Skip to content
Snippets Groups Projects
Select Git revision
  • 7f2923c4f73f21cfd714d12a2d48de8c21f11cfe
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

audit_fsnotify.c

Blame
  • ftrace.c 165.79 KiB
    /*
     * Infrastructure for profiling code inserted by 'gcc -pg'.
     *
     * Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com>
     * Copyright (C) 2004-2008 Ingo Molnar <mingo@redhat.com>
     *
     * Originally ported from the -rt patch by:
     *   Copyright (C) 2007 Arnaldo Carvalho de Melo <acme@redhat.com>
     *
     * Based on code in the latency_tracer, that is:
     *
     *  Copyright (C) 2004-2006 Ingo Molnar
     *  Copyright (C) 2004 Nadia Yvette Chambers
     */
    
    #include <linux/stop_machine.h>
    #include <linux/clocksource.h>
    #include <linux/sched/task.h>
    #include <linux/kallsyms.h>
    #include <linux/seq_file.h>
    #include <linux/suspend.h>
    #include <linux/tracefs.h>
    #include <linux/hardirq.h>
    #include <linux/kthread.h>
    #include <linux/uaccess.h>
    #include <linux/bsearch.h>
    #include <linux/module.h>
    #include <linux/ftrace.h>
    #include <linux/sysctl.h>
    #include <linux/slab.h>
    #include <linux/ctype.h>
    #include <linux/sort.h>
    #include <linux/list.h>
    #include <linux/hash.h>
    #include <linux/rcupdate.h>
    
    #include <trace/events/sched.h>
    
    #include <asm/sections.h>
    #include <asm/setup.h>
    
    #include "trace_output.h"
    #include "trace_stat.h"
    
    #define FTRACE_WARN_ON(cond)			\
    	({					\
    		int ___r = cond;		\
    		if (WARN_ON(___r))		\
    			ftrace_kill();		\
    		___r;				\
    	})
    
    #define FTRACE_WARN_ON_ONCE(cond)		\
    	({					\
    		int ___r = cond;		\
    		if (WARN_ON_ONCE(___r))		\
    			ftrace_kill();		\
    		___r;				\
    	})
    
    /* hash bits for specific function selection */
    #define FTRACE_HASH_BITS 7
    #define FTRACE_FUNC_HASHSIZE (1 << FTRACE_HASH_BITS)
    #define FTRACE_HASH_DEFAULT_BITS 10
    #define FTRACE_HASH_MAX_BITS 12
    
    #ifdef CONFIG_DYNAMIC_FTRACE
    #define INIT_OPS_HASH(opsname)	\
    	.func_hash		= &opsname.local_hash,			\
    	.local_hash.regex_lock	= __MUTEX_INITIALIZER(opsname.local_hash.regex_lock),
    #define ASSIGN_OPS_HASH(opsname, val) \
    	.func_hash		= val, \
    	.local_hash.regex_lock	= __MUTEX_INITIALIZER(opsname.local_hash.regex_lock),
    #else
    #define INIT_OPS_HASH(opsname)
    #define ASSIGN_OPS_HASH(opsname, val)
    #endif
    
    static struct ftrace_ops ftrace_list_end __read_mostly = {
    	.func		= ftrace_stub,
    	.flags		= FTRACE_OPS_FL_RECURSION_SAFE | FTRACE_OPS_FL_STUB,
    	INIT_OPS_HASH(ftrace_list_end)
    };
    
    /* ftrace_enabled is a method to turn ftrace on or off */
    int ftrace_enabled __read_mostly;
    static int last_ftrace_enabled;
    
    /* Current function tracing op */
    struct ftrace_ops *function_trace_op __read_mostly = &ftrace_list_end;
    /* What to set function_trace_op to */
    static struct ftrace_ops *set_function_trace_op;
    
    static bool ftrace_pids_enabled(struct ftrace_ops *ops)
    {
    	struct trace_array *tr;
    
    	if (!(ops->flags & FTRACE_OPS_FL_PID) || !ops->private)
    		return false;
    
    	tr = ops->private;
    
    	return tr->function_pids != NULL;
    }
    
    static void ftrace_update_trampoline(struct ftrace_ops *ops);
    
    /*
     * ftrace_disabled is set when an anomaly is discovered.
     * ftrace_disabled is much stronger than ftrace_enabled.
     */
    static int ftrace_disabled __read_mostly;
    
    static DEFINE_MUTEX(ftrace_lock);
    
    static struct ftrace_ops __rcu *ftrace_ops_list __read_mostly = &ftrace_list_end;
    ftrace_func_t ftrace_trace_function __read_mostly = ftrace_stub;
    static struct ftrace_ops global_ops;
    
    #if ARCH_SUPPORTS_FTRACE_OPS
    static void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
    				 struct ftrace_ops *op, struct pt_regs *regs);
    #else
    /* See comment below, where ftrace_ops_list_func is defined */
    static void ftrace_ops_no_ops(unsigned long ip, unsigned long parent_ip);
    #define ftrace_ops_list_func ((ftrace_func_t)ftrace_ops_no_ops)
    #endif
    
    /*
     * Traverse the ftrace_global_list, invoking all entries.  The reason that we
     * can use rcu_dereference_raw_notrace() is that elements removed from this list
     * are simply leaked, so there is no need to interact with a grace-period
     * mechanism.  The rcu_dereference_raw_notrace() calls are needed to handle
     * concurrent insertions into the ftrace_global_list.
     *
     * Silly Alpha and silly pointer-speculation compiler optimizations!
     */
    #define do_for_each_ftrace_op(op, list)			\
    	op = rcu_dereference_raw_notrace(list);			\
    	do
    
    /*
     * Optimized for just a single item in the list (as that is the normal case).
     */
    #define while_for_each_ftrace_op(op)				\
    	while (likely(op = rcu_dereference_raw_notrace((op)->next)) &&	\
    	       unlikely((op) != &ftrace_list_end))
    
    static inline void ftrace_ops_init(struct ftrace_ops *ops)
    {
    #ifdef CONFIG_DYNAMIC_FTRACE
    	if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) {
    		mutex_init(&ops->local_hash.regex_lock);
    		ops->func_hash = &ops->local_hash;
    		ops->flags |= FTRACE_OPS_FL_INITIALIZED;
    	}
    #endif
    }
    
    /**
     * ftrace_nr_registered_ops - return number of ops registered
     *
     * Returns the number of ftrace_ops registered and tracing functions
     */
    int ftrace_nr_registered_ops(void)
    {
    	struct ftrace_ops *ops;
    	int cnt = 0;
    
    	mutex_lock(&ftrace_lock);
    
    	for (ops = rcu_dereference_protected(ftrace_ops_list,
    					     lockdep_is_held(&ftrace_lock));
    	     ops != &ftrace_list_end;
    	     ops = rcu_dereference_protected(ops->next,
    					     lockdep_is_held(&ftrace_lock)))
    		cnt++;
    
    	mutex_unlock(&ftrace_lock);
    
    	return cnt;
    }
    
    static void ftrace_pid_func(unsigned long ip, unsigned long parent_ip,
    			    struct ftrace_ops *op, struct pt_regs *regs)
    {
    	struct trace_array *tr = op->private;
    
    	if (tr && this_cpu_read(tr->trace_buffer.data->ftrace_ignore_pid))
    		return;
    
    	op->saved_func(ip, parent_ip, op, regs);
    }
    
    /**
     * clear_ftrace_function - reset the ftrace function
     *
     * This NULLs the ftrace function and in essence stops
     * tracing.  There may be lag
     */
    void clear_ftrace_function(void)
    {
    	ftrace_trace_function = ftrace_stub;
    }
    
    static void ftrace_sync(struct work_struct *work)
    {
    	/*
    	 * This function is just a stub to implement a hard force
    	 * of synchronize_sched(). This requires synchronizing
    	 * tasks even in userspace and idle.
    	 *
    	 * Yes, function tracing is rude.
    	 */
    }
    
    static void ftrace_sync_ipi(void *data)
    {
    	/* Probably not needed, but do it anyway */
    	smp_rmb();
    }
    
    #ifdef CONFIG_FUNCTION_GRAPH_TRACER
    static void update_function_graph_func(void);
    
    /* Both enabled by default (can be cleared by function_graph tracer flags */
    static bool fgraph_sleep_time = true;
    static bool fgraph_graph_time = true;
    
    #else
    static inline void update_function_graph_func(void) { }
    #endif
    
    
    static ftrace_func_t ftrace_ops_get_list_func(struct ftrace_ops *ops)
    {
    	/*
    	 * If this is a dynamic, RCU, or per CPU ops, or we force list func,
    	 * then it needs to call the list anyway.
    	 */
    	if (ops->flags & (FTRACE_OPS_FL_DYNAMIC | FTRACE_OPS_FL_RCU) ||
    	    FTRACE_FORCE_LIST_FUNC)
    		return ftrace_ops_list_func;
    
    	return ftrace_ops_get_func(ops);
    }
    
    static void update_ftrace_function(void)
    {
    	ftrace_func_t func;
    
    	/*
    	 * Prepare the ftrace_ops that the arch callback will use.
    	 * If there's only one ftrace_ops registered, the ftrace_ops_list
    	 * will point to the ops we want.
    	 */
    	set_function_trace_op = rcu_dereference_protected(ftrace_ops_list,
    						lockdep_is_held(&ftrace_lock));
    
    	/* If there's no ftrace_ops registered, just call the stub function */
    	if (set_function_trace_op == &ftrace_list_end) {
    		func = ftrace_stub;
    
    	/*
    	 * If we are at the end of the list and this ops is
    	 * recursion safe and not dynamic and the arch supports passing ops,
    	 * then have the mcount trampoline call the function directly.
    	 */
    	} else if (rcu_dereference_protected(ftrace_ops_list->next,
    			lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
    		func = ftrace_ops_get_list_func(ftrace_ops_list);
    
    	} else {
    		/* Just use the default ftrace_ops */
    		set_function_trace_op = &ftrace_list_end;
    		func = ftrace_ops_list_func;
    	}
    
    	update_function_graph_func();
    
    	/* If there's no change, then do nothing more here */
    	if (ftrace_trace_function == func)
    		return;
    
    	/*
    	 * If we are using the list function, it doesn't care
    	 * about the function_trace_ops.
    	 */
    	if (func == ftrace_ops_list_func) {
    		ftrace_trace_function = func;
    		/*
    		 * Don't even bother setting function_trace_ops,
    		 * it would be racy to do so anyway.
    		 */
    		return;
    	}
    
    #ifndef CONFIG_DYNAMIC_FTRACE
    	/*
    	 * For static tracing, we need to be a bit more careful.
    	 * The function change takes affect immediately. Thus,
    	 * we need to coorditate the setting of the function_trace_ops
    	 * with the setting of the ftrace_trace_function.
    	 *
    	 * Set the function to the list ops, which will call the
    	 * function we want, albeit indirectly, but it handles the
    	 * ftrace_ops and doesn't depend on function_trace_op.
    	 */
    	ftrace_trace_function = ftrace_ops_list_func;
    	/*
    	 * Make sure all CPUs see this. Yes this is slow, but static
    	 * tracing is slow and nasty to have enabled.
    	 */
    	schedule_on_each_cpu(ftrace_sync);
    	/* Now all cpus are using the list ops. */
    	function_trace_op = set_function_trace_op;
    	/* Make sure the function_trace_op is visible on all CPUs */
    	smp_wmb();
    	/* Nasty way to force a rmb on all cpus */
    	smp_call_function(ftrace_sync_ipi, NULL, 1);
    	/* OK, we are all set to update the ftrace_trace_function now! */
    #endif /* !CONFIG_DYNAMIC_FTRACE */
    
    	ftrace_trace_function = func;
    }
    
    int using_ftrace_ops_list_func(void)
    {
    	return ftrace_trace_function == ftrace_ops_list_func;
    }
    
    static void add_ftrace_ops(struct ftrace_ops __rcu **list,
    			   struct ftrace_ops *ops)
    {
    	rcu_assign_pointer(ops->next, *list);
    
    	/*
    	 * We are entering ops into the list but another
    	 * CPU might be walking that list. We need to make sure
    	 * the ops->next pointer is valid before another CPU sees
    	 * the ops pointer included into the list.
    	 */
    	rcu_assign_pointer(*list, ops);
    }
    
    static int remove_ftrace_ops(struct ftrace_ops __rcu **list,
    			     struct ftrace_ops *ops)
    {
    	struct ftrace_ops **p;
    
    	/*
    	 * If we are removing the last function, then simply point
    	 * to the ftrace_stub.
    	 */
    	if (rcu_dereference_protected(*list,
    			lockdep_is_held(&ftrace_lock)) == ops &&
    	    rcu_dereference_protected(ops->next,
    			lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
    		*list = &ftrace_list_end;
    		return 0;
    	}
    
    	for (p = list; *p != &ftrace_list_end; p = &(*p)->next)
    		if (*p == ops)
    			break;
    
    	if (*p != ops)
    		return -1;
    
    	*p = (*p)->next;
    	return 0;
    }
    
    static void ftrace_update_trampoline(struct ftrace_ops *ops);
    
    static int __register_ftrace_function(struct ftrace_ops *ops)
    {
    	if (ops->flags & FTRACE_OPS_FL_DELETED)
    		return -EINVAL;
    
    	if (WARN_ON(ops->flags & FTRACE_OPS_FL_ENABLED))
    		return -EBUSY;
    
    #ifndef CONFIG_DYNAMIC_FTRACE_WITH_REGS
    	/*
    	 * If the ftrace_ops specifies SAVE_REGS, then it only can be used
    	 * if the arch supports it, or SAVE_REGS_IF_SUPPORTED is also set.
    	 * Setting SAVE_REGS_IF_SUPPORTED makes SAVE_REGS irrelevant.
    	 */
    	if (ops->flags & FTRACE_OPS_FL_SAVE_REGS &&
    	    !(ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED))
    		return -EINVAL;
    
    	if (ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED)
    		ops->flags |= FTRACE_OPS_FL_SAVE_REGS;
    #endif
    
    	if (!core_kernel_data((unsigned long)ops))
    		ops->flags |= FTRACE_OPS_FL_DYNAMIC;
    
    	add_ftrace_ops(&ftrace_ops_list, ops);
    
    	/* Always save the function, and reset at unregistering */
    	ops->saved_func = ops->func;
    
    	if (ftrace_pids_enabled(ops))
    		ops->func = ftrace_pid_func;
    
    	ftrace_update_trampoline(ops);
    
    	if (ftrace_enabled)
    		update_ftrace_function();
    
    	return 0;
    }
    
    static int __unregister_ftrace_function(struct ftrace_ops *ops)
    {
    	int ret;
    
    	if (WARN_ON(!(ops->flags & FTRACE_OPS_FL_ENABLED)))
    		return -EBUSY;
    
    	ret = remove_ftrace_ops(&ftrace_ops_list, ops);
    
    	if (ret < 0)
    		return ret;
    
    	if (ftrace_enabled)
    		update_ftrace_function();
    
    	ops->func = ops->saved_func;
    
    	return 0;
    }
    
    static void ftrace_update_pid_func(void)
    {
    	struct ftrace_ops *op;
    
    	/* Only do something if we are tracing something */
    	if (ftrace_trace_function == ftrace_stub)
    		return;
    
    	do_for_each_ftrace_op(op, ftrace_ops_list) {
    		if (op->flags & FTRACE_OPS_FL_PID) {
    			op->func = ftrace_pids_enabled(op) ?
    				ftrace_pid_func : op->saved_func;
    			ftrace_update_trampoline(op);
    		}
    	} while_for_each_ftrace_op(op);
    
    	update_ftrace_function();
    }
    
    #ifdef CONFIG_FUNCTION_PROFILER
    struct ftrace_profile {
    	struct hlist_node		node;
    	unsigned long			ip;
    	unsigned long			counter;
    #ifdef CONFIG_FUNCTION_GRAPH_TRACER
    	unsigned long long		time;
    	unsigned long long		time_squared;
    #endif
    };
    
    struct ftrace_profile_page {
    	struct ftrace_profile_page	*next;
    	unsigned long			index;
    	struct ftrace_profile		records[];
    };
    
    struct ftrace_profile_stat {
    	atomic_t			disabled;
    	struct hlist_head		*hash;
    	struct ftrace_profile_page	*pages;
    	struct ftrace_profile_page	*start;
    	struct tracer_stat		stat;
    };
    
    #define PROFILE_RECORDS_SIZE						\
    	(PAGE_SIZE - offsetof(struct ftrace_profile_page, records))
    
    #define PROFILES_PER_PAGE					\
    	(PROFILE_RECORDS_SIZE / sizeof(struct ftrace_profile))
    
    static int ftrace_profile_enabled __read_mostly;
    
    /* ftrace_profile_lock - synchronize the enable and disable of the profiler */
    static DEFINE_MUTEX(ftrace_profile_lock);
    
    static DEFINE_PER_CPU(struct ftrace_profile_stat, ftrace_profile_stats);
    
    #define FTRACE_PROFILE_HASH_BITS 10
    #define FTRACE_PROFILE_HASH_SIZE (1 << FTRACE_PROFILE_HASH_BITS)
    
    static void *
    function_stat_next(void *v, int idx)
    {
    	struct ftrace_profile *rec = v;
    	struct ftrace_profile_page *pg;
    
    	pg = (struct ftrace_profile_page *)((unsigned long)rec & PAGE_MASK);
    
     again:
    	if (idx != 0)
    		rec++;
    
    	if ((void *)rec >= (void *)&pg->records[pg->index]) {
    		pg = pg->next;
    		if (!pg)
    			return NULL;
    		rec = &pg->records[0];
    		if (!rec->counter)
    			goto again;
    	}
    
    	return rec;
    }
    
    static void *function_stat_start(struct tracer_stat *trace)
    {
    	struct ftrace_profile_stat *stat =
    		container_of(trace, struct ftrace_profile_stat, stat);
    
    	if (!stat || !stat->start)
    		return NULL;
    
    	return function_stat_next(&stat->start->records[0], 0);
    }
    
    #ifdef CONFIG_FUNCTION_GRAPH_TRACER
    /* function graph compares on total time */
    static int function_stat_cmp(void *p1, void *p2)
    {
    	struct ftrace_profile *a = p1;
    	struct ftrace_profile *b = p2;
    
    	if (a->time < b->time)
    		return -1;
    	if (a->time > b->time)
    		return 1;
    	else
    		return 0;
    }
    #else
    /* not function graph compares against hits */
    static int function_stat_cmp(void *p1, void *p2)
    {
    	struct ftrace_profile *a = p1;
    	struct ftrace_profile *b = p2;
    
    	if (a->counter < b->counter)
    		return -1;
    	if (a->counter > b->counter)
    		return 1;
    	else
    		return 0;
    }
    #endif
    
    static int function_stat_headers(struct seq_file *m)
    {
    #ifdef CONFIG_FUNCTION_GRAPH_TRACER
    	seq_puts(m, "  Function                               "
    		 "Hit    Time            Avg             s^2\n"
    		    "  --------                               "
    		 "---    ----            ---             ---\n");
    #else
    	seq_puts(m, "  Function                               Hit\n"
    		    "  --------                               ---\n");
    #endif
    	return 0;
    }
    
    static int function_stat_show(struct seq_file *m, void *v)
    {
    	struct ftrace_profile *rec = v;
    	char str[KSYM_SYMBOL_LEN];
    	int ret = 0;
    #ifdef CONFIG_FUNCTION_GRAPH_TRACER
    	static struct trace_seq s;
    	unsigned long long avg;
    	unsigned long long stddev;
    #endif
    	mutex_lock(&ftrace_profile_lock);
    
    	/* we raced with function_profile_reset() */
    	if (unlikely(rec->counter == 0)) {
    		ret = -EBUSY;
    		goto out;
    	}
    
    #ifdef CONFIG_FUNCTION_GRAPH_TRACER
    	avg = rec->time;
    	do_div(avg, rec->counter);
    	if (tracing_thresh && (avg < tracing_thresh))
    		goto out;
    #endif
    
    	kallsyms_lookup(rec->ip, NULL, NULL, NULL, str);
    	seq_printf(m, "  %-30.30s  %10lu", str, rec->counter);
    
    #ifdef CONFIG_FUNCTION_GRAPH_TRACER
    	seq_puts(m, "    ");
    
    	/* Sample standard deviation (s^2) */
    	if (rec->counter <= 1)
    		stddev = 0;
    	else {
    		/*
    		 * Apply Welford's method:
    		 * s^2 = 1 / (n * (n-1)) * (n * \Sum (x_i)^2 - (\Sum x_i)^2)
    		 */
    		stddev = rec->counter * rec->time_squared -
    			 rec->time * rec->time;
    
    		/*
    		 * Divide only 1000 for ns^2 -> us^2 conversion.
    		 * trace_print_graph_duration will divide 1000 again.
    		 */
    		do_div(stddev, rec->counter * (rec->counter - 1) * 1000);
    	}
    
    	trace_seq_init(&s);
    	trace_print_graph_duration(rec->time, &s);
    	trace_seq_puts(&s, "    ");
    	trace_print_graph_duration(avg, &s);
    	trace_seq_puts(&s, "    ");
    	trace_print_graph_duration(stddev, &s);
    	trace_print_seq(m, &s);
    #endif
    	seq_putc(m, '\n');
    out:
    	mutex_unlock(&ftrace_profile_lock);
    
    	return ret;
    }
    
    static void ftrace_profile_reset(struct ftrace_profile_stat *stat)
    {
    	struct ftrace_profile_page *pg;
    
    	pg = stat->pages = stat->start;
    
    	while (pg) {
    		memset(pg->records, 0, PROFILE_RECORDS_SIZE);
    		pg->index = 0;
    		pg = pg->next;
    	}
    
    	memset(stat->hash, 0,
    	       FTRACE_PROFILE_HASH_SIZE * sizeof(struct hlist_head));
    }
    
    int ftrace_profile_pages_init(struct ftrace_profile_stat *stat)
    {
    	struct ftrace_profile_page *pg;
    	int functions;
    	int pages;
    	int i;
    
    	/* If we already allocated, do nothing */
    	if (stat->pages)
    		return 0;
    
    	stat->pages = (void *)get_zeroed_page(GFP_KERNEL);
    	if (!stat->pages)
    		return -ENOMEM;
    
    #ifdef CONFIG_DYNAMIC_FTRACE
    	functions = ftrace_update_tot_cnt;
    #else
    	/*
    	 * We do not know the number of functions that exist because
    	 * dynamic tracing is what counts them. With past experience
    	 * we have around 20K functions. That should be more than enough.
    	 * It is highly unlikely we will execute every function in
    	 * the kernel.
    	 */
    	functions = 20000;
    #endif
    
    	pg = stat->start = stat->pages;
    
    	pages = DIV_ROUND_UP(functions, PROFILES_PER_PAGE);
    
    	for (i = 1; i < pages; i++) {
    		pg->next = (void *)get_zeroed_page(GFP_KERNEL);
    		if (!pg->next)
    			goto out_free;
    		pg = pg->next;
    	}
    
    	return 0;
    
     out_free:
    	pg = stat->start;
    	while (pg) {
    		unsigned long tmp = (unsigned long)pg;
    
    		pg = pg->next;
    		free_page(tmp);
    	}
    
    	stat->pages = NULL;
    	stat->start = NULL;
    
    	return -ENOMEM;
    }
    
    static int ftrace_profile_init_cpu(int cpu)
    {
    	struct ftrace_profile_stat *stat;
    	int size;
    
    	stat = &per_cpu(ftrace_profile_stats, cpu);
    
    	if (stat->hash) {
    		/* If the profile is already created, simply reset it */
    		ftrace_profile_reset(stat);
    		return 0;
    	}
    
    	/*
    	 * We are profiling all functions, but usually only a few thousand
    	 * functions are hit. We'll make a hash of 1024 items.
    	 */
    	size = FTRACE_PROFILE_HASH_SIZE;
    
    	stat->hash = kzalloc(sizeof(struct hlist_head) * size, GFP_KERNEL);
    
    	if (!stat->hash)
    		return -ENOMEM;
    
    	/* Preallocate the function profiling pages */
    	if (ftrace_profile_pages_init(stat) < 0) {
    		kfree(stat->hash);
    		stat->hash = NULL;
    		return -ENOMEM;
    	}
    
    	return 0;
    }
    
    static int ftrace_profile_init(void)
    {
    	int cpu;
    	int ret = 0;
    
    	for_each_possible_cpu(cpu) {
    		ret = ftrace_profile_init_cpu(cpu);
    		if (ret)
    			break;
    	}
    
    	return ret;
    }
    
    /* interrupts must be disabled */
    static struct ftrace_profile *
    ftrace_find_profiled_func(struct ftrace_profile_stat *stat, unsigned long ip)
    {
    	struct ftrace_profile *rec;
    	struct hlist_head *hhd;
    	unsigned long key;
    
    	key = hash_long(ip, FTRACE_PROFILE_HASH_BITS);
    	hhd = &stat->hash[key];
    
    	if (hlist_empty(hhd))
    		return NULL;
    
    	hlist_for_each_entry_rcu_notrace(rec, hhd, node) {
    		if (rec->ip == ip)
    			return rec;
    	}
    
    	return NULL;
    }
    
    static void ftrace_add_profile(struct ftrace_profile_stat *stat,
    			       struct ftrace_profile *rec)
    {
    	unsigned long key;
    
    	key = hash_long(rec->ip, FTRACE_PROFILE_HASH_BITS);
    	hlist_add_head_rcu(&rec->node, &stat->hash[key]);
    }
    
    /*
     * The memory is already allocated, this simply finds a new record to use.
     */
    static struct ftrace_profile *
    ftrace_profile_alloc(struct ftrace_profile_stat *stat, unsigned long ip)
    {
    	struct ftrace_profile *rec = NULL;
    
    	/* prevent recursion (from NMIs) */
    	if (atomic_inc_return(&stat->disabled) != 1)
    		goto out;
    
    	/*
    	 * Try to find the function again since an NMI
    	 * could have added it
    	 */
    	rec = ftrace_find_profiled_func(stat, ip);
    	if (rec)
    		goto out;
    
    	if (stat->pages->index == PROFILES_PER_PAGE) {
    		if (!stat->pages->next)
    			goto out;
    		stat->pages = stat->pages->next;
    	}
    
    	rec = &stat->pages->records[stat->pages->index++];
    	rec->ip = ip;
    	ftrace_add_profile(stat, rec);
    
     out:
    	atomic_dec(&stat->disabled);
    
    	return rec;
    }
    
    static void
    function_profile_call(unsigned long ip, unsigned long parent_ip,
    		      struct ftrace_ops *ops, struct pt_regs *regs)
    {
    	struct ftrace_profile_stat *stat;
    	struct ftrace_profile *rec;
    	unsigned long flags;
    
    	if (!ftrace_profile_enabled)
    		return;
    
    	local_irq_save(flags);
    
    	stat = this_cpu_ptr(&ftrace_profile_stats);
    	if (!stat->hash || !ftrace_profile_enabled)
    		goto out;
    
    	rec = ftrace_find_profiled_func(stat, ip);
    	if (!rec) {
    		rec = ftrace_profile_alloc(stat, ip);
    		if (!rec)
    			goto out;
    	}
    
    	rec->counter++;
     out:
    	local_irq_restore(flags);
    }
    
    #ifdef CONFIG_FUNCTION_GRAPH_TRACER
    static int profile_graph_entry(struct ftrace_graph_ent *trace)
    {
    	int index = trace->depth;
    
    	function_profile_call(trace->func, 0, NULL, NULL);
    
    	/* If function graph is shutting down, ret_stack can be NULL */
    	if (!current->ret_stack)
    		return 0;
    
    	if (index >= 0 && index < FTRACE_RETFUNC_DEPTH)
    		current->ret_stack[index].subtime = 0;
    
    	return 1;
    }
    
    static void profile_graph_return(struct ftrace_graph_ret *trace)
    {
    	struct ftrace_profile_stat *stat;
    	unsigned long long calltime;
    	struct ftrace_profile *rec;
    	unsigned long flags;
    
    	local_irq_save(flags);
    	stat = this_cpu_ptr(&ftrace_profile_stats);
    	if (!stat->hash || !ftrace_profile_enabled)
    		goto out;
    
    	/* If the calltime was zero'd ignore it */
    	if (!trace->calltime)
    		goto out;
    
    	calltime = trace->rettime - trace->calltime;
    
    	if (!fgraph_graph_time) {
    		int index;
    
    		index = trace->depth;
    
    		/* Append this call time to the parent time to subtract */
    		if (index)
    			current->ret_stack[index - 1].subtime += calltime;
    
    		if (current->ret_stack[index].subtime < calltime)
    			calltime -= current->ret_stack[index].subtime;
    		else
    			calltime = 0;
    	}
    
    	rec = ftrace_find_profiled_func(stat, trace->func);
    	if (rec) {
    		rec->time += calltime;
    		rec->time_squared += calltime * calltime;
    	}
    
     out:
    	local_irq_restore(flags);
    }
    
    static int register_ftrace_profiler(void)
    {
    	return register_ftrace_graph(&profile_graph_return,
    				     &profile_graph_entry);
    }
    
    static void unregister_ftrace_profiler(void)
    {
    	unregister_ftrace_graph();
    }
    #else
    static struct ftrace_ops ftrace_profile_ops __read_mostly = {
    	.func		= function_profile_call,
    	.flags		= FTRACE_OPS_FL_RECURSION_SAFE | FTRACE_OPS_FL_INITIALIZED,
    	INIT_OPS_HASH(ftrace_profile_ops)
    };
    
    static int register_ftrace_profiler(void)
    {
    	return register_ftrace_function(&ftrace_profile_ops);
    }
    
    static void unregister_ftrace_profiler(void)
    {
    	unregister_ftrace_function(&ftrace_profile_ops);
    }
    #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
    
    static ssize_t
    ftrace_profile_write(struct file *filp, const char __user *ubuf,
    		     size_t cnt, loff_t *ppos)
    {
    	unsigned long val;
    	int ret;
    
    	ret = kstrtoul_from_user(ubuf, cnt, 10, &val);
    	if (ret)
    		return ret;
    
    	val = !!val;
    
    	mutex_lock(&ftrace_profile_lock);
    	if (ftrace_profile_enabled ^ val) {
    		if (val) {
    			ret = ftrace_profile_init();
    			if (ret < 0) {
    				cnt = ret;
    				goto out;
    			}
    
    			ret = register_ftrace_profiler();
    			if (ret < 0) {
    				cnt = ret;
    				goto out;
    			}
    			ftrace_profile_enabled = 1;
    		} else {
    			ftrace_profile_enabled = 0;
    			/*
    			 * unregister_ftrace_profiler calls stop_machine
    			 * so this acts like an synchronize_sched.
    			 */
    			unregister_ftrace_profiler();
    		}
    	}
     out:
    	mutex_unlock(&ftrace_profile_lock);
    
    	*ppos += cnt;
    
    	return cnt;
    }
    
    static ssize_t
    ftrace_profile_read(struct file *filp, char __user *ubuf,
    		     size_t cnt, loff_t *ppos)
    {
    	char buf[64];		/* big enough to hold a number */
    	int r;
    
    	r = sprintf(buf, "%u\n", ftrace_profile_enabled);
    	return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
    }
    
    static const struct file_operations ftrace_profile_fops = {
    	.open		= tracing_open_generic,
    	.read		= ftrace_profile_read,
    	.write		= ftrace_profile_write,
    	.llseek		= default_llseek,
    };
    
    /* used to initialize the real stat files */
    static struct tracer_stat function_stats __initdata = {
    	.name		= "functions",
    	.stat_start	= function_stat_start,
    	.stat_next	= function_stat_next,
    	.stat_cmp	= function_stat_cmp,
    	.stat_headers	= function_stat_headers,
    	.stat_show	= function_stat_show
    };
    
    static __init void ftrace_profile_tracefs(struct dentry *d_tracer)
    {
    	struct ftrace_profile_stat *stat;
    	struct dentry *entry;
    	char *name;
    	int ret;
    	int cpu;
    
    	for_each_possible_cpu(cpu) {
    		stat = &per_cpu(ftrace_profile_stats, cpu);
    
    		name = kasprintf(GFP_KERNEL, "function%d", cpu);
    		if (!name) {
    			/*
    			 * The files created are permanent, if something happens
    			 * we still do not free memory.
    			 */
    			WARN(1,
    			     "Could not allocate stat file for cpu %d\n",
    			     cpu);
    			return;
    		}
    		stat->stat = function_stats;
    		stat->stat.name = name;
    		ret = register_stat_tracer(&stat->stat);
    		if (ret) {
    			WARN(1,
    			     "Could not register function stat for cpu %d\n",
    			     cpu);
    			kfree(name);
    			return;
    		}
    	}
    
    	entry = tracefs_create_file("function_profile_enabled", 0644,
    				    d_tracer, NULL, &ftrace_profile_fops);
    	if (!entry)
    		pr_warn("Could not create tracefs 'function_profile_enabled' entry\n");
    }
    
    #else /* CONFIG_FUNCTION_PROFILER */
    static __init void ftrace_profile_tracefs(struct dentry *d_tracer)
    {
    }
    #endif /* CONFIG_FUNCTION_PROFILER */
    
    static struct pid * const ftrace_swapper_pid = &init_struct_pid;
    
    #ifdef CONFIG_FUNCTION_GRAPH_TRACER
    static int ftrace_graph_active;
    #else
    # define ftrace_graph_active 0
    #endif
    
    #ifdef CONFIG_DYNAMIC_FTRACE
    
    static struct ftrace_ops *removed_ops;
    
    /*
     * Set when doing a global update, like enabling all recs or disabling them.
     * It is not set when just updating a single ftrace_ops.
     */
    static bool update_all_ops;
    
    #ifndef CONFIG_FTRACE_MCOUNT_RECORD
    # error Dynamic ftrace depends on MCOUNT_RECORD
    #endif
    
    struct ftrace_func_entry {
    	struct hlist_node hlist;
    	unsigned long ip;
    };
    
    struct ftrace_func_probe {
    	struct ftrace_probe_ops	*probe_ops;
    	struct ftrace_ops	ops;
    	struct trace_array	*tr;
    	struct list_head	list;
    	void			*data;
    	int			ref;
    };
    
    /*
     * We make these constant because no one should touch them,
     * but they are used as the default "empty hash", to avoid allocating
     * it all the time. These are in a read only section such that if
     * anyone does try to modify it, it will cause an exception.
     */
    static const struct hlist_head empty_buckets[1];
    static const struct ftrace_hash empty_hash = {
    	.buckets = (struct hlist_head *)empty_buckets,
    };
    #define EMPTY_HASH	((struct ftrace_hash *)&empty_hash)
    
    static struct ftrace_ops global_ops = {
    	.func				= ftrace_stub,
    	.local_hash.notrace_hash	= EMPTY_HASH,
    	.local_hash.filter_hash		= EMPTY_HASH,
    	INIT_OPS_HASH(global_ops)
    	.flags				= FTRACE_OPS_FL_RECURSION_SAFE |
    					  FTRACE_OPS_FL_INITIALIZED |
    					  FTRACE_OPS_FL_PID,
    };
    
    /*
     * Used by the stack undwinder to know about dynamic ftrace trampolines.
     */
    struct ftrace_ops *ftrace_ops_trampoline(unsigned long addr)
    {
    	struct ftrace_ops *op = NULL;
    
    	/*
    	 * Some of the ops may be dynamically allocated,
    	 * they are freed after a synchronize_sched().
    	 */
    	preempt_disable_notrace();
    
    	do_for_each_ftrace_op(op, ftrace_ops_list) {
    		/*
    		 * This is to check for dynamically allocated trampolines.
    		 * Trampolines that are in kernel text will have
    		 * core_kernel_text() return true.
    		 */
    		if (op->trampoline && op->trampoline_size)
    			if (addr >= op->trampoline &&
    			    addr < op->trampoline + op->trampoline_size) {
    				preempt_enable_notrace();
    				return op;
    			}
    	} while_for_each_ftrace_op(op);
    	preempt_enable_notrace();
    
    	return NULL;
    }
    
    /*
     * This is used by __kernel_text_address() to return true if the
     * address is on a dynamically allocated trampoline that would
     * not return true for either core_kernel_text() or
     * is_module_text_address().
     */
    bool is_ftrace_trampoline(unsigned long addr)
    {
    	return ftrace_ops_trampoline(addr) != NULL;
    }
    
    struct ftrace_page {
    	struct ftrace_page	*next;
    	struct dyn_ftrace	*records;
    	int			index;
    	int			size;
    };
    
    #define ENTRY_SIZE sizeof(struct dyn_ftrace)
    #define ENTRIES_PER_PAGE (PAGE_SIZE / ENTRY_SIZE)
    
    /* estimate from running different kernels */
    #define NR_TO_INIT		10000
    
    static struct ftrace_page	*ftrace_pages_start;
    static struct ftrace_page	*ftrace_pages;
    
    static __always_inline unsigned long
    ftrace_hash_key(struct ftrace_hash *hash, unsigned long ip)
    {
    	if (hash->size_bits > 0)
    		return hash_long(ip, hash->size_bits);
    
    	return 0;
    }
    
    /* Only use this function if ftrace_hash_empty() has already been tested */
    static __always_inline struct ftrace_func_entry *
    __ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip)
    {
    	unsigned long key;
    	struct ftrace_func_entry *entry;
    	struct hlist_head *hhd;
    
    	key = ftrace_hash_key(hash, ip);
    	hhd = &hash->buckets[key];
    
    	hlist_for_each_entry_rcu_notrace(entry, hhd, hlist) {
    		if (entry->ip == ip)
    			return entry;
    	}
    	return NULL;
    }
    
    /**
     * ftrace_lookup_ip - Test to see if an ip exists in an ftrace_hash
     * @hash: The hash to look at
     * @ip: The instruction pointer to test
     *
     * Search a given @hash to see if a given instruction pointer (@ip)
     * exists in it.
     *
     * Returns the entry that holds the @ip if found. NULL otherwise.
     */
    struct ftrace_func_entry *
    ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip)
    {
    	if (ftrace_hash_empty(hash))
    		return NULL;
    
    	return __ftrace_lookup_ip(hash, ip);
    }
    
    static void __add_hash_entry(struct ftrace_hash *hash,
    			     struct ftrace_func_entry *entry)
    {
    	struct hlist_head *hhd;
    	unsigned long key;
    
    	key = ftrace_hash_key(hash, entry->ip);
    	hhd = &hash->buckets[key];
    	hlist_add_head(&entry->hlist, hhd);
    	hash->count++;
    }
    
    static int add_hash_entry(struct ftrace_hash *hash, unsigned long ip)
    {
    	struct ftrace_func_entry *entry;
    
    	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
    	if (!entry)
    		return -ENOMEM;
    
    	entry->ip = ip;
    	__add_hash_entry(hash, entry);
    
    	return 0;
    }
    
    static void
    free_hash_entry(struct ftrace_hash *hash,
    		  struct ftrace_func_entry *entry)
    {
    	hlist_del(&entry->hlist);
    	kfree(entry);
    	hash->count--;
    }
    
    static void
    remove_hash_entry(struct ftrace_hash *hash,
    		  struct ftrace_func_entry *entry)
    {
    	hlist_del_rcu(&entry->hlist);
    	hash->count--;
    }
    
    static void ftrace_hash_clear(struct ftrace_hash *hash)
    {
    	struct hlist_head *hhd;
    	struct hlist_node *tn;
    	struct ftrace_func_entry *entry;
    	int size = 1 << hash->size_bits;
    	int i;
    
    	if (!hash->count)
    		return;
    
    	for (i = 0; i < size; i++) {
    		hhd = &hash->buckets[i];
    		hlist_for_each_entry_safe(entry, tn, hhd, hlist)
    			free_hash_entry(hash, entry);
    	}
    	FTRACE_WARN_ON(hash->count);
    }
    
    static void free_ftrace_mod(struct ftrace_mod_load *ftrace_mod)
    {
    	list_del(&ftrace_mod->list);
    	kfree(ftrace_mod->module);
    	kfree(ftrace_mod->func);
    	kfree(ftrace_mod);
    }
    
    static void clear_ftrace_mod_list(struct list_head *head)
    {
    	struct ftrace_mod_load *p, *n;
    
    	/* stack tracer isn't supported yet */
    	if (!head)
    		return;
    
    	mutex_lock(&ftrace_lock);
    	list_for_each_entry_safe(p, n, head, list)
    		free_ftrace_mod(p);
    	mutex_unlock(&ftrace_lock);
    }
    
    static void free_ftrace_hash(struct ftrace_hash *hash)
    {
    	if (!hash || hash == EMPTY_HASH)
    		return;
    	ftrace_hash_clear(hash);
    	kfree(hash->buckets);
    	kfree(hash);
    }
    
    static void __free_ftrace_hash_rcu(struct rcu_head *rcu)
    {
    	struct ftrace_hash *hash;
    
    	hash = container_of(rcu, struct ftrace_hash, rcu);
    	free_ftrace_hash(hash);
    }
    
    static void free_ftrace_hash_rcu(struct ftrace_hash *hash)
    {
    	if (!hash || hash == EMPTY_HASH)
    		return;
    	call_rcu_sched(&hash->rcu, __free_ftrace_hash_rcu);
    }
    
    void ftrace_free_filter(struct ftrace_ops *ops)
    {
    	ftrace_ops_init(ops);
    	free_ftrace_hash(ops->func_hash->filter_hash);
    	free_ftrace_hash(ops->func_hash->notrace_hash);
    }
    
    static struct ftrace_hash *alloc_ftrace_hash(int size_bits)
    {
    	struct ftrace_hash *hash;
    	int size;
    
    	hash = kzalloc(sizeof(*hash), GFP_KERNEL);
    	if (!hash)
    		return NULL;
    
    	size = 1 << size_bits;
    	hash->buckets = kcalloc(size, sizeof(*hash->buckets), GFP_KERNEL);
    
    	if (!hash->buckets) {
    		kfree(hash);
    		return NULL;
    	}
    
    	hash->size_bits = size_bits;
    
    	return hash;
    }
    
    
    static int ftrace_add_mod(struct trace_array *tr,
    			  const char *func, const char *module,
    			  int enable)
    {
    	struct ftrace_mod_load *ftrace_mod;
    	struct list_head *mod_head = enable ? &tr->mod_trace : &tr->mod_notrace;
    
    	ftrace_mod = kzalloc(sizeof(*ftrace_mod), GFP_KERNEL);
    	if (!ftrace_mod)
    		return -ENOMEM;
    
    	ftrace_mod->func = kstrdup(func, GFP_KERNEL);
    	ftrace_mod->module = kstrdup(module, GFP_KERNEL);
    	ftrace_mod->enable = enable;
    
    	if (!ftrace_mod->func || !ftrace_mod->module)
    		goto out_free;
    
    	list_add(&ftrace_mod->list, mod_head);
    
    	return 0;
    
     out_free:
    	free_ftrace_mod(ftrace_mod);
    
    	return -ENOMEM;
    }
    
    static struct ftrace_hash *
    alloc_and_copy_ftrace_hash(int size_bits, struct ftrace_hash *hash)
    {
    	struct ftrace_func_entry *entry;
    	struct ftrace_hash *new_hash;
    	int size;
    	int ret;
    	int i;
    
    	new_hash = alloc_ftrace_hash(size_bits);
    	if (!new_hash)
    		return NULL;
    
    	if (hash)
    		new_hash->flags = hash->flags;
    
    	/* Empty hash? */
    	if (ftrace_hash_empty(hash))
    		return new_hash;
    
    	size = 1 << hash->size_bits;
    	for (i = 0; i < size; i++) {
    		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
    			ret = add_hash_entry(new_hash, entry->ip);
    			if (ret < 0)
    				goto free_hash;
    		}
    	}
    
    	FTRACE_WARN_ON(new_hash->count != hash->count);
    
    	return new_hash;
    
     free_hash:
    	free_ftrace_hash(new_hash);
    	return NULL;
    }
    
    static void
    ftrace_hash_rec_disable_modify(struct ftrace_ops *ops, int filter_hash);
    static void
    ftrace_hash_rec_enable_modify(struct ftrace_ops *ops, int filter_hash);
    
    static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops,
    				       struct ftrace_hash *new_hash);
    
    static struct ftrace_hash *
    __ftrace_hash_move(struct ftrace_hash *src)
    {
    	struct ftrace_func_entry *entry;
    	struct hlist_node *tn;
    	struct hlist_head *hhd;
    	struct ftrace_hash *new_hash;
    	int size = src->count;
    	int bits = 0;
    	int i;
    
    	/*
    	 * If the new source is empty, just return the empty_hash.
    	 */
    	if (ftrace_hash_empty(src))
    		return EMPTY_HASH;
    
    	/*
    	 * Make the hash size about 1/2 the # found
    	 */
    	for (size /= 2; size; size >>= 1)
    		bits++;
    
    	/* Don't allocate too much */
    	if (bits > FTRACE_HASH_MAX_BITS)
    		bits = FTRACE_HASH_MAX_BITS;
    
    	new_hash = alloc_ftrace_hash(bits);
    	if (!new_hash)
    		return NULL;
    
    	new_hash->flags = src->flags;
    
    	size = 1 << src->size_bits;
    	for (i = 0; i < size; i++) {
    		hhd = &src->buckets[i];
    		hlist_for_each_entry_safe(entry, tn, hhd, hlist) {
    			remove_hash_entry(src, entry);
    			__add_hash_entry(new_hash, entry);
    		}
    	}
    
    	return new_hash;
    }
    
    static int
    ftrace_hash_move(struct ftrace_ops *ops, int enable,
    		 struct ftrace_hash **dst, struct ftrace_hash *src)
    {
    	struct ftrace_hash *new_hash;
    	int ret;
    
    	/* Reject setting notrace hash on IPMODIFY ftrace_ops */
    	if (ops->flags & FTRACE_OPS_FL_IPMODIFY && !enable)
    		return -EINVAL;
    
    	new_hash = __ftrace_hash_move(src);
    	if (!new_hash)
    		return -ENOMEM;
    
    	/* Make sure this can be applied if it is IPMODIFY ftrace_ops */
    	if (enable) {
    		/* IPMODIFY should be updated only when filter_hash updating */
    		ret = ftrace_hash_ipmodify_update(ops, new_hash);
    		if (ret < 0) {
    			free_ftrace_hash(new_hash);
    			return ret;
    		}
    	}
    
    	/*
    	 * Remove the current set, update the hash and add
    	 * them back.
    	 */
    	ftrace_hash_rec_disable_modify(ops, enable);
    
    	rcu_assign_pointer(*dst, new_hash);
    
    	ftrace_hash_rec_enable_modify(ops, enable);
    
    	return 0;
    }
    
    static bool hash_contains_ip(unsigned long ip,
    			     struct ftrace_ops_hash *hash)
    {
    	/*
    	 * The function record is a match if it exists in the filter
    	 * hash and not in the notrace hash. Note, an emty hash is
    	 * considered a match for the filter hash, but an empty
    	 * notrace hash is considered not in the notrace hash.
    	 */
    	return (ftrace_hash_empty(hash->filter_hash) ||
    		__ftrace_lookup_ip(hash->filter_hash, ip)) &&
    		(ftrace_hash_empty(hash->notrace_hash) ||
    		 !__ftrace_lookup_ip(hash->notrace_hash, ip));
    }
    
    /*
     * Test the hashes for this ops to see if we want to call
     * the ops->func or not.
     *
     * It's a match if the ip is in the ops->filter_hash or
     * the filter_hash does not exist or is empty,
     *  AND
     * the ip is not in the ops->notrace_hash.
     *
     * This needs to be called with preemption disabled as
     * the hashes are freed with call_rcu_sched().
     */
    static int
    ftrace_ops_test(struct ftrace_ops *ops, unsigned long ip, void *regs)
    {
    	struct ftrace_ops_hash hash;
    	int ret;
    
    #ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS
    	/*
    	 * There's a small race when adding ops that the ftrace handler
    	 * that wants regs, may be called without them. We can not
    	 * allow that handler to be called if regs is NULL.
    	 */
    	if (regs == NULL && (ops->flags & FTRACE_OPS_FL_SAVE_REGS))
    		return 0;
    #endif
    
    	rcu_assign_pointer(hash.filter_hash, ops->func_hash->filter_hash);
    	rcu_assign_pointer(hash.notrace_hash, ops->func_hash->notrace_hash);
    
    	if (hash_contains_ip(ip, &hash))
    		ret = 1;
    	else
    		ret = 0;
    
    	return ret;
    }
    
    /*
     * This is a double for. Do not use 'break' to break out of the loop,
     * you must use a goto.
     */
    #define do_for_each_ftrace_rec(pg, rec)					\
    	for (pg = ftrace_pages_start; pg; pg = pg->next) {		\
    		int _____i;						\
    		for (_____i = 0; _____i < pg->index; _____i++) {	\
    			rec = &pg->records[_____i];
    
    #define while_for_each_ftrace_rec()		\
    		}				\
    	}
    
    
    static int ftrace_cmp_recs(const void *a, const void *b)
    {
    	const struct dyn_ftrace *key = a;
    	const struct dyn_ftrace *rec = b;
    
    	if (key->flags < rec->ip)
    		return -1;
    	if (key->ip >= rec->ip + MCOUNT_INSN_SIZE)
    		return 1;
    	return 0;
    }
    
    /**
     * ftrace_location_range - return the first address of a traced location
     *	if it touches the given ip range
     * @start: start of range to search.
     * @end: end of range to search (inclusive). @end points to the last byte
     *	to check.
     *
     * Returns rec->ip if the related ftrace location is a least partly within
     * the given address range. That is, the first address of the instruction
     * that is either a NOP or call to the function tracer. It checks the ftrace
     * internal tables to determine if the address belongs or not.
     */
    unsigned long ftrace_location_range(unsigned long start, unsigned long end)
    {
    	struct ftrace_page *pg;
    	struct dyn_ftrace *rec;
    	struct dyn_ftrace key;
    
    	key.ip = start;
    	key.flags = end;	/* overload flags, as it is unsigned long */
    
    	for (pg = ftrace_pages_start; pg; pg = pg->next) {
    		if (end < pg->records[0].ip ||
    		    start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE))
    			continue;
    		rec = bsearch(&key, pg->records, pg->index,
    			      sizeof(struct dyn_ftrace),
    			      ftrace_cmp_recs);
    		if (rec)
    			return rec->ip;
    	}
    
    	return 0;
    }
    
    /**
     * ftrace_location - return true if the ip giving is a traced location
     * @ip: the instruction pointer to check
     *
     * Returns rec->ip if @ip given is a pointer to a ftrace location.
     * That is, the instruction that is either a NOP or call to
     * the function tracer. It checks the ftrace internal tables to
     * determine if the address belongs or not.
     */
    unsigned long ftrace_location(unsigned long ip)
    {
    	return ftrace_location_range(ip, ip);
    }
    
    /**
     * ftrace_text_reserved - return true if range contains an ftrace location
     * @start: start of range to search
     * @end: end of range to search (inclusive). @end points to the last byte to check.
     *
     * Returns 1 if @start and @end contains a ftrace location.
     * That is, the instruction that is either a NOP or call to
     * the function tracer. It checks the ftrace internal tables to
     * determine if the address belongs or not.
     */
    int ftrace_text_reserved(const void *start, const void *end)
    {
    	unsigned long ret;
    
    	ret = ftrace_location_range((unsigned long)start,
    				    (unsigned long)end);
    
    	return (int)!!ret;
    }
    
    /* Test if ops registered to this rec needs regs */
    static bool test_rec_ops_needs_regs(struct dyn_ftrace *rec)
    {
    	struct ftrace_ops *ops;
    	bool keep_regs = false;
    
    	for (ops = ftrace_ops_list;
    	     ops != &ftrace_list_end; ops = ops->next) {
    		/* pass rec in as regs to have non-NULL val */
    		if (ftrace_ops_test(ops, rec->ip, rec)) {
    			if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) {
    				keep_regs = true;
    				break;
    			}
    		}
    	}
    
    	return  keep_regs;
    }
    
    static bool __ftrace_hash_rec_update(struct ftrace_ops *ops,
    				     int filter_hash,
    				     bool inc)
    {
    	struct ftrace_hash *hash;
    	struct ftrace_hash *other_hash;
    	struct ftrace_page *pg;
    	struct dyn_ftrace *rec;
    	bool update = false;
    	int count = 0;
    	int all = false;
    
    	/* Only update if the ops has been registered */
    	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
    		return false;
    
    	/*
    	 * In the filter_hash case:
    	 *   If the count is zero, we update all records.
    	 *   Otherwise we just update the items in the hash.
    	 *
    	 * In the notrace_hash case:
    	 *   We enable the update in the hash.
    	 *   As disabling notrace means enabling the tracing,
    	 *   and enabling notrace means disabling, the inc variable
    	 *   gets inversed.
    	 */
    	if (filter_hash) {
    		hash = ops->func_hash->filter_hash;
    		other_hash = ops->func_hash->notrace_hash;
    		if (ftrace_hash_empty(hash))
    			all = true;
    	} else {
    		inc = !inc;
    		hash = ops->func_hash->notrace_hash;
    		other_hash = ops->func_hash->filter_hash;
    		/*
    		 * If the notrace hash has no items,
    		 * then there's nothing to do.
    		 */
    		if (ftrace_hash_empty(hash))
    			return false;
    	}
    
    	do_for_each_ftrace_rec(pg, rec) {
    		int in_other_hash = 0;
    		int in_hash = 0;
    		int match = 0;
    
    		if (rec->flags & FTRACE_FL_DISABLED)
    			continue;
    
    		if (all) {
    			/*
    			 * Only the filter_hash affects all records.
    			 * Update if the record is not in the notrace hash.
    			 */
    			if (!other_hash || !ftrace_lookup_ip(other_hash, rec->ip))
    				match = 1;
    		} else {
    			in_hash = !!ftrace_lookup_ip(hash, rec->ip);
    			in_other_hash = !!ftrace_lookup_ip(other_hash, rec->ip);
    
    			/*
    			 * If filter_hash is set, we want to match all functions
    			 * that are in the hash but not in the other hash.
    			 *
    			 * If filter_hash is not set, then we are decrementing.
    			 * That means we match anything that is in the hash
    			 * and also in the other_hash. That is, we need to turn
    			 * off functions in the other hash because they are disabled
    			 * by this hash.
    			 */
    			if (filter_hash && in_hash && !in_other_hash)
    				match = 1;
    			else if (!filter_hash && in_hash &&
    				 (in_other_hash || ftrace_hash_empty(other_hash)))
    				match = 1;
    		}
    		if (!match)
    			continue;
    
    		if (inc) {
    			rec->flags++;
    			if (FTRACE_WARN_ON(ftrace_rec_count(rec) == FTRACE_REF_MAX))
    				return false;
    
    			/*
    			 * If there's only a single callback registered to a
    			 * function, and the ops has a trampoline registered
    			 * for it, then we can call it directly.
    			 */
    			if (ftrace_rec_count(rec) == 1 && ops->trampoline)
    				rec->flags |= FTRACE_FL_TRAMP;
    			else
    				/*
    				 * If we are adding another function callback
    				 * to this function, and the previous had a
    				 * custom trampoline in use, then we need to go
    				 * back to the default trampoline.
    				 */
    				rec->flags &= ~FTRACE_FL_TRAMP;
    
    			/*
    			 * If any ops wants regs saved for this function
    			 * then all ops will get saved regs.
    			 */
    			if (ops->flags & FTRACE_OPS_FL_SAVE_REGS)
    				rec->flags |= FTRACE_FL_REGS;
    		} else {
    			if (FTRACE_WARN_ON(ftrace_rec_count(rec) == 0))
    				return false;
    			rec->flags--;
    
    			/*
    			 * If the rec had REGS enabled and the ops that is
    			 * being removed had REGS set, then see if there is
    			 * still any ops for this record that wants regs.
    			 * If not, we can stop recording them.
    			 */
    			if (ftrace_rec_count(rec) > 0 &&
    			    rec->flags & FTRACE_FL_REGS &&
    			    ops->flags & FTRACE_OPS_FL_SAVE_REGS) {
    				if (!test_rec_ops_needs_regs(rec))
    					rec->flags &= ~FTRACE_FL_REGS;
    			}
    
    			/*
    			 * If the rec had TRAMP enabled, then it needs to
    			 * be cleared. As TRAMP can only be enabled iff
    			 * there is only a single ops attached to it.
    			 * In otherwords, always disable it on decrementing.
    			 * In the future, we may set it if rec count is
    			 * decremented to one, and the ops that is left
    			 * has a trampoline.
    			 */
    			rec->flags &= ~FTRACE_FL_TRAMP;
    
    			/*
    			 * flags will be cleared in ftrace_check_record()
    			 * if rec count is zero.
    			 */
    		}
    		count++;
    
    		/* Must match FTRACE_UPDATE_CALLS in ftrace_modify_all_code() */
    		update |= ftrace_test_record(rec, 1) != FTRACE_UPDATE_IGNORE;
    
    		/* Shortcut, if we handled all records, we are done. */
    		if (!all && count == hash->count)
    			return update;
    	} while_for_each_ftrace_rec();
    
    	return update;
    }
    
    static bool ftrace_hash_rec_disable(struct ftrace_ops *ops,
    				    int filter_hash)
    {
    	return __ftrace_hash_rec_update(ops, filter_hash, 0);
    }
    
    static bool ftrace_hash_rec_enable(struct ftrace_ops *ops,
    				   int filter_hash)
    {
    	return __ftrace_hash_rec_update(ops, filter_hash, 1);
    }
    
    static void ftrace_hash_rec_update_modify(struct ftrace_ops *ops,
    					  int filter_hash, int inc)
    {
    	struct ftrace_ops *op;
    
    	__ftrace_hash_rec_update(ops, filter_hash, inc);
    
    	if (ops->func_hash != &global_ops.local_hash)
    		return;
    
    	/*
    	 * If the ops shares the global_ops hash, then we need to update
    	 * all ops that are enabled and use this hash.
    	 */
    	do_for_each_ftrace_op(op, ftrace_ops_list) {
    		/* Already done */
    		if (op == ops)
    			continue;
    		if (op->func_hash == &global_ops.local_hash)
    			__ftrace_hash_rec_update(op, filter_hash, inc);
    	} while_for_each_ftrace_op(op);
    }
    
    static void ftrace_hash_rec_disable_modify(struct ftrace_ops *ops,
    					   int filter_hash)
    {
    	ftrace_hash_rec_update_modify(ops, filter_hash, 0);
    }
    
    static void ftrace_hash_rec_enable_modify(struct ftrace_ops *ops,
    					  int filter_hash)
    {
    	ftrace_hash_rec_update_modify(ops, filter_hash, 1);
    }
    
    /*
     * Try to update IPMODIFY flag on each ftrace_rec. Return 0 if it is OK
     * or no-needed to update, -EBUSY if it detects a conflict of the flag
     * on a ftrace_rec, and -EINVAL if the new_hash tries to trace all recs.
     * Note that old_hash and new_hash has below meanings
     *  - If the hash is NULL, it hits all recs (if IPMODIFY is set, this is rejected)
     *  - If the hash is EMPTY_HASH, it hits nothing
     *  - Anything else hits the recs which match the hash entries.
     */
    static int __ftrace_hash_update_ipmodify(struct ftrace_ops *ops,
    					 struct ftrace_hash *old_hash,
    					 struct ftrace_hash *new_hash)
    {
    	struct ftrace_page *pg;
    	struct dyn_ftrace *rec, *end = NULL;
    	int in_old, in_new;
    
    	/* Only update if the ops has been registered */
    	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
    		return 0;
    
    	if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY))
    		return 0;
    
    	/*
    	 * Since the IPMODIFY is a very address sensitive action, we do not
    	 * allow ftrace_ops to set all functions to new hash.
    	 */
    	if (!new_hash || !old_hash)
    		return -EINVAL;
    
    	/* Update rec->flags */
    	do_for_each_ftrace_rec(pg, rec) {
    
    		if (rec->flags & FTRACE_FL_DISABLED)
    			continue;
    
    		/* We need to update only differences of filter_hash */
    		in_old = !!ftrace_lookup_ip(old_hash, rec->ip);
    		in_new = !!ftrace_lookup_ip(new_hash, rec->ip);
    		if (in_old == in_new)
    			continue;
    
    		if (in_new) {
    			/* New entries must ensure no others are using it */
    			if (rec->flags & FTRACE_FL_IPMODIFY)
    				goto rollback;
    			rec->flags |= FTRACE_FL_IPMODIFY;
    		} else /* Removed entry */
    			rec->flags &= ~FTRACE_FL_IPMODIFY;
    	} while_for_each_ftrace_rec();
    
    	return 0;
    
    rollback:
    	end = rec;
    
    	/* Roll back what we did above */
    	do_for_each_ftrace_rec(pg, rec) {
    
    		if (rec->flags & FTRACE_FL_DISABLED)
    			continue;
    
    		if (rec == end)
    			goto err_out;
    
    		in_old = !!ftrace_lookup_ip(old_hash, rec->ip);
    		in_new = !!ftrace_lookup_ip(new_hash, rec->ip);
    		if (in_old == in_new)
    			continue;
    
    		if (in_new)
    			rec->flags &= ~FTRACE_FL_IPMODIFY;
    		else
    			rec->flags |= FTRACE_FL_IPMODIFY;
    	} while_for_each_ftrace_rec();
    
    err_out:
    	return -EBUSY;
    }
    
    static int ftrace_hash_ipmodify_enable(struct ftrace_ops *ops)
    {
    	struct ftrace_hash *hash = ops->func_hash->filter_hash;
    
    	if (ftrace_hash_empty(hash))
    		hash = NULL;
    
    	return __ftrace_hash_update_ipmodify(ops, EMPTY_HASH, hash);
    }
    
    /* Disabling always succeeds */
    static void ftrace_hash_ipmodify_disable(struct ftrace_ops *ops)
    {
    	struct ftrace_hash *hash = ops->func_hash->filter_hash;
    
    	if (ftrace_hash_empty(hash))
    		hash = NULL;
    
    	__ftrace_hash_update_ipmodify(ops, hash, EMPTY_HASH);
    }
    
    static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops,
    				       struct ftrace_hash *new_hash)
    {
    	struct ftrace_hash *old_hash = ops->func_hash->filter_hash;
    
    	if (ftrace_hash_empty(old_hash))
    		old_hash = NULL;
    
    	if (ftrace_hash_empty(new_hash))
    		new_hash = NULL;
    
    	return __ftrace_hash_update_ipmodify(ops, old_hash, new_hash);
    }
    
    static void print_ip_ins(const char *fmt, const unsigned char *p)
    {
    	int i;
    
    	printk(KERN_CONT "%s", fmt);
    
    	for (i = 0; i < MCOUNT_INSN_SIZE; i++)
    		printk(KERN_CONT "%s%02x", i ? ":" : "", p[i]);
    }
    
    static struct ftrace_ops *
    ftrace_find_tramp_ops_any(struct dyn_ftrace *rec);
    static struct ftrace_ops *
    ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, struct ftrace_ops *ops);
    
    enum ftrace_bug_type ftrace_bug_type;
    const void *ftrace_expected;
    
    static void print_bug_type(void)
    {
    	switch (ftrace_bug_type) {
    	case FTRACE_BUG_UNKNOWN:
    		break;
    	case FTRACE_BUG_INIT:
    		pr_info("Initializing ftrace call sites\n");
    		break;
    	case FTRACE_BUG_NOP:
    		pr_info("Setting ftrace call site to NOP\n");
    		break;
    	case FTRACE_BUG_CALL:
    		pr_info("Setting ftrace call site to call ftrace function\n");
    		break;
    	case FTRACE_BUG_UPDATE:
    		pr_info("Updating ftrace call site to call a different ftrace function\n");
    		break;
    	}
    }
    
    /**
     * ftrace_bug - report and shutdown function tracer
     * @failed: The failed type (EFAULT, EINVAL, EPERM)
     * @rec: The record that failed
     *
     * The arch code that enables or disables the function tracing
     * can call ftrace_bug() when it has detected a problem in
     * modifying the code. @failed should be one of either:
     * EFAULT - if the problem happens on reading the @ip address
     * EINVAL - if what is read at @ip is not what was expected
     * EPERM - if the problem happens on writting to the @ip address
     */
    void ftrace_bug(int failed, struct dyn_ftrace *rec)
    {
    	unsigned long ip = rec ? rec->ip : 0;
    
    	switch (failed) {
    	case -EFAULT:
    		FTRACE_WARN_ON_ONCE(1);
    		pr_info("ftrace faulted on modifying ");
    		print_ip_sym(ip);
    		break;
    	case -EINVAL:
    		FTRACE_WARN_ON_ONCE(1);
    		pr_info("ftrace failed to modify ");
    		print_ip_sym(ip);
    		print_ip_ins(" actual:   ", (unsigned char *)ip);
    		pr_cont("\n");
    		if (ftrace_expected) {
    			print_ip_ins(" expected: ", ftrace_expected);
    			pr_cont("\n");
    		}
    		break;
    	case -EPERM:
    		FTRACE_WARN_ON_ONCE(1);
    		pr_info("ftrace faulted on writing ");
    		print_ip_sym(ip);
    		break;
    	default:
    		FTRACE_WARN_ON_ONCE(1);
    		pr_info("ftrace faulted on unknown error ");
    		print_ip_sym(ip);
    	}
    	print_bug_type();
    	if (rec) {
    		struct ftrace_ops *ops = NULL;
    
    		pr_info("ftrace record flags: %lx\n", rec->flags);
    		pr_cont(" (%ld)%s", ftrace_rec_count(rec),
    			rec->flags & FTRACE_FL_REGS ? " R" : "  ");
    		if (rec->flags & FTRACE_FL_TRAMP_EN) {
    			ops = ftrace_find_tramp_ops_any(rec);
    			if (ops) {
    				do {
    					pr_cont("\ttramp: %pS (%pS)",
    						(void *)ops->trampoline,
    						(void *)ops->func);
    					ops = ftrace_find_tramp_ops_next(rec, ops);
    				} while (ops);
    			} else
    				pr_cont("\ttramp: ERROR!");
    
    		}
    		ip = ftrace_get_addr_curr(rec);
    		pr_cont("\n expected tramp: %lx\n", ip);
    	}
    }
    
    static int ftrace_check_record(struct dyn_ftrace *rec, int enable, int update)
    {
    	unsigned long flag = 0UL;
    
    	ftrace_bug_type = FTRACE_BUG_UNKNOWN;
    
    	if (rec->flags & FTRACE_FL_DISABLED)
    		return FTRACE_UPDATE_IGNORE;
    
    	/*
    	 * If we are updating calls:
    	 *
    	 *   If the record has a ref count, then we need to enable it
    	 *   because someone is using it.
    	 *
    	 *   Otherwise we make sure its disabled.
    	 *
    	 * If we are disabling calls, then disable all records that
    	 * are enabled.
    	 */
    	if (enable && ftrace_rec_count(rec))
    		flag = FTRACE_FL_ENABLED;
    
    	/*
    	 * If enabling and the REGS flag does not match the REGS_EN, or
    	 * the TRAMP flag doesn't match the TRAMP_EN, then do not ignore
    	 * this record. Set flags to fail the compare against ENABLED.
    	 */
    	if (flag) {
    		if (!(rec->flags & FTRACE_FL_REGS) != 
    		    !(rec->flags & FTRACE_FL_REGS_EN))
    			flag |= FTRACE_FL_REGS;
    
    		if (!(rec->flags & FTRACE_FL_TRAMP) != 
    		    !(rec->flags & FTRACE_FL_TRAMP_EN))
    			flag |= FTRACE_FL_TRAMP;
    	}
    
    	/* If the state of this record hasn't changed, then do nothing */
    	if ((rec->flags & FTRACE_FL_ENABLED) == flag)
    		return FTRACE_UPDATE_IGNORE;
    
    	if (flag) {
    		/* Save off if rec is being enabled (for return value) */
    		flag ^= rec->flags & FTRACE_FL_ENABLED;
    
    		if (update) {
    			rec->flags |= FTRACE_FL_ENABLED;
    			if (flag & FTRACE_FL_REGS) {
    				if (rec->flags & FTRACE_FL_REGS)
    					rec->flags |= FTRACE_FL_REGS_EN;
    				else
    					rec->flags &= ~FTRACE_FL_REGS_EN;
    			}
    			if (flag & FTRACE_FL_TRAMP) {
    				if (rec->flags & FTRACE_FL_TRAMP)
    					rec->flags |= FTRACE_FL_TRAMP_EN;
    				else
    					rec->flags &= ~FTRACE_FL_TRAMP_EN;
    			}
    		}
    
    		/*
    		 * If this record is being updated from a nop, then
    		 *   return UPDATE_MAKE_CALL.
    		 * Otherwise,
    		 *   return UPDATE_MODIFY_CALL to tell the caller to convert
    		 *   from the save regs, to a non-save regs function or
    		 *   vice versa, or from a trampoline call.
    		 */
    		if (flag & FTRACE_FL_ENABLED) {
    			ftrace_bug_type = FTRACE_BUG_CALL;
    			return FTRACE_UPDATE_MAKE_CALL;
    		}
    
    		ftrace_bug_type = FTRACE_BUG_UPDATE;
    		return FTRACE_UPDATE_MODIFY_CALL;
    	}
    
    	if (update) {
    		/* If there's no more users, clear all flags */
    		if (!ftrace_rec_count(rec))
    			rec->flags = 0;
    		else
    			/*
    			 * Just disable the record, but keep the ops TRAMP
    			 * and REGS states. The _EN flags must be disabled though.
    			 */
    			rec->flags &= ~(FTRACE_FL_ENABLED | FTRACE_FL_TRAMP_EN |
    					FTRACE_FL_REGS_EN);
    	}
    
    	ftrace_bug_type = FTRACE_BUG_NOP;
    	return FTRACE_UPDATE_MAKE_NOP;
    }
    
    /**
     * ftrace_update_record, set a record that now is tracing or not
     * @rec: the record to update
     * @enable: set to 1 if the record is tracing, zero to force disable
     *
     * The records that represent all functions that can be traced need
     * to be updated when tracing has been enabled.
     */
    int ftrace_update_record(struct dyn_ftrace *rec, int enable)
    {
    	return ftrace_check_record(rec, enable, 1);
    }
    
    /**
     * ftrace_test_record, check if the record has been enabled or not
     * @rec: the record to test
     * @enable: set to 1 to check if enabled, 0 if it is disabled
     *
     * The arch code may need to test if a record is already set to
     * tracing to determine how to modify the function code that it
     * represents.
     */
    int ftrace_test_record(struct dyn_ftrace *rec, int enable)
    {
    	return ftrace_check_record(rec, enable, 0);
    }
    
    static struct ftrace_ops *
    ftrace_find_tramp_ops_any(struct dyn_ftrace *rec)
    {
    	struct ftrace_ops *op;
    	unsigned long ip = rec->ip;
    
    	do_for_each_ftrace_op(op, ftrace_ops_list) {
    
    		if (!op->trampoline)
    			continue;
    
    		if (hash_contains_ip(ip, op->func_hash))
    			return op;
    	} while_for_each_ftrace_op(op);
    
    	return NULL;
    }
    
    static struct ftrace_ops *
    ftrace_find_tramp_ops_next(struct dyn_ftrace *rec,
    			   struct ftrace_ops *op)
    {
    	unsigned long ip = rec->ip;
    
    	while_for_each_ftrace_op(op) {
    
    		if (!op->trampoline)
    			continue;
    
    		if (hash_contains_ip(ip, op->func_hash))
    			return op;
    	} 
    
    	return NULL;
    }
    
    static struct ftrace_ops *
    ftrace_find_tramp_ops_curr(struct dyn_ftrace *rec)
    {
    	struct ftrace_ops *op;
    	unsigned long ip = rec->ip;
    
    	/*
    	 * Need to check removed ops first.
    	 * If they are being removed, and this rec has a tramp,
    	 * and this rec is in the ops list, then it would be the
    	 * one with the tramp.
    	 */
    	if (removed_ops) {
    		if (hash_contains_ip(ip, &removed_ops->old_hash))
    			return removed_ops;
    	}
    
    	/*
    	 * Need to find the current trampoline for a rec.
    	 * Now, a trampoline is only attached to a rec if there
    	 * was a single 'ops' attached to it. But this can be called
    	 * when we are adding another op to the rec or removing the
    	 * current one. Thus, if the op is being added, we can
    	 * ignore it because it hasn't attached itself to the rec
    	 * yet.
    	 *
    	 * If an ops is being modified (hooking to different functions)
    	 * then we don't care about the new functions that are being
    	 * added, just the old ones (that are probably being removed).
    	 *
    	 * If we are adding an ops to a function that already is using
    	 * a trampoline, it needs to be removed (trampolines are only
    	 * for single ops connected), then an ops that is not being
    	 * modified also needs to be checked.
    	 */
    	do_for_each_ftrace_op(op, ftrace_ops_list) {
    
    		if (!op->trampoline)
    			continue;
    
    		/*
    		 * If the ops is being added, it hasn't gotten to
    		 * the point to be removed from this tree yet.
    		 */
    		if (op->flags & FTRACE_OPS_FL_ADDING)
    			continue;
    
    
    		/*
    		 * If the ops is being modified and is in the old
    		 * hash, then it is probably being removed from this
    		 * function.
    		 */
    		if ((op->flags & FTRACE_OPS_FL_MODIFYING) &&
    		    hash_contains_ip(ip, &op->old_hash))
    			return op;
    		/*
    		 * If the ops is not being added or modified, and it's
    		 * in its normal filter hash, then this must be the one
    		 * we want!
    		 */
    		if (!(op->flags & FTRACE_OPS_FL_MODIFYING) &&
    		    hash_contains_ip(ip, op->func_hash))
    			return op;
    
    	} while_for_each_ftrace_op(op);
    
    	return NULL;
    }
    
    static struct ftrace_ops *
    ftrace_find_tramp_ops_new(struct dyn_ftrace *rec)
    {
    	struct ftrace_ops *op;
    	unsigned long ip = rec->ip;
    
    	do_for_each_ftrace_op(op, ftrace_ops_list) {
    		/* pass rec in as regs to have non-NULL val */
    		if (hash_contains_ip(ip, op->func_hash))
    			return op;
    	} while_for_each_ftrace_op(op);
    
    	return NULL;
    }
    
    /**
     * ftrace_get_addr_new - Get the call address to set to
     * @rec:  The ftrace record descriptor
     *
     * If the record has the FTRACE_FL_REGS set, that means that it
     * wants to convert to a callback that saves all regs. If FTRACE_FL_REGS
     * is not not set, then it wants to convert to the normal callback.
     *
     * Returns the address of the trampoline to set to
     */
    unsigned long ftrace_get_addr_new(struct dyn_ftrace *rec)
    {
    	struct ftrace_ops *ops;
    
    	/* Trampolines take precedence over regs */
    	if (rec->flags & FTRACE_FL_TRAMP) {
    		ops = ftrace_find_tramp_ops_new(rec);
    		if (FTRACE_WARN_ON(!ops || !ops->trampoline)) {
    			pr_warn("Bad trampoline accounting at: %p (%pS) (%lx)\n",
    				(void *)rec->ip, (void *)rec->ip, rec->flags);
    			/* Ftrace is shutting down, return anything */
    			return (unsigned long)FTRACE_ADDR;
    		}
    		return ops->trampoline;
    	}
    
    	if (rec->flags & FTRACE_FL_REGS)
    		return (unsigned long)FTRACE_REGS_ADDR;
    	else
    		return (unsigned long)FTRACE_ADDR;
    }
    
    /**
     * ftrace_get_addr_curr - Get the call address that is already there
     * @rec:  The ftrace record descriptor
     *
     * The FTRACE_FL_REGS_EN is set when the record already points to
     * a function that saves all the regs. Basically the '_EN' version
     * represents the current state of the function.
     *
     * Returns the address of the trampoline that is currently being called
     */
    unsigned long ftrace_get_addr_curr(struct dyn_ftrace *rec)
    {
    	struct ftrace_ops *ops;
    
    	/* Trampolines take precedence over regs */
    	if (rec->flags & FTRACE_FL_TRAMP_EN) {
    		ops = ftrace_find_tramp_ops_curr(rec);
    		if (FTRACE_WARN_ON(!ops)) {
    			pr_warn("Bad trampoline accounting at: %p (%pS)\n",
    				(void *)rec->ip, (void *)rec->ip);
    			/* Ftrace is shutting down, return anything */
    			return (unsigned long)FTRACE_ADDR;
    		}
    		return ops->trampoline;
    	}
    
    	if (rec->flags & FTRACE_FL_REGS_EN)
    		return (unsigned long)FTRACE_REGS_ADDR;
    	else
    		return (unsigned long)FTRACE_ADDR;
    }
    
    static int
    __ftrace_replace_code(struct dyn_ftrace *rec, int enable)
    {
    	unsigned long ftrace_old_addr;
    	unsigned long ftrace_addr;
    	int ret;
    
    	ftrace_addr = ftrace_get_addr_new(rec);
    
    	/* This needs to be done before we call ftrace_update_record */
    	ftrace_old_addr = ftrace_get_addr_curr(rec);
    
    	ret = ftrace_update_record(rec, enable);
    
    	ftrace_bug_type = FTRACE_BUG_UNKNOWN;
    
    	switch (ret) {
    	case FTRACE_UPDATE_IGNORE:
    		return 0;
    
    	case FTRACE_UPDATE_MAKE_CALL:
    		ftrace_bug_type = FTRACE_BUG_CALL;
    		return ftrace_make_call(rec, ftrace_addr);
    
    	case FTRACE_UPDATE_MAKE_NOP:
    		ftrace_bug_type = FTRACE_BUG_NOP;
    		return ftrace_make_nop(NULL, rec, ftrace_old_addr);
    
    	case FTRACE_UPDATE_MODIFY_CALL:
    		ftrace_bug_type = FTRACE_BUG_UPDATE;
    		return ftrace_modify_call(rec, ftrace_old_addr, ftrace_addr);
    	}
    
    	return -1; /* unknow ftrace bug */
    }
    
    void __weak ftrace_replace_code(int enable)
    {
    	struct dyn_ftrace *rec;
    	struct ftrace_page *pg;
    	int failed;
    
    	if (unlikely(ftrace_disabled))
    		return;
    
    	do_for_each_ftrace_rec(pg, rec) {
    
    		if (rec->flags & FTRACE_FL_DISABLED)
    			continue;
    
    		failed = __ftrace_replace_code(rec, enable);
    		if (failed) {
    			ftrace_bug(failed, rec);
    			/* Stop processing */
    			return;
    		}
    	} while_for_each_ftrace_rec();
    }
    
    struct ftrace_rec_iter {
    	struct ftrace_page	*pg;
    	int			index;
    };
    
    /**
     * ftrace_rec_iter_start, start up iterating over traced functions
     *
     * Returns an iterator handle that is used to iterate over all
     * the records that represent address locations where functions
     * are traced.
     *
     * May return NULL if no records are available.
     */
    struct ftrace_rec_iter *ftrace_rec_iter_start(void)
    {
    	/*
    	 * We only use a single iterator.
    	 * Protected by the ftrace_lock mutex.
    	 */
    	static struct ftrace_rec_iter ftrace_rec_iter;
    	struct ftrace_rec_iter *iter = &ftrace_rec_iter;
    
    	iter->pg = ftrace_pages_start;
    	iter->index = 0;
    
    	/* Could have empty pages */
    	while (iter->pg && !iter->pg->index)
    		iter->pg = iter->pg->next;
    
    	if (!iter->pg)
    		return NULL;
    
    	return iter;
    }
    
    /**
     * ftrace_rec_iter_next, get the next record to process.
     * @iter: The handle to the iterator.
     *
     * Returns the next iterator after the given iterator @iter.
     */
    struct ftrace_rec_iter *ftrace_rec_iter_next(struct ftrace_rec_iter *iter)
    {
    	iter->index++;
    
    	if (iter->index >= iter->pg->index) {
    		iter->pg = iter->pg->next;
    		iter->index = 0;
    
    		/* Could have empty pages */
    		while (iter->pg && !iter->pg->index)
    			iter->pg = iter->pg->next;
    	}
    
    	if (!iter->pg)
    		return NULL;
    
    	return iter;
    }
    
    /**
     * ftrace_rec_iter_record, get the record at the iterator location
     * @iter: The current iterator location
     *
     * Returns the record that the current @iter is at.
     */
    struct dyn_ftrace *ftrace_rec_iter_record(struct ftrace_rec_iter *iter)
    {
    	return &iter->pg->records[iter->index];
    }
    
    static int
    ftrace_code_disable(struct module *mod, struct dyn_ftrace *rec)
    {
    	int ret;
    
    	if (unlikely(ftrace_disabled))
    		return 0;
    
    	ret = ftrace_make_nop(mod, rec, MCOUNT_ADDR);
    	if (ret) {
    		ftrace_bug_type = FTRACE_BUG_INIT;
    		ftrace_bug(ret, rec);
    		return 0;
    	}
    	return 1;
    }
    
    /*
     * archs can override this function if they must do something
     * before the modifying code is performed.
     */
    int __weak ftrace_arch_code_modify_prepare(void)
    {
    	return 0;
    }
    
    /*
     * archs can override this function if they must do something
     * after the modifying code is performed.
     */
    int __weak ftrace_arch_code_modify_post_process(void)
    {
    	return 0;
    }
    
    void ftrace_modify_all_code(int command)
    {
    	int update = command & FTRACE_UPDATE_TRACE_FUNC;
    	int err = 0;
    
    	/*
    	 * If the ftrace_caller calls a ftrace_ops func directly,
    	 * we need to make sure that it only traces functions it
    	 * expects to trace. When doing the switch of functions,
    	 * we need to update to the ftrace_ops_list_func first
    	 * before the transition between old and new calls are set,
    	 * as the ftrace_ops_list_func will check the ops hashes
    	 * to make sure the ops are having the right functions
    	 * traced.
    	 */
    	if (update) {
    		err = ftrace_update_ftrace_func(ftrace_ops_list_func);
    		if (FTRACE_WARN_ON(err))
    			return;
    	}
    
    	if (command & FTRACE_UPDATE_CALLS)
    		ftrace_replace_code(1);
    	else if (command & FTRACE_DISABLE_CALLS)
    		ftrace_replace_code(0);
    
    	if (update && ftrace_trace_function != ftrace_ops_list_func) {
    		function_trace_op = set_function_trace_op;
    		smp_wmb();
    		/* If irqs are disabled, we are in stop machine */
    		if (!irqs_disabled())
    			smp_call_function(ftrace_sync_ipi, NULL, 1);
    		err = ftrace_update_ftrace_func(ftrace_trace_function);
    		if (FTRACE_WARN_ON(err))
    			return;
    	}
    
    	if (command & FTRACE_START_FUNC_RET)
    		err = ftrace_enable_ftrace_graph_caller();
    	else if (command & FTRACE_STOP_FUNC_RET)
    		err = ftrace_disable_ftrace_graph_caller();
    	FTRACE_WARN_ON(err);
    }
    
    static int __ftrace_modify_code(void *data)
    {
    	int *command = data;
    
    	ftrace_modify_all_code(*command);
    
    	return 0;
    }
    
    /**
     * ftrace_run_stop_machine, go back to the stop machine method
     * @command: The command to tell ftrace what to do
     *
     * If an arch needs to fall back to the stop machine method, the
     * it can call this function.
     */
    void ftrace_run_stop_machine(int command)
    {
    	stop_machine(__ftrace_modify_code, &command, NULL);
    }
    
    /**
     * arch_ftrace_update_code, modify the code to trace or not trace
     * @command: The command that needs to be done
     *
     * Archs can override this function if it does not need to
     * run stop_machine() to modify code.
     */
    void __weak arch_ftrace_update_code(int command)
    {
    	ftrace_run_stop_machine(command);
    }
    
    static void ftrace_run_update_code(int command)
    {
    	int ret;
    
    	ret = ftrace_arch_code_modify_prepare();
    	FTRACE_WARN_ON(ret);
    	if (ret)
    		return;
    
    	/*
    	 * By default we use stop_machine() to modify the code.
    	 * But archs can do what ever they want as long as it
    	 * is safe. The stop_machine() is the safest, but also
    	 * produces the most overhead.
    	 */
    	arch_ftrace_update_code(command);
    
    	ret = ftrace_arch_code_modify_post_process();
    	FTRACE_WARN_ON(ret);
    }
    
    static void ftrace_run_modify_code(struct ftrace_ops *ops, int command,
    				   struct ftrace_ops_hash *old_hash)
    {
    	ops->flags |= FTRACE_OPS_FL_MODIFYING;
    	ops->old_hash.filter_hash = old_hash->filter_hash;
    	ops->old_hash.notrace_hash = old_hash->notrace_hash;
    	ftrace_run_update_code(command);
    	ops->old_hash.filter_hash = NULL;
    	ops->old_hash.notrace_hash = NULL;
    	ops->flags &= ~FTRACE_OPS_FL_MODIFYING;
    }
    
    static ftrace_func_t saved_ftrace_func;
    static int ftrace_start_up;
    
    void __weak arch_ftrace_trampoline_free(struct ftrace_ops *ops)
    {
    }
    
    static void ftrace_startup_enable(int command)
    {
    	if (saved_ftrace_func != ftrace_trace_function) {
    		saved_ftrace_func = ftrace_trace_function;
    		command |= FTRACE_UPDATE_TRACE_FUNC;
    	}
    
    	if (!command || !ftrace_enabled)
    		return;
    
    	ftrace_run_update_code(command);
    }
    
    static void ftrace_startup_all(int command)
    {
    	update_all_ops = true;
    	ftrace_startup_enable(command);
    	update_all_ops = false;
    }
    
    static int ftrace_startup(struct ftrace_ops *ops, int command)
    {
    	int ret;
    
    	if (unlikely(ftrace_disabled))
    		return -ENODEV;
    
    	ret = __register_ftrace_function(ops);
    	if (ret)
    		return ret;
    
    	ftrace_start_up++;
    
    	/*
    	 * Note that ftrace probes uses this to start up
    	 * and modify functions it will probe. But we still
    	 * set the ADDING flag for modification, as probes
    	 * do not have trampolines. If they add them in the
    	 * future, then the probes will need to distinguish
    	 * between adding and updating probes.
    	 */
    	ops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_ADDING;
    
    	ret = ftrace_hash_ipmodify_enable(ops);
    	if (ret < 0) {
    		/* Rollback registration process */
    		__unregister_ftrace_function(ops);
    		ftrace_start_up--;
    		ops->flags &= ~FTRACE_OPS_FL_ENABLED;
    		return ret;
    	}
    
    	if (ftrace_hash_rec_enable(ops, 1))
    		command |= FTRACE_UPDATE_CALLS;
    
    	ftrace_startup_enable(command);
    
    	ops->flags &= ~FTRACE_OPS_FL_ADDING;
    
    	return 0;
    }
    
    static int ftrace_shutdown(struct ftrace_ops *ops, int command)
    {
    	int ret;
    
    	if (unlikely(ftrace_disabled))
    		return -ENODEV;
    
    	ret = __unregister_ftrace_function(ops);
    	if (ret)
    		return ret;
    
    	ftrace_start_up--;
    	/*
    	 * Just warn in case of unbalance, no need to kill ftrace, it's not
    	 * critical but the ftrace_call callers may be never nopped again after
    	 * further ftrace uses.
    	 */
    	WARN_ON_ONCE(ftrace_start_up < 0);
    
    	/* Disabling ipmodify never fails */
    	ftrace_hash_ipmodify_disable(ops);
    
    	if (ftrace_hash_rec_disable(ops, 1))
    		command |= FTRACE_UPDATE_CALLS;
    
    	ops->flags &= ~FTRACE_OPS_FL_ENABLED;
    
    	if (saved_ftrace_func != ftrace_trace_function) {
    		saved_ftrace_func = ftrace_trace_function;
    		command |= FTRACE_UPDATE_TRACE_FUNC;
    	}
    
    	if (!command || !ftrace_enabled) {
    		/*
    		 * If these are dynamic or per_cpu ops, they still
    		 * need their data freed. Since, function tracing is
    		 * not currently active, we can just free them
    		 * without synchronizing all CPUs.
    		 */
    		if (ops->flags & FTRACE_OPS_FL_DYNAMIC)
    			goto free_ops;
    
    		return 0;
    	}
    
    	/*
    	 * If the ops uses a trampoline, then it needs to be
    	 * tested first on update.
    	 */
    	ops->flags |= FTRACE_OPS_FL_REMOVING;
    	removed_ops = ops;
    
    	/* The trampoline logic checks the old hashes */
    	ops->old_hash.filter_hash = ops->func_hash->filter_hash;
    	ops->old_hash.notrace_hash = ops->func_hash->notrace_hash;
    
    	ftrace_run_update_code(command);
    
    	/*
    	 * If there's no more ops registered with ftrace, run a
    	 * sanity check to make sure all rec flags are cleared.
    	 */
    	if (rcu_dereference_protected(ftrace_ops_list,
    			lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
    		struct ftrace_page *pg;
    		struct dyn_ftrace *rec;
    
    		do_for_each_ftrace_rec(pg, rec) {
    			if (FTRACE_WARN_ON_ONCE(rec->flags & ~FTRACE_FL_DISABLED))
    				pr_warn("  %pS flags:%lx\n",
    					(void *)rec->ip, rec->flags);
    		} while_for_each_ftrace_rec();
    	}
    
    	ops->old_hash.filter_hash = NULL;
    	ops->old_hash.notrace_hash = NULL;
    
    	removed_ops = NULL;
    	ops->flags &= ~FTRACE_OPS_FL_REMOVING;
    
    	/*
    	 * Dynamic ops may be freed, we must make sure that all
    	 * callers are done before leaving this function.
    	 * The same goes for freeing the per_cpu data of the per_cpu
    	 * ops.
    	 */
    	if (ops->flags & FTRACE_OPS_FL_DYNAMIC) {
    		/*
    		 * We need to do a hard force of sched synchronization.
    		 * This is because we use preempt_disable() to do RCU, but
    		 * the function tracers can be called where RCU is not watching
    		 * (like before user_exit()). We can not rely on the RCU
    		 * infrastructure to do the synchronization, thus we must do it
    		 * ourselves.
    		 */
    		schedule_on_each_cpu(ftrace_sync);
    
    		/*
    		 * When the kernel is preeptive, tasks can be preempted
    		 * while on a ftrace trampoline. Just scheduling a task on
    		 * a CPU is not good enough to flush them. Calling
    		 * synchornize_rcu_tasks() will wait for those tasks to
    		 * execute and either schedule voluntarily or enter user space.
    		 */
    		if (IS_ENABLED(CONFIG_PREEMPT))
    			synchronize_rcu_tasks();
    
     free_ops:
    		arch_ftrace_trampoline_free(ops);
    	}
    
    	return 0;
    }
    
    static void ftrace_startup_sysctl(void)
    {
    	int command;
    
    	if (unlikely(ftrace_disabled))
    		return;
    
    	/* Force update next time */
    	saved_ftrace_func = NULL;
    	/* ftrace_start_up is true if we want ftrace running */
    	if (ftrace_start_up) {
    		command = FTRACE_UPDATE_CALLS;
    		if (ftrace_graph_active)
    			command |= FTRACE_START_FUNC_RET;
    		ftrace_startup_enable(command);
    	}
    }
    
    static void ftrace_shutdown_sysctl(void)
    {
    	int command;
    
    	if (unlikely(ftrace_disabled))
    		return;
    
    	/* ftrace_start_up is true if ftrace is running */
    	if (ftrace_start_up) {
    		command = FTRACE_DISABLE_CALLS;
    		if (ftrace_graph_active)
    			command |= FTRACE_STOP_FUNC_RET;
    		ftrace_run_update_code(command);
    	}
    }
    
    static u64		ftrace_update_time;
    unsigned long		ftrace_update_tot_cnt;
    
    static inline int ops_traces_mod(struct ftrace_ops *ops)
    {
    	/*
    	 * Filter_hash being empty will default to trace module.
    	 * But notrace hash requires a test of individual module functions.
    	 */
    	return ftrace_hash_empty(ops->func_hash->filter_hash) &&
    		ftrace_hash_empty(ops->func_hash->notrace_hash);
    }
    
    /*
     * Check if the current ops references the record.
     *
     * If the ops traces all functions, then it was already accounted for.
     * If the ops does not trace the current record function, skip it.
     * If the ops ignores the function via notrace filter, skip it.
     */
    static inline bool
    ops_references_rec(struct ftrace_ops *ops, struct dyn_ftrace *rec)
    {
    	/* If ops isn't enabled, ignore it */
    	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
    		return 0;
    
    	/* If ops traces all then it includes this function */
    	if (ops_traces_mod(ops))
    		return 1;
    
    	/* The function must be in the filter */
    	if (!ftrace_hash_empty(ops->func_hash->filter_hash) &&
    	    !__ftrace_lookup_ip(ops->func_hash->filter_hash, rec->ip))
    		return 0;
    
    	/* If in notrace hash, we ignore it too */
    	if (ftrace_lookup_ip(ops->func_hash->notrace_hash, rec->ip))
    		return 0;
    
    	return 1;
    }
    
    static int ftrace_update_code(struct module *mod, struct ftrace_page *new_pgs)
    {
    	struct ftrace_page *pg;
    	struct dyn_ftrace *p;
    	u64 start, stop;
    	unsigned long update_cnt = 0;
    	unsigned long rec_flags = 0;
    	int i;
    
    	start = ftrace_now(raw_smp_processor_id());
    
    	/*
    	 * When a module is loaded, this function is called to convert
    	 * the calls to mcount in its text to nops, and also to create
    	 * an entry in the ftrace data. Now, if ftrace is activated
    	 * after this call, but before the module sets its text to
    	 * read-only, the modification of enabling ftrace can fail if
    	 * the read-only is done while ftrace is converting the calls.
    	 * To prevent this, the module's records are set as disabled
    	 * and will be enabled after the call to set the module's text
    	 * to read-only.
    	 */
    	if (mod)
    		rec_flags |= FTRACE_FL_DISABLED;
    
    	for (pg = new_pgs; pg; pg = pg->next) {
    
    		for (i = 0; i < pg->index; i++) {
    
    			/* If something went wrong, bail without enabling anything */
    			if (unlikely(ftrace_disabled))
    				return -1;
    
    			p = &pg->records[i];
    			p->flags = rec_flags;
    
    			/*
    			 * Do the initial record conversion from mcount jump
    			 * to the NOP instructions.
    			 */
    			if (!ftrace_code_disable(mod, p))
    				break;
    
    			update_cnt++;
    		}
    	}
    
    	stop = ftrace_now(raw_smp_processor_id());
    	ftrace_update_time = stop - start;
    	ftrace_update_tot_cnt += update_cnt;
    
    	return 0;
    }
    
    static int ftrace_allocate_records(struct ftrace_page *pg, int count)
    {
    	int order;
    	int cnt;
    
    	if (WARN_ON(!count))
    		return -EINVAL;
    
    	order = get_count_order(DIV_ROUND_UP(count, ENTRIES_PER_PAGE));
    
    	/*
    	 * We want to fill as much as possible. No more than a page
    	 * may be empty.
    	 */
    	while ((PAGE_SIZE << order) / ENTRY_SIZE >= count + ENTRIES_PER_PAGE)
    		order--;
    
     again:
    	pg->records = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
    
    	if (!pg->records) {
    		/* if we can't allocate this size, try something smaller */
    		if (!order)
    			return -ENOMEM;
    		order >>= 1;
    		goto again;
    	}
    
    	cnt = (PAGE_SIZE << order) / ENTRY_SIZE;
    	pg->size = cnt;
    
    	if (cnt > count)
    		cnt = count;
    
    	return cnt;
    }
    
    static struct ftrace_page *
    ftrace_allocate_pages(unsigned long num_to_init)
    {
    	struct ftrace_page *start_pg;
    	struct ftrace_page *pg;
    	int order;
    	int cnt;
    
    	if (!num_to_init)
    		return 0;
    
    	start_pg = pg = kzalloc(sizeof(*pg), GFP_KERNEL);
    	if (!pg)
    		return NULL;
    
    	/*
    	 * Try to allocate as much as possible in one continues
    	 * location that fills in all of the space. We want to
    	 * waste as little space as possible.
    	 */
    	for (;;) {
    		cnt = ftrace_allocate_records(pg, num_to_init);
    		if (cnt < 0)
    			goto free_pages;
    
    		num_to_init -= cnt;
    		if (!num_to_init)
    			break;
    
    		pg->next = kzalloc(sizeof(*pg), GFP_KERNEL);
    		if (!pg->next)
    			goto free_pages;
    
    		pg = pg->next;
    	}
    
    	return start_pg;
    
     free_pages:
    	pg = start_pg;
    	while (pg) {
    		order = get_count_order(pg->size / ENTRIES_PER_PAGE);
    		free_pages((unsigned long)pg->records, order);
    		start_pg = pg->next;
    		kfree(pg);
    		pg = start_pg;
    	}
    	pr_info("ftrace: FAILED to allocate memory for functions\n");
    	return NULL;
    }
    
    #define FTRACE_BUFF_MAX (KSYM_SYMBOL_LEN+4) /* room for wildcards */
    
    struct ftrace_iterator {
    	loff_t				pos;
    	loff_t				func_pos;
    	loff_t				mod_pos;
    	struct ftrace_page		*pg;
    	struct dyn_ftrace		*func;
    	struct ftrace_func_probe	*probe;
    	struct ftrace_func_entry	*probe_entry;
    	struct trace_parser		parser;
    	struct ftrace_hash		*hash;
    	struct ftrace_ops		*ops;
    	struct trace_array		*tr;
    	struct list_head		*mod_list;
    	int				pidx;
    	int				idx;
    	unsigned			flags;
    };
    
    static void *
    t_probe_next(struct seq_file *m, loff_t *pos)
    {
    	struct ftrace_iterator *iter = m->private;
    	struct trace_array *tr = iter->ops->private;
    	struct list_head *func_probes;
    	struct ftrace_hash *hash;
    	struct list_head *next;
    	struct hlist_node *hnd = NULL;
    	struct hlist_head *hhd;
    	int size;
    
    	(*pos)++;
    	iter->pos = *pos;
    
    	if (!tr)
    		return NULL;
    
    	func_probes = &tr->func_probes;
    	if (list_empty(func_probes))
    		return NULL;
    
    	if (!iter->probe) {
    		next = func_probes->next;
    		iter->probe = list_entry(next, struct ftrace_func_probe, list);
    	}
    
    	if (iter->probe_entry)
    		hnd = &iter->probe_entry->hlist;
    
    	hash = iter->probe->ops.func_hash->filter_hash;
    	size = 1 << hash->size_bits;
    
     retry:
    	if (iter->pidx >= size) {
    		if (iter->probe->list.next == func_probes)
    			return NULL;
    		next = iter->probe->list.next;
    		iter->probe = list_entry(next, struct ftrace_func_probe, list);
    		hash = iter->probe->ops.func_hash->filter_hash;
    		size = 1 << hash->size_bits;
    		iter->pidx = 0;
    	}
    
    	hhd = &hash->buckets[iter->pidx];
    
    	if (hlist_empty(hhd)) {
    		iter->pidx++;
    		hnd = NULL;
    		goto retry;
    	}
    
    	if (!hnd)
    		hnd = hhd->first;
    	else {
    		hnd = hnd->next;
    		if (!hnd) {
    			iter->pidx++;
    			goto retry;
    		}
    	}
    
    	if (WARN_ON_ONCE(!hnd))
    		return NULL;
    
    	iter->probe_entry = hlist_entry(hnd, struct ftrace_func_entry, hlist);
    
    	return iter;
    }
    
    static void *t_probe_start(struct seq_file *m, loff_t *pos)
    {
    	struct ftrace_iterator *iter = m->private;
    	void *p = NULL;
    	loff_t l;
    
    	if (!(iter->flags & FTRACE_ITER_DO_PROBES))
    		return NULL;
    
    	if (iter->mod_pos > *pos)
    		return NULL;
    
    	iter->probe = NULL;
    	iter->probe_entry = NULL;
    	iter->pidx = 0;
    	for (l = 0; l <= (*pos - iter->mod_pos); ) {
    		p = t_probe_next(m, &l);
    		if (!p)
    			break;
    	}
    	if (!p)
    		return NULL;
    
    	/* Only set this if we have an item */
    	iter->flags |= FTRACE_ITER_PROBE;
    
    	return iter;
    }
    
    static int
    t_probe_show(struct seq_file *m, struct ftrace_iterator *iter)
    {
    	struct ftrace_func_entry *probe_entry;
    	struct ftrace_probe_ops *probe_ops;
    	struct ftrace_func_probe *probe;
    
    	probe = iter->probe;
    	probe_entry = iter->probe_entry;
    
    	if (WARN_ON_ONCE(!probe || !probe_entry))
    		return -EIO;
    
    	probe_ops = probe->probe_ops;
    
    	if (probe_ops->print)
    		return probe_ops->print(m, probe_entry->ip, probe_ops, probe->data);
    
    	seq_printf(m, "%ps:%ps\n", (void *)probe_entry->ip,
    		   (void *)probe_ops->func);
    
    	return 0;
    }
    
    static void *
    t_mod_next(struct seq_file *m, loff_t *pos)
    {
    	struct ftrace_iterator *iter = m->private;
    	struct trace_array *tr = iter->tr;
    
    	(*pos)++;
    	iter->pos = *pos;
    
    	iter->mod_list = iter->mod_list->next;
    
    	if (iter->mod_list == &tr->mod_trace ||
    	    iter->mod_list == &tr->mod_notrace) {
    		iter->flags &= ~FTRACE_ITER_MOD;
    		return NULL;
    	}
    
    	iter->mod_pos = *pos;
    
    	return iter;
    }
    
    static void *t_mod_start(struct seq_file *m, loff_t *pos)
    {
    	struct ftrace_iterator *iter = m->private;
    	void *p = NULL;
    	loff_t l;
    
    	if (iter->func_pos > *pos)
    		return NULL;
    
    	iter->mod_pos = iter->func_pos;
    
    	/* probes are only available if tr is set */
    	if (!iter->tr)
    		return NULL;
    
    	for (l = 0; l <= (*pos - iter->func_pos); ) {
    		p = t_mod_next(m, &l);
    		if (!p)
    			break;
    	}
    	if (!p) {
    		iter->flags &= ~FTRACE_ITER_MOD;
    		return t_probe_start(m, pos);
    	}
    
    	/* Only set this if we have an item */
    	iter->flags |= FTRACE_ITER_MOD;
    
    	return iter;
    }
    
    static int
    t_mod_show(struct seq_file *m, struct ftrace_iterator *iter)
    {
    	struct ftrace_mod_load *ftrace_mod;
    	struct trace_array *tr = iter->tr;
    
    	if (WARN_ON_ONCE(!iter->mod_list) ||
    			 iter->mod_list == &tr->mod_trace ||
    			 iter->mod_list == &tr->mod_notrace)
    		return -EIO;
    
    	ftrace_mod = list_entry(iter->mod_list, struct ftrace_mod_load, list);
    
    	if (ftrace_mod->func)
    		seq_printf(m, "%s", ftrace_mod->func);
    	else
    		seq_putc(m, '*');
    
    	seq_printf(m, ":mod:%s\n", ftrace_mod->module);
    
    	return 0;
    }
    
    static void *
    t_func_next(struct seq_file *m, loff_t *pos)
    {
    	struct ftrace_iterator *iter = m->private;
    	struct dyn_ftrace *rec = NULL;
    
    	(*pos)++;
    
     retry:
    	if (iter->idx >= iter->pg->index) {
    		if (iter->pg->next) {
    			iter->pg = iter->pg->next;
    			iter->idx = 0;
    			goto retry;
    		}
    	} else {
    		rec = &iter->pg->records[iter->idx++];
    		if (((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) &&
    		     !ftrace_lookup_ip(iter->hash, rec->ip)) ||
    
    		    ((iter->flags & FTRACE_ITER_ENABLED) &&
    		     !(rec->flags & FTRACE_FL_ENABLED))) {
    
    			rec = NULL;
    			goto retry;
    		}
    	}
    
    	if (!rec)
    		return NULL;
    
    	iter->pos = iter->func_pos = *pos;
    	iter->func = rec;
    
    	return iter;
    }
    
    static void *
    t_next(struct seq_file *m, void *v, loff_t *pos)
    {
    	struct ftrace_iterator *iter = m->private;
    	loff_t l = *pos; /* t_probe_start() must use original pos */
    	void *ret;
    
    	if (unlikely(ftrace_disabled))
    		return NULL;
    
    	if (iter->flags & FTRACE_ITER_PROBE)
    		return t_probe_next(m, pos);
    
    	if (iter->flags & FTRACE_ITER_MOD)
    		return t_mod_next(m, pos);
    
    	if (iter->flags & FTRACE_ITER_PRINTALL) {
    		/* next must increment pos, and t_probe_start does not */
    		(*pos)++;
    		return t_mod_start(m, &l);
    	}
    
    	ret = t_func_next(m, pos);
    
    	if (!ret)
    		return t_mod_start(m, &l);
    
    	return ret;
    }
    
    static void reset_iter_read(struct ftrace_iterator *iter)
    {
    	iter->pos = 0;
    	iter->func_pos = 0;
    	iter->flags &= ~(FTRACE_ITER_PRINTALL | FTRACE_ITER_PROBE | FTRACE_ITER_MOD);
    }
    
    static void *t_start(struct seq_file *m, loff_t *pos)
    {
    	struct ftrace_iterator *iter = m->private;
    	void *p = NULL;
    	loff_t l;
    
    	mutex_lock(&ftrace_lock);
    
    	if (unlikely(ftrace_disabled))
    		return NULL;
    
    	/*
    	 * If an lseek was done, then reset and start from beginning.
    	 */
    	if (*pos < iter->pos)
    		reset_iter_read(iter);
    
    	/*
    	 * For set_ftrace_filter reading, if we have the filter
    	 * off, we can short cut and just print out that all
    	 * functions are enabled.
    	 */
    	if ((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) &&
    	    ftrace_hash_empty(iter->hash)) {
    		iter->func_pos = 1; /* Account for the message */
    		if (*pos > 0)
    			return t_mod_start(m, pos);
    		iter->flags |= FTRACE_ITER_PRINTALL;
    		/* reset in case of seek/pread */
    		iter->flags &= ~FTRACE_ITER_PROBE;
    		return iter;
    	}
    
    	if (iter->flags & FTRACE_ITER_MOD)
    		return t_mod_start(m, pos);
    
    	/*
    	 * Unfortunately, we need to restart at ftrace_pages_start
    	 * every time we let go of the ftrace_mutex. This is because
    	 * those pointers can change without the lock.
    	 */
    	iter->pg = ftrace_pages_start;
    	iter->idx = 0;
    	for (l = 0; l <= *pos; ) {
    		p = t_func_next(m, &l);
    		if (!p)
    			break;
    	}
    
    	if (!p)
    		return t_mod_start(m, pos);
    
    	return iter;
    }
    
    static void t_stop(struct seq_file *m, void *p)
    {
    	mutex_unlock(&ftrace_lock);
    }
    
    void * __weak
    arch_ftrace_trampoline_func(struct ftrace_ops *ops, struct dyn_ftrace *rec)
    {
    	return NULL;
    }
    
    static void add_trampoline_func(struct seq_file *m, struct ftrace_ops *ops,
    				struct dyn_ftrace *rec)
    {
    	void *ptr;
    
    	ptr = arch_ftrace_trampoline_func(ops, rec);
    	if (ptr)
    		seq_printf(m, " ->%pS", ptr);
    }
    
    static int t_show(struct seq_file *m, void *v)
    {
    	struct ftrace_iterator *iter = m->private;
    	struct dyn_ftrace *rec;
    
    	if (iter->flags & FTRACE_ITER_PROBE)
    		return t_probe_show(m, iter);
    
    	if (iter->flags & FTRACE_ITER_MOD)
    		return t_mod_show(m, iter);
    
    	if (iter->flags & FTRACE_ITER_PRINTALL) {
    		if (iter->flags & FTRACE_ITER_NOTRACE)
    			seq_puts(m, "#### no functions disabled ####\n");
    		else
    			seq_puts(m, "#### all functions enabled ####\n");
    		return 0;
    	}
    
    	rec = iter->func;
    
    	if (!rec)
    		return 0;
    
    	seq_printf(m, "%ps", (void *)rec->ip);
    	if (iter->flags & FTRACE_ITER_ENABLED) {
    		struct ftrace_ops *ops;
    
    		seq_printf(m, " (%ld)%s%s",
    			   ftrace_rec_count(rec),
    			   rec->flags & FTRACE_FL_REGS ? " R" : "  ",
    			   rec->flags & FTRACE_FL_IPMODIFY ? " I" : "  ");
    		if (rec->flags & FTRACE_FL_TRAMP_EN) {
    			ops = ftrace_find_tramp_ops_any(rec);
    			if (ops) {
    				do {
    					seq_printf(m, "\ttramp: %pS (%pS)",
    						   (void *)ops->trampoline,
    						   (void *)ops->func);
    					add_trampoline_func(m, ops, rec);
    					ops = ftrace_find_tramp_ops_next(rec, ops);
    				} while (ops);
    			} else
    				seq_puts(m, "\ttramp: ERROR!");
    		} else {
    			add_trampoline_func(m, NULL, rec);
    		}
    	}	
    
    	seq_putc(m, '\n');
    
    	return 0;
    }
    
    static const struct seq_operations show_ftrace_seq_ops = {
    	.start = t_start,
    	.next = t_next,
    	.stop = t_stop,
    	.show = t_show,
    };
    
    static int
    ftrace_avail_open(struct inode *inode, struct file *file)
    {
    	struct ftrace_iterator *iter;
    
    	if (unlikely(ftrace_disabled))
    		return -ENODEV;
    
    	iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter));
    	if (!iter)
    		return -ENOMEM;
    
    	iter->pg = ftrace_pages_start;
    	iter->ops = &global_ops;
    
    	return 0;
    }
    
    static int
    ftrace_enabled_open(struct inode *inode, struct file *file)
    {
    	struct ftrace_iterator *iter;
    
    	iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter));
    	if (!iter)
    		return -ENOMEM;
    
    	iter->pg = ftrace_pages_start;
    	iter->flags = FTRACE_ITER_ENABLED;
    	iter->ops = &global_ops;
    
    	return 0;
    }
    
    /**
     * ftrace_regex_open - initialize function tracer filter files
     * @ops: The ftrace_ops that hold the hash filters
     * @flag: The type of filter to process
     * @inode: The inode, usually passed in to your open routine
     * @file: The file, usually passed in to your open routine
     *
     * ftrace_regex_open() initializes the filter files for the
     * @ops. Depending on @flag it may process the filter hash or
     * the notrace hash of @ops. With this called from the open
     * routine, you can use ftrace_filter_write() for the write
     * routine if @flag has FTRACE_ITER_FILTER set, or
     * ftrace_notrace_write() if @flag has FTRACE_ITER_NOTRACE set.
     * tracing_lseek() should be used as the lseek routine, and
     * release must call ftrace_regex_release().
     */
    int
    ftrace_regex_open(struct ftrace_ops *ops, int flag,
    		  struct inode *inode, struct file *file)
    {
    	struct ftrace_iterator *iter;
    	struct ftrace_hash *hash;
    	struct list_head *mod_head;
    	struct trace_array *tr = ops->private;
    	int ret = 0;
    
    	ftrace_ops_init(ops);
    
    	if (unlikely(ftrace_disabled))
    		return -ENODEV;
    
    	iter = kzalloc(sizeof(*iter), GFP_KERNEL);
    	if (!iter)
    		return -ENOMEM;
    
    	if (trace_parser_get_init(&iter->parser, FTRACE_BUFF_MAX)) {
    		kfree(iter);
    		return -ENOMEM;
    	}
    
    	iter->ops = ops;
    	iter->flags = flag;
    	iter->tr = tr;
    
    	mutex_lock(&ops->func_hash->regex_lock);
    
    	if (flag & FTRACE_ITER_NOTRACE) {
    		hash = ops->func_hash->notrace_hash;
    		mod_head = tr ? &tr->mod_notrace : NULL;
    	} else {
    		hash = ops->func_hash->filter_hash;
    		mod_head = tr ? &tr->mod_trace : NULL;
    	}
    
    	iter->mod_list = mod_head;
    
    	if (file->f_mode & FMODE_WRITE) {
    		const int size_bits = FTRACE_HASH_DEFAULT_BITS;
    
    		if (file->f_flags & O_TRUNC) {
    			iter->hash = alloc_ftrace_hash(size_bits);
    			clear_ftrace_mod_list(mod_head);
    	        } else {
    			iter->hash = alloc_and_copy_ftrace_hash(size_bits, hash);
    		}
    
    		if (!iter->hash) {
    			trace_parser_put(&iter->parser);
    			kfree(iter);
    			ret = -ENOMEM;
    			goto out_unlock;
    		}
    	} else
    		iter->hash = hash;
    
    	if (file->f_mode & FMODE_READ) {
    		iter->pg = ftrace_pages_start;
    
    		ret = seq_open(file, &show_ftrace_seq_ops);
    		if (!ret) {
    			struct seq_file *m = file->private_data;
    			m->private = iter;
    		} else {
    			/* Failed */
    			free_ftrace_hash(iter->hash);
    			trace_parser_put(&iter->parser);
    			kfree(iter);
    		}
    	} else
    		file->private_data = iter;
    
     out_unlock:
    	mutex_unlock(&ops->func_hash->regex_lock);
    
    	return ret;
    }
    
    static int
    ftrace_filter_open(struct inode *inode, struct file *file)
    {
    	struct ftrace_ops *ops = inode->i_private;
    
    	return ftrace_regex_open(ops,
    			FTRACE_ITER_FILTER | FTRACE_ITER_DO_PROBES,
    			inode, file);
    }
    
    static int
    ftrace_notrace_open(struct inode *inode, struct file *file)
    {
    	struct ftrace_ops *ops = inode->i_private;
    
    	return ftrace_regex_open(ops, FTRACE_ITER_NOTRACE,
    				 inode, file);
    }
    
    /* Type for quick search ftrace basic regexes (globs) from filter_parse_regex */
    struct ftrace_glob {
    	char *search;
    	unsigned len;
    	int type;
    };
    
    /*
     * If symbols in an architecture don't correspond exactly to the user-visible
     * name of what they represent, it is possible to define this function to
     * perform the necessary adjustments.
    */
    char * __weak arch_ftrace_match_adjust(char *str, const char *search)
    {
    	return str;
    }
    
    static int ftrace_match(char *str, struct ftrace_glob *g)
    {
    	int matched = 0;
    	int slen;
    
    	str = arch_ftrace_match_adjust(str, g->search);
    
    	switch (g->type) {
    	case MATCH_FULL:
    		if (strcmp(str, g->search) == 0)
    			matched = 1;
    		break;
    	case MATCH_FRONT_ONLY:
    		if (strncmp(str, g->search, g->len) == 0)
    			matched = 1;
    		break;
    	case MATCH_MIDDLE_ONLY:
    		if (strstr(str, g->search))
    			matched = 1;
    		break;
    	case MATCH_END_ONLY:
    		slen = strlen(str);
    		if (slen >= g->len &&
    		    memcmp(str + slen - g->len, g->search, g->len) == 0)
    			matched = 1;
    		break;
    	case MATCH_GLOB:
    		if (glob_match(g->search, str))
    			matched = 1;
    		break;
    	}
    
    	return matched;
    }
    
    static int
    enter_record(struct ftrace_hash *hash, struct dyn_ftrace *rec, int clear_filter)
    {
    	struct ftrace_func_entry *entry;
    	int ret = 0;
    
    	entry = ftrace_lookup_ip(hash, rec->ip);
    	if (clear_filter) {
    		/* Do nothing if it doesn't exist */
    		if (!entry)
    			return 0;
    
    		free_hash_entry(hash, entry);
    	} else {
    		/* Do nothing if it exists */
    		if (entry)
    			return 0;
    
    		ret = add_hash_entry(hash, rec->ip);
    	}
    	return ret;
    }
    
    static int
    ftrace_match_record(struct dyn_ftrace *rec, struct ftrace_glob *func_g,
    		struct ftrace_glob *mod_g, int exclude_mod)
    {
    	char str[KSYM_SYMBOL_LEN];
    	char *modname;
    
    	kallsyms_lookup(rec->ip, NULL, NULL, &modname, str);
    
    	if (mod_g) {
    		int mod_matches = (modname) ? ftrace_match(modname, mod_g) : 0;
    
    		/* blank module name to match all modules */
    		if (!mod_g->len) {
    			/* blank module globbing: modname xor exclude_mod */
    			if (!exclude_mod != !modname)
    				goto func_match;
    			return 0;
    		}
    
    		/*
    		 * exclude_mod is set to trace everything but the given
    		 * module. If it is set and the module matches, then
    		 * return 0. If it is not set, and the module doesn't match
    		 * also return 0. Otherwise, check the function to see if
    		 * that matches.
    		 */
    		if (!mod_matches == !exclude_mod)
    			return 0;
    func_match:
    		/* blank search means to match all funcs in the mod */
    		if (!func_g->len)
    			return 1;
    	}
    
    	return ftrace_match(str, func_g);
    }
    
    static int
    match_records(struct ftrace_hash *hash, char *func, int len, char *mod)
    {
    	struct ftrace_page *pg;
    	struct dyn_ftrace *rec;
    	struct ftrace_glob func_g = { .type = MATCH_FULL };
    	struct ftrace_glob mod_g = { .type = MATCH_FULL };
    	struct ftrace_glob *mod_match = (mod) ? &mod_g : NULL;
    	int exclude_mod = 0;
    	int found = 0;
    	int ret;
    	int clear_filter = 0;
    
    	if (func) {
    		func_g.type = filter_parse_regex(func, len, &func_g.search,
    						 &clear_filter);
    		func_g.len = strlen(func_g.search);
    	}
    
    	if (mod) {
    		mod_g.type = filter_parse_regex(mod, strlen(mod),
    				&mod_g.search, &exclude_mod);
    		mod_g.len = strlen(mod_g.search);
    	}
    
    	mutex_lock(&ftrace_lock);
    
    	if (unlikely(ftrace_disabled))
    		goto out_unlock;
    
    	do_for_each_ftrace_rec(pg, rec) {
    
    		if (rec->flags & FTRACE_FL_DISABLED)
    			continue;
    
    		if (ftrace_match_record(rec, &func_g, mod_match, exclude_mod)) {
    			ret = enter_record(hash, rec, clear_filter);
    			if (ret < 0) {
    				found = ret;
    				goto out_unlock;
    			}
    			found = 1;
    		}
    	} while_for_each_ftrace_rec();
     out_unlock:
    	mutex_unlock(&ftrace_lock);
    
    	return found;
    }
    
    static int
    ftrace_match_records(struct ftrace_hash *hash, char *buff, int len)
    {
    	return match_records(hash, buff, len, NULL);
    }
    
    static void ftrace_ops_update_code(struct ftrace_ops *ops,
    				   struct ftrace_ops_hash *old_hash)
    {
    	struct ftrace_ops *op;
    
    	if (!ftrace_enabled)
    		return;
    
    	if (ops->flags & FTRACE_OPS_FL_ENABLED) {
    		ftrace_run_modify_code(ops, FTRACE_UPDATE_CALLS, old_hash);
    		return;
    	}
    
    	/*
    	 * If this is the shared global_ops filter, then we need to
    	 * check if there is another ops that shares it, is enabled.
    	 * If so, we still need to run the modify code.
    	 */
    	if (ops->func_hash != &global_ops.local_hash)
    		return;
    
    	do_for_each_ftrace_op(op, ftrace_ops_list) {
    		if (op->func_hash == &global_ops.local_hash &&
    		    op->flags & FTRACE_OPS_FL_ENABLED) {
    			ftrace_run_modify_code(op, FTRACE_UPDATE_CALLS, old_hash);
    			/* Only need to do this once */
    			return;
    		}
    	} while_for_each_ftrace_op(op);
    }
    
    static int ftrace_hash_move_and_update_ops(struct ftrace_ops *ops,
    					   struct ftrace_hash **orig_hash,
    					   struct ftrace_hash *hash,
    					   int enable)
    {
    	struct ftrace_ops_hash old_hash_ops;
    	struct ftrace_hash *old_hash;
    	int ret;
    
    	old_hash = *orig_hash;
    	old_hash_ops.filter_hash = ops->func_hash->filter_hash;
    	old_hash_ops.notrace_hash = ops->func_hash->notrace_hash;
    	ret = ftrace_hash_move(ops, enable, orig_hash, hash);
    	if (!ret) {
    		ftrace_ops_update_code(ops, &old_hash_ops);
    		free_ftrace_hash_rcu(old_hash);
    	}
    	return ret;
    }
    
    static bool module_exists(const char *module)
    {
    	/* All modules have the symbol __this_module */
    	const char this_mod[] = "__this_module";
    	char modname[MAX_PARAM_PREFIX_LEN + sizeof(this_mod) + 2];
    	unsigned long val;
    	int n;
    
    	n = snprintf(modname, sizeof(modname), "%s:%s", module, this_mod);
    
    	if (n > sizeof(modname) - 1)
    		return false;
    
    	val = module_kallsyms_lookup_name(modname);
    	return val != 0;
    }
    
    static int cache_mod(struct trace_array *tr,
    		     const char *func, char *module, int enable)
    {
    	struct ftrace_mod_load *ftrace_mod, *n;
    	struct list_head *head = enable ? &tr->mod_trace : &tr->mod_notrace;
    	int ret;
    
    	mutex_lock(&ftrace_lock);
    
    	/* We do not cache inverse filters */
    	if (func[0] == '!') {
    		func++;
    		ret = -EINVAL;
    
    		/* Look to remove this hash */
    		list_for_each_entry_safe(ftrace_mod, n, head, list) {
    			if (strcmp(ftrace_mod->module, module) != 0)
    				continue;
    
    			/* no func matches all */
    			if (strcmp(func, "*") == 0 ||
    			    (ftrace_mod->func &&
    			     strcmp(ftrace_mod->func, func) == 0)) {
    				ret = 0;
    				free_ftrace_mod(ftrace_mod);
    				continue;
    			}
    		}
    		goto out;
    	}
    
    	ret = -EINVAL;
    	/* We only care about modules that have not been loaded yet */
    	if (module_exists(module))
    		goto out;
    
    	/* Save this string off, and execute it when the module is loaded */
    	ret = ftrace_add_mod(tr, func, module, enable);
     out:
    	mutex_unlock(&ftrace_lock);
    
    	return ret;
    }
    
    static int
    ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len,
    		 int reset, int enable);
    
    #ifdef CONFIG_MODULES
    static void process_mod_list(struct list_head *head, struct ftrace_ops *ops,
    			     char *mod, bool enable)
    {
    	struct ftrace_mod_load *ftrace_mod, *n;
    	struct ftrace_hash **orig_hash, *new_hash;
    	LIST_HEAD(process_mods);
    	char *func;
    	int ret;
    
    	mutex_lock(&ops->func_hash->regex_lock);
    
    	if (enable)
    		orig_hash = &ops->func_hash->filter_hash;
    	else
    		orig_hash = &ops->func_hash->notrace_hash;
    
    	new_hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS,
    					      *orig_hash);
    	if (!new_hash)
    		goto out; /* warn? */
    
    	mutex_lock(&ftrace_lock);
    
    	list_for_each_entry_safe(ftrace_mod, n, head, list) {
    
    		if (strcmp(ftrace_mod->module, mod) != 0)
    			continue;
    
    		if (ftrace_mod->func)
    			func = kstrdup(ftrace_mod->func, GFP_KERNEL);
    		else
    			func = kstrdup("*", GFP_KERNEL);
    
    		if (!func) /* warn? */
    			continue;
    
    		list_del(&ftrace_mod->list);
    		list_add(&ftrace_mod->list, &process_mods);
    
    		/* Use the newly allocated func, as it may be "*" */
    		kfree(ftrace_mod->func);
    		ftrace_mod->func = func;
    	}
    
    	mutex_unlock(&ftrace_lock);
    
    	list_for_each_entry_safe(ftrace_mod, n, &process_mods, list) {
    
    		func = ftrace_mod->func;
    
    		/* Grabs ftrace_lock, which is why we have this extra step */
    		match_records(new_hash, func, strlen(func), mod);
    		free_ftrace_mod(ftrace_mod);
    	}
    
    	if (enable && list_empty(head))
    		new_hash->flags &= ~FTRACE_HASH_FL_MOD;
    
    	mutex_lock(&ftrace_lock);
    
    	ret = ftrace_hash_move_and_update_ops(ops, orig_hash,
    					      new_hash, enable);
    	mutex_unlock(&ftrace_lock);
    
     out:
    	mutex_unlock(&ops->func_hash->regex_lock);
    
    	free_ftrace_hash(new_hash);
    }
    
    static void process_cached_mods(const char *mod_name)
    {
    	struct trace_array *tr;
    	char *mod;
    
    	mod = kstrdup(mod_name, GFP_KERNEL);
    	if (!mod)
    		return;
    
    	mutex_lock(&trace_types_lock);
    	list_for_each_entry(tr, &ftrace_trace_arrays, list) {
    		if (!list_empty(&tr->mod_trace))
    			process_mod_list(&tr->mod_trace, tr->ops, mod, true);
    		if (!list_empty(&tr->mod_notrace))
    			process_mod_list(&tr->mod_notrace, tr->ops, mod, false);
    	}
    	mutex_unlock(&trace_types_lock);
    
    	kfree(mod);
    }
    #endif
    
    /*
     * We register the module command as a template to show others how
     * to register the a command as well.
     */
    
    static int
    ftrace_mod_callback(struct trace_array *tr, struct ftrace_hash *hash,
    		    char *func_orig, char *cmd, char *module, int enable)
    {
    	char *func;
    	int ret;
    
    	/* match_records() modifies func, and we need the original */
    	func = kstrdup(func_orig, GFP_KERNEL);
    	if (!func)
    		return -ENOMEM;
    
    	/*
    	 * cmd == 'mod' because we only registered this func
    	 * for the 'mod' ftrace_func_command.
    	 * But if you register one func with multiple commands,
    	 * you can tell which command was used by the cmd
    	 * parameter.
    	 */
    	ret = match_records(hash, func, strlen(func), module);
    	kfree(func);
    
    	if (!ret)
    		return cache_mod(tr, func_orig, module, enable);
    	if (ret < 0)
    		return ret;
    	return 0;
    }
    
    static struct ftrace_func_command ftrace_mod_cmd = {
    	.name			= "mod",
    	.func			= ftrace_mod_callback,
    };
    
    static int __init ftrace_mod_cmd_init(void)
    {
    	return register_ftrace_command(&ftrace_mod_cmd);
    }
    core_initcall(ftrace_mod_cmd_init);
    
    static void function_trace_probe_call(unsigned long ip, unsigned long parent_ip,
    				      struct ftrace_ops *op, struct pt_regs *pt_regs)
    {
    	struct ftrace_probe_ops *probe_ops;
    	struct ftrace_func_probe *probe;
    
    	probe = container_of(op, struct ftrace_func_probe, ops);
    	probe_ops = probe->probe_ops;
    
    	/*
    	 * Disable preemption for these calls to prevent a RCU grace
    	 * period. This syncs the hash iteration and freeing of items
    	 * on the hash. rcu_read_lock is too dangerous here.
    	 */
    	preempt_disable_notrace();
    	probe_ops->func(ip, parent_ip, probe->tr, probe_ops, probe->data);
    	preempt_enable_notrace();
    }
    
    struct ftrace_func_map {
    	struct ftrace_func_entry	entry;
    	void				*data;
    };
    
    struct ftrace_func_mapper {
    	struct ftrace_hash		hash;
    };
    
    /**
     * allocate_ftrace_func_mapper - allocate a new ftrace_func_mapper
     *
     * Returns a ftrace_func_mapper descriptor that can be used to map ips to data.
     */
    struct ftrace_func_mapper *allocate_ftrace_func_mapper(void)
    {
    	struct ftrace_hash *hash;
    
    	/*
    	 * The mapper is simply a ftrace_hash, but since the entries
    	 * in the hash are not ftrace_func_entry type, we define it
    	 * as a separate structure.
    	 */
    	hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
    	return (struct ftrace_func_mapper *)hash;
    }
    
    /**
     * ftrace_func_mapper_find_ip - Find some data mapped to an ip
     * @mapper: The mapper that has the ip maps
     * @ip: the instruction pointer to find the data for
     *
     * Returns the data mapped to @ip if found otherwise NULL. The return
     * is actually the address of the mapper data pointer. The address is
     * returned for use cases where the data is no bigger than a long, and
     * the user can use the data pointer as its data instead of having to
     * allocate more memory for the reference.
     */
    void **ftrace_func_mapper_find_ip(struct ftrace_func_mapper *mapper,
    				  unsigned long ip)
    {
    	struct ftrace_func_entry *entry;
    	struct ftrace_func_map *map;
    
    	entry = ftrace_lookup_ip(&mapper->hash, ip);
    	if (!entry)
    		return NULL;
    
    	map = (struct ftrace_func_map *)entry;
    	return &map->data;
    }
    
    /**
     * ftrace_func_mapper_add_ip - Map some data to an ip
     * @mapper: The mapper that has the ip maps
     * @ip: The instruction pointer address to map @data to
     * @data: The data to map to @ip
     *
     * Returns 0 on succes otherwise an error.
     */
    int ftrace_func_mapper_add_ip(struct ftrace_func_mapper *mapper,
    			      unsigned long ip, void *data)
    {
    	struct ftrace_func_entry *entry;
    	struct ftrace_func_map *map;
    
    	entry = ftrace_lookup_ip(&mapper->hash, ip);
    	if (entry)
    		return -EBUSY;
    
    	map = kmalloc(sizeof(*map), GFP_KERNEL);
    	if (!map)
    		return -ENOMEM;
    
    	map->entry.ip = ip;
    	map->data = data;
    
    	__add_hash_entry(&mapper->hash, &map->entry);
    
    	return 0;
    }
    
    /**
     * ftrace_func_mapper_remove_ip - Remove an ip from the mapping
     * @mapper: The mapper that has the ip maps
     * @ip: The instruction pointer address to remove the data from
     *
     * Returns the data if it is found, otherwise NULL.
     * Note, if the data pointer is used as the data itself, (see 
     * ftrace_func_mapper_find_ip(), then the return value may be meaningless,
     * if the data pointer was set to zero.
     */
    void *ftrace_func_mapper_remove_ip(struct ftrace_func_mapper *mapper,
    				   unsigned long ip)
    {
    	struct ftrace_func_entry *entry;
    	struct ftrace_func_map *map;
    	void *data;
    
    	entry = ftrace_lookup_ip(&mapper->hash, ip);
    	if (!entry)
    		return NULL;
    
    	map = (struct ftrace_func_map *)entry;
    	data = map->data;
    
    	remove_hash_entry(&mapper->hash, entry);
    	kfree(entry);
    
    	return data;
    }
    
    /**
     * free_ftrace_func_mapper - free a mapping of ips and data
     * @mapper: The mapper that has the ip maps
     * @free_func: A function to be called on each data item.
     *
     * This is used to free the function mapper. The @free_func is optional
     * and can be used if the data needs to be freed as well.
     */
    void free_ftrace_func_mapper(struct ftrace_func_mapper *mapper,
    			     ftrace_mapper_func free_func)
    {
    	struct ftrace_func_entry *entry;
    	struct ftrace_func_map *map;
    	struct hlist_head *hhd;
    	int size = 1 << mapper->hash.size_bits;
    	int i;
    
    	if (free_func && mapper->hash.count) {
    		for (i = 0; i < size; i++) {
    			hhd = &mapper->hash.buckets[i];
    			hlist_for_each_entry(entry, hhd, hlist) {
    				map = (struct ftrace_func_map *)entry;
    				free_func(map);
    			}
    		}
    	}
    	free_ftrace_hash(&mapper->hash);
    }
    
    static void release_probe(struct ftrace_func_probe *probe)
    {
    	struct ftrace_probe_ops *probe_ops;
    
    	mutex_lock(&ftrace_lock);
    
    	WARN_ON(probe->ref <= 0);
    
    	/* Subtract the ref that was used to protect this instance */
    	probe->ref--;
    
    	if (!probe->ref) {
    		probe_ops = probe->probe_ops;
    		/*
    		 * Sending zero as ip tells probe_ops to free
    		 * the probe->data itself
    		 */
    		if (probe_ops->free)
    			probe_ops->free(probe_ops, probe->tr, 0, probe->data);
    		list_del(&probe->list);
    		kfree(probe);
    	}
    	mutex_unlock(&ftrace_lock);
    }
    
    static void acquire_probe_locked(struct ftrace_func_probe *probe)
    {
    	/*
    	 * Add one ref to keep it from being freed when releasing the
    	 * ftrace_lock mutex.
    	 */
    	probe->ref++;
    }
    
    int
    register_ftrace_function_probe(char *glob, struct trace_array *tr,
    			       struct ftrace_probe_ops *probe_ops,
    			       void *data)
    {
    	struct ftrace_func_entry *entry;
    	struct ftrace_func_probe *probe;
    	struct ftrace_hash **orig_hash;
    	struct ftrace_hash *old_hash;
    	struct ftrace_hash *hash;
    	int count = 0;
    	int size;
    	int ret;
    	int i;
    
    	if (WARN_ON(!tr))
    		return -EINVAL;
    
    	/* We do not support '!' for function probes */
    	if (WARN_ON(glob[0] == '!'))
    		return -EINVAL;
    
    
    	mutex_lock(&ftrace_lock);
    	/* Check if the probe_ops is already registered */
    	list_for_each_entry(probe, &tr->func_probes, list) {
    		if (probe->probe_ops == probe_ops)
    			break;
    	}
    	if (&probe->list == &tr->func_probes) {
    		probe = kzalloc(sizeof(*probe), GFP_KERNEL);
    		if (!probe) {
    			mutex_unlock(&ftrace_lock);
    			return -ENOMEM;
    		}
    		probe->probe_ops = probe_ops;
    		probe->ops.func = function_trace_probe_call;
    		probe->tr = tr;
    		ftrace_ops_init(&probe->ops);
    		list_add(&probe->list, &tr->func_probes);
    	}
    
    	acquire_probe_locked(probe);
    
    	mutex_unlock(&ftrace_lock);
    
    	mutex_lock(&probe->ops.func_hash->regex_lock);
    
    	orig_hash = &probe->ops.func_hash->filter_hash;
    	old_hash = *orig_hash;
    	hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash);
    
    	ret = ftrace_match_records(hash, glob, strlen(glob));
    
    	/* Nothing found? */
    	if (!ret)
    		ret = -EINVAL;
    
    	if (ret < 0)
    		goto out;
    
    	size = 1 << hash->size_bits;
    	for (i = 0; i < size; i++) {
    		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
    			if (ftrace_lookup_ip(old_hash, entry->ip))
    				continue;
    			/*
    			 * The caller might want to do something special
    			 * for each function we find. We call the callback
    			 * to give the caller an opportunity to do so.
    			 */
    			if (probe_ops->init) {
    				ret = probe_ops->init(probe_ops, tr,
    						      entry->ip, data,
    						      &probe->data);
    				if (ret < 0) {
    					if (probe_ops->free && count)
    						probe_ops->free(probe_ops, tr,
    								0, probe->data);
    					probe->data = NULL;
    					goto out;
    				}
    			}
    			count++;
    		}
    	}
    
    	mutex_lock(&ftrace_lock);
    
    	if (!count) {
    		/* Nothing was added? */
    		ret = -EINVAL;
    		goto out_unlock;
    	}
    
    	ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash,
    					      hash, 1);
    	if (ret < 0)
    		goto err_unlock;
    
    	/* One ref for each new function traced */
    	probe->ref += count;
    
    	if (!(probe->ops.flags & FTRACE_OPS_FL_ENABLED))
    		ret = ftrace_startup(&probe->ops, 0);
    
     out_unlock:
    	mutex_unlock(&ftrace_lock);
    
    	if (!ret)
    		ret = count;
     out:
    	mutex_unlock(&probe->ops.func_hash->regex_lock);
    	free_ftrace_hash(hash);
    
    	release_probe(probe);
    
    	return ret;
    
     err_unlock:
    	if (!probe_ops->free || !count)
    		goto out_unlock;
    
    	/* Failed to do the move, need to call the free functions */
    	for (i = 0; i < size; i++) {
    		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
    			if (ftrace_lookup_ip(old_hash, entry->ip))
    				continue;
    			probe_ops->free(probe_ops, tr, entry->ip, probe->data);
    		}
    	}
    	goto out_unlock;
    }
    
    int
    unregister_ftrace_function_probe_func(char *glob, struct trace_array *tr,
    				      struct ftrace_probe_ops *probe_ops)
    {
    	struct ftrace_ops_hash old_hash_ops;
    	struct ftrace_func_entry *entry;
    	struct ftrace_func_probe *probe;
    	struct ftrace_glob func_g;
    	struct ftrace_hash **orig_hash;
    	struct ftrace_hash *old_hash;
    	struct ftrace_hash *hash = NULL;
    	struct hlist_node *tmp;
    	struct hlist_head hhd;
    	char str[KSYM_SYMBOL_LEN];
    	int count = 0;
    	int i, ret = -ENODEV;
    	int size;
    
    	if (!glob || !strlen(glob) || !strcmp(glob, "*"))
    		func_g.search = NULL;
    	else {
    		int not;
    
    		func_g.type = filter_parse_regex(glob, strlen(glob),
    						 &func_g.search, &not);
    		func_g.len = strlen(func_g.search);
    
    		/* we do not support '!' for function probes */
    		if (WARN_ON(not))
    			return -EINVAL;
    	}
    
    	mutex_lock(&ftrace_lock);
    	/* Check if the probe_ops is already registered */
    	list_for_each_entry(probe, &tr->func_probes, list) {
    		if (probe->probe_ops == probe_ops)
    			break;
    	}
    	if (&probe->list == &tr->func_probes)
    		goto err_unlock_ftrace;
    
    	ret = -EINVAL;
    	if (!(probe->ops.flags & FTRACE_OPS_FL_INITIALIZED))
    		goto err_unlock_ftrace;
    
    	acquire_probe_locked(probe);
    
    	mutex_unlock(&ftrace_lock);
    
    	mutex_lock(&probe->ops.func_hash->regex_lock);
    
    	orig_hash = &probe->ops.func_hash->filter_hash;
    	old_hash = *orig_hash;
    
    	if (ftrace_hash_empty(old_hash))
    		goto out_unlock;
    
    	old_hash_ops.filter_hash = old_hash;
    	/* Probes only have filters */
    	old_hash_ops.notrace_hash = NULL;
    
    	ret = -ENOMEM;
    	hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash);
    	if (!hash)
    		goto out_unlock;
    
    	INIT_HLIST_HEAD(&hhd);
    
    	size = 1 << hash->size_bits;
    	for (i = 0; i < size; i++) {
    		hlist_for_each_entry_safe(entry, tmp, &hash->buckets[i], hlist) {
    
    			if (func_g.search) {
    				kallsyms_lookup(entry->ip, NULL, NULL,
    						NULL, str);
    				if (!ftrace_match(str, &func_g))
    					continue;
    			}
    			count++;
    			remove_hash_entry(hash, entry);
    			hlist_add_head(&entry->hlist, &hhd);
    		}
    	}
    
    	/* Nothing found? */
    	if (!count) {
    		ret = -EINVAL;
    		goto out_unlock;
    	}
    
    	mutex_lock(&ftrace_lock);
    
    	WARN_ON(probe->ref < count);
    
    	probe->ref -= count;
    
    	if (ftrace_hash_empty(hash))
    		ftrace_shutdown(&probe->ops, 0);
    
    	ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash,
    					      hash, 1);
    
    	/* still need to update the function call sites */
    	if (ftrace_enabled && !ftrace_hash_empty(hash))
    		ftrace_run_modify_code(&probe->ops, FTRACE_UPDATE_CALLS,
    				       &old_hash_ops);
    	synchronize_sched();
    
    	hlist_for_each_entry_safe(entry, tmp, &hhd, hlist) {
    		hlist_del(&entry->hlist);
    		if (probe_ops->free)
    			probe_ops->free(probe_ops, tr, entry->ip, probe->data);
    		kfree(entry);
    	}
    	mutex_unlock(&ftrace_lock);
    
     out_unlock:
    	mutex_unlock(&probe->ops.func_hash->regex_lock);
    	free_ftrace_hash(hash);
    
    	release_probe(probe);
    
    	return ret;
    
     err_unlock_ftrace:
    	mutex_unlock(&ftrace_lock);
    	return ret;
    }
    
    void clear_ftrace_function_probes(struct trace_array *tr)
    {
    	struct ftrace_func_probe *probe, *n;
    
    	list_for_each_entry_safe(probe, n, &tr->func_probes, list)
    		unregister_ftrace_function_probe_func(NULL, tr, probe->probe_ops);
    }
    
    static LIST_HEAD(ftrace_commands);
    static DEFINE_MUTEX(ftrace_cmd_mutex);
    
    /*
     * Currently we only register ftrace commands from __init, so mark this
     * __init too.
     */
    __init int register_ftrace_command(struct ftrace_func_command *cmd)
    {
    	struct ftrace_func_command *p;
    	int ret = 0;
    
    	mutex_lock(&ftrace_cmd_mutex);
    	list_for_each_entry(p, &ftrace_commands, list) {
    		if (strcmp(cmd->name, p->name) == 0) {
    			ret = -EBUSY;
    			goto out_unlock;
    		}
    	}
    	list_add(&cmd->list, &ftrace_commands);
     out_unlock:
    	mutex_unlock(&ftrace_cmd_mutex);
    
    	return ret;
    }
    
    /*
     * Currently we only unregister ftrace commands from __init, so mark
     * this __init too.
     */
    __init int unregister_ftrace_command(struct ftrace_func_command *cmd)
    {
    	struct ftrace_func_command *p, *n;
    	int ret = -ENODEV;
    
    	mutex_lock(&ftrace_cmd_mutex);
    	list_for_each_entry_safe(p, n, &ftrace_commands, list) {
    		if (strcmp(cmd->name, p->name) == 0) {
    			ret = 0;
    			list_del_init(&p->list);
    			goto out_unlock;
    		}
    	}
     out_unlock:
    	mutex_unlock(&ftrace_cmd_mutex);
    
    	return ret;
    }
    
    static int ftrace_process_regex(struct ftrace_iterator *iter,
    				char *buff, int len, int enable)
    {
    	struct ftrace_hash *hash = iter->hash;
    	struct trace_array *tr = iter->ops->private;
    	char *func, *command, *next = buff;
    	struct ftrace_func_command *p;
    	int ret = -EINVAL;
    
    	func = strsep(&next, ":");
    
    	if (!next) {
    		ret = ftrace_match_records(hash, func, len);
    		if (!ret)
    			ret = -EINVAL;
    		if (ret < 0)
    			return ret;
    		return 0;
    	}
    
    	/* command found */
    
    	command = strsep(&next, ":");
    
    	mutex_lock(&ftrace_cmd_mutex);
    	list_for_each_entry(p, &ftrace_commands, list) {
    		if (strcmp(p->name, command) == 0) {
    			ret = p->func(tr, hash, func, command, next, enable);
    			goto out_unlock;
    		}
    	}
     out_unlock:
    	mutex_unlock(&ftrace_cmd_mutex);
    
    	return ret;
    }
    
    static ssize_t
    ftrace_regex_write(struct file *file, const char __user *ubuf,
    		   size_t cnt, loff_t *ppos, int enable)
    {
    	struct ftrace_iterator *iter;
    	struct trace_parser *parser;
    	ssize_t ret, read;
    
    	if (!cnt)
    		return 0;
    
    	if (file->f_mode & FMODE_READ) {
    		struct seq_file *m = file->private_data;
    		iter = m->private;
    	} else
    		iter = file->private_data;
    
    	if (unlikely(ftrace_disabled))
    		return -ENODEV;
    
    	/* iter->hash is a local copy, so we don't need regex_lock */
    
    	parser = &iter->parser;
    	read = trace_get_user(parser, ubuf, cnt, ppos);
    
    	if (read >= 0 && trace_parser_loaded(parser) &&
    	    !trace_parser_cont(parser)) {
    		ret = ftrace_process_regex(iter, parser->buffer,
    					   parser->idx, enable);
    		trace_parser_clear(parser);
    		if (ret < 0)
    			goto out;
    	}
    
    	ret = read;
     out:
    	return ret;
    }
    
    ssize_t
    ftrace_filter_write(struct file *file, const char __user *ubuf,
    		    size_t cnt, loff_t *ppos)
    {
    	return ftrace_regex_write(file, ubuf, cnt, ppos, 1);
    }
    
    ssize_t
    ftrace_notrace_write(struct file *file, const char __user *ubuf,
    		     size_t cnt, loff_t *ppos)
    {
    	return ftrace_regex_write(file, ubuf, cnt, ppos, 0);
    }
    
    static int
    ftrace_match_addr(struct ftrace_hash *hash, unsigned long ip, int remove)
    {
    	struct ftrace_func_entry *entry;
    
    	if (!ftrace_location(ip))
    		return -EINVAL;
    
    	if (remove) {
    		entry = ftrace_lookup_ip(hash, ip);
    		if (!entry)
    			return -ENOENT;
    		free_hash_entry(hash, entry);
    		return 0;
    	}
    
    	return add_hash_entry(hash, ip);
    }
    
    static int
    ftrace_set_hash(struct ftrace_ops *ops, unsigned char *buf, int len,
    		unsigned long ip, int remove, int reset, int enable)
    {
    	struct ftrace_hash **orig_hash;
    	struct ftrace_hash *hash;
    	int ret;
    
    	if (unlikely(ftrace_disabled))
    		return -ENODEV;
    
    	mutex_lock(&ops->func_hash->regex_lock);
    
    	if (enable)
    		orig_hash = &ops->func_hash->filter_hash;
    	else
    		orig_hash = &ops->func_hash->notrace_hash;
    
    	if (reset)
    		hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
    	else
    		hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, *orig_hash);
    
    	if (!hash) {
    		ret = -ENOMEM;
    		goto out_regex_unlock;
    	}
    
    	if (buf && !ftrace_match_records(hash, buf, len)) {
    		ret = -EINVAL;
    		goto out_regex_unlock;
    	}
    	if (ip) {
    		ret = ftrace_match_addr(hash, ip, remove);
    		if (ret < 0)
    			goto out_regex_unlock;
    	}
    
    	mutex_lock(&ftrace_lock);
    	ret = ftrace_hash_move_and_update_ops(ops, orig_hash, hash, enable);
    	mutex_unlock(&ftrace_lock);
    
     out_regex_unlock:
    	mutex_unlock(&ops->func_hash->regex_lock);
    
    	free_ftrace_hash(hash);
    	return ret;
    }
    
    static int
    ftrace_set_addr(struct ftrace_ops *ops, unsigned long ip, int remove,
    		int reset, int enable)
    {
    	return ftrace_set_hash(ops, 0, 0, ip, remove, reset, enable);
    }
    
    /**
     * ftrace_set_filter_ip - set a function to filter on in ftrace by address
     * @ops - the ops to set the filter with
     * @ip - the address to add to or remove from the filter.
     * @remove - non zero to remove the ip from the filter
     * @reset - non zero to reset all filters before applying this filter.
     *
     * Filters denote which functions should be enabled when tracing is enabled
     * If @ip is NULL, it failes to update filter.
     */
    int ftrace_set_filter_ip(struct ftrace_ops *ops, unsigned long ip,
    			 int remove, int reset)
    {
    	ftrace_ops_init(ops);
    	return ftrace_set_addr(ops, ip, remove, reset, 1);
    }
    EXPORT_SYMBOL_GPL(ftrace_set_filter_ip);
    
    /**
     * ftrace_ops_set_global_filter - setup ops to use global filters
     * @ops - the ops which will use the global filters
     *
     * ftrace users who need global function trace filtering should call this.
     * It can set the global filter only if ops were not initialized before.
     */
    void ftrace_ops_set_global_filter(struct ftrace_ops *ops)
    {
    	if (ops->flags & FTRACE_OPS_FL_INITIALIZED)
    		return;
    
    	ftrace_ops_init(ops);
    	ops->func_hash = &global_ops.local_hash;
    }
    EXPORT_SYMBOL_GPL(ftrace_ops_set_global_filter);
    
    static int
    ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len,
    		 int reset, int enable)
    {
    	return ftrace_set_hash(ops, buf, len, 0, 0, reset, enable);
    }
    
    /**
     * ftrace_set_filter - set a function to filter on in ftrace
     * @ops - the ops to set the filter with
     * @buf - the string that holds the function filter text.
     * @len - the length of the string.
     * @reset - non zero to reset all filters before applying this filter.
     *
     * Filters denote which functions should be enabled when tracing is enabled.
     * If @buf is NULL and reset is set, all functions will be enabled for tracing.
     */
    int ftrace_set_filter(struct ftrace_ops *ops, unsigned char *buf,
    		       int len, int reset)
    {
    	ftrace_ops_init(ops);
    	return ftrace_set_regex(ops, buf, len, reset, 1);
    }
    EXPORT_SYMBOL_GPL(ftrace_set_filter);
    
    /**
     * ftrace_set_notrace - set a function to not trace in ftrace
     * @ops - the ops to set the notrace filter with
     * @buf - the string that holds the function notrace text.
     * @len - the length of the string.
     * @reset - non zero to reset all filters before applying this filter.
     *
     * Notrace Filters denote which functions should not be enabled when tracing
     * is enabled. If @buf is NULL and reset is set, all functions will be enabled
     * for tracing.
     */
    int ftrace_set_notrace(struct ftrace_ops *ops, unsigned char *buf,
    			int len, int reset)
    {
    	ftrace_ops_init(ops);
    	return ftrace_set_regex(ops, buf, len, reset, 0);
    }
    EXPORT_SYMBOL_GPL(ftrace_set_notrace);
    /**
     * ftrace_set_global_filter - set a function to filter on with global tracers
     * @buf - the string that holds the function filter text.
     * @len - the length of the string.
     * @reset - non zero to reset all filters before applying this filter.
     *
     * Filters denote which functions should be enabled when tracing is enabled.
     * If @buf is NULL and reset is set, all functions will be enabled for tracing.
     */
    void ftrace_set_global_filter(unsigned char *buf, int len, int reset)
    {
    	ftrace_set_regex(&global_ops, buf, len, reset, 1);
    }
    EXPORT_SYMBOL_GPL(ftrace_set_global_filter);
    
    /**
     * ftrace_set_global_notrace - set a function to not trace with global tracers
     * @buf - the string that holds the function notrace text.
     * @len - the length of the string.
     * @reset - non zero to reset all filters before applying this filter.
     *
     * Notrace Filters denote which functions should not be enabled when tracing
     * is enabled. If @buf is NULL and reset is set, all functions will be enabled
     * for tracing.
     */
    void ftrace_set_global_notrace(unsigned char *buf, int len, int reset)
    {
    	ftrace_set_regex(&global_ops, buf, len, reset, 0);
    }
    EXPORT_SYMBOL_GPL(ftrace_set_global_notrace);
    
    /*
     * command line interface to allow users to set filters on boot up.
     */
    #define FTRACE_FILTER_SIZE		COMMAND_LINE_SIZE
    static char ftrace_notrace_buf[FTRACE_FILTER_SIZE] __initdata;
    static char ftrace_filter_buf[FTRACE_FILTER_SIZE] __initdata;
    
    /* Used by function selftest to not test if filter is set */
    bool ftrace_filter_param __initdata;
    
    static int __init set_ftrace_notrace(char *str)
    {
    	ftrace_filter_param = true;
    	strlcpy(ftrace_notrace_buf, str, FTRACE_FILTER_SIZE);
    	return 1;
    }
    __setup("ftrace_notrace=", set_ftrace_notrace);
    
    static int __init set_ftrace_filter(char *str)
    {
    	ftrace_filter_param = true;
    	strlcpy(ftrace_filter_buf, str, FTRACE_FILTER_SIZE);
    	return 1;
    }
    __setup("ftrace_filter=", set_ftrace_filter);
    
    #ifdef CONFIG_FUNCTION_GRAPH_TRACER
    static char ftrace_graph_buf[FTRACE_FILTER_SIZE] __initdata;
    static char ftrace_graph_notrace_buf[FTRACE_FILTER_SIZE] __initdata;
    static int ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer);
    
    static int __init set_graph_function(char *str)
    {
    	strlcpy(ftrace_graph_buf, str, FTRACE_FILTER_SIZE);
    	return 1;
    }
    __setup("ftrace_graph_filter=", set_graph_function);
    
    static int __init set_graph_notrace_function(char *str)
    {
    	strlcpy(ftrace_graph_notrace_buf, str, FTRACE_FILTER_SIZE);
    	return 1;
    }
    __setup("ftrace_graph_notrace=", set_graph_notrace_function);
    
    static int __init set_graph_max_depth_function(char *str)
    {
    	if (!str)
    		return 0;
    	fgraph_max_depth = simple_strtoul(str, NULL, 0);
    	return 1;
    }
    __setup("ftrace_graph_max_depth=", set_graph_max_depth_function);
    
    static void __init set_ftrace_early_graph(char *buf, int enable)
    {
    	int ret;
    	char *func;
    	struct ftrace_hash *hash;
    
    	hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
    	if (WARN_ON(!hash))
    		return;
    
    	while (buf) {
    		func = strsep(&buf, ",");
    		/* we allow only one expression at a time */
    		ret = ftrace_graph_set_hash(hash, func);
    		if (ret)
    			printk(KERN_DEBUG "ftrace: function %s not "
    					  "traceable\n", func);
    	}
    
    	if (enable)
    		ftrace_graph_hash = hash;
    	else
    		ftrace_graph_notrace_hash = hash;
    }
    #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
    
    void __init
    ftrace_set_early_filter(struct ftrace_ops *ops, char *buf, int enable)
    {
    	char *func;
    
    	ftrace_ops_init(ops);
    
    	while (buf) {
    		func = strsep(&buf, ",");
    		ftrace_set_regex(ops, func, strlen(func), 0, enable);
    	}
    }
    
    static void __init set_ftrace_early_filters(void)
    {
    	if (ftrace_filter_buf[0])
    		ftrace_set_early_filter(&global_ops, ftrace_filter_buf, 1);
    	if (ftrace_notrace_buf[0])
    		ftrace_set_early_filter(&global_ops, ftrace_notrace_buf, 0);
    #ifdef CONFIG_FUNCTION_GRAPH_TRACER
    	if (ftrace_graph_buf[0])
    		set_ftrace_early_graph(ftrace_graph_buf, 1);
    	if (ftrace_graph_notrace_buf[0])
    		set_ftrace_early_graph(ftrace_graph_notrace_buf, 0);
    #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
    }
    
    int ftrace_regex_release(struct inode *inode, struct file *file)
    {
    	struct seq_file *m = (struct seq_file *)file->private_data;
    	struct ftrace_iterator *iter;
    	struct ftrace_hash **orig_hash;
    	struct trace_parser *parser;
    	int filter_hash;
    	int ret;
    
    	if (file->f_mode & FMODE_READ) {
    		iter = m->private;
    		seq_release(inode, file);
    	} else
    		iter = file->private_data;
    
    	parser = &iter->parser;
    	if (trace_parser_loaded(parser)) {
    		ftrace_match_records(iter->hash, parser->buffer, parser->idx);
    	}
    
    	trace_parser_put(parser);
    
    	mutex_lock(&iter->ops->func_hash->regex_lock);
    
    	if (file->f_mode & FMODE_WRITE) {
    		filter_hash = !!(iter->flags & FTRACE_ITER_FILTER);
    
    		if (filter_hash) {
    			orig_hash = &iter->ops->func_hash->filter_hash;
    			if (iter->tr && !list_empty(&iter->tr->mod_trace))
    				iter->hash->flags |= FTRACE_HASH_FL_MOD;
    		} else
    			orig_hash = &iter->ops->func_hash->notrace_hash;
    
    		mutex_lock(&ftrace_lock);
    		ret = ftrace_hash_move_and_update_ops(iter->ops, orig_hash,
    						      iter->hash, filter_hash);
    		mutex_unlock(&ftrace_lock);
    	} else {
    		/* For read only, the hash is the ops hash */
    		iter->hash = NULL;
    	}
    
    	mutex_unlock(&iter->ops->func_hash->regex_lock);
    	free_ftrace_hash(iter->hash);
    	kfree(iter);
    
    	return 0;
    }
    
    static const struct file_operations ftrace_avail_fops = {
    	.open = ftrace_avail_open,
    	.read = seq_read,
    	.llseek = seq_lseek,
    	.release = seq_release_private,
    };
    
    static const struct file_operations ftrace_enabled_fops = {
    	.open = ftrace_enabled_open,
    	.read = seq_read,
    	.llseek = seq_lseek,
    	.release = seq_release_private,
    };
    
    static const struct file_operations ftrace_filter_fops = {
    	.open = ftrace_filter_open,
    	.read = seq_read,
    	.write = ftrace_filter_write,
    	.llseek = tracing_lseek,
    	.release = ftrace_regex_release,
    };
    
    static const struct file_operations ftrace_notrace_fops = {
    	.open = ftrace_notrace_open,
    	.read = seq_read,
    	.write = ftrace_notrace_write,
    	.llseek = tracing_lseek,
    	.release = ftrace_regex_release,
    };
    
    #ifdef CONFIG_FUNCTION_GRAPH_TRACER
    
    static DEFINE_MUTEX(graph_lock);
    
    struct ftrace_hash *ftrace_graph_hash = EMPTY_HASH;
    struct ftrace_hash *ftrace_graph_notrace_hash = EMPTY_HASH;
    
    enum graph_filter_type {
    	GRAPH_FILTER_NOTRACE	= 0,
    	GRAPH_FILTER_FUNCTION,
    };
    
    #define FTRACE_GRAPH_EMPTY	((void *)1)
    
    struct ftrace_graph_data {
    	struct ftrace_hash		*hash;
    	struct ftrace_func_entry	*entry;
    	int				idx;   /* for hash table iteration */
    	enum graph_filter_type		type;
    	struct ftrace_hash		*new_hash;
    	const struct seq_operations	*seq_ops;
    	struct trace_parser		parser;
    };
    
    static void *
    __g_next(struct seq_file *m, loff_t *pos)
    {
    	struct ftrace_graph_data *fgd = m->private;
    	struct ftrace_func_entry *entry = fgd->entry;
    	struct hlist_head *head;
    	int i, idx = fgd->idx;
    
    	if (*pos >= fgd->hash->count)
    		return NULL;
    
    	if (entry) {
    		hlist_for_each_entry_continue(entry, hlist) {
    			fgd->entry = entry;
    			return entry;
    		}
    
    		idx++;
    	}
    
    	for (i = idx; i < 1 << fgd->hash->size_bits; i++) {
    		head = &fgd->hash->buckets[i];
    		hlist_for_each_entry(entry, head, hlist) {
    			fgd->entry = entry;
    			fgd->idx = i;
    			return entry;
    		}
    	}
    	return NULL;
    }
    
    static void *
    g_next(struct seq_file *m, void *v, loff_t *pos)
    {
    	(*pos)++;
    	return __g_next(m, pos);
    }
    
    static void *g_start(struct seq_file *m, loff_t *pos)
    {
    	struct ftrace_graph_data *fgd = m->private;
    
    	mutex_lock(&graph_lock);
    
    	if (fgd->type == GRAPH_FILTER_FUNCTION)
    		fgd->hash = rcu_dereference_protected(ftrace_graph_hash,
    					lockdep_is_held(&graph_lock));
    	else
    		fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
    					lockdep_is_held(&graph_lock));
    
    	/* Nothing, tell g_show to print all functions are enabled */
    	if (ftrace_hash_empty(fgd->hash) && !*pos)
    		return FTRACE_GRAPH_EMPTY;
    
    	fgd->idx = 0;
    	fgd->entry = NULL;
    	return __g_next(m, pos);
    }
    
    static void g_stop(struct seq_file *m, void *p)
    {
    	mutex_unlock(&graph_lock);
    }
    
    static int g_show(struct seq_file *m, void *v)
    {
    	struct ftrace_func_entry *entry = v;
    
    	if (!entry)
    		return 0;
    
    	if (entry == FTRACE_GRAPH_EMPTY) {
    		struct ftrace_graph_data *fgd = m->private;
    
    		if (fgd->type == GRAPH_FILTER_FUNCTION)
    			seq_puts(m, "#### all functions enabled ####\n");
    		else
    			seq_puts(m, "#### no functions disabled ####\n");
    		return 0;
    	}
    
    	seq_printf(m, "%ps\n", (void *)entry->ip);
    
    	return 0;
    }
    
    static const struct seq_operations ftrace_graph_seq_ops = {
    	.start = g_start,
    	.next = g_next,
    	.stop = g_stop,
    	.show = g_show,
    };
    
    static int
    __ftrace_graph_open(struct inode *inode, struct file *file,
    		    struct ftrace_graph_data *fgd)
    {
    	int ret = 0;
    	struct ftrace_hash *new_hash = NULL;
    
    	if (file->f_mode & FMODE_WRITE) {
    		const int size_bits = FTRACE_HASH_DEFAULT_BITS;
    
    		if (trace_parser_get_init(&fgd->parser, FTRACE_BUFF_MAX))
    			return -ENOMEM;
    
    		if (file->f_flags & O_TRUNC)
    			new_hash = alloc_ftrace_hash(size_bits);
    		else
    			new_hash = alloc_and_copy_ftrace_hash(size_bits,
    							      fgd->hash);
    		if (!new_hash) {
    			ret = -ENOMEM;
    			goto out;
    		}
    	}
    
    	if (file->f_mode & FMODE_READ) {
    		ret = seq_open(file, &ftrace_graph_seq_ops);
    		if (!ret) {
    			struct seq_file *m = file->private_data;
    			m->private = fgd;
    		} else {
    			/* Failed */
    			free_ftrace_hash(new_hash);
    			new_hash = NULL;
    		}
    	} else
    		file->private_data = fgd;
    
    out:
    	if (ret < 0 && file->f_mode & FMODE_WRITE)
    		trace_parser_put(&fgd->parser);
    
    	fgd->new_hash = new_hash;
    
    	/*
    	 * All uses of fgd->hash must be taken with the graph_lock
    	 * held. The graph_lock is going to be released, so force
    	 * fgd->hash to be reinitialized when it is taken again.
    	 */
    	fgd->hash = NULL;
    
    	return ret;
    }
    
    static int
    ftrace_graph_open(struct inode *inode, struct file *file)
    {
    	struct ftrace_graph_data *fgd;
    	int ret;
    
    	if (unlikely(ftrace_disabled))
    		return -ENODEV;
    
    	fgd = kmalloc(sizeof(*fgd), GFP_KERNEL);
    	if (fgd == NULL)
    		return -ENOMEM;
    
    	mutex_lock(&graph_lock);
    
    	fgd->hash = rcu_dereference_protected(ftrace_graph_hash,
    					lockdep_is_held(&graph_lock));
    	fgd->type = GRAPH_FILTER_FUNCTION;
    	fgd->seq_ops = &ftrace_graph_seq_ops;
    
    	ret = __ftrace_graph_open(inode, file, fgd);
    	if (ret < 0)
    		kfree(fgd);
    
    	mutex_unlock(&graph_lock);
    	return ret;
    }
    
    static int
    ftrace_graph_notrace_open(struct inode *inode, struct file *file)
    {
    	struct ftrace_graph_data *fgd;
    	int ret;
    
    	if (unlikely(ftrace_disabled))
    		return -ENODEV;
    
    	fgd = kmalloc(sizeof(*fgd), GFP_KERNEL);
    	if (fgd == NULL)
    		return -ENOMEM;
    
    	mutex_lock(&graph_lock);
    
    	fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
    					lockdep_is_held(&graph_lock));
    	fgd->type = GRAPH_FILTER_NOTRACE;
    	fgd->seq_ops = &ftrace_graph_seq_ops;
    
    	ret = __ftrace_graph_open(inode, file, fgd);
    	if (ret < 0)
    		kfree(fgd);
    
    	mutex_unlock(&graph_lock);
    	return ret;
    }
    
    static int
    ftrace_graph_release(struct inode *inode, struct file *file)
    {
    	struct ftrace_graph_data *fgd;
    	struct ftrace_hash *old_hash, *new_hash;
    	struct trace_parser *parser;
    	int ret = 0;
    
    	if (file->f_mode & FMODE_READ) {
    		struct seq_file *m = file->private_data;
    
    		fgd = m->private;
    		seq_release(inode, file);
    	} else {
    		fgd = file->private_data;
    	}
    
    
    	if (file->f_mode & FMODE_WRITE) {
    
    		parser = &fgd->parser;
    
    		if (trace_parser_loaded((parser))) {
    			ret = ftrace_graph_set_hash(fgd->new_hash,
    						    parser->buffer);
    		}
    
    		trace_parser_put(parser);
    
    		new_hash = __ftrace_hash_move(fgd->new_hash);
    		if (!new_hash) {
    			ret = -ENOMEM;
    			goto out;
    		}
    
    		mutex_lock(&graph_lock);
    
    		if (fgd->type == GRAPH_FILTER_FUNCTION) {
    			old_hash = rcu_dereference_protected(ftrace_graph_hash,
    					lockdep_is_held(&graph_lock));
    			rcu_assign_pointer(ftrace_graph_hash, new_hash);
    		} else {
    			old_hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
    					lockdep_is_held(&graph_lock));
    			rcu_assign_pointer(ftrace_graph_notrace_hash, new_hash);
    		}
    
    		mutex_unlock(&graph_lock);
    
    		/* Wait till all users are no longer using the old hash */
    		synchronize_sched();
    
    		free_ftrace_hash(old_hash);
    	}
    
     out:
    	free_ftrace_hash(fgd->new_hash);
    	kfree(fgd);
    
    	return ret;
    }
    
    static int
    ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer)
    {
    	struct ftrace_glob func_g;
    	struct dyn_ftrace *rec;
    	struct ftrace_page *pg;
    	struct ftrace_func_entry *entry;
    	int fail = 1;
    	int not;
    
    	/* decode regex */
    	func_g.type = filter_parse_regex(buffer, strlen(buffer),
    					 &func_g.search, &not);
    
    	func_g.len = strlen(func_g.search);
    
    	mutex_lock(&ftrace_lock);
    
    	if (unlikely(ftrace_disabled)) {
    		mutex_unlock(&ftrace_lock);
    		return -ENODEV;
    	}
    
    	do_for_each_ftrace_rec(pg, rec) {
    
    		if (rec->flags & FTRACE_FL_DISABLED)
    			continue;
    
    		if (ftrace_match_record(rec, &func_g, NULL, 0)) {
    			entry = ftrace_lookup_ip(hash, rec->ip);
    
    			if (!not) {
    				fail = 0;
    
    				if (entry)
    					continue;
    				if (add_hash_entry(hash, rec->ip) < 0)
    					goto out;
    			} else {
    				if (entry) {
    					free_hash_entry(hash, entry);
    					fail = 0;
    				}
    			}
    		}
    	} while_for_each_ftrace_rec();
    out:
    	mutex_unlock(&ftrace_lock);
    
    	if (fail)
    		return -EINVAL;
    
    	return 0;
    }
    
    static ssize_t
    ftrace_graph_write(struct file *file, const char __user *ubuf,
    		   size_t cnt, loff_t *ppos)
    {
    	ssize_t read, ret = 0;
    	struct ftrace_graph_data *fgd = file->private_data;
    	struct trace_parser *parser;
    
    	if (!cnt)
    		return 0;
    
    	/* Read mode uses seq functions */
    	if (file->f_mode & FMODE_READ) {
    		struct seq_file *m = file->private_data;
    		fgd = m->private;
    	}
    
    	parser = &fgd->parser;
    
    	read = trace_get_user(parser, ubuf, cnt, ppos);
    
    	if (read >= 0 && trace_parser_loaded(parser) &&
    	    !trace_parser_cont(parser)) {
    
    		ret = ftrace_graph_set_hash(fgd->new_hash,
    					    parser->buffer);
    		trace_parser_clear(parser);
    	}
    
    	if (!ret)
    		ret = read;
    
    	return ret;
    }
    
    static const struct file_operations ftrace_graph_fops = {
    	.open		= ftrace_graph_open,
    	.read		= seq_read,
    	.write		= ftrace_graph_write,
    	.llseek		= tracing_lseek,
    	.release	= ftrace_graph_release,
    };
    
    static const struct file_operations ftrace_graph_notrace_fops = {
    	.open		= ftrace_graph_notrace_open,
    	.read		= seq_read,
    	.write		= ftrace_graph_write,
    	.llseek		= tracing_lseek,
    	.release	= ftrace_graph_release,
    };
    #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
    
    void ftrace_create_filter_files(struct ftrace_ops *ops,
    				struct dentry *parent)
    {
    
    	trace_create_file("set_ftrace_filter", 0644, parent,
    			  ops, &ftrace_filter_fops);
    
    	trace_create_file("set_ftrace_notrace", 0644, parent,
    			  ops, &ftrace_notrace_fops);
    }
    
    /*
     * The name "destroy_filter_files" is really a misnomer. Although
     * in the future, it may actualy delete the files, but this is
     * really intended to make sure the ops passed in are disabled
     * and that when this function returns, the caller is free to
     * free the ops.
     *
     * The "destroy" name is only to match the "create" name that this
     * should be paired with.
     */
    void ftrace_destroy_filter_files(struct ftrace_ops *ops)
    {
    	mutex_lock(&ftrace_lock);
    	if (ops->flags & FTRACE_OPS_FL_ENABLED)
    		ftrace_shutdown(ops, 0);
    	ops->flags |= FTRACE_OPS_FL_DELETED;
    	mutex_unlock(&ftrace_lock);
    }
    
    static __init int ftrace_init_dyn_tracefs(struct dentry *d_tracer)
    {
    
    	trace_create_file("available_filter_functions", 0444,
    			d_tracer, NULL, &ftrace_avail_fops);
    
    	trace_create_file("enabled_functions", 0444,
    			d_tracer, NULL, &ftrace_enabled_fops);
    
    	ftrace_create_filter_files(&global_ops, d_tracer);
    
    #ifdef CONFIG_FUNCTION_GRAPH_TRACER
    	trace_create_file("set_graph_function", 0644, d_tracer,
    				    NULL,
    				    &ftrace_graph_fops);
    	trace_create_file("set_graph_notrace", 0644, d_tracer,
    				    NULL,
    				    &ftrace_graph_notrace_fops);
    #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
    
    	return 0;
    }
    
    static int ftrace_cmp_ips(const void *a, const void *b)
    {
    	const unsigned long *ipa = a;
    	const unsigned long *ipb = b;
    
    	if (*ipa > *ipb)
    		return 1;
    	if (*ipa < *ipb)
    		return -1;
    	return 0;
    }
    
    static int ftrace_process_locs(struct module *mod,
    			       unsigned long *start,
    			       unsigned long *end)
    {
    	struct ftrace_page *start_pg;
    	struct ftrace_page *pg;
    	struct dyn_ftrace *rec;
    	unsigned long count;
    	unsigned long *p;
    	unsigned long addr;
    	unsigned long flags = 0; /* Shut up gcc */
    	int ret = -ENOMEM;
    
    	count = end - start;
    
    	if (!count)
    		return 0;
    
    	sort(start, count, sizeof(*start),
    	     ftrace_cmp_ips, NULL);
    
    	start_pg = ftrace_allocate_pages(count);
    	if (!start_pg)
    		return -ENOMEM;
    
    	mutex_lock(&ftrace_lock);
    
    	/*
    	 * Core and each module needs their own pages, as
    	 * modules will free them when they are removed.
    	 * Force a new page to be allocated for modules.
    	 */
    	if (!mod) {
    		WARN_ON(ftrace_pages || ftrace_pages_start);
    		/* First initialization */
    		ftrace_pages = ftrace_pages_start = start_pg;
    	} else {
    		if (!ftrace_pages)
    			goto out;
    
    		if (WARN_ON(ftrace_pages->next)) {
    			/* Hmm, we have free pages? */
    			while (ftrace_pages->next)
    				ftrace_pages = ftrace_pages->next;
    		}
    
    		ftrace_pages->next = start_pg;
    	}
    
    	p = start;
    	pg = start_pg;
    	while (p < end) {
    		addr = ftrace_call_adjust(*p++);
    		/*
    		 * Some architecture linkers will pad between
    		 * the different mcount_loc sections of different
    		 * object files to satisfy alignments.
    		 * Skip any NULL pointers.
    		 */
    		if (!addr)
    			continue;
    
    		if (pg->index == pg->size) {
    			/* We should have allocated enough */
    			if (WARN_ON(!pg->next))
    				break;
    			pg = pg->next;
    		}
    
    		rec = &pg->records[pg->index++];
    		rec->ip = addr;
    	}
    
    	/* We should have used all pages */
    	WARN_ON(pg->next);
    
    	/* Assign the last page to ftrace_pages */
    	ftrace_pages = pg;
    
    	/*
    	 * We only need to disable interrupts on start up
    	 * because we are modifying code that an interrupt
    	 * may execute, and the modification is not atomic.
    	 * But for modules, nothing runs the code we modify
    	 * until we are finished with it, and there's no
    	 * reason to cause large interrupt latencies while we do it.
    	 */
    	if (!mod)
    		local_irq_save(flags);
    	ftrace_update_code(mod, start_pg);
    	if (!mod)
    		local_irq_restore(flags);
    	ret = 0;
     out:
    	mutex_unlock(&ftrace_lock);
    
    	return ret;
    }
    
    struct ftrace_mod_func {
    	struct list_head	list;
    	char			*name;
    	unsigned long		ip;
    	unsigned int		size;
    };
    
    struct ftrace_mod_map {
    	struct rcu_head		rcu;
    	struct list_head	list;
    	struct module		*mod;
    	unsigned long		start_addr;
    	unsigned long		end_addr;
    	struct list_head	funcs;
    	unsigned int		num_funcs;
    };
    
    #ifdef CONFIG_MODULES
    
    #define next_to_ftrace_page(p) container_of(p, struct ftrace_page, next)
    
    static LIST_HEAD(ftrace_mod_maps);
    
    static int referenced_filters(struct dyn_ftrace *rec)
    {
    	struct ftrace_ops *ops;
    	int cnt = 0;
    
    	for (ops = ftrace_ops_list; ops != &ftrace_list_end; ops = ops->next) {
    		if (ops_references_rec(ops, rec))
    		    cnt++;
    	}
    
    	return cnt;
    }
    
    static void
    clear_mod_from_hash(struct ftrace_page *pg, struct ftrace_hash *hash)
    {
    	struct ftrace_func_entry *entry;
    	struct dyn_ftrace *rec;
    	int i;
    
    	if (ftrace_hash_empty(hash))
    		return;
    
    	for (i = 0; i < pg->index; i++) {
    		rec = &pg->records[i];
    		entry = __ftrace_lookup_ip(hash, rec->ip);
    		/*
    		 * Do not allow this rec to match again.
    		 * Yeah, it may waste some memory, but will be removed
    		 * if/when the hash is modified again.
    		 */
    		if (entry)
    			entry->ip = 0;
    	}
    }
    
    /* Clear any records from hashs */
    static void clear_mod_from_hashes(struct ftrace_page *pg)
    {
    	struct trace_array *tr;
    
    	mutex_lock(&trace_types_lock);
    	list_for_each_entry(tr, &ftrace_trace_arrays, list) {
    		if (!tr->ops || !tr->ops->func_hash)
    			continue;
    		mutex_lock(&tr->ops->func_hash->regex_lock);
    		clear_mod_from_hash(pg, tr->ops->func_hash->filter_hash);
    		clear_mod_from_hash(pg, tr->ops->func_hash->notrace_hash);
    		mutex_unlock(&tr->ops->func_hash->regex_lock);
    	}
    	mutex_unlock(&trace_types_lock);
    }
    
    static void ftrace_free_mod_map(struct rcu_head *rcu)
    {
    	struct ftrace_mod_map *mod_map = container_of(rcu, struct ftrace_mod_map, rcu);
    	struct ftrace_mod_func *mod_func;
    	struct ftrace_mod_func *n;
    
    	/* All the contents of mod_map are now not visible to readers */
    	list_for_each_entry_safe(mod_func, n, &mod_map->funcs, list) {
    		kfree(mod_func->name);
    		list_del(&mod_func->list);
    		kfree(mod_func);
    	}
    
    	kfree(mod_map);
    }
    
    void ftrace_release_mod(struct module *mod)
    {
    	struct ftrace_mod_map *mod_map;
    	struct ftrace_mod_map *n;
    	struct dyn_ftrace *rec;
    	struct ftrace_page **last_pg;
    	struct ftrace_page *tmp_page = NULL;
    	struct ftrace_page *pg;
    	int order;
    
    	mutex_lock(&ftrace_lock);
    
    	if (ftrace_disabled)
    		goto out_unlock;
    
    	list_for_each_entry_safe(mod_map, n, &ftrace_mod_maps, list) {
    		if (mod_map->mod == mod) {
    			list_del_rcu(&mod_map->list);
    			call_rcu_sched(&mod_map->rcu, ftrace_free_mod_map);
    			break;
    		}
    	}
    
    	/*
    	 * Each module has its own ftrace_pages, remove
    	 * them from the list.
    	 */
    	last_pg = &ftrace_pages_start;
    	for (pg = ftrace_pages_start; pg; pg = *last_pg) {
    		rec = &pg->records[0];
    		if (within_module_core(rec->ip, mod) ||
    		    within_module_init(rec->ip, mod)) {
    			/*
    			 * As core pages are first, the first
    			 * page should never be a module page.
    			 */
    			if (WARN_ON(pg == ftrace_pages_start))
    				goto out_unlock;
    
    			/* Check if we are deleting the last page */
    			if (pg == ftrace_pages)
    				ftrace_pages = next_to_ftrace_page(last_pg);
    
    			ftrace_update_tot_cnt -= pg->index;
    			*last_pg = pg->next;
    
    			pg->next = tmp_page;
    			tmp_page = pg;
    		} else
    			last_pg = &pg->next;
    	}
     out_unlock:
    	mutex_unlock(&ftrace_lock);
    
    	for (pg = tmp_page; pg; pg = tmp_page) {
    
    		/* Needs to be called outside of ftrace_lock */
    		clear_mod_from_hashes(pg);
    
    		order = get_count_order(pg->size / ENTRIES_PER_PAGE);
    		free_pages((unsigned long)pg->records, order);
    		tmp_page = pg->next;
    		kfree(pg);
    	}
    }
    
    void ftrace_module_enable(struct module *mod)
    {
    	struct dyn_ftrace *rec;
    	struct ftrace_page *pg;
    
    	mutex_lock(&ftrace_lock);
    
    	if (ftrace_disabled)
    		goto out_unlock;
    
    	/*
    	 * If the tracing is enabled, go ahead and enable the record.
    	 *
    	 * The reason not to enable the record immediatelly is the
    	 * inherent check of ftrace_make_nop/ftrace_make_call for
    	 * correct previous instructions.  Making first the NOP
    	 * conversion puts the module to the correct state, thus
    	 * passing the ftrace_make_call check.
    	 *
    	 * We also delay this to after the module code already set the
    	 * text to read-only, as we now need to set it back to read-write
    	 * so that we can modify the text.
    	 */
    	if (ftrace_start_up)
    		ftrace_arch_code_modify_prepare();
    
    	do_for_each_ftrace_rec(pg, rec) {
    		int cnt;
    		/*
    		 * do_for_each_ftrace_rec() is a double loop.
    		 * module text shares the pg. If a record is
    		 * not part of this module, then skip this pg,
    		 * which the "break" will do.
    		 */
    		if (!within_module_core(rec->ip, mod) &&
    		    !within_module_init(rec->ip, mod))
    			break;
    
    		cnt = 0;
    
    		/*
    		 * When adding a module, we need to check if tracers are
    		 * currently enabled and if they are, and can trace this record,
    		 * we need to enable the module functions as well as update the
    		 * reference counts for those function records.
    		 */
    		if (ftrace_start_up)
    			cnt += referenced_filters(rec);
    
    		/* This clears FTRACE_FL_DISABLED */
    		rec->flags = cnt;
    
    		if (ftrace_start_up && cnt) {
    			int failed = __ftrace_replace_code(rec, 1);
    			if (failed) {
    				ftrace_bug(failed, rec);
    				goto out_loop;
    			}
    		}
    
    	} while_for_each_ftrace_rec();
    
     out_loop:
    	if (ftrace_start_up)
    		ftrace_arch_code_modify_post_process();
    
     out_unlock:
    	mutex_unlock(&ftrace_lock);
    
    	process_cached_mods(mod->name);
    }
    
    void ftrace_module_init(struct module *mod)
    {
    	if (ftrace_disabled || !mod->num_ftrace_callsites)
    		return;
    
    	ftrace_process_locs(mod, mod->ftrace_callsites,
    			    mod->ftrace_callsites + mod->num_ftrace_callsites);
    }
    
    static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map,
    				struct dyn_ftrace *rec)
    {
    	struct ftrace_mod_func *mod_func;
    	unsigned long symsize;
    	unsigned long offset;
    	char str[KSYM_SYMBOL_LEN];
    	char *modname;
    	const char *ret;
    
    	ret = kallsyms_lookup(rec->ip, &symsize, &offset, &modname, str);
    	if (!ret)
    		return;
    
    	mod_func = kmalloc(sizeof(*mod_func), GFP_KERNEL);
    	if (!mod_func)
    		return;
    
    	mod_func->name = kstrdup(str, GFP_KERNEL);
    	if (!mod_func->name) {
    		kfree(mod_func);
    		return;
    	}
    
    	mod_func->ip = rec->ip - offset;
    	mod_func->size = symsize;
    
    	mod_map->num_funcs++;
    
    	list_add_rcu(&mod_func->list, &mod_map->funcs);
    }
    
    static struct ftrace_mod_map *
    allocate_ftrace_mod_map(struct module *mod,
    			unsigned long start, unsigned long end)
    {
    	struct ftrace_mod_map *mod_map;
    
    	mod_map = kmalloc(sizeof(*mod_map), GFP_KERNEL);
    	if (!mod_map)
    		return NULL;
    
    	mod_map->mod = mod;
    	mod_map->start_addr = start;
    	mod_map->end_addr = end;
    	mod_map->num_funcs = 0;
    
    	INIT_LIST_HEAD_RCU(&mod_map->funcs);
    
    	list_add_rcu(&mod_map->list, &ftrace_mod_maps);
    
    	return mod_map;
    }
    
    static const char *
    ftrace_func_address_lookup(struct ftrace_mod_map *mod_map,
    			   unsigned long addr, unsigned long *size,
    			   unsigned long *off, char *sym)
    {
    	struct ftrace_mod_func *found_func =  NULL;
    	struct ftrace_mod_func *mod_func;
    
    	list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) {
    		if (addr >= mod_func->ip &&
    		    addr < mod_func->ip + mod_func->size) {
    			found_func = mod_func;
    			break;
    		}
    	}
    
    	if (found_func) {
    		if (size)
    			*size = found_func->size;
    		if (off)
    			*off = addr - found_func->ip;
    		if (sym)
    			strlcpy(sym, found_func->name, KSYM_NAME_LEN);
    
    		return found_func->name;
    	}
    
    	return NULL;
    }
    
    const char *
    ftrace_mod_address_lookup(unsigned long addr, unsigned long *size,
    		   unsigned long *off, char **modname, char *sym)
    {
    	struct ftrace_mod_map *mod_map;
    	const char *ret = NULL;
    
    	/* mod_map is freed via call_rcu_sched() */
    	preempt_disable();
    	list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) {
    		ret = ftrace_func_address_lookup(mod_map, addr, size, off, sym);
    		if (ret) {
    			if (modname)
    				*modname = mod_map->mod->name;
    			break;
    		}
    	}
    	preempt_enable();
    
    	return ret;
    }
    
    int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value,
    			   char *type, char *name,
    			   char *module_name, int *exported)
    {
    	struct ftrace_mod_map *mod_map;
    	struct ftrace_mod_func *mod_func;
    
    	preempt_disable();
    	list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) {
    
    		if (symnum >= mod_map->num_funcs) {
    			symnum -= mod_map->num_funcs;
    			continue;
    		}
    
    		list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) {
    			if (symnum > 1) {
    				symnum--;
    				continue;
    			}
    
    			*value = mod_func->ip;
    			*type = 'T';
    			strlcpy(name, mod_func->name, KSYM_NAME_LEN);
    			strlcpy(module_name, mod_map->mod->name, MODULE_NAME_LEN);
    			*exported = 1;
    			preempt_enable();
    			return 0;
    		}
    		WARN_ON(1);
    		break;
    	}
    	preempt_enable();
    	return -ERANGE;
    }
    
    #else
    static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map,
    				struct dyn_ftrace *rec) { }
    static inline struct ftrace_mod_map *
    allocate_ftrace_mod_map(struct module *mod,
    			unsigned long start, unsigned long end)
    {
    	return NULL;
    }
    #endif /* CONFIG_MODULES */
    
    struct ftrace_init_func {
    	struct list_head list;
    	unsigned long ip;
    };
    
    /* Clear any init ips from hashes */
    static void
    clear_func_from_hash(struct ftrace_init_func *func, struct ftrace_hash *hash)
    {
    	struct ftrace_func_entry *entry;
    
    	if (ftrace_hash_empty(hash))
    		return;
    
    	entry = __ftrace_lookup_ip(hash, func->ip);
    
    	/*
    	 * Do not allow this rec to match again.
    	 * Yeah, it may waste some memory, but will be removed
    	 * if/when the hash is modified again.
    	 */
    	if (entry)
    		entry->ip = 0;
    }
    
    static void
    clear_func_from_hashes(struct ftrace_init_func *func)
    {
    	struct trace_array *tr;
    
    	mutex_lock(&trace_types_lock);
    	list_for_each_entry(tr, &ftrace_trace_arrays, list) {
    		if (!tr->ops || !tr->ops->func_hash)
    			continue;
    		mutex_lock(&tr->ops->func_hash->regex_lock);
    		clear_func_from_hash(func, tr->ops->func_hash->filter_hash);
    		clear_func_from_hash(func, tr->ops->func_hash->notrace_hash);
    		mutex_unlock(&tr->ops->func_hash->regex_lock);
    	}
    	mutex_unlock(&trace_types_lock);
    }
    
    static void add_to_clear_hash_list(struct list_head *clear_list,
    				   struct dyn_ftrace *rec)
    {
    	struct ftrace_init_func *func;
    
    	func = kmalloc(sizeof(*func), GFP_KERNEL);
    	if (!func) {
    		WARN_ONCE(1, "alloc failure, ftrace filter could be stale\n");
    		return;
    	}
    
    	func->ip = rec->ip;
    	list_add(&func->list, clear_list);
    }
    
    void ftrace_free_mem(struct module *mod, void *start_ptr, void *end_ptr)
    {
    	unsigned long start = (unsigned long)(start_ptr);
    	unsigned long end = (unsigned long)(end_ptr);
    	struct ftrace_page **last_pg = &ftrace_pages_start;
    	struct ftrace_page *pg;
    	struct dyn_ftrace *rec;
    	struct dyn_ftrace key;
    	struct ftrace_mod_map *mod_map = NULL;
    	struct ftrace_init_func *func, *func_next;
    	struct list_head clear_hash;
    	int order;
    
    	INIT_LIST_HEAD(&clear_hash);
    
    	key.ip = start;
    	key.flags = end;	/* overload flags, as it is unsigned long */
    
    	mutex_lock(&ftrace_lock);
    
    	/*
    	 * If we are freeing module init memory, then check if
    	 * any tracer is active. If so, we need to save a mapping of
    	 * the module functions being freed with the address.
    	 */
    	if (mod && ftrace_ops_list != &ftrace_list_end)
    		mod_map = allocate_ftrace_mod_map(mod, start, end);
    
    	for (pg = ftrace_pages_start; pg; last_pg = &pg->next, pg = *last_pg) {
    		if (end < pg->records[0].ip ||
    		    start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE))
    			continue;
     again:
    		rec = bsearch(&key, pg->records, pg->index,
    			      sizeof(struct dyn_ftrace),
    			      ftrace_cmp_recs);
    		if (!rec)
    			continue;
    
    		/* rec will be cleared from hashes after ftrace_lock unlock */
    		add_to_clear_hash_list(&clear_hash, rec);
    
    		if (mod_map)
    			save_ftrace_mod_rec(mod_map, rec);
    
    		pg->index--;
    		ftrace_update_tot_cnt--;
    		if (!pg->index) {
    			*last_pg = pg->next;
    			order = get_count_order(pg->size / ENTRIES_PER_PAGE);
    			free_pages((unsigned long)pg->records, order);
    			kfree(pg);
    			pg = container_of(last_pg, struct ftrace_page, next);
    			if (!(*last_pg))
    				ftrace_pages = pg;
    			continue;
    		}
    		memmove(rec, rec + 1,
    			(pg->index - (rec - pg->records)) * sizeof(*rec));
    		/* More than one function may be in this block */
    		goto again;
    	}
    	mutex_unlock(&ftrace_lock);
    
    	list_for_each_entry_safe(func, func_next, &clear_hash, list) {
    		clear_func_from_hashes(func);
    		kfree(func);
    	}
    }
    
    void __init ftrace_free_init_mem(void)
    {
    	void *start = (void *)(&__init_begin);
    	void *end = (void *)(&__init_end);
    
    	ftrace_free_mem(NULL, start, end);
    }
    
    void __init ftrace_init(void)
    {
    	extern unsigned long __start_mcount_loc[];
    	extern unsigned long __stop_mcount_loc[];
    	unsigned long count, flags;
    	int ret;
    
    	local_irq_save(flags);
    	ret = ftrace_dyn_arch_init();
    	local_irq_restore(flags);
    	if (ret)
    		goto failed;
    
    	count = __stop_mcount_loc - __start_mcount_loc;
    	if (!count) {
    		pr_info("ftrace: No functions to be traced?\n");
    		goto failed;
    	}
    
    	pr_info("ftrace: allocating %ld entries in %ld pages\n",
    		count, count / ENTRIES_PER_PAGE + 1);
    
    	last_ftrace_enabled = ftrace_enabled = 1;
    
    	ret = ftrace_process_locs(NULL,
    				  __start_mcount_loc,
    				  __stop_mcount_loc);
    
    	set_ftrace_early_filters();
    
    	return;
     failed:
    	ftrace_disabled = 1;
    }
    
    /* Do nothing if arch does not support this */
    void __weak arch_ftrace_update_trampoline(struct ftrace_ops *ops)
    {
    }
    
    static void ftrace_update_trampoline(struct ftrace_ops *ops)
    {
    	arch_ftrace_update_trampoline(ops);
    }
    
    void ftrace_init_trace_array(struct trace_array *tr)
    {
    	INIT_LIST_HEAD(&tr->func_probes);
    	INIT_LIST_HEAD(&tr->mod_trace);
    	INIT_LIST_HEAD(&tr->mod_notrace);
    }
    #else
    
    static struct ftrace_ops global_ops = {
    	.func			= ftrace_stub,
    	.flags			= FTRACE_OPS_FL_RECURSION_SAFE |
    				  FTRACE_OPS_FL_INITIALIZED |
    				  FTRACE_OPS_FL_PID,
    };
    
    static int __init ftrace_nodyn_init(void)
    {
    	ftrace_enabled = 1;
    	return 0;
    }
    core_initcall(ftrace_nodyn_init);
    
    static inline int ftrace_init_dyn_tracefs(struct dentry *d_tracer) { return 0; }
    static inline void ftrace_startup_enable(int command) { }
    static inline void ftrace_startup_all(int command) { }
    /* Keep as macros so we do not need to define the commands */
    # define ftrace_startup(ops, command)					\
    	({								\
    		int ___ret = __register_ftrace_function(ops);		\
    		if (!___ret)						\
    			(ops)->flags |= FTRACE_OPS_FL_ENABLED;		\
    		___ret;							\
    	})
    # define ftrace_shutdown(ops, command)					\
    	({								\
    		int ___ret = __unregister_ftrace_function(ops);		\
    		if (!___ret)						\
    			(ops)->flags &= ~FTRACE_OPS_FL_ENABLED;		\
    		___ret;							\
    	})
    
    # define ftrace_startup_sysctl()	do { } while (0)
    # define ftrace_shutdown_sysctl()	do { } while (0)
    
    static inline int
    ftrace_ops_test(struct ftrace_ops *ops, unsigned long ip, void *regs)
    {
    	return 1;
    }
    
    static void ftrace_update_trampoline(struct ftrace_ops *ops)
    {
    }
    
    #endif /* CONFIG_DYNAMIC_FTRACE */
    
    __init void ftrace_init_global_array_ops(struct trace_array *tr)
    {
    	tr->ops = &global_ops;
    	tr->ops->private = tr;
    	ftrace_init_trace_array(tr);
    }
    
    void ftrace_init_array_ops(struct trace_array *tr, ftrace_func_t func)
    {
    	/* If we filter on pids, update to use the pid function */
    	if (tr->flags & TRACE_ARRAY_FL_GLOBAL) {
    		if (WARN_ON(tr->ops->func != ftrace_stub))
    			printk("ftrace ops had %pS for function\n",
    			       tr->ops->func);
    	}
    	tr->ops->func = func;
    	tr->ops->private = tr;
    }
    
    void ftrace_reset_array_ops(struct trace_array *tr)
    {
    	tr->ops->func = ftrace_stub;
    }
    
    static inline void
    __ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
    		       struct ftrace_ops *ignored, struct pt_regs *regs)
    {
    	struct ftrace_ops *op;
    	int bit;
    
    	bit = trace_test_and_set_recursion(TRACE_LIST_START, TRACE_LIST_MAX);
    	if (bit < 0)
    		return;
    
    	/*
    	 * Some of the ops may be dynamically allocated,
    	 * they must be freed after a synchronize_sched().
    	 */
    	preempt_disable_notrace();
    
    	do_for_each_ftrace_op(op, ftrace_ops_list) {
    		/*
    		 * Check the following for each ops before calling their func:
    		 *  if RCU flag is set, then rcu_is_watching() must be true
    		 *  if PER_CPU is set, then ftrace_function_local_disable()
    		 *                          must be false
    		 *  Otherwise test if the ip matches the ops filter
    		 *
    		 * If any of the above fails then the op->func() is not executed.
    		 */
    		if ((!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) &&
    		    ftrace_ops_test(op, ip, regs)) {
    			if (FTRACE_WARN_ON(!op->func)) {
    				pr_warn("op=%p %pS\n", op, op);
    				goto out;
    			}
    			op->func(ip, parent_ip, op, regs);
    		}
    	} while_for_each_ftrace_op(op);
    out:
    	preempt_enable_notrace();
    	trace_clear_recursion(bit);
    }
    
    /*
     * Some archs only support passing ip and parent_ip. Even though
     * the list function ignores the op parameter, we do not want any
     * C side effects, where a function is called without the caller
     * sending a third parameter.
     * Archs are to support both the regs and ftrace_ops at the same time.
     * If they support ftrace_ops, it is assumed they support regs.
     * If call backs want to use regs, they must either check for regs
     * being NULL, or CONFIG_DYNAMIC_FTRACE_WITH_REGS.
     * Note, CONFIG_DYNAMIC_FTRACE_WITH_REGS expects a full regs to be saved.
     * An architecture can pass partial regs with ftrace_ops and still
     * set the ARCH_SUPPORTS_FTRACE_OPS.
     */
    #if ARCH_SUPPORTS_FTRACE_OPS
    static void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
    				 struct ftrace_ops *op, struct pt_regs *regs)
    {
    	__ftrace_ops_list_func(ip, parent_ip, NULL, regs);
    }
    #else
    static void ftrace_ops_no_ops(unsigned long ip, unsigned long parent_ip)
    {
    	__ftrace_ops_list_func(ip, parent_ip, NULL, NULL);
    }
    #endif
    
    /*
     * If there's only one function registered but it does not support
     * recursion, needs RCU protection and/or requires per cpu handling, then
     * this function will be called by the mcount trampoline.
     */
    static void ftrace_ops_assist_func(unsigned long ip, unsigned long parent_ip,
    				   struct ftrace_ops *op, struct pt_regs *regs)
    {
    	int bit;
    
    	if ((op->flags & FTRACE_OPS_FL_RCU) && !rcu_is_watching())
    		return;
    
    	bit = trace_test_and_set_recursion(TRACE_LIST_START, TRACE_LIST_MAX);
    	if (bit < 0)
    		return;
    
    	preempt_disable_notrace();
    
    	op->func(ip, parent_ip, op, regs);
    
    	preempt_enable_notrace();
    	trace_clear_recursion(bit);
    }
    
    /**
     * ftrace_ops_get_func - get the function a trampoline should call
     * @ops: the ops to get the function for
     *
     * Normally the mcount trampoline will call the ops->func, but there
     * are times that it should not. For example, if the ops does not
     * have its own recursion protection, then it should call the
     * ftrace_ops_assist_func() instead.
     *
     * Returns the function that the trampoline should call for @ops.
     */
    ftrace_func_t ftrace_ops_get_func(struct ftrace_ops *ops)
    {
    	/*
    	 * If the function does not handle recursion, needs to be RCU safe,
    	 * or does per cpu logic, then we need to call the assist handler.
    	 */
    	if (!(ops->flags & FTRACE_OPS_FL_RECURSION_SAFE) ||
    	    ops->flags & FTRACE_OPS_FL_RCU)
    		return ftrace_ops_assist_func;
    
    	return ops->func;
    }
    
    static void
    ftrace_filter_pid_sched_switch_probe(void *data, bool preempt,
    		    struct task_struct *prev, struct task_struct *next)
    {
    	struct trace_array *tr = data;
    	struct trace_pid_list *pid_list;
    
    	pid_list = rcu_dereference_sched(tr->function_pids);
    
    	this_cpu_write(tr->trace_buffer.data->ftrace_ignore_pid,
    		       trace_ignore_this_task(pid_list, next));
    }
    
    static void
    ftrace_pid_follow_sched_process_fork(void *data,
    				     struct task_struct *self,
    				     struct task_struct *task)
    {
    	struct trace_pid_list *pid_list;
    	struct trace_array *tr = data;
    
    	pid_list = rcu_dereference_sched(tr->function_pids);
    	trace_filter_add_remove_task(pid_list, self, task);
    }
    
    static void
    ftrace_pid_follow_sched_process_exit(void *data, struct task_struct *task)
    {
    	struct trace_pid_list *pid_list;
    	struct trace_array *tr = data;
    
    	pid_list = rcu_dereference_sched(tr->function_pids);
    	trace_filter_add_remove_task(pid_list, NULL, task);
    }
    
    void ftrace_pid_follow_fork(struct trace_array *tr, bool enable)
    {
    	if (enable) {
    		register_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork,
    						  tr);
    		register_trace_sched_process_exit(ftrace_pid_follow_sched_process_exit,
    						  tr);
    	} else {
    		unregister_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork,
    						    tr);
    		unregister_trace_sched_process_exit(ftrace_pid_follow_sched_process_exit,
    						    tr);
    	}
    }
    
    static void clear_ftrace_pids(struct trace_array *tr)
    {
    	struct trace_pid_list *pid_list;
    	int cpu;
    
    	pid_list = rcu_dereference_protected(tr->function_pids,
    					     lockdep_is_held(&ftrace_lock));
    	if (!pid_list)
    		return;
    
    	unregister_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr);
    
    	for_each_possible_cpu(cpu)
    		per_cpu_ptr(tr->trace_buffer.data, cpu)->ftrace_ignore_pid = false;
    
    	rcu_assign_pointer(tr->function_pids, NULL);
    
    	/* Wait till all users are no longer using pid filtering */
    	synchronize_sched();
    
    	trace_free_pid_list(pid_list);
    }
    
    void ftrace_clear_pids(struct trace_array *tr)
    {
    	mutex_lock(&ftrace_lock);
    
    	clear_ftrace_pids(tr);
    
    	mutex_unlock(&ftrace_lock);
    }
    
    static void ftrace_pid_reset(struct trace_array *tr)
    {
    	mutex_lock(&ftrace_lock);
    	clear_ftrace_pids(tr);
    
    	ftrace_update_pid_func();
    	ftrace_startup_all(0);
    
    	mutex_unlock(&ftrace_lock);
    }
    
    /* Greater than any max PID */
    #define FTRACE_NO_PIDS		(void *)(PID_MAX_LIMIT + 1)
    
    static void *fpid_start(struct seq_file *m, loff_t *pos)
    	__acquires(RCU)
    {
    	struct trace_pid_list *pid_list;
    	struct trace_array *tr = m->private;
    
    	mutex_lock(&ftrace_lock);
    	rcu_read_lock_sched();
    
    	pid_list = rcu_dereference_sched(tr->function_pids);
    
    	if (!pid_list)
    		return !(*pos) ? FTRACE_NO_PIDS : NULL;
    
    	return trace_pid_start(pid_list, pos);
    }
    
    static void *fpid_next(struct seq_file *m, void *v, loff_t *pos)
    {
    	struct trace_array *tr = m->private;
    	struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_pids);
    
    	if (v == FTRACE_NO_PIDS)
    		return NULL;
    
    	return trace_pid_next(pid_list, v, pos);
    }
    
    static void fpid_stop(struct seq_file *m, void *p)
    	__releases(RCU)
    {
    	rcu_read_unlock_sched();
    	mutex_unlock(&ftrace_lock);
    }
    
    static int fpid_show(struct seq_file *m, void *v)
    {
    	if (v == FTRACE_NO_PIDS) {
    		seq_puts(m, "no pid\n");
    		return 0;
    	}
    
    	return trace_pid_show(m, v);
    }
    
    static const struct seq_operations ftrace_pid_sops = {
    	.start = fpid_start,
    	.next = fpid_next,
    	.stop = fpid_stop,
    	.show = fpid_show,
    };
    
    static int
    ftrace_pid_open(struct inode *inode, struct file *file)
    {
    	struct trace_array *tr = inode->i_private;
    	struct seq_file *m;
    	int ret = 0;
    
    	if (trace_array_get(tr) < 0)
    		return -ENODEV;
    
    	if ((file->f_mode & FMODE_WRITE) &&
    	    (file->f_flags & O_TRUNC))
    		ftrace_pid_reset(tr);
    
    	ret = seq_open(file, &ftrace_pid_sops);
    	if (ret < 0) {
    		trace_array_put(tr);
    	} else {
    		m = file->private_data;
    		/* copy tr over to seq ops */
    		m->private = tr;
    	}
    
    	return ret;
    }
    
    static void ignore_task_cpu(void *data)
    {
    	struct trace_array *tr = data;
    	struct trace_pid_list *pid_list;
    
    	/*
    	 * This function is called by on_each_cpu() while the
    	 * event_mutex is held.
    	 */
    	pid_list = rcu_dereference_protected(tr->function_pids,
    					     mutex_is_locked(&ftrace_lock));
    
    	this_cpu_write(tr->trace_buffer.data->ftrace_ignore_pid,
    		       trace_ignore_this_task(pid_list, current));
    }
    
    static ssize_t
    ftrace_pid_write(struct file *filp, const char __user *ubuf,
    		   size_t cnt, loff_t *ppos)
    {
    	struct seq_file *m = filp->private_data;
    	struct trace_array *tr = m->private;
    	struct trace_pid_list *filtered_pids = NULL;
    	struct trace_pid_list *pid_list;
    	ssize_t ret;
    
    	if (!cnt)
    		return 0;
    
    	mutex_lock(&ftrace_lock);
    
    	filtered_pids = rcu_dereference_protected(tr->function_pids,
    					     lockdep_is_held(&ftrace_lock));
    
    	ret = trace_pid_write(filtered_pids, &pid_list, ubuf, cnt);
    	if (ret < 0)
    		goto out;
    
    	rcu_assign_pointer(tr->function_pids, pid_list);
    
    	if (filtered_pids) {
    		synchronize_sched();
    		trace_free_pid_list(filtered_pids);
    	} else if (pid_list) {
    		/* Register a probe to set whether to ignore the tracing of a task */
    		register_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr);
    	}
    
    	/*
    	 * Ignoring of pids is done at task switch. But we have to
    	 * check for those tasks that are currently running.
    	 * Always do this in case a pid was appended or removed.
    	 */
    	on_each_cpu(ignore_task_cpu, tr, 1);
    
    	ftrace_update_pid_func();
    	ftrace_startup_all(0);
     out:
    	mutex_unlock(&ftrace_lock);
    
    	if (ret > 0)
    		*ppos += ret;
    
    	return ret;
    }
    
    static int
    ftrace_pid_release(struct inode *inode, struct file *file)
    {
    	struct trace_array *tr = inode->i_private;
    
    	trace_array_put(tr);
    
    	return seq_release(inode, file);
    }
    
    static const struct file_operations ftrace_pid_fops = {
    	.open		= ftrace_pid_open,
    	.write		= ftrace_pid_write,
    	.read		= seq_read,
    	.llseek		= tracing_lseek,
    	.release	= ftrace_pid_release,
    };
    
    void ftrace_init_tracefs(struct trace_array *tr, struct dentry *d_tracer)
    {
    	trace_create_file("set_ftrace_pid", 0644, d_tracer,
    			    tr, &ftrace_pid_fops);
    }
    
    void __init ftrace_init_tracefs_toplevel(struct trace_array *tr,
    					 struct dentry *d_tracer)
    {
    	/* Only the top level directory has the dyn_tracefs and profile */
    	WARN_ON(!(tr->flags & TRACE_ARRAY_FL_GLOBAL));
    
    	ftrace_init_dyn_tracefs(d_tracer);
    	ftrace_profile_tracefs(d_tracer);
    }
    
    /**
     * ftrace_kill - kill ftrace
     *
     * This function should be used by panic code. It stops ftrace
     * but in a not so nice way. If you need to simply kill ftrace
     * from a non-atomic section, use ftrace_kill.
     */
    void ftrace_kill(void)
    {
    	ftrace_disabled = 1;
    	ftrace_enabled = 0;
    	clear_ftrace_function();
    }
    
    /**
     * Test if ftrace is dead or not.
     */
    int ftrace_is_dead(void)
    {
    	return ftrace_disabled;
    }
    
    /**
     * register_ftrace_function - register a function for profiling
     * @ops - ops structure that holds the function for profiling.
     *
     * Register a function to be called by all functions in the
     * kernel.
     *
     * Note: @ops->func and all the functions it calls must be labeled
     *       with "notrace", otherwise it will go into a
     *       recursive loop.
     */
    int register_ftrace_function(struct ftrace_ops *ops)
    {
    	int ret = -1;
    
    	ftrace_ops_init(ops);
    
    	mutex_lock(&ftrace_lock);
    
    	ret = ftrace_startup(ops, 0);
    
    	mutex_unlock(&ftrace_lock);
    
    	return ret;
    }
    EXPORT_SYMBOL_GPL(register_ftrace_function);
    
    /**
     * unregister_ftrace_function - unregister a function for profiling.
     * @ops - ops structure that holds the function to unregister
     *
     * Unregister a function that was added to be called by ftrace profiling.
     */
    int unregister_ftrace_function(struct ftrace_ops *ops)
    {
    	int ret;
    
    	mutex_lock(&ftrace_lock);
    	ret = ftrace_shutdown(ops, 0);
    	mutex_unlock(&ftrace_lock);
    
    	return ret;
    }
    EXPORT_SYMBOL_GPL(unregister_ftrace_function);
    
    int
    ftrace_enable_sysctl(struct ctl_table *table, int write,
    		     void __user *buffer, size_t *lenp,
    		     loff_t *ppos)
    {
    	int ret = -ENODEV;
    
    	mutex_lock(&ftrace_lock);
    
    	if (unlikely(ftrace_disabled))
    		goto out;
    
    	ret = proc_dointvec(table, write, buffer, lenp, ppos);
    
    	if (ret || !write || (last_ftrace_enabled == !!ftrace_enabled))
    		goto out;
    
    	last_ftrace_enabled = !!ftrace_enabled;
    
    	if (ftrace_enabled) {
    
    		/* we are starting ftrace again */
    		if (rcu_dereference_protected(ftrace_ops_list,
    			lockdep_is_held(&ftrace_lock)) != &ftrace_list_end)
    			update_ftrace_function();
    
    		ftrace_startup_sysctl();
    
    	} else {
    		/* stopping ftrace calls (just send to ftrace_stub) */
    		ftrace_trace_function = ftrace_stub;
    
    		ftrace_shutdown_sysctl();
    	}
    
     out:
    	mutex_unlock(&ftrace_lock);
    	return ret;
    }
    
    #ifdef CONFIG_FUNCTION_GRAPH_TRACER
    
    static struct ftrace_ops graph_ops = {
    	.func			= ftrace_stub,
    	.flags			= FTRACE_OPS_FL_RECURSION_SAFE |
    				   FTRACE_OPS_FL_INITIALIZED |
    				   FTRACE_OPS_FL_PID |
    				   FTRACE_OPS_FL_STUB,
    #ifdef FTRACE_GRAPH_TRAMP_ADDR
    	.trampoline		= FTRACE_GRAPH_TRAMP_ADDR,
    	/* trampoline_size is only needed for dynamically allocated tramps */
    #endif
    	ASSIGN_OPS_HASH(graph_ops, &global_ops.local_hash)
    };
    
    void ftrace_graph_sleep_time_control(bool enable)
    {
    	fgraph_sleep_time = enable;
    }
    
    void ftrace_graph_graph_time_control(bool enable)
    {
    	fgraph_graph_time = enable;
    }
    
    int ftrace_graph_entry_stub(struct ftrace_graph_ent *trace)
    {
    	return 0;
    }
    
    /* The callbacks that hook a function */
    trace_func_graph_ret_t ftrace_graph_return =
    			(trace_func_graph_ret_t)ftrace_stub;
    trace_func_graph_ent_t ftrace_graph_entry = ftrace_graph_entry_stub;
    static trace_func_graph_ent_t __ftrace_graph_entry = ftrace_graph_entry_stub;
    
    /* Try to assign a return stack array on FTRACE_RETSTACK_ALLOC_SIZE tasks. */
    static int alloc_retstack_tasklist(struct ftrace_ret_stack **ret_stack_list)
    {
    	int i;
    	int ret = 0;
    	int start = 0, end = FTRACE_RETSTACK_ALLOC_SIZE;
    	struct task_struct *g, *t;
    
    	for (i = 0; i < FTRACE_RETSTACK_ALLOC_SIZE; i++) {
    		ret_stack_list[i] = kmalloc(FTRACE_RETFUNC_DEPTH
    					* sizeof(struct ftrace_ret_stack),
    					GFP_KERNEL);
    		if (!ret_stack_list[i]) {
    			start = 0;
    			end = i;
    			ret = -ENOMEM;
    			goto free;
    		}
    	}
    
    	read_lock(&tasklist_lock);
    	do_each_thread(g, t) {
    		if (start == end) {
    			ret = -EAGAIN;
    			goto unlock;
    		}
    
    		if (t->ret_stack == NULL) {
    			atomic_set(&t->tracing_graph_pause, 0);
    			atomic_set(&t->trace_overrun, 0);
    			t->curr_ret_stack = -1;
    			/* Make sure the tasks see the -1 first: */
    			smp_wmb();
    			t->ret_stack = ret_stack_list[start++];
    		}
    	} while_each_thread(g, t);
    
    unlock:
    	read_unlock(&tasklist_lock);
    free:
    	for (i = start; i < end; i++)
    		kfree(ret_stack_list[i]);
    	return ret;
    }
    
    static void
    ftrace_graph_probe_sched_switch(void *ignore, bool preempt,
    			struct task_struct *prev, struct task_struct *next)
    {
    	unsigned long long timestamp;
    	int index;
    
    	/*
    	 * Does the user want to count the time a function was asleep.
    	 * If so, do not update the time stamps.
    	 */
    	if (fgraph_sleep_time)
    		return;
    
    	timestamp = trace_clock_local();
    
    	prev->ftrace_timestamp = timestamp;
    
    	/* only process tasks that we timestamped */
    	if (!next->ftrace_timestamp)
    		return;
    
    	/*
    	 * Update all the counters in next to make up for the
    	 * time next was sleeping.
    	 */
    	timestamp -= next->ftrace_timestamp;
    
    	for (index = next->curr_ret_stack; index >= 0; index--)
    		next->ret_stack[index].calltime += timestamp;
    }
    
    /* Allocate a return stack for each task */
    static int start_graph_tracing(void)
    {
    	struct ftrace_ret_stack **ret_stack_list;
    	int ret, cpu;
    
    	ret_stack_list = kmalloc(FTRACE_RETSTACK_ALLOC_SIZE *
    				sizeof(struct ftrace_ret_stack *),
    				GFP_KERNEL);
    
    	if (!ret_stack_list)
    		return -ENOMEM;
    
    	/* The cpu_boot init_task->ret_stack will never be freed */
    	for_each_online_cpu(cpu) {
    		if (!idle_task(cpu)->ret_stack)
    			ftrace_graph_init_idle_task(idle_task(cpu), cpu);
    	}
    
    	do {
    		ret = alloc_retstack_tasklist(ret_stack_list);
    	} while (ret == -EAGAIN);
    
    	if (!ret) {
    		ret = register_trace_sched_switch(ftrace_graph_probe_sched_switch, NULL);
    		if (ret)
    			pr_info("ftrace_graph: Couldn't activate tracepoint"
    				" probe to kernel_sched_switch\n");
    	}
    
    	kfree(ret_stack_list);
    	return ret;
    }
    
    /*
     * Hibernation protection.
     * The state of the current task is too much unstable during
     * suspend/restore to disk. We want to protect against that.
     */
    static int
    ftrace_suspend_notifier_call(struct notifier_block *bl, unsigned long state,
    							void *unused)
    {
    	switch (state) {
    	case PM_HIBERNATION_PREPARE:
    		pause_graph_tracing();
    		break;
    
    	case PM_POST_HIBERNATION:
    		unpause_graph_tracing();
    		break;
    	}
    	return NOTIFY_DONE;
    }
    
    static int ftrace_graph_entry_test(struct ftrace_graph_ent *trace)
    {
    	if (!ftrace_ops_test(&global_ops, trace->func, NULL))
    		return 0;
    	return __ftrace_graph_entry(trace);
    }
    
    /*
     * The function graph tracer should only trace the functions defined
     * by set_ftrace_filter and set_ftrace_notrace. If another function
     * tracer ops is registered, the graph tracer requires testing the
     * function against the global ops, and not just trace any function
     * that any ftrace_ops registered.
     */
    static void update_function_graph_func(void)
    {
    	struct ftrace_ops *op;
    	bool do_test = false;
    
    	/*
    	 * The graph and global ops share the same set of functions
    	 * to test. If any other ops is on the list, then
    	 * the graph tracing needs to test if its the function
    	 * it should call.
    	 */
    	do_for_each_ftrace_op(op, ftrace_ops_list) {
    		if (op != &global_ops && op != &graph_ops &&
    		    op != &ftrace_list_end) {
    			do_test = true;
    			/* in double loop, break out with goto */
    			goto out;
    		}
    	} while_for_each_ftrace_op(op);
     out:
    	if (do_test)
    		ftrace_graph_entry = ftrace_graph_entry_test;
    	else
    		ftrace_graph_entry = __ftrace_graph_entry;
    }
    
    static struct notifier_block ftrace_suspend_notifier = {
    	.notifier_call = ftrace_suspend_notifier_call,
    };
    
    int register_ftrace_graph(trace_func_graph_ret_t retfunc,
    			trace_func_graph_ent_t entryfunc)
    {
    	int ret = 0;
    
    	mutex_lock(&ftrace_lock);
    
    	/* we currently allow only one tracer registered at a time */
    	if (ftrace_graph_active) {
    		ret = -EBUSY;
    		goto out;
    	}
    
    	register_pm_notifier(&ftrace_suspend_notifier);
    
    	ftrace_graph_active++;
    	ret = start_graph_tracing();
    	if (ret) {
    		ftrace_graph_active--;
    		goto out;
    	}
    
    	ftrace_graph_return = retfunc;
    
    	/*
    	 * Update the indirect function to the entryfunc, and the
    	 * function that gets called to the entry_test first. Then
    	 * call the update fgraph entry function to determine if
    	 * the entryfunc should be called directly or not.
    	 */
    	__ftrace_graph_entry = entryfunc;
    	ftrace_graph_entry = ftrace_graph_entry_test;
    	update_function_graph_func();
    
    	ret = ftrace_startup(&graph_ops, FTRACE_START_FUNC_RET);
    out:
    	mutex_unlock(&ftrace_lock);
    	return ret;
    }
    
    void unregister_ftrace_graph(void)
    {
    	mutex_lock(&ftrace_lock);
    
    	if (unlikely(!ftrace_graph_active))
    		goto out;
    
    	ftrace_graph_active--;
    	ftrace_graph_return = (trace_func_graph_ret_t)ftrace_stub;
    	ftrace_graph_entry = ftrace_graph_entry_stub;
    	__ftrace_graph_entry = ftrace_graph_entry_stub;
    	ftrace_shutdown(&graph_ops, FTRACE_STOP_FUNC_RET);
    	unregister_pm_notifier(&ftrace_suspend_notifier);
    	unregister_trace_sched_switch(ftrace_graph_probe_sched_switch, NULL);
    
     out:
    	mutex_unlock(&ftrace_lock);
    }
    
    static DEFINE_PER_CPU(struct ftrace_ret_stack *, idle_ret_stack);
    
    static void
    graph_init_task(struct task_struct *t, struct ftrace_ret_stack *ret_stack)
    {
    	atomic_set(&t->tracing_graph_pause, 0);
    	atomic_set(&t->trace_overrun, 0);
    	t->ftrace_timestamp = 0;
    	/* make curr_ret_stack visible before we add the ret_stack */
    	smp_wmb();
    	t->ret_stack = ret_stack;
    }
    
    /*
     * Allocate a return stack for the idle task. May be the first
     * time through, or it may be done by CPU hotplug online.
     */
    void ftrace_graph_init_idle_task(struct task_struct *t, int cpu)
    {
    	t->curr_ret_stack = -1;
    	/*
    	 * The idle task has no parent, it either has its own
    	 * stack or no stack at all.
    	 */
    	if (t->ret_stack)
    		WARN_ON(t->ret_stack != per_cpu(idle_ret_stack, cpu));
    
    	if (ftrace_graph_active) {
    		struct ftrace_ret_stack *ret_stack;
    
    		ret_stack = per_cpu(idle_ret_stack, cpu);
    		if (!ret_stack) {
    			ret_stack = kmalloc(FTRACE_RETFUNC_DEPTH
    					    * sizeof(struct ftrace_ret_stack),
    					    GFP_KERNEL);
    			if (!ret_stack)
    				return;
    			per_cpu(idle_ret_stack, cpu) = ret_stack;
    		}
    		graph_init_task(t, ret_stack);
    	}
    }
    
    /* Allocate a return stack for newly created task */
    void ftrace_graph_init_task(struct task_struct *t)
    {
    	/* Make sure we do not use the parent ret_stack */
    	t->ret_stack = NULL;
    	t->curr_ret_stack = -1;
    
    	if (ftrace_graph_active) {
    		struct ftrace_ret_stack *ret_stack;
    
    		ret_stack = kmalloc(FTRACE_RETFUNC_DEPTH
    				* sizeof(struct ftrace_ret_stack),
    				GFP_KERNEL);
    		if (!ret_stack)
    			return;
    		graph_init_task(t, ret_stack);
    	}
    }
    
    void ftrace_graph_exit_task(struct task_struct *t)
    {
    	struct ftrace_ret_stack	*ret_stack = t->ret_stack;
    
    	t->ret_stack = NULL;
    	/* NULL must become visible to IRQs before we free it: */
    	barrier();
    
    	kfree(ret_stack);
    }
    #endif