Skip to content
Snippets Groups Projects
Select Git revision
  • 7f2923c4f73f21cfd714d12a2d48de8c21f11cfe
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

smpboot.c

Blame
  • smpboot.c 11.69 KiB
    /*
     * Common SMP CPU bringup/teardown functions
     */
    #include <linux/cpu.h>
    #include <linux/err.h>
    #include <linux/smp.h>
    #include <linux/delay.h>
    #include <linux/init.h>
    #include <linux/list.h>
    #include <linux/slab.h>
    #include <linux/sched.h>
    #include <linux/sched/task.h>
    #include <linux/export.h>
    #include <linux/percpu.h>
    #include <linux/kthread.h>
    #include <linux/smpboot.h>
    
    #include "smpboot.h"
    
    #ifdef CONFIG_SMP
    
    #ifdef CONFIG_GENERIC_SMP_IDLE_THREAD
    /*
     * For the hotplug case we keep the task structs around and reuse
     * them.
     */
    static DEFINE_PER_CPU(struct task_struct *, idle_threads);
    
    struct task_struct *idle_thread_get(unsigned int cpu)
    {
    	struct task_struct *tsk = per_cpu(idle_threads, cpu);
    
    	if (!tsk)
    		return ERR_PTR(-ENOMEM);
    	init_idle(tsk, cpu);
    	return tsk;
    }
    
    void __init idle_thread_set_boot_cpu(void)
    {
    	per_cpu(idle_threads, smp_processor_id()) = current;
    }
    
    /**
     * idle_init - Initialize the idle thread for a cpu
     * @cpu:	The cpu for which the idle thread should be initialized
     *
     * Creates the thread if it does not exist.
     */
    static inline void idle_init(unsigned int cpu)
    {
    	struct task_struct *tsk = per_cpu(idle_threads, cpu);
    
    	if (!tsk) {
    		tsk = fork_idle(cpu);
    		if (IS_ERR(tsk))
    			pr_err("SMP: fork_idle() failed for CPU %u\n", cpu);
    		else
    			per_cpu(idle_threads, cpu) = tsk;
    	}
    }
    
    /**
     * idle_threads_init - Initialize idle threads for all cpus
     */
    void __init idle_threads_init(void)
    {
    	unsigned int cpu, boot_cpu;
    
    	boot_cpu = smp_processor_id();
    
    	for_each_possible_cpu(cpu) {
    		if (cpu != boot_cpu)
    			idle_init(cpu);
    	}
    }
    #endif
    
    #endif /* #ifdef CONFIG_SMP */
    
    static LIST_HEAD(hotplug_threads);
    static DEFINE_MUTEX(smpboot_threads_lock);
    
    struct smpboot_thread_data {
    	unsigned int			cpu;
    	unsigned int			status;
    	struct smp_hotplug_thread	*ht;
    };
    
    enum {
    	HP_THREAD_NONE = 0,
    	HP_THREAD_ACTIVE,
    	HP_THREAD_PARKED,
    };
    
    /**
     * smpboot_thread_fn - percpu hotplug thread loop function
     * @data:	thread data pointer
     *
     * Checks for thread stop and park conditions. Calls the necessary
     * setup, cleanup, park and unpark functions for the registered
     * thread.
     *
     * Returns 1 when the thread should exit, 0 otherwise.
     */
    static int smpboot_thread_fn(void *data)
    {
    	struct smpboot_thread_data *td = data;
    	struct smp_hotplug_thread *ht = td->ht;
    
    	while (1) {
    		set_current_state(TASK_INTERRUPTIBLE);
    		preempt_disable();
    		if (kthread_should_stop()) {
    			__set_current_state(TASK_RUNNING);
    			preempt_enable();
    			/* cleanup must mirror setup */
    			if (ht->cleanup && td->status != HP_THREAD_NONE)
    				ht->cleanup(td->cpu, cpu_online(td->cpu));
    			kfree(td);
    			return 0;
    		}
    
    		if (kthread_should_park()) {
    			__set_current_state(TASK_RUNNING);
    			preempt_enable();
    			if (ht->park && td->status == HP_THREAD_ACTIVE) {
    				BUG_ON(td->cpu != smp_processor_id());
    				ht->park(td->cpu);
    				td->status = HP_THREAD_PARKED;
    			}
    			kthread_parkme();
    			/* We might have been woken for stop */
    			continue;
    		}
    
    		BUG_ON(td->cpu != smp_processor_id());
    
    		/* Check for state change setup */
    		switch (td->status) {
    		case HP_THREAD_NONE:
    			__set_current_state(TASK_RUNNING);
    			preempt_enable();
    			if (ht->setup)
    				ht->setup(td->cpu);
    			td->status = HP_THREAD_ACTIVE;
    			continue;
    
    		case HP_THREAD_PARKED:
    			__set_current_state(TASK_RUNNING);
    			preempt_enable();
    			if (ht->unpark)
    				ht->unpark(td->cpu);
    			td->status = HP_THREAD_ACTIVE;
    			continue;
    		}
    
    		if (!ht->thread_should_run(td->cpu)) {
    			preempt_enable_no_resched();
    			schedule();
    		} else {
    			__set_current_state(TASK_RUNNING);
    			preempt_enable();
    			ht->thread_fn(td->cpu);
    		}
    	}
    }
    
    static int
    __smpboot_create_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
    {
    	struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
    	struct smpboot_thread_data *td;
    
    	if (tsk)
    		return 0;
    
    	td = kzalloc_node(sizeof(*td), GFP_KERNEL, cpu_to_node(cpu));
    	if (!td)
    		return -ENOMEM;
    	td->cpu = cpu;
    	td->ht = ht;
    
    	tsk = kthread_create_on_cpu(smpboot_thread_fn, td, cpu,
    				    ht->thread_comm);
    	if (IS_ERR(tsk)) {
    		kfree(td);
    		return PTR_ERR(tsk);
    	}
    	/*
    	 * Park the thread so that it could start right on the CPU
    	 * when it is available.
    	 */
    	kthread_park(tsk);
    	get_task_struct(tsk);
    	*per_cpu_ptr(ht->store, cpu) = tsk;
    	if (ht->create) {
    		/*
    		 * Make sure that the task has actually scheduled out
    		 * into park position, before calling the create
    		 * callback. At least the migration thread callback
    		 * requires that the task is off the runqueue.
    		 */
    		if (!wait_task_inactive(tsk, TASK_PARKED))
    			WARN_ON(1);
    		else
    			ht->create(cpu);
    	}
    	return 0;
    }
    
    int smpboot_create_threads(unsigned int cpu)
    {
    	struct smp_hotplug_thread *cur;
    	int ret = 0;
    
    	mutex_lock(&smpboot_threads_lock);
    	list_for_each_entry(cur, &hotplug_threads, list) {
    		ret = __smpboot_create_thread(cur, cpu);
    		if (ret)
    			break;
    	}
    	mutex_unlock(&smpboot_threads_lock);
    	return ret;
    }
    
    static void smpboot_unpark_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
    {
    	struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
    
    	if (!ht->selfparking)
    		kthread_unpark(tsk);
    }
    
    int smpboot_unpark_threads(unsigned int cpu)
    {
    	struct smp_hotplug_thread *cur;
    
    	mutex_lock(&smpboot_threads_lock);
    	list_for_each_entry(cur, &hotplug_threads, list)
    		smpboot_unpark_thread(cur, cpu);
    	mutex_unlock(&smpboot_threads_lock);
    	return 0;
    }
    
    static void smpboot_park_thread(struct smp_hotplug_thread *ht, unsigned int cpu)
    {
    	struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
    
    	if (tsk && !ht->selfparking)
    		kthread_park(tsk);
    }
    
    int smpboot_park_threads(unsigned int cpu)
    {
    	struct smp_hotplug_thread *cur;
    
    	mutex_lock(&smpboot_threads_lock);
    	list_for_each_entry_reverse(cur, &hotplug_threads, list)
    		smpboot_park_thread(cur, cpu);
    	mutex_unlock(&smpboot_threads_lock);
    	return 0;
    }
    
    static void smpboot_destroy_threads(struct smp_hotplug_thread *ht)
    {
    	unsigned int cpu;
    
    	/* We need to destroy also the parked threads of offline cpus */
    	for_each_possible_cpu(cpu) {
    		struct task_struct *tsk = *per_cpu_ptr(ht->store, cpu);
    
    		if (tsk) {
    			kthread_stop(tsk);
    			put_task_struct(tsk);
    			*per_cpu_ptr(ht->store, cpu) = NULL;
    		}
    	}
    }
    
    /**
     * smpboot_register_percpu_thread - Register a per_cpu thread related
     * 					    to hotplug
     * @plug_thread:	Hotplug thread descriptor
     *
     * Creates and starts the threads on all online cpus.
     */
    int smpboot_register_percpu_thread(struct smp_hotplug_thread *plug_thread)
    {
    	unsigned int cpu;
    	int ret = 0;
    
    	get_online_cpus();
    	mutex_lock(&smpboot_threads_lock);
    	for_each_online_cpu(cpu) {
    		ret = __smpboot_create_thread(plug_thread, cpu);
    		if (ret) {
    			smpboot_destroy_threads(plug_thread);
    			goto out;
    		}
    		smpboot_unpark_thread(plug_thread, cpu);
    	}
    	list_add(&plug_thread->list, &hotplug_threads);
    out:
    	mutex_unlock(&smpboot_threads_lock);
    	put_online_cpus();
    	return ret;
    }
    EXPORT_SYMBOL_GPL(smpboot_register_percpu_thread);
    
    /**
     * smpboot_unregister_percpu_thread - Unregister a per_cpu thread related to hotplug
     * @plug_thread:	Hotplug thread descriptor
     *
     * Stops all threads on all possible cpus.
     */
    void smpboot_unregister_percpu_thread(struct smp_hotplug_thread *plug_thread)
    {
    	get_online_cpus();
    	mutex_lock(&smpboot_threads_lock);
    	list_del(&plug_thread->list);
    	smpboot_destroy_threads(plug_thread);
    	mutex_unlock(&smpboot_threads_lock);
    	put_online_cpus();
    }
    EXPORT_SYMBOL_GPL(smpboot_unregister_percpu_thread);
    
    static DEFINE_PER_CPU(atomic_t, cpu_hotplug_state) = ATOMIC_INIT(CPU_POST_DEAD);
    
    /*
     * Called to poll specified CPU's state, for example, when waiting for
     * a CPU to come online.
     */
    int cpu_report_state(int cpu)
    {
    	return atomic_read(&per_cpu(cpu_hotplug_state, cpu));
    }
    
    /*
     * If CPU has died properly, set its state to CPU_UP_PREPARE and
     * return success.  Otherwise, return -EBUSY if the CPU died after
     * cpu_wait_death() timed out.  And yet otherwise again, return -EAGAIN
     * if cpu_wait_death() timed out and the CPU still hasn't gotten around
     * to dying.  In the latter two cases, the CPU might not be set up
     * properly, but it is up to the arch-specific code to decide.
     * Finally, -EIO indicates an unanticipated problem.
     *
     * Note that it is permissible to omit this call entirely, as is
     * done in architectures that do no CPU-hotplug error checking.
     */
    int cpu_check_up_prepare(int cpu)
    {
    	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
    		atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
    		return 0;
    	}
    
    	switch (atomic_read(&per_cpu(cpu_hotplug_state, cpu))) {
    
    	case CPU_POST_DEAD:
    
    		/* The CPU died properly, so just start it up again. */
    		atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_UP_PREPARE);
    		return 0;
    
    	case CPU_DEAD_FROZEN:
    
    		/*
    		 * Timeout during CPU death, so let caller know.
    		 * The outgoing CPU completed its processing, but after
    		 * cpu_wait_death() timed out and reported the error. The
    		 * caller is free to proceed, in which case the state
    		 * will be reset properly by cpu_set_state_online().
    		 * Proceeding despite this -EBUSY return makes sense
    		 * for systems where the outgoing CPUs take themselves
    		 * offline, with no post-death manipulation required from
    		 * a surviving CPU.
    		 */
    		return -EBUSY;
    
    	case CPU_BROKEN:
    
    		/*
    		 * The most likely reason we got here is that there was
    		 * a timeout during CPU death, and the outgoing CPU never
    		 * did complete its processing.  This could happen on
    		 * a virtualized system if the outgoing VCPU gets preempted
    		 * for more than five seconds, and the user attempts to
    		 * immediately online that same CPU.  Trying again later
    		 * might return -EBUSY above, hence -EAGAIN.
    		 */
    		return -EAGAIN;
    
    	default:
    
    		/* Should not happen.  Famous last words. */
    		return -EIO;
    	}
    }
    
    /*
     * Mark the specified CPU online.
     *
     * Note that it is permissible to omit this call entirely, as is
     * done in architectures that do no CPU-hotplug error checking.
     */
    void cpu_set_state_online(int cpu)
    {
    	(void)atomic_xchg(&per_cpu(cpu_hotplug_state, cpu), CPU_ONLINE);
    }
    
    #ifdef CONFIG_HOTPLUG_CPU
    
    /*
     * Wait for the specified CPU to exit the idle loop and die.
     */
    bool cpu_wait_death(unsigned int cpu, int seconds)
    {
    	int jf_left = seconds * HZ;
    	int oldstate;
    	bool ret = true;
    	int sleep_jf = 1;
    
    	might_sleep();
    
    	/* The outgoing CPU will normally get done quite quickly. */
    	if (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) == CPU_DEAD)
    		goto update_state;
    	udelay(5);
    
    	/* But if the outgoing CPU dawdles, wait increasingly long times. */
    	while (atomic_read(&per_cpu(cpu_hotplug_state, cpu)) != CPU_DEAD) {
    		schedule_timeout_uninterruptible(sleep_jf);
    		jf_left -= sleep_jf;
    		if (jf_left <= 0)
    			break;
    		sleep_jf = DIV_ROUND_UP(sleep_jf * 11, 10);
    	}
    update_state:
    	oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
    	if (oldstate == CPU_DEAD) {
    		/* Outgoing CPU died normally, update state. */
    		smp_mb(); /* atomic_read() before update. */
    		atomic_set(&per_cpu(cpu_hotplug_state, cpu), CPU_POST_DEAD);
    	} else {
    		/* Outgoing CPU still hasn't died, set state accordingly. */
    		if (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
    				   oldstate, CPU_BROKEN) != oldstate)
    			goto update_state;
    		ret = false;
    	}
    	return ret;
    }
    
    /*
     * Called by the outgoing CPU to report its successful death.  Return
     * false if this report follows the surviving CPU's timing out.
     *
     * A separate "CPU_DEAD_FROZEN" is used when the surviving CPU
     * timed out.  This approach allows architectures to omit calls to
     * cpu_check_up_prepare() and cpu_set_state_online() without defeating
     * the next cpu_wait_death()'s polling loop.
     */
    bool cpu_report_death(void)
    {
    	int oldstate;
    	int newstate;
    	int cpu = smp_processor_id();
    
    	do {
    		oldstate = atomic_read(&per_cpu(cpu_hotplug_state, cpu));
    		if (oldstate != CPU_BROKEN)
    			newstate = CPU_DEAD;
    		else
    			newstate = CPU_DEAD_FROZEN;
    	} while (atomic_cmpxchg(&per_cpu(cpu_hotplug_state, cpu),
    				oldstate, newstate) != oldstate);
    	return newstate == CPU_DEAD;
    }
    
    #endif /* #ifdef CONFIG_HOTPLUG_CPU */