Skip to content
Snippets Groups Projects
Select Git revision
  • 814c8c38e13c7050259c72f89bb01f3fc903f642
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

header.c

Blame
  • rmap.c 42.75 KiB
    /*
     * mm/rmap.c - physical to virtual reverse mappings
     *
     * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
     * Released under the General Public License (GPL).
     *
     * Simple, low overhead reverse mapping scheme.
     * Please try to keep this thing as modular as possible.
     *
     * Provides methods for unmapping each kind of mapped page:
     * the anon methods track anonymous pages, and
     * the file methods track pages belonging to an inode.
     *
     * Original design by Rik van Riel <riel@conectiva.com.br> 2001
     * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
     * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
     * Contributions by Hugh Dickins 2003, 2004
     */
    
    /*
     * Lock ordering in mm:
     *
     * inode->i_mutex	(while writing or truncating, not reading or faulting)
     *   inode->i_alloc_sem (vmtruncate_range)
     *   mm->mmap_sem
     *     page->flags PG_locked (lock_page)
     *       mapping->i_mmap_lock
     *         anon_vma->lock
     *           mm->page_table_lock or pte_lock
     *             zone->lru_lock (in mark_page_accessed, isolate_lru_page)
     *             swap_lock (in swap_duplicate, swap_info_get)
     *               mmlist_lock (in mmput, drain_mmlist and others)
     *               mapping->private_lock (in __set_page_dirty_buffers)
     *               inode_lock (in set_page_dirty's __mark_inode_dirty)
     *                 sb_lock (within inode_lock in fs/fs-writeback.c)
     *                 mapping->tree_lock (widely used, in set_page_dirty,
     *                           in arch-dependent flush_dcache_mmap_lock,
     *                           within inode_lock in __sync_single_inode)
     *
     * (code doesn't rely on that order so it could be switched around)
     * ->tasklist_lock
     *   anon_vma->lock      (memory_failure, collect_procs_anon)
     *     pte map lock
     */
    
    #include <linux/mm.h>
    #include <linux/pagemap.h>
    #include <linux/swap.h>
    #include <linux/swapops.h>
    #include <linux/slab.h>
    #include <linux/init.h>
    #include <linux/ksm.h>
    #include <linux/rmap.h>
    #include <linux/rcupdate.h>
    #include <linux/module.h>
    #include <linux/memcontrol.h>
    #include <linux/mmu_notifier.h>
    #include <linux/migrate.h>
    
    #include <asm/tlbflush.h>
    
    #include "internal.h"
    
    static struct kmem_cache *anon_vma_cachep;
    static struct kmem_cache *anon_vma_chain_cachep;
    
    static inline struct anon_vma *anon_vma_alloc(void)
    {
    	return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
    }
    
    void anon_vma_free(struct anon_vma *anon_vma)
    {
    	kmem_cache_free(anon_vma_cachep, anon_vma);
    }
    
    static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
    {
    	return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
    }
    
    void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
    {
    	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
    }
    
    /**
     * anon_vma_prepare - attach an anon_vma to a memory region
     * @vma: the memory region in question
     *
     * This makes sure the memory mapping described by 'vma' has
     * an 'anon_vma' attached to it, so that we can associate the
     * anonymous pages mapped into it with that anon_vma.
     *
     * The common case will be that we already have one, but if
     * if not we either need to find an adjacent mapping that we
     * can re-use the anon_vma from (very common when the only
     * reason for splitting a vma has been mprotect()), or we
     * allocate a new one.
     *
     * Anon-vma allocations are very subtle, because we may have
     * optimistically looked up an anon_vma in page_lock_anon_vma()
     * and that may actually touch the spinlock even in the newly
     * allocated vma (it depends on RCU to make sure that the
     * anon_vma isn't actually destroyed).
     *
     * As a result, we need to do proper anon_vma locking even
     * for the new allocation. At the same time, we do not want
     * to do any locking for the common case of already having
     * an anon_vma.
     *
     * This must be called with the mmap_sem held for reading.
     */
    int anon_vma_prepare(struct vm_area_struct *vma)
    {
    	struct anon_vma *anon_vma = vma->anon_vma;
    	struct anon_vma_chain *avc;
    
    	might_sleep();
    	if (unlikely(!anon_vma)) {
    		struct mm_struct *mm = vma->vm_mm;
    		struct anon_vma *allocated;
    
    		avc = anon_vma_chain_alloc();
    		if (!avc)
    			goto out_enomem;
    
    		anon_vma = find_mergeable_anon_vma(vma);
    		allocated = NULL;
    		if (!anon_vma) {
    			anon_vma = anon_vma_alloc();
    			if (unlikely(!anon_vma))
    				goto out_enomem_free_avc;
    			allocated = anon_vma;
    			/*
    			 * This VMA had no anon_vma yet.  This anon_vma is
    			 * the root of any anon_vma tree that might form.
    			 */
    			anon_vma->root = anon_vma;
    		}
    
    		anon_vma_lock(anon_vma);
    		/* page_table_lock to protect against threads */
    		spin_lock(&mm->page_table_lock);
    		if (likely(!vma->anon_vma)) {
    			vma->anon_vma = anon_vma;
    			avc->anon_vma = anon_vma;
    			avc->vma = vma;
    			list_add(&avc->same_vma, &vma->anon_vma_chain);
    			list_add_tail(&avc->same_anon_vma, &anon_vma->head);
    			allocated = NULL;
    			avc = NULL;
    		}
    		spin_unlock(&mm->page_table_lock);
    		anon_vma_unlock(anon_vma);
    
    		if (unlikely(allocated))
    			anon_vma_free(allocated);
    		if (unlikely(avc))
    			anon_vma_chain_free(avc);
    	}
    	return 0;
    
     out_enomem_free_avc:
    	anon_vma_chain_free(avc);
     out_enomem:
    	return -ENOMEM;
    }
    
    static void anon_vma_chain_link(struct vm_area_struct *vma,
    				struct anon_vma_chain *avc,
    				struct anon_vma *anon_vma)
    {
    	avc->vma = vma;
    	avc->anon_vma = anon_vma;
    	list_add(&avc->same_vma, &vma->anon_vma_chain);
    
    	anon_vma_lock(anon_vma);
    	list_add_tail(&avc->same_anon_vma, &anon_vma->head);
    	anon_vma_unlock(anon_vma);
    }
    
    /*
     * Attach the anon_vmas from src to dst.
     * Returns 0 on success, -ENOMEM on failure.
     */
    int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
    {
    	struct anon_vma_chain *avc, *pavc;
    
    	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
    		avc = anon_vma_chain_alloc();
    		if (!avc)
    			goto enomem_failure;
    		anon_vma_chain_link(dst, avc, pavc->anon_vma);
    	}
    	return 0;
    
     enomem_failure:
    	unlink_anon_vmas(dst);
    	return -ENOMEM;
    }
    
    /*
     * Attach vma to its own anon_vma, as well as to the anon_vmas that
     * the corresponding VMA in the parent process is attached to.
     * Returns 0 on success, non-zero on failure.
     */
    int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
    {
    	struct anon_vma_chain *avc;
    	struct anon_vma *anon_vma;
    
    	/* Don't bother if the parent process has no anon_vma here. */
    	if (!pvma->anon_vma)
    		return 0;
    
    	/*
    	 * First, attach the new VMA to the parent VMA's anon_vmas,
    	 * so rmap can find non-COWed pages in child processes.
    	 */
    	if (anon_vma_clone(vma, pvma))
    		return -ENOMEM;
    
    	/* Then add our own anon_vma. */
    	anon_vma = anon_vma_alloc();
    	if (!anon_vma)
    		goto out_error;
    	avc = anon_vma_chain_alloc();
    	if (!avc)
    		goto out_error_free_anon_vma;
    
    	/*
    	 * The root anon_vma's spinlock is the lock actually used when we
    	 * lock any of the anon_vmas in this anon_vma tree.
    	 */
    	anon_vma->root = pvma->anon_vma->root;
    	/*
    	 * With KSM refcounts, an anon_vma can stay around longer than the
    	 * process it belongs to.  The root anon_vma needs to be pinned
    	 * until this anon_vma is freed, because the lock lives in the root.
    	 */
    	get_anon_vma(anon_vma->root);
    	/* Mark this anon_vma as the one where our new (COWed) pages go. */
    	vma->anon_vma = anon_vma;
    	anon_vma_chain_link(vma, avc, anon_vma);
    
    	return 0;
    
     out_error_free_anon_vma:
    	anon_vma_free(anon_vma);
     out_error:
    	unlink_anon_vmas(vma);
    	return -ENOMEM;
    }
    
    static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
    {
    	struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
    	int empty;
    
    	/* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
    	if (!anon_vma)
    		return;
    
    	anon_vma_lock(anon_vma);
    	list_del(&anon_vma_chain->same_anon_vma);
    
    	/* We must garbage collect the anon_vma if it's empty */
    	empty = list_empty(&anon_vma->head) && !anonvma_external_refcount(anon_vma);
    	anon_vma_unlock(anon_vma);
    
    	if (empty) {
    		/* We no longer need the root anon_vma */
    		if (anon_vma->root != anon_vma)
    			drop_anon_vma(anon_vma->root);
    		anon_vma_free(anon_vma);
    	}
    }
    
    void unlink_anon_vmas(struct vm_area_struct *vma)
    {
    	struct anon_vma_chain *avc, *next;
    
    	/*
    	 * Unlink each anon_vma chained to the VMA.  This list is ordered
    	 * from newest to oldest, ensuring the root anon_vma gets freed last.
    	 */
    	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
    		anon_vma_unlink(avc);
    		list_del(&avc->same_vma);
    		anon_vma_chain_free(avc);
    	}
    }
    
    static void anon_vma_ctor(void *data)
    {
    	struct anon_vma *anon_vma = data;
    
    	spin_lock_init(&anon_vma->lock);
    	anonvma_external_refcount_init(anon_vma);
    	INIT_LIST_HEAD(&anon_vma->head);
    }
    
    void __init anon_vma_init(void)
    {
    	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
    			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
    	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
    }
    
    /*
     * Getting a lock on a stable anon_vma from a page off the LRU is
     * tricky: page_lock_anon_vma rely on RCU to guard against the races.
     */
    struct anon_vma *page_lock_anon_vma(struct page *page)
    {
    	struct anon_vma *anon_vma;
    	unsigned long anon_mapping;
    
    	rcu_read_lock();
    	anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
    	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
    		goto out;
    	if (!page_mapped(page))
    		goto out;
    
    	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
    	anon_vma_lock(anon_vma);
    	return anon_vma;
    out:
    	rcu_read_unlock();
    	return NULL;
    }
    
    void page_unlock_anon_vma(struct anon_vma *anon_vma)
    {
    	anon_vma_unlock(anon_vma);
    	rcu_read_unlock();
    }
    
    /*
     * At what user virtual address is page expected in @vma?
     * Returns virtual address or -EFAULT if page's index/offset is not
     * within the range mapped the @vma.
     */
    static inline unsigned long
    vma_address(struct page *page, struct vm_area_struct *vma)
    {
    	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
    	unsigned long address;
    
    	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
    	if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
    		/* page should be within @vma mapping range */
    		return -EFAULT;
    	}
    	return address;
    }
    
    /*
     * At what user virtual address is page expected in vma?
     * Caller should check the page is actually part of the vma.
     */
    unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
    {
    	if (PageAnon(page)) {
    		if (vma->anon_vma->root != page_anon_vma(page)->root)
    			return -EFAULT;
    	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
    		if (!vma->vm_file ||
    		    vma->vm_file->f_mapping != page->mapping)
    			return -EFAULT;
    	} else
    		return -EFAULT;
    	return vma_address(page, vma);
    }
    
    /*
     * Check that @page is mapped at @address into @mm.
     *
     * If @sync is false, page_check_address may perform a racy check to avoid
     * the page table lock when the pte is not present (helpful when reclaiming
     * highly shared pages).
     *
     * On success returns with pte mapped and locked.
     */
    pte_t *page_check_address(struct page *page, struct mm_struct *mm,
    			  unsigned long address, spinlock_t **ptlp, int sync)
    {
    	pgd_t *pgd;
    	pud_t *pud;
    	pmd_t *pmd;
    	pte_t *pte;
    	spinlock_t *ptl;
    
    	pgd = pgd_offset(mm, address);
    	if (!pgd_present(*pgd))
    		return NULL;
    
    	pud = pud_offset(pgd, address);
    	if (!pud_present(*pud))
    		return NULL;
    
    	pmd = pmd_offset(pud, address);
    	if (!pmd_present(*pmd))
    		return NULL;
    
    	pte = pte_offset_map(pmd, address);
    	/* Make a quick check before getting the lock */
    	if (!sync && !pte_present(*pte)) {
    		pte_unmap(pte);
    		return NULL;
    	}
    
    	ptl = pte_lockptr(mm, pmd);
    	spin_lock(ptl);
    	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
    		*ptlp = ptl;
    		return pte;
    	}
    	pte_unmap_unlock(pte, ptl);
    	return NULL;
    }
    
    /**
     * page_mapped_in_vma - check whether a page is really mapped in a VMA
     * @page: the page to test
     * @vma: the VMA to test
     *
     * Returns 1 if the page is mapped into the page tables of the VMA, 0
     * if the page is not mapped into the page tables of this VMA.  Only
     * valid for normal file or anonymous VMAs.
     */
    int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
    {
    	unsigned long address;
    	pte_t *pte;
    	spinlock_t *ptl;
    
    	address = vma_address(page, vma);
    	if (address == -EFAULT)		/* out of vma range */
    		return 0;
    	pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
    	if (!pte)			/* the page is not in this mm */
    		return 0;
    	pte_unmap_unlock(pte, ptl);
    
    	return 1;
    }
    
    /*
     * Subfunctions of page_referenced: page_referenced_one called
     * repeatedly from either page_referenced_anon or page_referenced_file.
     */
    int page_referenced_one(struct page *page, struct vm_area_struct *vma,
    			unsigned long address, unsigned int *mapcount,
    			unsigned long *vm_flags)
    {
    	struct mm_struct *mm = vma->vm_mm;
    	pte_t *pte;
    	spinlock_t *ptl;
    	int referenced = 0;
    
    	pte = page_check_address(page, mm, address, &ptl, 0);
    	if (!pte)
    		goto out;
    
    	/*
    	 * Don't want to elevate referenced for mlocked page that gets this far,
    	 * in order that it progresses to try_to_unmap and is moved to the
    	 * unevictable list.
    	 */
    	if (vma->vm_flags & VM_LOCKED) {
    		*mapcount = 1;	/* break early from loop */
    		*vm_flags |= VM_LOCKED;
    		goto out_unmap;
    	}
    
    	if (ptep_clear_flush_young_notify(vma, address, pte)) {
    		/*
    		 * Don't treat a reference through a sequentially read
    		 * mapping as such.  If the page has been used in
    		 * another mapping, we will catch it; if this other
    		 * mapping is already gone, the unmap path will have
    		 * set PG_referenced or activated the page.
    		 */
    		if (likely(!VM_SequentialReadHint(vma)))
    			referenced++;
    	}
    
    	/* Pretend the page is referenced if the task has the
    	   swap token and is in the middle of a page fault. */
    	if (mm != current->mm && has_swap_token(mm) &&
    			rwsem_is_locked(&mm->mmap_sem))
    		referenced++;
    
    out_unmap:
    	(*mapcount)--;
    	pte_unmap_unlock(pte, ptl);
    
    	if (referenced)
    		*vm_flags |= vma->vm_flags;
    out:
    	return referenced;
    }
    
    static int page_referenced_anon(struct page *page,
    				struct mem_cgroup *mem_cont,
    				unsigned long *vm_flags)
    {
    	unsigned int mapcount;
    	struct anon_vma *anon_vma;
    	struct anon_vma_chain *avc;
    	int referenced = 0;
    
    	anon_vma = page_lock_anon_vma(page);
    	if (!anon_vma)
    		return referenced;
    
    	mapcount = page_mapcount(page);
    	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
    		struct vm_area_struct *vma = avc->vma;
    		unsigned long address = vma_address(page, vma);
    		if (address == -EFAULT)
    			continue;
    		/*
    		 * If we are reclaiming on behalf of a cgroup, skip
    		 * counting on behalf of references from different
    		 * cgroups
    		 */
    		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
    			continue;
    		referenced += page_referenced_one(page, vma, address,
    						  &mapcount, vm_flags);
    		if (!mapcount)
    			break;
    	}
    
    	page_unlock_anon_vma(anon_vma);
    	return referenced;
    }
    
    /**
     * page_referenced_file - referenced check for object-based rmap
     * @page: the page we're checking references on.
     * @mem_cont: target memory controller
     * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
     *
     * For an object-based mapped page, find all the places it is mapped and
     * check/clear the referenced flag.  This is done by following the page->mapping
     * pointer, then walking the chain of vmas it holds.  It returns the number
     * of references it found.
     *
     * This function is only called from page_referenced for object-based pages.
     */
    static int page_referenced_file(struct page *page,
    				struct mem_cgroup *mem_cont,
    				unsigned long *vm_flags)
    {
    	unsigned int mapcount;
    	struct address_space *mapping = page->mapping;
    	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
    	struct vm_area_struct *vma;
    	struct prio_tree_iter iter;
    	int referenced = 0;
    
    	/*
    	 * The caller's checks on page->mapping and !PageAnon have made
    	 * sure that this is a file page: the check for page->mapping
    	 * excludes the case just before it gets set on an anon page.
    	 */
    	BUG_ON(PageAnon(page));
    
    	/*
    	 * The page lock not only makes sure that page->mapping cannot
    	 * suddenly be NULLified by truncation, it makes sure that the
    	 * structure at mapping cannot be freed and reused yet,
    	 * so we can safely take mapping->i_mmap_lock.
    	 */
    	BUG_ON(!PageLocked(page));
    
    	spin_lock(&mapping->i_mmap_lock);
    
    	/*
    	 * i_mmap_lock does not stabilize mapcount at all, but mapcount
    	 * is more likely to be accurate if we note it after spinning.
    	 */
    	mapcount = page_mapcount(page);
    
    	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
    		unsigned long address = vma_address(page, vma);
    		if (address == -EFAULT)
    			continue;
    		/*
    		 * If we are reclaiming on behalf of a cgroup, skip
    		 * counting on behalf of references from different
    		 * cgroups
    		 */
    		if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
    			continue;
    		referenced += page_referenced_one(page, vma, address,
    						  &mapcount, vm_flags);
    		if (!mapcount)
    			break;
    	}
    
    	spin_unlock(&mapping->i_mmap_lock);
    	return referenced;
    }
    
    /**
     * page_referenced - test if the page was referenced
     * @page: the page to test
     * @is_locked: caller holds lock on the page
     * @mem_cont: target memory controller
     * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
     *
     * Quick test_and_clear_referenced for all mappings to a page,
     * returns the number of ptes which referenced the page.
     */
    int page_referenced(struct page *page,
    		    int is_locked,
    		    struct mem_cgroup *mem_cont,
    		    unsigned long *vm_flags)
    {
    	int referenced = 0;
    	int we_locked = 0;
    
    	*vm_flags = 0;
    	if (page_mapped(page) && page_rmapping(page)) {
    		if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
    			we_locked = trylock_page(page);
    			if (!we_locked) {
    				referenced++;
    				goto out;
    			}
    		}
    		if (unlikely(PageKsm(page)))
    			referenced += page_referenced_ksm(page, mem_cont,
    								vm_flags);
    		else if (PageAnon(page))
    			referenced += page_referenced_anon(page, mem_cont,
    								vm_flags);
    		else if (page->mapping)
    			referenced += page_referenced_file(page, mem_cont,
    								vm_flags);
    		if (we_locked)
    			unlock_page(page);
    	}
    out:
    	if (page_test_and_clear_young(page))
    		referenced++;
    
    	return referenced;
    }
    
    static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
    			    unsigned long address)
    {
    	struct mm_struct *mm = vma->vm_mm;
    	pte_t *pte;
    	spinlock_t *ptl;
    	int ret = 0;
    
    	pte = page_check_address(page, mm, address, &ptl, 1);
    	if (!pte)
    		goto out;
    
    	if (pte_dirty(*pte) || pte_write(*pte)) {
    		pte_t entry;
    
    		flush_cache_page(vma, address, pte_pfn(*pte));
    		entry = ptep_clear_flush_notify(vma, address, pte);
    		entry = pte_wrprotect(entry);
    		entry = pte_mkclean(entry);
    		set_pte_at(mm, address, pte, entry);
    		ret = 1;
    	}
    
    	pte_unmap_unlock(pte, ptl);
    out:
    	return ret;
    }
    
    static int page_mkclean_file(struct address_space *mapping, struct page *page)
    {
    	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
    	struct vm_area_struct *vma;
    	struct prio_tree_iter iter;
    	int ret = 0;
    
    	BUG_ON(PageAnon(page));
    
    	spin_lock(&mapping->i_mmap_lock);
    	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
    		if (vma->vm_flags & VM_SHARED) {
    			unsigned long address = vma_address(page, vma);
    			if (address == -EFAULT)
    				continue;
    			ret += page_mkclean_one(page, vma, address);
    		}
    	}
    	spin_unlock(&mapping->i_mmap_lock);
    	return ret;
    }
    
    int page_mkclean(struct page *page)
    {
    	int ret = 0;
    
    	BUG_ON(!PageLocked(page));
    
    	if (page_mapped(page)) {
    		struct address_space *mapping = page_mapping(page);
    		if (mapping) {
    			ret = page_mkclean_file(mapping, page);
    			if (page_test_dirty(page)) {
    				page_clear_dirty(page);
    				ret = 1;
    			}
    		}
    	}
    
    	return ret;
    }
    EXPORT_SYMBOL_GPL(page_mkclean);
    
    /**
     * page_move_anon_rmap - move a page to our anon_vma
     * @page:	the page to move to our anon_vma
     * @vma:	the vma the page belongs to
     * @address:	the user virtual address mapped
     *
     * When a page belongs exclusively to one process after a COW event,
     * that page can be moved into the anon_vma that belongs to just that
     * process, so the rmap code will not search the parent or sibling
     * processes.
     */
    void page_move_anon_rmap(struct page *page,
    	struct vm_area_struct *vma, unsigned long address)
    {
    	struct anon_vma *anon_vma = vma->anon_vma;
    
    	VM_BUG_ON(!PageLocked(page));
    	VM_BUG_ON(!anon_vma);
    	VM_BUG_ON(page->index != linear_page_index(vma, address));
    
    	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
    	page->mapping = (struct address_space *) anon_vma;
    }
    
    /**
     * __page_set_anon_rmap - setup new anonymous rmap
     * @page:	the page to add the mapping to
     * @vma:	the vm area in which the mapping is added
     * @address:	the user virtual address mapped
     * @exclusive:	the page is exclusively owned by the current process
     */
    static void __page_set_anon_rmap(struct page *page,
    	struct vm_area_struct *vma, unsigned long address, int exclusive)
    {
    	struct anon_vma *anon_vma = vma->anon_vma;
    
    	BUG_ON(!anon_vma);
    
    	/*
    	 * If the page isn't exclusively mapped into this vma,
    	 * we must use the _oldest_ possible anon_vma for the
    	 * page mapping!
    	 */
    	if (!exclusive) {
    		if (PageAnon(page))
    			return;
    		anon_vma = anon_vma->root;
    	} else {
    		/*
    		 * In this case, swapped-out-but-not-discarded swap-cache
    		 * is remapped. So, no need to update page->mapping here.
    		 * We convice anon_vma poitned by page->mapping is not obsolete
    		 * because vma->anon_vma is necessary to be a family of it.
    		 */
    		if (PageAnon(page))
    			return;
    	}
    
    	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
    	page->mapping = (struct address_space *) anon_vma;
    	page->index = linear_page_index(vma, address);
    }
    
    /**
     * __page_check_anon_rmap - sanity check anonymous rmap addition
     * @page:	the page to add the mapping to
     * @vma:	the vm area in which the mapping is added
     * @address:	the user virtual address mapped
     */
    static void __page_check_anon_rmap(struct page *page,
    	struct vm_area_struct *vma, unsigned long address)
    {
    #ifdef CONFIG_DEBUG_VM
    	/*
    	 * The page's anon-rmap details (mapping and index) are guaranteed to
    	 * be set up correctly at this point.
    	 *
    	 * We have exclusion against page_add_anon_rmap because the caller
    	 * always holds the page locked, except if called from page_dup_rmap,
    	 * in which case the page is already known to be setup.
    	 *
    	 * We have exclusion against page_add_new_anon_rmap because those pages
    	 * are initially only visible via the pagetables, and the pte is locked
    	 * over the call to page_add_new_anon_rmap.
    	 */
    	BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
    	BUG_ON(page->index != linear_page_index(vma, address));
    #endif
    }
    
    /**
     * page_add_anon_rmap - add pte mapping to an anonymous page
     * @page:	the page to add the mapping to
     * @vma:	the vm area in which the mapping is added
     * @address:	the user virtual address mapped
     *
     * The caller needs to hold the pte lock, and the page must be locked in
     * the anon_vma case: to serialize mapping,index checking after setting,
     * and to ensure that PageAnon is not being upgraded racily to PageKsm
     * (but PageKsm is never downgraded to PageAnon).
     */
    void page_add_anon_rmap(struct page *page,
    	struct vm_area_struct *vma, unsigned long address)
    {
    	int first = atomic_inc_and_test(&page->_mapcount);
    	if (first)
    		__inc_zone_page_state(page, NR_ANON_PAGES);
    	if (unlikely(PageKsm(page)))
    		return;
    
    	VM_BUG_ON(!PageLocked(page));
    	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
    	if (first)
    		__page_set_anon_rmap(page, vma, address, 0);
    	else
    		__page_check_anon_rmap(page, vma, address);
    }
    
    /**
     * page_add_new_anon_rmap - add pte mapping to a new anonymous page
     * @page:	the page to add the mapping to
     * @vma:	the vm area in which the mapping is added
     * @address:	the user virtual address mapped
     *
     * Same as page_add_anon_rmap but must only be called on *new* pages.
     * This means the inc-and-test can be bypassed.
     * Page does not have to be locked.
     */
    void page_add_new_anon_rmap(struct page *page,
    	struct vm_area_struct *vma, unsigned long address)
    {
    	VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
    	SetPageSwapBacked(page);
    	atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
    	__inc_zone_page_state(page, NR_ANON_PAGES);
    	__page_set_anon_rmap(page, vma, address, 1);
    	if (page_evictable(page, vma))
    		lru_cache_add_lru(page, LRU_ACTIVE_ANON);
    	else
    		add_page_to_unevictable_list(page);
    }
    
    /**
     * page_add_file_rmap - add pte mapping to a file page
     * @page: the page to add the mapping to
     *
     * The caller needs to hold the pte lock.
     */
    void page_add_file_rmap(struct page *page)
    {
    	if (atomic_inc_and_test(&page->_mapcount)) {
    		__inc_zone_page_state(page, NR_FILE_MAPPED);
    		mem_cgroup_update_file_mapped(page, 1);
    	}
    }
    
    /**
     * page_remove_rmap - take down pte mapping from a page
     * @page: page to remove mapping from
     *
     * The caller needs to hold the pte lock.
     */
    void page_remove_rmap(struct page *page)
    {
    	/* page still mapped by someone else? */
    	if (!atomic_add_negative(-1, &page->_mapcount))
    		return;
    
    	/*
    	 * Now that the last pte has gone, s390 must transfer dirty
    	 * flag from storage key to struct page.  We can usually skip
    	 * this if the page is anon, so about to be freed; but perhaps
    	 * not if it's in swapcache - there might be another pte slot
    	 * containing the swap entry, but page not yet written to swap.
    	 */
    	if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) {
    		page_clear_dirty(page);
    		set_page_dirty(page);
    	}
    	if (PageAnon(page)) {
    		mem_cgroup_uncharge_page(page);
    		__dec_zone_page_state(page, NR_ANON_PAGES);
    	} else {
    		__dec_zone_page_state(page, NR_FILE_MAPPED);
    		mem_cgroup_update_file_mapped(page, -1);
    	}
    	/*
    	 * It would be tidy to reset the PageAnon mapping here,
    	 * but that might overwrite a racing page_add_anon_rmap
    	 * which increments mapcount after us but sets mapping
    	 * before us: so leave the reset to free_hot_cold_page,
    	 * and remember that it's only reliable while mapped.
    	 * Leaving it set also helps swapoff to reinstate ptes
    	 * faster for those pages still in swapcache.
    	 */
    }
    
    /*
     * Subfunctions of try_to_unmap: try_to_unmap_one called
     * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
     */
    int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
    		     unsigned long address, enum ttu_flags flags)
    {
    	struct mm_struct *mm = vma->vm_mm;
    	pte_t *pte;
    	pte_t pteval;
    	spinlock_t *ptl;
    	int ret = SWAP_AGAIN;
    
    	pte = page_check_address(page, mm, address, &ptl, 0);
    	if (!pte)
    		goto out;
    
    	/*
    	 * If the page is mlock()d, we cannot swap it out.
    	 * If it's recently referenced (perhaps page_referenced
    	 * skipped over this mm) then we should reactivate it.
    	 */
    	if (!(flags & TTU_IGNORE_MLOCK)) {
    		if (vma->vm_flags & VM_LOCKED)
    			goto out_mlock;
    
    		if (TTU_ACTION(flags) == TTU_MUNLOCK)
    			goto out_unmap;
    	}
    	if (!(flags & TTU_IGNORE_ACCESS)) {
    		if (ptep_clear_flush_young_notify(vma, address, pte)) {
    			ret = SWAP_FAIL;
    			goto out_unmap;
    		}
      	}
    
    	/* Nuke the page table entry. */
    	flush_cache_page(vma, address, page_to_pfn(page));
    	pteval = ptep_clear_flush_notify(vma, address, pte);
    
    	/* Move the dirty bit to the physical page now the pte is gone. */
    	if (pte_dirty(pteval))
    		set_page_dirty(page);
    
    	/* Update high watermark before we lower rss */
    	update_hiwater_rss(mm);
    
    	if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
    		if (PageAnon(page))
    			dec_mm_counter(mm, MM_ANONPAGES);
    		else
    			dec_mm_counter(mm, MM_FILEPAGES);
    		set_pte_at(mm, address, pte,
    				swp_entry_to_pte(make_hwpoison_entry(page)));
    	} else if (PageAnon(page)) {
    		swp_entry_t entry = { .val = page_private(page) };
    
    		if (PageSwapCache(page)) {
    			/*
    			 * Store the swap location in the pte.
    			 * See handle_pte_fault() ...
    			 */
    			if (swap_duplicate(entry) < 0) {
    				set_pte_at(mm, address, pte, pteval);
    				ret = SWAP_FAIL;
    				goto out_unmap;
    			}
    			if (list_empty(&mm->mmlist)) {
    				spin_lock(&mmlist_lock);
    				if (list_empty(&mm->mmlist))
    					list_add(&mm->mmlist, &init_mm.mmlist);
    				spin_unlock(&mmlist_lock);
    			}
    			dec_mm_counter(mm, MM_ANONPAGES);
    			inc_mm_counter(mm, MM_SWAPENTS);
    		} else if (PAGE_MIGRATION) {
    			/*
    			 * Store the pfn of the page in a special migration
    			 * pte. do_swap_page() will wait until the migration
    			 * pte is removed and then restart fault handling.
    			 */
    			BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
    			entry = make_migration_entry(page, pte_write(pteval));
    		}
    		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
    		BUG_ON(pte_file(*pte));
    	} else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
    		/* Establish migration entry for a file page */
    		swp_entry_t entry;
    		entry = make_migration_entry(page, pte_write(pteval));
    		set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
    	} else
    		dec_mm_counter(mm, MM_FILEPAGES);
    
    	page_remove_rmap(page);
    	page_cache_release(page);
    
    out_unmap:
    	pte_unmap_unlock(pte, ptl);
    out:
    	return ret;
    
    out_mlock:
    	pte_unmap_unlock(pte, ptl);
    
    
    	/*
    	 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
    	 * unstable result and race. Plus, We can't wait here because
    	 * we now hold anon_vma->lock or mapping->i_mmap_lock.
    	 * if trylock failed, the page remain in evictable lru and later
    	 * vmscan could retry to move the page to unevictable lru if the
    	 * page is actually mlocked.
    	 */
    	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
    		if (vma->vm_flags & VM_LOCKED) {
    			mlock_vma_page(page);
    			ret = SWAP_MLOCK;
    		}
    		up_read(&vma->vm_mm->mmap_sem);
    	}
    	return ret;
    }
    
    /*
     * objrmap doesn't work for nonlinear VMAs because the assumption that
     * offset-into-file correlates with offset-into-virtual-addresses does not hold.
     * Consequently, given a particular page and its ->index, we cannot locate the
     * ptes which are mapping that page without an exhaustive linear search.
     *
     * So what this code does is a mini "virtual scan" of each nonlinear VMA which
     * maps the file to which the target page belongs.  The ->vm_private_data field
     * holds the current cursor into that scan.  Successive searches will circulate
     * around the vma's virtual address space.
     *
     * So as more replacement pressure is applied to the pages in a nonlinear VMA,
     * more scanning pressure is placed against them as well.   Eventually pages
     * will become fully unmapped and are eligible for eviction.
     *
     * For very sparsely populated VMAs this is a little inefficient - chances are
     * there there won't be many ptes located within the scan cluster.  In this case
     * maybe we could scan further - to the end of the pte page, perhaps.
     *
     * Mlocked pages:  check VM_LOCKED under mmap_sem held for read, if we can
     * acquire it without blocking.  If vma locked, mlock the pages in the cluster,
     * rather than unmapping them.  If we encounter the "check_page" that vmscan is
     * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
     */
    #define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE)
    #define CLUSTER_MASK	(~(CLUSTER_SIZE - 1))
    
    static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
    		struct vm_area_struct *vma, struct page *check_page)
    {
    	struct mm_struct *mm = vma->vm_mm;
    	pgd_t *pgd;
    	pud_t *pud;
    	pmd_t *pmd;
    	pte_t *pte;
    	pte_t pteval;
    	spinlock_t *ptl;
    	struct page *page;
    	unsigned long address;
    	unsigned long end;
    	int ret = SWAP_AGAIN;
    	int locked_vma = 0;
    
    	address = (vma->vm_start + cursor) & CLUSTER_MASK;
    	end = address + CLUSTER_SIZE;
    	if (address < vma->vm_start)
    		address = vma->vm_start;
    	if (end > vma->vm_end)
    		end = vma->vm_end;
    
    	pgd = pgd_offset(mm, address);
    	if (!pgd_present(*pgd))
    		return ret;
    
    	pud = pud_offset(pgd, address);
    	if (!pud_present(*pud))
    		return ret;
    
    	pmd = pmd_offset(pud, address);
    	if (!pmd_present(*pmd))
    		return ret;
    
    	/*
    	 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
    	 * keep the sem while scanning the cluster for mlocking pages.
    	 */
    	if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
    		locked_vma = (vma->vm_flags & VM_LOCKED);
    		if (!locked_vma)
    			up_read(&vma->vm_mm->mmap_sem); /* don't need it */
    	}
    
    	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
    
    	/* Update high watermark before we lower rss */
    	update_hiwater_rss(mm);
    
    	for (; address < end; pte++, address += PAGE_SIZE) {
    		if (!pte_present(*pte))
    			continue;
    		page = vm_normal_page(vma, address, *pte);
    		BUG_ON(!page || PageAnon(page));
    
    		if (locked_vma) {
    			mlock_vma_page(page);   /* no-op if already mlocked */
    			if (page == check_page)
    				ret = SWAP_MLOCK;
    			continue;	/* don't unmap */
    		}
    
    		if (ptep_clear_flush_young_notify(vma, address, pte))
    			continue;
    
    		/* Nuke the page table entry. */
    		flush_cache_page(vma, address, pte_pfn(*pte));
    		pteval = ptep_clear_flush_notify(vma, address, pte);
    
    		/* If nonlinear, store the file page offset in the pte. */
    		if (page->index != linear_page_index(vma, address))
    			set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
    
    		/* Move the dirty bit to the physical page now the pte is gone. */
    		if (pte_dirty(pteval))
    			set_page_dirty(page);
    
    		page_remove_rmap(page);
    		page_cache_release(page);
    		dec_mm_counter(mm, MM_FILEPAGES);
    		(*mapcount)--;
    	}
    	pte_unmap_unlock(pte - 1, ptl);
    	if (locked_vma)
    		up_read(&vma->vm_mm->mmap_sem);
    	return ret;
    }
    
    static bool is_vma_temporary_stack(struct vm_area_struct *vma)
    {
    	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
    
    	if (!maybe_stack)
    		return false;
    
    	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
    						VM_STACK_INCOMPLETE_SETUP)
    		return true;
    
    	return false;
    }
    
    /**
     * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
     * rmap method
     * @page: the page to unmap/unlock
     * @flags: action and flags
     *
     * Find all the mappings of a page using the mapping pointer and the vma chains
     * contained in the anon_vma struct it points to.
     *
     * This function is only called from try_to_unmap/try_to_munlock for
     * anonymous pages.
     * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
     * where the page was found will be held for write.  So, we won't recheck
     * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
     * 'LOCKED.
     */
    static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
    {
    	struct anon_vma *anon_vma;
    	struct anon_vma_chain *avc;
    	int ret = SWAP_AGAIN;
    
    	anon_vma = page_lock_anon_vma(page);
    	if (!anon_vma)
    		return ret;
    
    	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
    		struct vm_area_struct *vma = avc->vma;
    		unsigned long address;
    
    		/*
    		 * During exec, a temporary VMA is setup and later moved.
    		 * The VMA is moved under the anon_vma lock but not the
    		 * page tables leading to a race where migration cannot
    		 * find the migration ptes. Rather than increasing the
    		 * locking requirements of exec(), migration skips
    		 * temporary VMAs until after exec() completes.
    		 */
    		if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
    				is_vma_temporary_stack(vma))
    			continue;
    
    		address = vma_address(page, vma);
    		if (address == -EFAULT)
    			continue;
    		ret = try_to_unmap_one(page, vma, address, flags);
    		if (ret != SWAP_AGAIN || !page_mapped(page))
    			break;
    	}
    
    	page_unlock_anon_vma(anon_vma);
    	return ret;
    }
    
    /**
     * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
     * @page: the page to unmap/unlock
     * @flags: action and flags
     *
     * Find all the mappings of a page using the mapping pointer and the vma chains
     * contained in the address_space struct it points to.
     *
     * This function is only called from try_to_unmap/try_to_munlock for
     * object-based pages.
     * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
     * where the page was found will be held for write.  So, we won't recheck
     * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
     * 'LOCKED.
     */
    static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
    {
    	struct address_space *mapping = page->mapping;
    	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
    	struct vm_area_struct *vma;
    	struct prio_tree_iter iter;
    	int ret = SWAP_AGAIN;
    	unsigned long cursor;
    	unsigned long max_nl_cursor = 0;
    	unsigned long max_nl_size = 0;
    	unsigned int mapcount;
    
    	spin_lock(&mapping->i_mmap_lock);
    	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
    		unsigned long address = vma_address(page, vma);
    		if (address == -EFAULT)
    			continue;
    		ret = try_to_unmap_one(page, vma, address, flags);
    		if (ret != SWAP_AGAIN || !page_mapped(page))
    			goto out;
    	}
    
    	if (list_empty(&mapping->i_mmap_nonlinear))
    		goto out;
    
    	/*
    	 * We don't bother to try to find the munlocked page in nonlinears.
    	 * It's costly. Instead, later, page reclaim logic may call
    	 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
    	 */
    	if (TTU_ACTION(flags) == TTU_MUNLOCK)
    		goto out;
    
    	list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
    						shared.vm_set.list) {
    		cursor = (unsigned long) vma->vm_private_data;
    		if (cursor > max_nl_cursor)
    			max_nl_cursor = cursor;
    		cursor = vma->vm_end - vma->vm_start;
    		if (cursor > max_nl_size)
    			max_nl_size = cursor;
    	}
    
    	if (max_nl_size == 0) {	/* all nonlinears locked or reserved ? */
    		ret = SWAP_FAIL;
    		goto out;
    	}
    
    	/*
    	 * We don't try to search for this page in the nonlinear vmas,
    	 * and page_referenced wouldn't have found it anyway.  Instead
    	 * just walk the nonlinear vmas trying to age and unmap some.
    	 * The mapcount of the page we came in with is irrelevant,
    	 * but even so use it as a guide to how hard we should try?
    	 */
    	mapcount = page_mapcount(page);
    	if (!mapcount)
    		goto out;
    	cond_resched_lock(&mapping->i_mmap_lock);
    
    	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
    	if (max_nl_cursor == 0)
    		max_nl_cursor = CLUSTER_SIZE;
    
    	do {
    		list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
    						shared.vm_set.list) {
    			cursor = (unsigned long) vma->vm_private_data;
    			while ( cursor < max_nl_cursor &&
    				cursor < vma->vm_end - vma->vm_start) {
    				if (try_to_unmap_cluster(cursor, &mapcount,
    						vma, page) == SWAP_MLOCK)
    					ret = SWAP_MLOCK;
    				cursor += CLUSTER_SIZE;
    				vma->vm_private_data = (void *) cursor;
    				if ((int)mapcount <= 0)
    					goto out;
    			}
    			vma->vm_private_data = (void *) max_nl_cursor;
    		}
    		cond_resched_lock(&mapping->i_mmap_lock);
    		max_nl_cursor += CLUSTER_SIZE;
    	} while (max_nl_cursor <= max_nl_size);
    
    	/*
    	 * Don't loop forever (perhaps all the remaining pages are
    	 * in locked vmas).  Reset cursor on all unreserved nonlinear
    	 * vmas, now forgetting on which ones it had fallen behind.
    	 */
    	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
    		vma->vm_private_data = NULL;
    out:
    	spin_unlock(&mapping->i_mmap_lock);
    	return ret;
    }
    
    /**
     * try_to_unmap - try to remove all page table mappings to a page
     * @page: the page to get unmapped
     * @flags: action and flags
     *
     * Tries to remove all the page table entries which are mapping this
     * page, used in the pageout path.  Caller must hold the page lock.
     * Return values are:
     *
     * SWAP_SUCCESS	- we succeeded in removing all mappings
     * SWAP_AGAIN	- we missed a mapping, try again later
     * SWAP_FAIL	- the page is unswappable
     * SWAP_MLOCK	- page is mlocked.
     */
    int try_to_unmap(struct page *page, enum ttu_flags flags)
    {
    	int ret;
    
    	BUG_ON(!PageLocked(page));
    
    	if (unlikely(PageKsm(page)))
    		ret = try_to_unmap_ksm(page, flags);
    	else if (PageAnon(page))
    		ret = try_to_unmap_anon(page, flags);
    	else
    		ret = try_to_unmap_file(page, flags);
    	if (ret != SWAP_MLOCK && !page_mapped(page))
    		ret = SWAP_SUCCESS;
    	return ret;
    }
    
    /**
     * try_to_munlock - try to munlock a page
     * @page: the page to be munlocked
     *
     * Called from munlock code.  Checks all of the VMAs mapping the page
     * to make sure nobody else has this page mlocked. The page will be
     * returned with PG_mlocked cleared if no other vmas have it mlocked.
     *
     * Return values are:
     *
     * SWAP_AGAIN	- no vma is holding page mlocked, or,
     * SWAP_AGAIN	- page mapped in mlocked vma -- couldn't acquire mmap sem
     * SWAP_FAIL	- page cannot be located at present
     * SWAP_MLOCK	- page is now mlocked.
     */
    int try_to_munlock(struct page *page)
    {
    	VM_BUG_ON(!PageLocked(page) || PageLRU(page));
    
    	if (unlikely(PageKsm(page)))
    		return try_to_unmap_ksm(page, TTU_MUNLOCK);
    	else if (PageAnon(page))
    		return try_to_unmap_anon(page, TTU_MUNLOCK);
    	else
    		return try_to_unmap_file(page, TTU_MUNLOCK);
    }
    
    #if defined(CONFIG_KSM) || defined(CONFIG_MIGRATION)
    /*
     * Drop an anon_vma refcount, freeing the anon_vma and anon_vma->root
     * if necessary.  Be careful to do all the tests under the lock.  Once
     * we know we are the last user, nobody else can get a reference and we
     * can do the freeing without the lock.
     */
    void drop_anon_vma(struct anon_vma *anon_vma)
    {
    	BUG_ON(atomic_read(&anon_vma->external_refcount) <= 0);
    	if (atomic_dec_and_lock(&anon_vma->external_refcount, &anon_vma->root->lock)) {
    		struct anon_vma *root = anon_vma->root;
    		int empty = list_empty(&anon_vma->head);
    		int last_root_user = 0;
    		int root_empty = 0;
    
    		/*
    		 * The refcount on a non-root anon_vma got dropped.  Drop
    		 * the refcount on the root and check if we need to free it.
    		 */
    		if (empty && anon_vma != root) {
    			BUG_ON(atomic_read(&root->external_refcount) <= 0);
    			last_root_user = atomic_dec_and_test(&root->external_refcount);
    			root_empty = list_empty(&root->head);
    		}
    		anon_vma_unlock(anon_vma);
    
    		if (empty) {
    			anon_vma_free(anon_vma);
    			if (root_empty && last_root_user)
    				anon_vma_free(root);
    		}
    	}
    }
    #endif
    
    #ifdef CONFIG_MIGRATION
    /*
     * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
     * Called by migrate.c to remove migration ptes, but might be used more later.
     */
    static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
    		struct vm_area_struct *, unsigned long, void *), void *arg)
    {
    	struct anon_vma *anon_vma;
    	struct anon_vma_chain *avc;
    	int ret = SWAP_AGAIN;
    
    	/*
    	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
    	 * because that depends on page_mapped(); but not all its usages
    	 * are holding mmap_sem. Users without mmap_sem are required to
    	 * take a reference count to prevent the anon_vma disappearing
    	 */
    	anon_vma = page_anon_vma(page);
    	if (!anon_vma)
    		return ret;
    	anon_vma_lock(anon_vma);
    	list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
    		struct vm_area_struct *vma = avc->vma;
    		unsigned long address = vma_address(page, vma);
    		if (address == -EFAULT)
    			continue;
    		ret = rmap_one(page, vma, address, arg);
    		if (ret != SWAP_AGAIN)
    			break;
    	}
    	anon_vma_unlock(anon_vma);
    	return ret;
    }
    
    static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
    		struct vm_area_struct *, unsigned long, void *), void *arg)
    {
    	struct address_space *mapping = page->mapping;
    	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
    	struct vm_area_struct *vma;
    	struct prio_tree_iter iter;
    	int ret = SWAP_AGAIN;
    
    	if (!mapping)
    		return ret;
    	spin_lock(&mapping->i_mmap_lock);
    	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
    		unsigned long address = vma_address(page, vma);
    		if (address == -EFAULT)
    			continue;
    		ret = rmap_one(page, vma, address, arg);
    		if (ret != SWAP_AGAIN)
    			break;
    	}
    	/*
    	 * No nonlinear handling: being always shared, nonlinear vmas
    	 * never contain migration ptes.  Decide what to do about this
    	 * limitation to linear when we need rmap_walk() on nonlinear.
    	 */
    	spin_unlock(&mapping->i_mmap_lock);
    	return ret;
    }
    
    int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
    		struct vm_area_struct *, unsigned long, void *), void *arg)
    {
    	VM_BUG_ON(!PageLocked(page));
    
    	if (unlikely(PageKsm(page)))
    		return rmap_walk_ksm(page, rmap_one, arg);
    	else if (PageAnon(page))
    		return rmap_walk_anon(page, rmap_one, arg);
    	else
    		return rmap_walk_file(page, rmap_one, arg);
    }
    #endif /* CONFIG_MIGRATION */