Skip to content
Snippets Groups Projects
Select Git revision
  • 7f2923c4f73f21cfd714d12a2d48de8c21f11cfe
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

jump_label.c

Blame
  • jump_label.c 19.71 KiB
    /*
     * jump label support
     *
     * Copyright (C) 2009 Jason Baron <jbaron@redhat.com>
     * Copyright (C) 2011 Peter Zijlstra
     *
     */
    #include <linux/memory.h>
    #include <linux/uaccess.h>
    #include <linux/module.h>
    #include <linux/list.h>
    #include <linux/slab.h>
    #include <linux/sort.h>
    #include <linux/err.h>
    #include <linux/static_key.h>
    #include <linux/jump_label_ratelimit.h>
    #include <linux/bug.h>
    #include <linux/cpu.h>
    #include <asm/sections.h>
    
    /* mutex to protect coming/going of the the jump_label table */
    static DEFINE_MUTEX(jump_label_mutex);
    
    void jump_label_lock(void)
    {
    	mutex_lock(&jump_label_mutex);
    }
    
    void jump_label_unlock(void)
    {
    	mutex_unlock(&jump_label_mutex);
    }
    
    static int jump_label_cmp(const void *a, const void *b)
    {
    	const struct jump_entry *jea = a;
    	const struct jump_entry *jeb = b;
    
    	if (jump_entry_key(jea) < jump_entry_key(jeb))
    		return -1;
    
    	if (jump_entry_key(jea) > jump_entry_key(jeb))
    		return 1;
    
    	return 0;
    }
    
    static void jump_label_swap(void *a, void *b, int size)
    {
    	long delta = (unsigned long)a - (unsigned long)b;
    	struct jump_entry *jea = a;
    	struct jump_entry *jeb = b;
    	struct jump_entry tmp = *jea;
    
    	jea->code	= jeb->code - delta;
    	jea->target	= jeb->target - delta;
    	jea->key	= jeb->key - delta;
    
    	jeb->code	= tmp.code + delta;
    	jeb->target	= tmp.target + delta;
    	jeb->key	= tmp.key + delta;
    }
    
    static void
    jump_label_sort_entries(struct jump_entry *start, struct jump_entry *stop)
    {
    	unsigned long size;
    	void *swapfn = NULL;
    
    	if (IS_ENABLED(CONFIG_HAVE_ARCH_JUMP_LABEL_RELATIVE))
    		swapfn = jump_label_swap;
    
    	size = (((unsigned long)stop - (unsigned long)start)
    					/ sizeof(struct jump_entry));
    	sort(start, size, sizeof(struct jump_entry), jump_label_cmp, swapfn);
    }
    
    static void jump_label_update(struct static_key *key);
    
    /*
     * There are similar definitions for the !CONFIG_JUMP_LABEL case in jump_label.h.
     * The use of 'atomic_read()' requires atomic.h and its problematic for some
     * kernel headers such as kernel.h and others. Since static_key_count() is not
     * used in the branch statements as it is for the !CONFIG_JUMP_LABEL case its ok
     * to have it be a function here. Similarly, for 'static_key_enable()' and
     * 'static_key_disable()', which require bug.h. This should allow jump_label.h
     * to be included from most/all places for CONFIG_JUMP_LABEL.
     */
    int static_key_count(struct static_key *key)
    {
    	/*
    	 * -1 means the first static_key_slow_inc() is in progress.
    	 *  static_key_enabled() must return true, so return 1 here.
    	 */
    	int n = atomic_read(&key->enabled);
    
    	return n >= 0 ? n : 1;
    }
    EXPORT_SYMBOL_GPL(static_key_count);
    
    void static_key_slow_inc_cpuslocked(struct static_key *key)
    {
    	int v, v1;
    
    	STATIC_KEY_CHECK_USE(key);
    	lockdep_assert_cpus_held();
    
    	/*
    	 * Careful if we get concurrent static_key_slow_inc() calls;
    	 * later calls must wait for the first one to _finish_ the
    	 * jump_label_update() process.  At the same time, however,
    	 * the jump_label_update() call below wants to see
    	 * static_key_enabled(&key) for jumps to be updated properly.
    	 *
    	 * So give a special meaning to negative key->enabled: it sends
    	 * static_key_slow_inc() down the slow path, and it is non-zero
    	 * so it counts as "enabled" in jump_label_update().  Note that
    	 * atomic_inc_unless_negative() checks >= 0, so roll our own.
    	 */
    	for (v = atomic_read(&key->enabled); v > 0; v = v1) {
    		v1 = atomic_cmpxchg(&key->enabled, v, v + 1);
    		if (likely(v1 == v))
    			return;
    	}
    
    	jump_label_lock();
    	if (atomic_read(&key->enabled) == 0) {
    		atomic_set(&key->enabled, -1);
    		jump_label_update(key);
    		/*
    		 * Ensure that if the above cmpxchg loop observes our positive
    		 * value, it must also observe all the text changes.
    		 */
    		atomic_set_release(&key->enabled, 1);
    	} else {
    		atomic_inc(&key->enabled);
    	}
    	jump_label_unlock();
    }
    
    void static_key_slow_inc(struct static_key *key)
    {
    	cpus_read_lock();
    	static_key_slow_inc_cpuslocked(key);
    	cpus_read_unlock();
    }
    EXPORT_SYMBOL_GPL(static_key_slow_inc);
    
    void static_key_enable_cpuslocked(struct static_key *key)
    {
    	STATIC_KEY_CHECK_USE(key);
    	lockdep_assert_cpus_held();
    
    	if (atomic_read(&key->enabled) > 0) {
    		WARN_ON_ONCE(atomic_read(&key->enabled) != 1);
    		return;
    	}
    
    	jump_label_lock();
    	if (atomic_read(&key->enabled) == 0) {
    		atomic_set(&key->enabled, -1);
    		jump_label_update(key);
    		/*
    		 * See static_key_slow_inc().
    		 */
    		atomic_set_release(&key->enabled, 1);
    	}
    	jump_label_unlock();
    }
    EXPORT_SYMBOL_GPL(static_key_enable_cpuslocked);
    
    void static_key_enable(struct static_key *key)
    {
    	cpus_read_lock();
    	static_key_enable_cpuslocked(key);
    	cpus_read_unlock();
    }
    EXPORT_SYMBOL_GPL(static_key_enable);
    
    void static_key_disable_cpuslocked(struct static_key *key)
    {
    	STATIC_KEY_CHECK_USE(key);
    	lockdep_assert_cpus_held();
    
    	if (atomic_read(&key->enabled) != 1) {
    		WARN_ON_ONCE(atomic_read(&key->enabled) != 0);
    		return;
    	}
    
    	jump_label_lock();
    	if (atomic_cmpxchg(&key->enabled, 1, 0))
    		jump_label_update(key);
    	jump_label_unlock();
    }
    EXPORT_SYMBOL_GPL(static_key_disable_cpuslocked);
    
    void static_key_disable(struct static_key *key)
    {
    	cpus_read_lock();
    	static_key_disable_cpuslocked(key);
    	cpus_read_unlock();
    }
    EXPORT_SYMBOL_GPL(static_key_disable);
    
    static void __static_key_slow_dec_cpuslocked(struct static_key *key,
    					   unsigned long rate_limit,
    					   struct delayed_work *work)
    {
    	lockdep_assert_cpus_held();
    
    	/*
    	 * The negative count check is valid even when a negative
    	 * key->enabled is in use by static_key_slow_inc(); a
    	 * __static_key_slow_dec() before the first static_key_slow_inc()
    	 * returns is unbalanced, because all other static_key_slow_inc()
    	 * instances block while the update is in progress.
    	 */
    	if (!atomic_dec_and_mutex_lock(&key->enabled, &jump_label_mutex)) {
    		WARN(atomic_read(&key->enabled) < 0,
    		     "jump label: negative count!\n");
    		return;
    	}
    
    	if (rate_limit) {
    		atomic_inc(&key->enabled);
    		schedule_delayed_work(work, rate_limit);
    	} else {
    		jump_label_update(key);
    	}
    	jump_label_unlock();
    }
    
    static void __static_key_slow_dec(struct static_key *key,
    				  unsigned long rate_limit,
    				  struct delayed_work *work)
    {
    	cpus_read_lock();
    	__static_key_slow_dec_cpuslocked(key, rate_limit, work);
    	cpus_read_unlock();
    }
    
    static void jump_label_update_timeout(struct work_struct *work)
    {
    	struct static_key_deferred *key =
    		container_of(work, struct static_key_deferred, work.work);
    	__static_key_slow_dec(&key->key, 0, NULL);
    }
    
    void static_key_slow_dec(struct static_key *key)
    {
    	STATIC_KEY_CHECK_USE(key);
    	__static_key_slow_dec(key, 0, NULL);
    }
    EXPORT_SYMBOL_GPL(static_key_slow_dec);
    
    void static_key_slow_dec_cpuslocked(struct static_key *key)
    {
    	STATIC_KEY_CHECK_USE(key);
    	__static_key_slow_dec_cpuslocked(key, 0, NULL);
    }
    
    void static_key_slow_dec_deferred(struct static_key_deferred *key)
    {
    	STATIC_KEY_CHECK_USE(key);
    	__static_key_slow_dec(&key->key, key->timeout, &key->work);
    }
    EXPORT_SYMBOL_GPL(static_key_slow_dec_deferred);
    
    void static_key_deferred_flush(struct static_key_deferred *key)
    {
    	STATIC_KEY_CHECK_USE(key);
    	flush_delayed_work(&key->work);
    }
    EXPORT_SYMBOL_GPL(static_key_deferred_flush);
    
    void jump_label_rate_limit(struct static_key_deferred *key,
    		unsigned long rl)
    {
    	STATIC_KEY_CHECK_USE(key);
    	key->timeout = rl;
    	INIT_DELAYED_WORK(&key->work, jump_label_update_timeout);
    }
    EXPORT_SYMBOL_GPL(jump_label_rate_limit);
    
    static int addr_conflict(struct jump_entry *entry, void *start, void *end)
    {
    	if (jump_entry_code(entry) <= (unsigned long)end &&
    	    jump_entry_code(entry) + JUMP_LABEL_NOP_SIZE > (unsigned long)start)
    		return 1;
    
    	return 0;
    }
    
    static int __jump_label_text_reserved(struct jump_entry *iter_start,
    		struct jump_entry *iter_stop, void *start, void *end)
    {
    	struct jump_entry *iter;
    
    	iter = iter_start;
    	while (iter < iter_stop) {
    		if (addr_conflict(iter, start, end))
    			return 1;
    		iter++;
    	}
    
    	return 0;
    }
    
    /*
     * Update code which is definitely not currently executing.
     * Architectures which need heavyweight synchronization to modify
     * running code can override this to make the non-live update case
     * cheaper.
     */
    void __weak __init_or_module arch_jump_label_transform_static(struct jump_entry *entry,
    					    enum jump_label_type type)
    {
    	arch_jump_label_transform(entry, type);
    }
    
    static inline struct jump_entry *static_key_entries(struct static_key *key)
    {
    	WARN_ON_ONCE(key->type & JUMP_TYPE_LINKED);
    	return (struct jump_entry *)(key->type & ~JUMP_TYPE_MASK);
    }
    
    static inline bool static_key_type(struct static_key *key)
    {
    	return key->type & JUMP_TYPE_TRUE;
    }
    
    static inline bool static_key_linked(struct static_key *key)
    {
    	return key->type & JUMP_TYPE_LINKED;
    }
    
    static inline void static_key_clear_linked(struct static_key *key)
    {
    	key->type &= ~JUMP_TYPE_LINKED;
    }
    
    static inline void static_key_set_linked(struct static_key *key)
    {
    	key->type |= JUMP_TYPE_LINKED;
    }
    
    /***
     * A 'struct static_key' uses a union such that it either points directly
     * to a table of 'struct jump_entry' or to a linked list of modules which in
     * turn point to 'struct jump_entry' tables.
     *
     * The two lower bits of the pointer are used to keep track of which pointer
     * type is in use and to store the initial branch direction, we use an access
     * function which preserves these bits.
     */
    static void static_key_set_entries(struct static_key *key,
    				   struct jump_entry *entries)
    {
    	unsigned long type;
    
    	WARN_ON_ONCE((unsigned long)entries & JUMP_TYPE_MASK);
    	type = key->type & JUMP_TYPE_MASK;
    	key->entries = entries;
    	key->type |= type;
    }
    
    static enum jump_label_type jump_label_type(struct jump_entry *entry)
    {
    	struct static_key *key = jump_entry_key(entry);
    	bool enabled = static_key_enabled(key);
    	bool branch = jump_entry_is_branch(entry);
    
    	/* See the comment in linux/jump_label.h */
    	return enabled ^ branch;
    }
    
    static void __jump_label_update(struct static_key *key,
    				struct jump_entry *entry,
    				struct jump_entry *stop,
    				bool init)
    {
    	for (; (entry < stop) && (jump_entry_key(entry) == key); entry++) {
    		/*
    		 * An entry->code of 0 indicates an entry which has been
    		 * disabled because it was in an init text area.
    		 */
    		if (init || !jump_entry_is_init(entry)) {
    			if (kernel_text_address(jump_entry_code(entry)))
    				arch_jump_label_transform(entry, jump_label_type(entry));
    			else
    				WARN_ONCE(1, "can't patch jump_label at %pS",
    					  (void *)jump_entry_code(entry));
    		}
    	}
    }
    
    void __init jump_label_init(void)
    {
    	struct jump_entry *iter_start = __start___jump_table;
    	struct jump_entry *iter_stop = __stop___jump_table;
    	struct static_key *key = NULL;
    	struct jump_entry *iter;
    
    	/*
    	 * Since we are initializing the static_key.enabled field with
    	 * with the 'raw' int values (to avoid pulling in atomic.h) in
    	 * jump_label.h, let's make sure that is safe. There are only two
    	 * cases to check since we initialize to 0 or 1.
    	 */
    	BUILD_BUG_ON((int)ATOMIC_INIT(0) != 0);
    	BUILD_BUG_ON((int)ATOMIC_INIT(1) != 1);
    
    	if (static_key_initialized)
    		return;
    
    	cpus_read_lock();
    	jump_label_lock();
    	jump_label_sort_entries(iter_start, iter_stop);
    
    	for (iter = iter_start; iter < iter_stop; iter++) {
    		struct static_key *iterk;
    
    		/* rewrite NOPs */
    		if (jump_label_type(iter) == JUMP_LABEL_NOP)
    			arch_jump_label_transform_static(iter, JUMP_LABEL_NOP);
    
    		if (init_section_contains((void *)jump_entry_code(iter), 1))
    			jump_entry_set_init(iter);
    
    		iterk = jump_entry_key(iter);
    		if (iterk == key)
    			continue;
    
    		key = iterk;
    		static_key_set_entries(key, iter);
    	}
    	static_key_initialized = true;
    	jump_label_unlock();
    	cpus_read_unlock();
    }
    
    #ifdef CONFIG_MODULES
    
    static enum jump_label_type jump_label_init_type(struct jump_entry *entry)
    {
    	struct static_key *key = jump_entry_key(entry);
    	bool type = static_key_type(key);
    	bool branch = jump_entry_is_branch(entry);
    
    	/* See the comment in linux/jump_label.h */
    	return type ^ branch;
    }
    
    struct static_key_mod {
    	struct static_key_mod *next;
    	struct jump_entry *entries;
    	struct module *mod;
    };
    
    static inline struct static_key_mod *static_key_mod(struct static_key *key)
    {
    	WARN_ON_ONCE(!static_key_linked(key));
    	return (struct static_key_mod *)(key->type & ~JUMP_TYPE_MASK);
    }
    
    /***
     * key->type and key->next are the same via union.
     * This sets key->next and preserves the type bits.
     *
     * See additional comments above static_key_set_entries().
     */
    static void static_key_set_mod(struct static_key *key,
    			       struct static_key_mod *mod)
    {
    	unsigned long type;
    
    	WARN_ON_ONCE((unsigned long)mod & JUMP_TYPE_MASK);
    	type = key->type & JUMP_TYPE_MASK;
    	key->next = mod;
    	key->type |= type;
    }
    
    static int __jump_label_mod_text_reserved(void *start, void *end)
    {
    	struct module *mod;
    
    	preempt_disable();
    	mod = __module_text_address((unsigned long)start);
    	WARN_ON_ONCE(__module_text_address((unsigned long)end) != mod);
    	preempt_enable();
    
    	if (!mod)
    		return 0;
    
    
    	return __jump_label_text_reserved(mod->jump_entries,
    				mod->jump_entries + mod->num_jump_entries,
    				start, end);
    }
    
    static void __jump_label_mod_update(struct static_key *key)
    {
    	struct static_key_mod *mod;
    
    	for (mod = static_key_mod(key); mod; mod = mod->next) {
    		struct jump_entry *stop;
    		struct module *m;
    
    		/*
    		 * NULL if the static_key is defined in a module
    		 * that does not use it
    		 */
    		if (!mod->entries)
    			continue;
    
    		m = mod->mod;
    		if (!m)
    			stop = __stop___jump_table;
    		else
    			stop = m->jump_entries + m->num_jump_entries;
    		__jump_label_update(key, mod->entries, stop,
    				    m && m->state == MODULE_STATE_COMING);
    	}
    }
    
    /***
     * apply_jump_label_nops - patch module jump labels with arch_get_jump_label_nop()
     * @mod: module to patch
     *
     * Allow for run-time selection of the optimal nops. Before the module
     * loads patch these with arch_get_jump_label_nop(), which is specified by
     * the arch specific jump label code.
     */
    void jump_label_apply_nops(struct module *mod)
    {
    	struct jump_entry *iter_start = mod->jump_entries;
    	struct jump_entry *iter_stop = iter_start + mod->num_jump_entries;
    	struct jump_entry *iter;
    
    	/* if the module doesn't have jump label entries, just return */
    	if (iter_start == iter_stop)
    		return;
    
    	for (iter = iter_start; iter < iter_stop; iter++) {
    		/* Only write NOPs for arch_branch_static(). */
    		if (jump_label_init_type(iter) == JUMP_LABEL_NOP)
    			arch_jump_label_transform_static(iter, JUMP_LABEL_NOP);
    	}
    }
    
    static int jump_label_add_module(struct module *mod)
    {
    	struct jump_entry *iter_start = mod->jump_entries;
    	struct jump_entry *iter_stop = iter_start + mod->num_jump_entries;
    	struct jump_entry *iter;
    	struct static_key *key = NULL;
    	struct static_key_mod *jlm, *jlm2;
    
    	/* if the module doesn't have jump label entries, just return */
    	if (iter_start == iter_stop)
    		return 0;
    
    	jump_label_sort_entries(iter_start, iter_stop);
    
    	for (iter = iter_start; iter < iter_stop; iter++) {
    		struct static_key *iterk;
    
    		if (within_module_init(jump_entry_code(iter), mod))
    			jump_entry_set_init(iter);
    
    		iterk = jump_entry_key(iter);
    		if (iterk == key)
    			continue;
    
    		key = iterk;
    		if (within_module((unsigned long)key, mod)) {
    			static_key_set_entries(key, iter);
    			continue;
    		}
    		jlm = kzalloc(sizeof(struct static_key_mod), GFP_KERNEL);
    		if (!jlm)
    			return -ENOMEM;
    		if (!static_key_linked(key)) {
    			jlm2 = kzalloc(sizeof(struct static_key_mod),
    				       GFP_KERNEL);
    			if (!jlm2) {
    				kfree(jlm);
    				return -ENOMEM;
    			}
    			preempt_disable();
    			jlm2->mod = __module_address((unsigned long)key);
    			preempt_enable();
    			jlm2->entries = static_key_entries(key);
    			jlm2->next = NULL;
    			static_key_set_mod(key, jlm2);
    			static_key_set_linked(key);
    		}
    		jlm->mod = mod;
    		jlm->entries = iter;
    		jlm->next = static_key_mod(key);
    		static_key_set_mod(key, jlm);
    		static_key_set_linked(key);
    
    		/* Only update if we've changed from our initial state */
    		if (jump_label_type(iter) != jump_label_init_type(iter))
    			__jump_label_update(key, iter, iter_stop, true);
    	}
    
    	return 0;
    }
    
    static void jump_label_del_module(struct module *mod)
    {
    	struct jump_entry *iter_start = mod->jump_entries;
    	struct jump_entry *iter_stop = iter_start + mod->num_jump_entries;
    	struct jump_entry *iter;
    	struct static_key *key = NULL;
    	struct static_key_mod *jlm, **prev;
    
    	for (iter = iter_start; iter < iter_stop; iter++) {
    		if (jump_entry_key(iter) == key)
    			continue;
    
    		key = jump_entry_key(iter);
    
    		if (within_module((unsigned long)key, mod))
    			continue;
    
    		/* No memory during module load */
    		if (WARN_ON(!static_key_linked(key)))
    			continue;
    
    		prev = &key->next;
    		jlm = static_key_mod(key);
    
    		while (jlm && jlm->mod != mod) {
    			prev = &jlm->next;
    			jlm = jlm->next;
    		}
    
    		/* No memory during module load */
    		if (WARN_ON(!jlm))
    			continue;
    
    		if (prev == &key->next)
    			static_key_set_mod(key, jlm->next);
    		else
    			*prev = jlm->next;
    
    		kfree(jlm);
    
    		jlm = static_key_mod(key);
    		/* if only one etry is left, fold it back into the static_key */
    		if (jlm->next == NULL) {
    			static_key_set_entries(key, jlm->entries);
    			static_key_clear_linked(key);
    			kfree(jlm);
    		}
    	}
    }
    
    static int
    jump_label_module_notify(struct notifier_block *self, unsigned long val,
    			 void *data)
    {
    	struct module *mod = data;
    	int ret = 0;
    
    	cpus_read_lock();
    	jump_label_lock();
    
    	switch (val) {
    	case MODULE_STATE_COMING:
    		ret = jump_label_add_module(mod);
    		if (ret) {
    			WARN(1, "Failed to allocate memory: jump_label may not work properly.\n");
    			jump_label_del_module(mod);
    		}
    		break;
    	case MODULE_STATE_GOING:
    		jump_label_del_module(mod);
    		break;
    	}
    
    	jump_label_unlock();
    	cpus_read_unlock();
    
    	return notifier_from_errno(ret);
    }
    
    static struct notifier_block jump_label_module_nb = {
    	.notifier_call = jump_label_module_notify,
    	.priority = 1, /* higher than tracepoints */
    };
    
    static __init int jump_label_init_module(void)
    {
    	return register_module_notifier(&jump_label_module_nb);
    }
    early_initcall(jump_label_init_module);
    
    #endif /* CONFIG_MODULES */
    
    /***
     * jump_label_text_reserved - check if addr range is reserved
     * @start: start text addr
     * @end: end text addr
     *
     * checks if the text addr located between @start and @end
     * overlaps with any of the jump label patch addresses. Code
     * that wants to modify kernel text should first verify that
     * it does not overlap with any of the jump label addresses.
     * Caller must hold jump_label_mutex.
     *
     * returns 1 if there is an overlap, 0 otherwise
     */
    int jump_label_text_reserved(void *start, void *end)
    {
    	int ret = __jump_label_text_reserved(__start___jump_table,
    			__stop___jump_table, start, end);
    
    	if (ret)
    		return ret;
    
    #ifdef CONFIG_MODULES
    	ret = __jump_label_mod_text_reserved(start, end);
    #endif
    	return ret;
    }
    
    static void jump_label_update(struct static_key *key)
    {
    	struct jump_entry *stop = __stop___jump_table;
    	struct jump_entry *entry;
    #ifdef CONFIG_MODULES
    	struct module *mod;
    
    	if (static_key_linked(key)) {
    		__jump_label_mod_update(key);
    		return;
    	}
    
    	preempt_disable();
    	mod = __module_address((unsigned long)key);
    	if (mod)
    		stop = mod->jump_entries + mod->num_jump_entries;
    	preempt_enable();
    #endif
    	entry = static_key_entries(key);
    	/* if there are no users, entry can be NULL */
    	if (entry)
    		__jump_label_update(key, entry, stop,
    				    system_state < SYSTEM_RUNNING);
    }
    
    #ifdef CONFIG_STATIC_KEYS_SELFTEST
    static DEFINE_STATIC_KEY_TRUE(sk_true);
    static DEFINE_STATIC_KEY_FALSE(sk_false);
    
    static __init int jump_label_test(void)
    {
    	int i;
    
    	for (i = 0; i < 2; i++) {
    		WARN_ON(static_key_enabled(&sk_true.key) != true);
    		WARN_ON(static_key_enabled(&sk_false.key) != false);
    
    		WARN_ON(!static_branch_likely(&sk_true));
    		WARN_ON(!static_branch_unlikely(&sk_true));
    		WARN_ON(static_branch_likely(&sk_false));
    		WARN_ON(static_branch_unlikely(&sk_false));
    
    		static_branch_disable(&sk_true);
    		static_branch_enable(&sk_false);
    
    		WARN_ON(static_key_enabled(&sk_true.key) == true);
    		WARN_ON(static_key_enabled(&sk_false.key) == false);
    
    		WARN_ON(static_branch_likely(&sk_true));
    		WARN_ON(static_branch_unlikely(&sk_true));
    		WARN_ON(!static_branch_likely(&sk_false));
    		WARN_ON(!static_branch_unlikely(&sk_false));
    
    		static_branch_enable(&sk_true);
    		static_branch_disable(&sk_false);
    	}
    
    	return 0;
    }
    early_initcall(jump_label_test);
    #endif /* STATIC_KEYS_SELFTEST */