note, we dont' set_buffer_write_io_error because we have
    		 * our own ways of dealing with the IO errors
    		 */
    		clear_buffer_uptodate(bh);
    	}
    	unlock_buffer(bh);
    	put_bh(bh);
    }
    
    struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
    {
    	struct buffer_head *bh;
    	struct buffer_head *latest = NULL;
    	struct btrfs_super_block *super;
    	int i;
    	u64 transid = 0;
    	u64 bytenr;
    
    	/* we would like to check all the supers, but that would make
    	 * a btrfs mount succeed after a mkfs from a different FS.
    	 * So, we need to add a special mount option to scan for
    	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
    	 */
    	for (i = 0; i < 1; i++) {
    		bytenr = btrfs_sb_offset(i);
    		if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
    			break;
    		bh = __bread(bdev, bytenr / 4096, 4096);
    		if (!bh)
    			continue;
    
    		super = (struct btrfs_super_block *)bh->b_data;
    		if (btrfs_super_bytenr(super) != bytenr ||
    		    strncmp((char *)(&super->magic), BTRFS_MAGIC,
    			    sizeof(super->magic))) {
    			brelse(bh);
    			continue;
    		}
    
    		if (!latest || btrfs_super_generation(super) > transid) {
    			brelse(latest);
    			latest = bh;
    			transid = btrfs_super_generation(super);
    		} else {
    			brelse(bh);
    		}
    	}
    	return latest;
    }
    
    /*
     * this should be called twice, once with wait == 0 and
     * once with wait == 1.  When wait == 0 is done, all the buffer heads
     * we write are pinned.
     *
     * They are released when wait == 1 is done.
     * max_mirrors must be the same for both runs, and it indicates how
     * many supers on this one device should be written.
     *
     * max_mirrors == 0 means to write them all.
     */
    static int write_dev_supers(struct btrfs_device *device,
    			    struct btrfs_super_block *sb,
    			    int do_barriers, int wait, int max_mirrors)
    {
    	struct buffer_head *bh;
    	int i;
    	int ret;
    	int errors = 0;
    	u32 crc;
    	u64 bytenr;
    	int last_barrier = 0;
    
    	if (max_mirrors == 0)
    		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
    
    	/* make sure only the last submit_bh does a barrier */
    	if (do_barriers) {
    		for (i = 0; i < max_mirrors; i++) {
    			bytenr = btrfs_sb_offset(i);
    			if (bytenr + BTRFS_SUPER_INFO_SIZE >=
    			    device->total_bytes)
    				break;
    			last_barrier = i;
    		}
    	}
    
    	for (i = 0; i < max_mirrors; i++) {
    		bytenr = btrfs_sb_offset(i);
    		if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
    			break;
    
    		if (wait) {
    			bh = __find_get_block(device->bdev, bytenr / 4096,
    					      BTRFS_SUPER_INFO_SIZE);
    			BUG_ON(!bh);
    			wait_on_buffer(bh);
    			if (!buffer_uptodate(bh))
    				errors++;
    
    			/* drop our reference */
    			brelse(bh);
    
    			/* drop the reference from the wait == 0 run */
    			brelse(bh);
    			continue;
    		} else {
    			btrfs_set_super_bytenr(sb, bytenr);
    
    			crc = ~(u32)0;
    			crc = btrfs_csum_data(NULL, (char *)sb +
    					      BTRFS_CSUM_SIZE, crc,
    					      BTRFS_SUPER_INFO_SIZE -
    					      BTRFS_CSUM_SIZE);
    			btrfs_csum_final(crc, sb->csum);
    
    			/*
    			 * one reference for us, and we leave it for the
    			 * caller
    			 */
    			bh = __getblk(device->bdev, bytenr / 4096,
    				      BTRFS_SUPER_INFO_SIZE);
    			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
    
    			/* one reference for submit_bh */
    			get_bh(bh);
    
    			set_buffer_uptodate(bh);
    			lock_buffer(bh);
    			bh->b_end_io = btrfs_end_buffer_write_sync;
    		}
    
    		if (i == last_barrier && do_barriers && device->barriers) {
    			ret = submit_bh(WRITE_BARRIER, bh);
    			if (ret == -EOPNOTSUPP) {
    				printk("btrfs: disabling barriers on dev %s\n",
    				       device->name);
    				set_buffer_uptodate(bh);
    				device->barriers = 0;
    				/* one reference for submit_bh */
    				get_bh(bh);
    				lock_buffer(bh);
    				ret = submit_bh(WRITE_SYNC, bh);
    			}
    		} else {
    			ret = submit_bh(WRITE_SYNC, bh);
    		}
    
    		if (ret)
    			errors++;
    	}
    	return errors < i ? 0 : -1;
    }
    
    int write_all_supers(struct btrfs_root *root, int max_mirrors)
    {
    	struct list_head *head;
    	struct btrfs_device *dev;
    	struct btrfs_super_block *sb;
    	struct btrfs_dev_item *dev_item;
    	int ret;
    	int do_barriers;
    	int max_errors;
    	int total_errors = 0;
    	u64 flags;
    
    	max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
    	do_barriers = !btrfs_test_opt(root, NOBARRIER);
    
    	sb = &root->fs_info->super_for_commit;
    	dev_item = &sb->dev_item;
    
    	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
    	head = &root->fs_info->fs_devices->devices;
    	list_for_each_entry(dev, head, dev_list) {
    		if (!dev->bdev) {
    			total_errors++;
    			continue;
    		}
    		if (!dev->in_fs_metadata || !dev->writeable)
    			continue;
    
    		btrfs_set_stack_device_generation(dev_item, 0);
    		btrfs_set_stack_device_type(dev_item, dev->type);
    		btrfs_set_stack_device_id(dev_item, dev->devid);
    		btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
    		btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
    		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
    		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
    		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
    		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
    		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
    
    		flags = btrfs_super_flags(sb);
    		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
    
    		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
    		if (ret)
    			total_errors++;
    	}
    	if (total_errors > max_errors) {
    		printk(KERN_ERR "btrfs: %d errors while writing supers\n",
    		       total_errors);
    		BUG();
    	}
    
    	total_errors = 0;
    	list_for_each_entry(dev, head, dev_list) {
    		if (!dev->bdev)
    			continue;
    		if (!dev->in_fs_metadata || !dev->writeable)
    			continue;
    
    		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
    		if (ret)
    			total_errors++;
    	}
    	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
    	if (total_errors > max_errors) {
    		printk(KERN_ERR "btrfs: %d errors while writing supers\n",
    		       total_errors);
    		BUG();
    	}
    	return 0;
    }
    
    int write_ctree_super(struct btrfs_trans_handle *trans,
    		      struct btrfs_root *root, int max_mirrors)
    {
    	int ret;
    
    	ret = write_all_supers(root, max_mirrors);
    	return ret;
    }
    
    int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
    {
    	spin_lock(&fs_info->fs_roots_radix_lock);
    	radix_tree_delete(&fs_info->fs_roots_radix,
    			  (unsigned long)root->root_key.objectid);
    	spin_unlock(&fs_info->fs_roots_radix_lock);
    
    	if (btrfs_root_refs(&root->root_item) == 0)
    		synchronize_srcu(&fs_info->subvol_srcu);
    
    	free_fs_root(root);
    	return 0;
    }
    
    static void free_fs_root(struct btrfs_root *root)
    {
    	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
    	if (root->anon_super.s_dev) {
    		down_write(&root->anon_super.s_umount);
    		kill_anon_super(&root->anon_super);
    	}
    	free_extent_buffer(root->node);
    	free_extent_buffer(root->commit_root);
    	kfree(root->name);
    	kfree(root);
    }
    
    static int del_fs_roots(struct btrfs_fs_info *fs_info)
    {
    	int ret;
    	struct btrfs_root *gang[8];
    	int i;
    
    	while (!list_empty(&fs_info->dead_roots)) {
    		gang[0] = list_entry(fs_info->dead_roots.next,
    				     struct btrfs_root, root_list);
    		list_del(&gang[0]->root_list);
    
    		if (gang[0]->in_radix) {
    			btrfs_free_fs_root(fs_info, gang[0]);
    		} else {
    			free_extent_buffer(gang[0]->node);
    			free_extent_buffer(gang[0]->commit_root);
    			kfree(gang[0]);
    		}
    	}
    
    	while (1) {
    		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
    					     (void **)gang, 0,
    					     ARRAY_SIZE(gang));
    		if (!ret)
    			break;
    		for (i = 0; i < ret; i++)
    			btrfs_free_fs_root(fs_info, gang[i]);
    	}
    	return 0;
    }
    
    int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
    {
    	u64 root_objectid = 0;
    	struct btrfs_root *gang[8];
    	int i;
    	int ret;
    
    	while (1) {
    		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
    					     (void **)gang, root_objectid,
    					     ARRAY_SIZE(gang));
    		if (!ret)
    			break;
    
    		root_objectid = gang[ret - 1]->root_key.objectid + 1;
    		for (i = 0; i < ret; i++) {
    			root_objectid = gang[i]->root_key.objectid;
    			btrfs_orphan_cleanup(gang[i]);
    		}
    		root_objectid++;
    	}
    	return 0;
    }
    
    int btrfs_commit_super(struct btrfs_root *root)
    {
    	struct btrfs_trans_handle *trans;
    	int ret;
    
    	mutex_lock(&root->fs_info->cleaner_mutex);
    	btrfs_clean_old_snapshots(root);
    	mutex_unlock(&root->fs_info->cleaner_mutex);
    	trans = btrfs_start_transaction(root, 1);
    	ret = btrfs_commit_transaction(trans, root);
    	BUG_ON(ret);
    	/* run commit again to drop the original snapshot */
    	trans = btrfs_start_transaction(root, 1);
    	btrfs_commit_transaction(trans, root);
    	ret = btrfs_write_and_wait_transaction(NULL, root);
    	BUG_ON(ret);
    
    	ret = write_ctree_super(NULL, root, 0);
    	return ret;
    }
    
    int close_ctree(struct btrfs_root *root)
    {
    	struct btrfs_fs_info *fs_info = root->fs_info;
    	int ret;
    
    	fs_info->closing = 1;
    	smp_mb();
    
    	kthread_stop(root->fs_info->transaction_kthread);
    	kthread_stop(root->fs_info->cleaner_kthread);
    
    	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
    		ret =  btrfs_commit_super(root);
    		if (ret)
    			printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
    	}
    
    	fs_info->closing = 2;
    	smp_mb();
    
    	if (fs_info->delalloc_bytes) {
    		printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
    		       (unsigned long long)fs_info->delalloc_bytes);
    	}
    	if (fs_info->total_ref_cache_size) {
    		printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
    		       (unsigned long long)fs_info->total_ref_cache_size);
    	}
    
    	free_extent_buffer(fs_info->extent_root->node);
    	free_extent_buffer(fs_info->extent_root->commit_root);
    	free_extent_buffer(fs_info->tree_root->node);
    	free_extent_buffer(fs_info->tree_root->commit_root);
    	free_extent_buffer(root->fs_info->chunk_root->node);
    	free_extent_buffer(root->fs_info->chunk_root->commit_root);
    	free_extent_buffer(root->fs_info->dev_root->node);
    	free_extent_buffer(root->fs_info->dev_root->commit_root);
    	free_extent_buffer(root->fs_info->csum_root->node);
    	free_extent_buffer(root->fs_info->csum_root->commit_root);
    
    	btrfs_free_block_groups(root->fs_info);
    
    	del_fs_roots(fs_info);
    
    	iput(fs_info->btree_inode);
    
    	btrfs_stop_workers(&fs_info->fixup_workers);
    	btrfs_stop_workers(&fs_info->delalloc_workers);
    	btrfs_stop_workers(&fs_info->workers);
    	btrfs_stop_workers(&fs_info->endio_workers);
    	btrfs_stop_workers(&fs_info->endio_meta_workers);
    	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
    	btrfs_stop_workers(&fs_info->endio_write_workers);
    	btrfs_stop_workers(&fs_info->submit_workers);
    
    	btrfs_close_devices(fs_info->fs_devices);
    	btrfs_mapping_tree_free(&fs_info->mapping_tree);
    
    	bdi_destroy(&fs_info->bdi);
    	cleanup_srcu_struct(&fs_info->subvol_srcu);
    
    	kfree(fs_info->extent_root);
    	kfree(fs_info->tree_root);
    	kfree(fs_info->chunk_root);
    	kfree(fs_info->dev_root);
    	kfree(fs_info->csum_root);
    	return 0;
    }
    
    int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
    {
    	int ret;
    	struct inode *btree_inode = buf->first_page->mapping->host;
    
    	ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf);
    	if (!ret)
    		return ret;
    
    	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
    				    parent_transid);
    	return !ret;
    }
    
    int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
    {
    	struct inode *btree_inode = buf->first_page->mapping->host;
    	return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
    					  buf);
    }
    
    void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
    {
    	struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
    	u64 transid = btrfs_header_generation(buf);
    	struct inode *btree_inode = root->fs_info->btree_inode;
    	int was_dirty;
    
    	btrfs_assert_tree_locked(buf);
    	if (transid != root->fs_info->generation) {
    		printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
    		       "found %llu running %llu\n",
    			(unsigned long long)buf->start,
    			(unsigned long long)transid,
    			(unsigned long long)root->fs_info->generation);
    		WARN_ON(1);
    	}
    	was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
    					    buf);
    	if (!was_dirty) {
    		spin_lock(&root->fs_info->delalloc_lock);
    		root->fs_info->dirty_metadata_bytes += buf->len;
    		spin_unlock(&root->fs_info->delalloc_lock);
    	}
    }
    
    void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
    {
    	/*
    	 * looks as though older kernels can get into trouble with
    	 * this code, they end up stuck in balance_dirty_pages forever
    	 */
    	u64 num_dirty;
    	unsigned long thresh = 32 * 1024 * 1024;
    
    	if (current->flags & PF_MEMALLOC)
    		return;
    
    	num_dirty = root->fs_info->dirty_metadata_bytes;
    
    	if (num_dirty > thresh) {
    		balance_dirty_pages_ratelimited_nr(
    				   root->fs_info->btree_inode->i_mapping, 1);
    	}
    	return;
    }
    
    int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
    {
    	struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
    	int ret;
    	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
    	if (ret == 0)
    		set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
    	return ret;
    }
    
    int btree_lock_page_hook(struct page *page)
    {
    	struct inode *inode = page->mapping->host;
    	struct btrfs_root *root = BTRFS_I(inode)->root;
    	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
    	struct extent_buffer *eb;
    	unsigned long len;
    	u64 bytenr = page_offset(page);
    
    	if (page->private == EXTENT_PAGE_PRIVATE)
    		goto out;
    
    	len = page->private >> 2;
    	eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS);
    	if (!eb)
    		goto out;
    
    	btrfs_tree_lock(eb);
    	btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
    
    	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
    		spin_lock(&root->fs_info->delalloc_lock);
    		if (root->fs_info->dirty_metadata_bytes >= eb->len)
    			root->fs_info->dirty_metadata_bytes -= eb->len;
    		else
    			WARN_ON(1);
    		spin_unlock(&root->fs_info->delalloc_lock);
    	}
    
    	btrfs_tree_unlock(eb);
    	free_extent_buffer(eb);
    out:
    	lock_page(page);
    	return 0;
    }
    
    static struct extent_io_ops btree_extent_io_ops = {
    	.write_cache_pages_lock_hook = btree_lock_page_hook,
    	.readpage_end_io_hook = btree_readpage_end_io_hook,
    	.submit_bio_hook = btree_submit_bio_hook,
    	/* note we're sharing with inode.c for the merge bio hook */
    	.merge_bio_hook = btrfs_merge_bio_hook,
    };