Skip to content
Snippets Groups Projects
Select Git revision
  • 81b23589f4830b672ffbad7162fc838c6791d22a
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

ice_main.c

Blame
  • ice_main.c 98.67 KiB
    // SPDX-License-Identifier: GPL-2.0
    /* Copyright (c) 2018, Intel Corporation. */
    
    /* Intel(R) Ethernet Connection E800 Series Linux Driver */
    
    #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
    
    #include "ice.h"
    #include "ice_lib.h"
    
    #define DRV_VERSION	"0.7.1-k"
    #define DRV_SUMMARY	"Intel(R) Ethernet Connection E800 Series Linux Driver"
    const char ice_drv_ver[] = DRV_VERSION;
    static const char ice_driver_string[] = DRV_SUMMARY;
    static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
    
    MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
    MODULE_DESCRIPTION(DRV_SUMMARY);
    MODULE_LICENSE("GPL v2");
    MODULE_VERSION(DRV_VERSION);
    
    static int debug = -1;
    module_param(debug, int, 0644);
    #ifndef CONFIG_DYNAMIC_DEBUG
    MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
    #else
    MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
    #endif /* !CONFIG_DYNAMIC_DEBUG */
    
    static struct workqueue_struct *ice_wq;
    static const struct net_device_ops ice_netdev_ops;
    
    static void ice_pf_dis_all_vsi(struct ice_pf *pf);
    static void ice_rebuild(struct ice_pf *pf);
    
    static void ice_vsi_release_all(struct ice_pf *pf);
    static void ice_update_vsi_stats(struct ice_vsi *vsi);
    static void ice_update_pf_stats(struct ice_pf *pf);
    
    /**
     * ice_get_tx_pending - returns number of Tx descriptors not processed
     * @ring: the ring of descriptors
     */
    static u32 ice_get_tx_pending(struct ice_ring *ring)
    {
    	u32 head, tail;
    
    	head = ring->next_to_clean;
    	tail = readl(ring->tail);
    
    	if (head != tail)
    		return (head < tail) ?
    			tail - head : (tail + ring->count - head);
    	return 0;
    }
    
    /**
     * ice_check_for_hang_subtask - check for and recover hung queues
     * @pf: pointer to PF struct
     */
    static void ice_check_for_hang_subtask(struct ice_pf *pf)
    {
    	struct ice_vsi *vsi = NULL;
    	unsigned int i;
    	u32 v, v_idx;
    	int packets;
    
    	ice_for_each_vsi(pf, v)
    		if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
    			vsi = pf->vsi[v];
    			break;
    		}
    
    	if (!vsi || test_bit(__ICE_DOWN, vsi->state))
    		return;
    
    	if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
    		return;
    
    	for (i = 0; i < vsi->num_txq; i++) {
    		struct ice_ring *tx_ring = vsi->tx_rings[i];
    
    		if (tx_ring && tx_ring->desc) {
    			int itr = ICE_ITR_NONE;
    
    			/* If packet counter has not changed the queue is
    			 * likely stalled, so force an interrupt for this
    			 * queue.
    			 *
    			 * prev_pkt would be negative if there was no
    			 * pending work.
    			 */
    			packets = tx_ring->stats.pkts & INT_MAX;
    			if (tx_ring->tx_stats.prev_pkt == packets) {
    				/* Trigger sw interrupt to revive the queue */
    				v_idx = tx_ring->q_vector->v_idx;
    				wr32(&vsi->back->hw,
    				     GLINT_DYN_CTL(vsi->hw_base_vector + v_idx),
    				     (itr << GLINT_DYN_CTL_ITR_INDX_S) |
    				     GLINT_DYN_CTL_SWINT_TRIG_M |
    				     GLINT_DYN_CTL_INTENA_MSK_M);
    				continue;
    			}
    
    			/* Memory barrier between read of packet count and call
    			 * to ice_get_tx_pending()
    			 */
    			smp_rmb();
    			tx_ring->tx_stats.prev_pkt =
    			    ice_get_tx_pending(tx_ring) ? packets : -1;
    		}
    	}
    }
    
    /**
     * ice_add_mac_to_sync_list - creates list of mac addresses to be synced
     * @netdev: the net device on which the sync is happening
     * @addr: mac address to sync
     *
     * This is a callback function which is called by the in kernel device sync
     * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
     * populates the tmp_sync_list, which is later used by ice_add_mac to add the
     * mac filters from the hardware.
     */
    static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
    {
    	struct ice_netdev_priv *np = netdev_priv(netdev);
    	struct ice_vsi *vsi = np->vsi;
    
    	if (ice_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr))
    		return -EINVAL;
    
    	return 0;
    }
    
    /**
     * ice_add_mac_to_unsync_list - creates list of mac addresses to be unsynced
     * @netdev: the net device on which the unsync is happening
     * @addr: mac address to unsync
     *
     * This is a callback function which is called by the in kernel device unsync
     * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
     * populates the tmp_unsync_list, which is later used by ice_remove_mac to
     * delete the mac filters from the hardware.
     */
    static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
    {
    	struct ice_netdev_priv *np = netdev_priv(netdev);
    	struct ice_vsi *vsi = np->vsi;
    
    	if (ice_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr))
    		return -EINVAL;
    
    	return 0;
    }
    
    /**
     * ice_vsi_fltr_changed - check if filter state changed
     * @vsi: VSI to be checked
     *
     * returns true if filter state has changed, false otherwise.
     */
    static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
    {
    	return test_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags) ||
    	       test_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags) ||
    	       test_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
    }
    
    /**
     * ice_vsi_sync_fltr - Update the VSI filter list to the HW
     * @vsi: ptr to the VSI
     *
     * Push any outstanding VSI filter changes through the AdminQ.
     */
    static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
    {
    	struct device *dev = &vsi->back->pdev->dev;
    	struct net_device *netdev = vsi->netdev;
    	bool promisc_forced_on = false;
    	struct ice_pf *pf = vsi->back;
    	struct ice_hw *hw = &pf->hw;
    	enum ice_status status = 0;
    	u32 changed_flags = 0;
    	int err = 0;
    
    	if (!vsi->netdev)
    		return -EINVAL;
    
    	while (test_and_set_bit(__ICE_CFG_BUSY, vsi->state))
    		usleep_range(1000, 2000);
    
    	changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
    	vsi->current_netdev_flags = vsi->netdev->flags;
    
    	INIT_LIST_HEAD(&vsi->tmp_sync_list);
    	INIT_LIST_HEAD(&vsi->tmp_unsync_list);
    
    	if (ice_vsi_fltr_changed(vsi)) {
    		clear_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
    		clear_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
    		clear_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
    
    		/* grab the netdev's addr_list_lock */
    		netif_addr_lock_bh(netdev);
    		__dev_uc_sync(netdev, ice_add_mac_to_sync_list,
    			      ice_add_mac_to_unsync_list);
    		__dev_mc_sync(netdev, ice_add_mac_to_sync_list,
    			      ice_add_mac_to_unsync_list);
    		/* our temp lists are populated. release lock */
    		netif_addr_unlock_bh(netdev);
    	}
    
    	/* Remove mac addresses in the unsync list */
    	status = ice_remove_mac(hw, &vsi->tmp_unsync_list);
    	ice_free_fltr_list(dev, &vsi->tmp_unsync_list);
    	if (status) {
    		netdev_err(netdev, "Failed to delete MAC filters\n");
    		/* if we failed because of alloc failures, just bail */
    		if (status == ICE_ERR_NO_MEMORY) {
    			err = -ENOMEM;
    			goto out;
    		}
    	}
    
    	/* Add mac addresses in the sync list */
    	status = ice_add_mac(hw, &vsi->tmp_sync_list);
    	ice_free_fltr_list(dev, &vsi->tmp_sync_list);
    	if (status) {
    		netdev_err(netdev, "Failed to add MAC filters\n");
    		/* If there is no more space for new umac filters, vsi
    		 * should go into promiscuous mode. There should be some
    		 * space reserved for promiscuous filters.
    		 */
    		if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
    		    !test_and_set_bit(__ICE_FLTR_OVERFLOW_PROMISC,
    				      vsi->state)) {
    			promisc_forced_on = true;
    			netdev_warn(netdev,
    				    "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
    				    vsi->vsi_num);
    		} else {
    			err = -EIO;
    			goto out;
    		}
    	}
    	/* check for changes in promiscuous modes */
    	if (changed_flags & IFF_ALLMULTI)
    		netdev_warn(netdev, "Unsupported configuration\n");
    
    	if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
    	    test_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags)) {
    		clear_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
    		if (vsi->current_netdev_flags & IFF_PROMISC) {
    			/* Apply TX filter rule to get traffic from VMs */
    			status = ice_cfg_dflt_vsi(hw, vsi->idx, true,
    						  ICE_FLTR_TX);
    			if (status) {
    				netdev_err(netdev, "Error setting default VSI %i tx rule\n",
    					   vsi->vsi_num);
    				vsi->current_netdev_flags &= ~IFF_PROMISC;
    				err = -EIO;
    				goto out_promisc;
    			}
    			/* Apply RX filter rule to get traffic from wire */
    			status = ice_cfg_dflt_vsi(hw, vsi->idx, true,
    						  ICE_FLTR_RX);
    			if (status) {
    				netdev_err(netdev, "Error setting default VSI %i rx rule\n",
    					   vsi->vsi_num);
    				vsi->current_netdev_flags &= ~IFF_PROMISC;
    				err = -EIO;
    				goto out_promisc;
    			}
    		} else {
    			/* Clear TX filter rule to stop traffic from VMs */
    			status = ice_cfg_dflt_vsi(hw, vsi->idx, false,
    						  ICE_FLTR_TX);
    			if (status) {
    				netdev_err(netdev, "Error clearing default VSI %i tx rule\n",
    					   vsi->vsi_num);
    				vsi->current_netdev_flags |= IFF_PROMISC;
    				err = -EIO;
    				goto out_promisc;
    			}
    			/* Clear RX filter to remove traffic from wire */
    			status = ice_cfg_dflt_vsi(hw, vsi->idx, false,
    						  ICE_FLTR_RX);
    			if (status) {
    				netdev_err(netdev, "Error clearing default VSI %i rx rule\n",
    					   vsi->vsi_num);
    				vsi->current_netdev_flags |= IFF_PROMISC;
    				err = -EIO;
    				goto out_promisc;
    			}
    		}
    	}
    	goto exit;
    
    out_promisc:
    	set_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
    	goto exit;
    out:
    	/* if something went wrong then set the changed flag so we try again */
    	set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
    	set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
    exit:
    	clear_bit(__ICE_CFG_BUSY, vsi->state);
    	return err;
    }
    
    /**
     * ice_sync_fltr_subtask - Sync the VSI filter list with HW
     * @pf: board private structure
     */
    static void ice_sync_fltr_subtask(struct ice_pf *pf)
    {
    	int v;
    
    	if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
    		return;
    
    	clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
    
    	for (v = 0; v < pf->num_alloc_vsi; v++)
    		if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
    		    ice_vsi_sync_fltr(pf->vsi[v])) {
    			/* come back and try again later */
    			set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
    			break;
    		}
    }
    
    /**
     * ice_prepare_for_reset - prep for the core to reset
     * @pf: board private structure
     *
     * Inform or close all dependent features in prep for reset.
     */
    static void
    ice_prepare_for_reset(struct ice_pf *pf)
    {
    	struct ice_hw *hw = &pf->hw;
    
    	/* disable the VSIs and their queues that are not already DOWN */
    	ice_pf_dis_all_vsi(pf);
    
    	ice_shutdown_all_ctrlq(hw);
    
    	set_bit(__ICE_PREPARED_FOR_RESET, pf->state);
    }
    
    /**
     * ice_do_reset - Initiate one of many types of resets
     * @pf: board private structure
     * @reset_type: reset type requested
     * before this function was called.
     */
    static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
    {
    	struct device *dev = &pf->pdev->dev;
    	struct ice_hw *hw = &pf->hw;
    
    	dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
    	WARN_ON(in_interrupt());
    
    	ice_prepare_for_reset(pf);
    
    	/* trigger the reset */
    	if (ice_reset(hw, reset_type)) {
    		dev_err(dev, "reset %d failed\n", reset_type);
    		set_bit(__ICE_RESET_FAILED, pf->state);
    		clear_bit(__ICE_RESET_OICR_RECV, pf->state);
    		clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
    		clear_bit(__ICE_PFR_REQ, pf->state);
    		clear_bit(__ICE_CORER_REQ, pf->state);
    		clear_bit(__ICE_GLOBR_REQ, pf->state);
    		return;
    	}
    
    	/* PFR is a bit of a special case because it doesn't result in an OICR
    	 * interrupt. So for PFR, rebuild after the reset and clear the reset-
    	 * associated state bits.
    	 */
    	if (reset_type == ICE_RESET_PFR) {
    		pf->pfr_count++;
    		ice_rebuild(pf);
    		clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
    		clear_bit(__ICE_PFR_REQ, pf->state);
    	}
    }
    
    /**
     * ice_reset_subtask - Set up for resetting the device and driver
     * @pf: board private structure
     */
    static void ice_reset_subtask(struct ice_pf *pf)
    {
    	enum ice_reset_req reset_type = ICE_RESET_INVAL;
    
    	/* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
    	 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
    	 * of reset is pending and sets bits in pf->state indicating the reset
    	 * type and __ICE_RESET_OICR_RECV.  So, if the latter bit is set
    	 * prepare for pending reset if not already (for PF software-initiated
    	 * global resets the software should already be prepared for it as
    	 * indicated by __ICE_PREPARED_FOR_RESET; for global resets initiated
    	 * by firmware or software on other PFs, that bit is not set so prepare
    	 * for the reset now), poll for reset done, rebuild and return.
    	 */
    	if (test_bit(__ICE_RESET_OICR_RECV, pf->state)) {
    		clear_bit(__ICE_GLOBR_RECV, pf->state);
    		clear_bit(__ICE_CORER_RECV, pf->state);
    		if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state))
    			ice_prepare_for_reset(pf);
    
    		/* make sure we are ready to rebuild */
    		if (ice_check_reset(&pf->hw)) {
    			set_bit(__ICE_RESET_FAILED, pf->state);
    		} else {
    			/* done with reset. start rebuild */
    			pf->hw.reset_ongoing = false;
    			ice_rebuild(pf);
    			/* clear bit to resume normal operations, but
    			 * ICE_NEEDS_RESTART bit is set incase rebuild failed
    			 */
    			clear_bit(__ICE_RESET_OICR_RECV, pf->state);
    			clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
    			clear_bit(__ICE_PFR_REQ, pf->state);
    			clear_bit(__ICE_CORER_REQ, pf->state);
    			clear_bit(__ICE_GLOBR_REQ, pf->state);
    		}
    
    		return;
    	}
    
    	/* No pending resets to finish processing. Check for new resets */
    	if (test_bit(__ICE_PFR_REQ, pf->state))
    		reset_type = ICE_RESET_PFR;
    	if (test_bit(__ICE_CORER_REQ, pf->state))
    		reset_type = ICE_RESET_CORER;
    	if (test_bit(__ICE_GLOBR_REQ, pf->state))
    		reset_type = ICE_RESET_GLOBR;
    	/* If no valid reset type requested just return */
    	if (reset_type == ICE_RESET_INVAL)
    		return;
    
    	/* reset if not already down or busy */
    	if (!test_bit(__ICE_DOWN, pf->state) &&
    	    !test_bit(__ICE_CFG_BUSY, pf->state)) {
    		ice_do_reset(pf, reset_type);
    	}
    }
    
    /**
     * ice_watchdog_subtask - periodic tasks not using event driven scheduling
     * @pf: board private structure
     */
    static void ice_watchdog_subtask(struct ice_pf *pf)
    {
    	int i;
    
    	/* if interface is down do nothing */
    	if (test_bit(__ICE_DOWN, pf->state) ||
    	    test_bit(__ICE_CFG_BUSY, pf->state))
    		return;
    
    	/* make sure we don't do these things too often */
    	if (time_before(jiffies,
    			pf->serv_tmr_prev + pf->serv_tmr_period))
    		return;
    
    	pf->serv_tmr_prev = jiffies;
    
    	/* Update the stats for active netdevs so the network stack
    	 * can look at updated numbers whenever it cares to
    	 */
    	ice_update_pf_stats(pf);
    	for (i = 0; i < pf->num_alloc_vsi; i++)
    		if (pf->vsi[i] && pf->vsi[i]->netdev)
    			ice_update_vsi_stats(pf->vsi[i]);
    }
    
    /**
     * ice_print_link_msg - print link up or down message
     * @vsi: the VSI whose link status is being queried
     * @isup: boolean for if the link is now up or down
     */
    void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
    {
    	const char *speed;
    	const char *fc;
    
    	if (vsi->current_isup == isup)
    		return;
    
    	vsi->current_isup = isup;
    
    	if (!isup) {
    		netdev_info(vsi->netdev, "NIC Link is Down\n");
    		return;
    	}
    
    	switch (vsi->port_info->phy.link_info.link_speed) {
    	case ICE_AQ_LINK_SPEED_40GB:
    		speed = "40 G";
    		break;
    	case ICE_AQ_LINK_SPEED_25GB:
    		speed = "25 G";
    		break;
    	case ICE_AQ_LINK_SPEED_20GB:
    		speed = "20 G";
    		break;
    	case ICE_AQ_LINK_SPEED_10GB:
    		speed = "10 G";
    		break;
    	case ICE_AQ_LINK_SPEED_5GB:
    		speed = "5 G";
    		break;
    	case ICE_AQ_LINK_SPEED_2500MB:
    		speed = "2.5 G";
    		break;
    	case ICE_AQ_LINK_SPEED_1000MB:
    		speed = "1 G";
    		break;
    	case ICE_AQ_LINK_SPEED_100MB:
    		speed = "100 M";
    		break;
    	default:
    		speed = "Unknown";
    		break;
    	}
    
    	switch (vsi->port_info->fc.current_mode) {
    	case ICE_FC_FULL:
    		fc = "RX/TX";
    		break;
    	case ICE_FC_TX_PAUSE:
    		fc = "TX";
    		break;
    	case ICE_FC_RX_PAUSE:
    		fc = "RX";
    		break;
    	default:
    		fc = "Unknown";
    		break;
    	}
    
    	netdev_info(vsi->netdev, "NIC Link is up %sbps, Flow Control: %s\n",
    		    speed, fc);
    }
    
    /**
     * ice_init_link_events - enable/initialize link events
     * @pi: pointer to the port_info instance
     *
     * Returns -EIO on failure, 0 on success
     */
    static int ice_init_link_events(struct ice_port_info *pi)
    {
    	u16 mask;
    
    	mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
    		       ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL));
    
    	if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
    		dev_dbg(ice_hw_to_dev(pi->hw),
    			"Failed to set link event mask for port %d\n",
    			pi->lport);
    		return -EIO;
    	}
    
    	if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
    		dev_dbg(ice_hw_to_dev(pi->hw),
    			"Failed to enable link events for port %d\n",
    			pi->lport);
    		return -EIO;
    	}
    
    	return 0;
    }
    
    /**
     * ice_vsi_link_event - update the vsi's netdev
     * @vsi: the vsi on which the link event occurred
     * @link_up: whether or not the vsi needs to be set up or down
     */
    static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
    {
    	if (!vsi || test_bit(__ICE_DOWN, vsi->state))
    		return;
    
    	if (vsi->type == ICE_VSI_PF) {
    		if (!vsi->netdev) {
    			dev_dbg(&vsi->back->pdev->dev,
    				"vsi->netdev is not initialized!\n");
    			return;
    		}
    		if (link_up) {
    			netif_carrier_on(vsi->netdev);
    			netif_tx_wake_all_queues(vsi->netdev);
    		} else {
    			netif_carrier_off(vsi->netdev);
    			netif_tx_stop_all_queues(vsi->netdev);
    		}
    	}
    }
    
    /**
     * ice_link_event - process the link event
     * @pf: pf that the link event is associated with
     * @pi: port_info for the port that the link event is associated with
     *
     * Returns -EIO if ice_get_link_status() fails
     * Returns 0 on success
     */
    static int
    ice_link_event(struct ice_pf *pf, struct ice_port_info *pi)
    {
    	u8 new_link_speed, old_link_speed;
    	struct ice_phy_info *phy_info;
    	bool new_link_same_as_old;
    	bool new_link, old_link;
    	u8 lport;
    	u16 v;
    
    	phy_info = &pi->phy;
    	phy_info->link_info_old = phy_info->link_info;
    	/* Force ice_get_link_status() to update link info */
    	phy_info->get_link_info = true;
    
    	old_link = (phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
    	old_link_speed = phy_info->link_info_old.link_speed;
    
    	lport = pi->lport;
    	if (ice_get_link_status(pi, &new_link)) {
    		dev_dbg(&pf->pdev->dev,
    			"Could not get link status for port %d\n", lport);
    		return -EIO;
    	}
    
    	new_link_speed = phy_info->link_info.link_speed;
    
    	new_link_same_as_old = (new_link == old_link &&
    				new_link_speed == old_link_speed);
    
    	ice_for_each_vsi(pf, v) {
    		struct ice_vsi *vsi = pf->vsi[v];
    
    		if (!vsi || !vsi->port_info)
    			continue;
    
    		if (new_link_same_as_old &&
    		    (test_bit(__ICE_DOWN, vsi->state) ||
    		    new_link == netif_carrier_ok(vsi->netdev)))
    			continue;
    
    		if (vsi->port_info->lport == lport) {
    			ice_print_link_msg(vsi, new_link);
    			ice_vsi_link_event(vsi, new_link);
    		}
    	}
    
    	return 0;
    }
    
    /**
     * ice_handle_link_event - handle link event via ARQ
     * @pf: pf that the link event is associated with
     *
     * Return -EINVAL if port_info is null
     * Return status on succes
     */
    static int ice_handle_link_event(struct ice_pf *pf)
    {
    	struct ice_port_info *port_info;
    	int status;
    
    	port_info = pf->hw.port_info;
    	if (!port_info)
    		return -EINVAL;
    
    	status = ice_link_event(pf, port_info);
    	if (status)
    		dev_dbg(&pf->pdev->dev,
    			"Could not process link event, error %d\n", status);
    
    	return status;
    }
    
    /**
     * __ice_clean_ctrlq - helper function to clean controlq rings
     * @pf: ptr to struct ice_pf
     * @q_type: specific Control queue type
     */
    static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
    {
    	struct ice_rq_event_info event;
    	struct ice_hw *hw = &pf->hw;
    	struct ice_ctl_q_info *cq;
    	u16 pending, i = 0;
    	const char *qtype;
    	u32 oldval, val;
    
    	/* Do not clean control queue if/when PF reset fails */
    	if (test_bit(__ICE_RESET_FAILED, pf->state))
    		return 0;
    
    	switch (q_type) {
    	case ICE_CTL_Q_ADMIN:
    		cq = &hw->adminq;
    		qtype = "Admin";
    		break;
    	default:
    		dev_warn(&pf->pdev->dev, "Unknown control queue type 0x%x\n",
    			 q_type);
    		return 0;
    	}
    
    	/* check for error indications - PF_xx_AxQLEN register layout for
    	 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
    	 */
    	val = rd32(hw, cq->rq.len);
    	if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
    		   PF_FW_ARQLEN_ARQCRIT_M)) {
    		oldval = val;
    		if (val & PF_FW_ARQLEN_ARQVFE_M)
    			dev_dbg(&pf->pdev->dev,
    				"%s Receive Queue VF Error detected\n", qtype);
    		if (val & PF_FW_ARQLEN_ARQOVFL_M) {
    			dev_dbg(&pf->pdev->dev,
    				"%s Receive Queue Overflow Error detected\n",
    				qtype);
    		}
    		if (val & PF_FW_ARQLEN_ARQCRIT_M)
    			dev_dbg(&pf->pdev->dev,
    				"%s Receive Queue Critical Error detected\n",
    				qtype);
    		val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
    			 PF_FW_ARQLEN_ARQCRIT_M);
    		if (oldval != val)
    			wr32(hw, cq->rq.len, val);
    	}
    
    	val = rd32(hw, cq->sq.len);
    	if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
    		   PF_FW_ATQLEN_ATQCRIT_M)) {
    		oldval = val;
    		if (val & PF_FW_ATQLEN_ATQVFE_M)
    			dev_dbg(&pf->pdev->dev,
    				"%s Send Queue VF Error detected\n", qtype);
    		if (val & PF_FW_ATQLEN_ATQOVFL_M) {
    			dev_dbg(&pf->pdev->dev,
    				"%s Send Queue Overflow Error detected\n",
    				qtype);
    		}
    		if (val & PF_FW_ATQLEN_ATQCRIT_M)
    			dev_dbg(&pf->pdev->dev,
    				"%s Send Queue Critical Error detected\n",
    				qtype);
    		val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
    			 PF_FW_ATQLEN_ATQCRIT_M);
    		if (oldval != val)
    			wr32(hw, cq->sq.len, val);
    	}
    
    	event.buf_len = cq->rq_buf_size;
    	event.msg_buf = devm_kzalloc(&pf->pdev->dev, event.buf_len,
    				     GFP_KERNEL);
    	if (!event.msg_buf)
    		return 0;
    
    	do {
    		enum ice_status ret;
    		u16 opcode;
    
    		ret = ice_clean_rq_elem(hw, cq, &event, &pending);
    		if (ret == ICE_ERR_AQ_NO_WORK)
    			break;
    		if (ret) {
    			dev_err(&pf->pdev->dev,
    				"%s Receive Queue event error %d\n", qtype,
    				ret);
    			break;
    		}
    
    		opcode = le16_to_cpu(event.desc.opcode);
    
    		switch (opcode) {
    		case ice_aqc_opc_get_link_status:
    			if (ice_handle_link_event(pf))
    				dev_err(&pf->pdev->dev,
    					"Could not handle link event\n");
    			break;
    		case ice_aqc_opc_fw_logging:
    			ice_output_fw_log(hw, &event.desc, event.msg_buf);
    			break;
    		default:
    			dev_dbg(&pf->pdev->dev,
    				"%s Receive Queue unknown event 0x%04x ignored\n",
    				qtype, opcode);
    			break;
    		}
    	} while (pending && (i++ < ICE_DFLT_IRQ_WORK));
    
    	devm_kfree(&pf->pdev->dev, event.msg_buf);
    
    	return pending && (i == ICE_DFLT_IRQ_WORK);
    }
    
    /**
     * ice_ctrlq_pending - check if there is a difference between ntc and ntu
     * @hw: pointer to hardware info
     * @cq: control queue information
     *
     * returns true if there are pending messages in a queue, false if there aren't
     */
    static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
    {
    	u16 ntu;
    
    	ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
    	return cq->rq.next_to_clean != ntu;
    }
    
    /**
     * ice_clean_adminq_subtask - clean the AdminQ rings
     * @pf: board private structure
     */
    static void ice_clean_adminq_subtask(struct ice_pf *pf)
    {
    	struct ice_hw *hw = &pf->hw;
    
    	if (!test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
    		return;
    
    	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
    		return;
    
    	clear_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);
    
    	/* There might be a situation where new messages arrive to a control
    	 * queue between processing the last message and clearing the
    	 * EVENT_PENDING bit. So before exiting, check queue head again (using
    	 * ice_ctrlq_pending) and process new messages if any.
    	 */
    	if (ice_ctrlq_pending(hw, &hw->adminq))
    		__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
    
    	ice_flush(hw);
    }
    
    /**
     * ice_service_task_schedule - schedule the service task to wake up
     * @pf: board private structure
     *
     * If not already scheduled, this puts the task into the work queue.
     */
    static void ice_service_task_schedule(struct ice_pf *pf)
    {
    	if (!test_bit(__ICE_SERVICE_DIS, pf->state) &&
    	    !test_and_set_bit(__ICE_SERVICE_SCHED, pf->state) &&
    	    !test_bit(__ICE_NEEDS_RESTART, pf->state))
    		queue_work(ice_wq, &pf->serv_task);
    }
    
    /**
     * ice_service_task_complete - finish up the service task
     * @pf: board private structure
     */
    static void ice_service_task_complete(struct ice_pf *pf)
    {
    	WARN_ON(!test_bit(__ICE_SERVICE_SCHED, pf->state));
    
    	/* force memory (pf->state) to sync before next service task */
    	smp_mb__before_atomic();
    	clear_bit(__ICE_SERVICE_SCHED, pf->state);
    }
    
    /**
     * ice_service_task_stop - stop service task and cancel works
     * @pf: board private structure
     */
    static void ice_service_task_stop(struct ice_pf *pf)
    {
    	set_bit(__ICE_SERVICE_DIS, pf->state);
    
    	if (pf->serv_tmr.function)
    		del_timer_sync(&pf->serv_tmr);
    	if (pf->serv_task.func)
    		cancel_work_sync(&pf->serv_task);
    
    	clear_bit(__ICE_SERVICE_SCHED, pf->state);
    }
    
    /**
     * ice_service_timer - timer callback to schedule service task
     * @t: pointer to timer_list
     */
    static void ice_service_timer(struct timer_list *t)
    {
    	struct ice_pf *pf = from_timer(pf, t, serv_tmr);
    
    	mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
    	ice_service_task_schedule(pf);
    }
    
    /**
     * ice_handle_mdd_event - handle malicious driver detect event
     * @pf: pointer to the PF structure
     *
     * Called from service task. OICR interrupt handler indicates MDD event
     */
    static void ice_handle_mdd_event(struct ice_pf *pf)
    {
    	struct ice_hw *hw = &pf->hw;
    	bool mdd_detected = false;
    	u32 reg;
    
    	if (!test_bit(__ICE_MDD_EVENT_PENDING, pf->state))
    		return;
    
    	/* find what triggered the MDD event */
    	reg = rd32(hw, GL_MDET_TX_PQM);
    	if (reg & GL_MDET_TX_PQM_VALID_M) {
    		u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >>
    				GL_MDET_TX_PQM_PF_NUM_S;
    		u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >>
    				GL_MDET_TX_PQM_VF_NUM_S;
    		u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >>
    				GL_MDET_TX_PQM_MAL_TYPE_S;
    		u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >>
    				GL_MDET_TX_PQM_QNUM_S);
    
    		if (netif_msg_tx_err(pf))
    			dev_info(&pf->pdev->dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
    				 event, queue, pf_num, vf_num);
    		wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
    		mdd_detected = true;
    	}
    
    	reg = rd32(hw, GL_MDET_TX_TCLAN);
    	if (reg & GL_MDET_TX_TCLAN_VALID_M) {
    		u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >>
    				GL_MDET_TX_TCLAN_PF_NUM_S;
    		u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >>
    				GL_MDET_TX_TCLAN_VF_NUM_S;
    		u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >>
    				GL_MDET_TX_TCLAN_MAL_TYPE_S;
    		u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >>
    				GL_MDET_TX_TCLAN_QNUM_S);
    
    		if (netif_msg_rx_err(pf))
    			dev_info(&pf->pdev->dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
    				 event, queue, pf_num, vf_num);
    		wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff);
    		mdd_detected = true;
    	}
    
    	reg = rd32(hw, GL_MDET_RX);
    	if (reg & GL_MDET_RX_VALID_M) {
    		u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >>
    				GL_MDET_RX_PF_NUM_S;
    		u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >>
    				GL_MDET_RX_VF_NUM_S;
    		u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >>
    				GL_MDET_RX_MAL_TYPE_S;
    		u16 queue = ((reg & GL_MDET_RX_QNUM_M) >>
    				GL_MDET_RX_QNUM_S);
    
    		if (netif_msg_rx_err(pf))
    			dev_info(&pf->pdev->dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
    				 event, queue, pf_num, vf_num);
    		wr32(hw, GL_MDET_RX, 0xffffffff);
    		mdd_detected = true;
    	}
    
    	if (mdd_detected) {
    		bool pf_mdd_detected = false;
    
    		reg = rd32(hw, PF_MDET_TX_PQM);
    		if (reg & PF_MDET_TX_PQM_VALID_M) {
    			wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
    			dev_info(&pf->pdev->dev, "TX driver issue detected, PF reset issued\n");
    			pf_mdd_detected = true;
    		}
    
    		reg = rd32(hw, PF_MDET_TX_TCLAN);
    		if (reg & PF_MDET_TX_TCLAN_VALID_M) {
    			wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF);
    			dev_info(&pf->pdev->dev, "TX driver issue detected, PF reset issued\n");
    			pf_mdd_detected = true;
    		}
    
    		reg = rd32(hw, PF_MDET_RX);
    		if (reg & PF_MDET_RX_VALID_M) {
    			wr32(hw, PF_MDET_RX, 0xFFFF);
    			dev_info(&pf->pdev->dev, "RX driver issue detected, PF reset issued\n");
    			pf_mdd_detected = true;
    		}
    		/* Queue belongs to the PF initiate a reset */
    		if (pf_mdd_detected) {
    			set_bit(__ICE_NEEDS_RESTART, pf->state);
    			ice_service_task_schedule(pf);
    		}
    	}
    
    	/* re-enable MDD interrupt cause */
    	clear_bit(__ICE_MDD_EVENT_PENDING, pf->state);
    	reg = rd32(hw, PFINT_OICR_ENA);
    	reg |= PFINT_OICR_MAL_DETECT_M;
    	wr32(hw, PFINT_OICR_ENA, reg);
    	ice_flush(hw);
    }
    
    /**
     * ice_service_task - manage and run subtasks
     * @work: pointer to work_struct contained by the PF struct
     */
    static void ice_service_task(struct work_struct *work)
    {
    	struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
    	unsigned long start_time = jiffies;
    
    	/* subtasks */
    
    	/* process reset requests first */
    	ice_reset_subtask(pf);
    
    	/* bail if a reset/recovery cycle is pending or rebuild failed */
    	if (ice_is_reset_in_progress(pf->state) ||
    	    test_bit(__ICE_SUSPENDED, pf->state) ||
    	    test_bit(__ICE_NEEDS_RESTART, pf->state)) {
    		ice_service_task_complete(pf);
    		return;
    	}
    
    	ice_check_for_hang_subtask(pf);
    	ice_sync_fltr_subtask(pf);
    	ice_handle_mdd_event(pf);
    	ice_watchdog_subtask(pf);
    	ice_clean_adminq_subtask(pf);
    
    	/* Clear __ICE_SERVICE_SCHED flag to allow scheduling next event */
    	ice_service_task_complete(pf);
    
    	/* If the tasks have taken longer than one service timer period
    	 * or there is more work to be done, reset the service timer to
    	 * schedule the service task now.
    	 */
    	if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
    	    test_bit(__ICE_MDD_EVENT_PENDING, pf->state) ||
    	    test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
    		mod_timer(&pf->serv_tmr, jiffies);
    }
    
    /**
     * ice_set_ctrlq_len - helper function to set controlq length
     * @hw: pointer to the hw instance
     */
    static void ice_set_ctrlq_len(struct ice_hw *hw)
    {
    	hw->adminq.num_rq_entries = ICE_AQ_LEN;
    	hw->adminq.num_sq_entries = ICE_AQ_LEN;
    	hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
    	hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
    }
    
    /**
     * ice_irq_affinity_notify - Callback for affinity changes
     * @notify: context as to what irq was changed
     * @mask: the new affinity mask
     *
     * This is a callback function used by the irq_set_affinity_notifier function
     * so that we may register to receive changes to the irq affinity masks.
     */
    static void ice_irq_affinity_notify(struct irq_affinity_notify *notify,
    				    const cpumask_t *mask)
    {
    	struct ice_q_vector *q_vector =
    		container_of(notify, struct ice_q_vector, affinity_notify);
    
    	cpumask_copy(&q_vector->affinity_mask, mask);
    }
    
    /**
     * ice_irq_affinity_release - Callback for affinity notifier release
     * @ref: internal core kernel usage
     *
     * This is a callback function used by the irq_set_affinity_notifier function
     * to inform the current notification subscriber that they will no longer
     * receive notifications.
     */
    static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
    
    /**
     * ice_vsi_ena_irq - Enable IRQ for the given VSI
     * @vsi: the VSI being configured
     */
    static int ice_vsi_ena_irq(struct ice_vsi *vsi)
    {
    	struct ice_pf *pf = vsi->back;
    	struct ice_hw *hw = &pf->hw;
    
    	if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) {
    		int i;
    
    		for (i = 0; i < vsi->num_q_vectors; i++)
    			ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
    	}
    
    	ice_flush(hw);
    	return 0;
    }
    
    /**
     * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
     * @vsi: the VSI being configured
     * @basename: name for the vector
     */
    static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
    {
    	int q_vectors = vsi->num_q_vectors;
    	struct ice_pf *pf = vsi->back;
    	int base = vsi->sw_base_vector;
    	int rx_int_idx = 0;
    	int tx_int_idx = 0;
    	int vector, err;
    	int irq_num;
    
    	for (vector = 0; vector < q_vectors; vector++) {
    		struct ice_q_vector *q_vector = vsi->q_vectors[vector];
    
    		irq_num = pf->msix_entries[base + vector].vector;
    
    		if (q_vector->tx.ring && q_vector->rx.ring) {
    			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
    				 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
    			tx_int_idx++;
    		} else if (q_vector->rx.ring) {
    			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
    				 "%s-%s-%d", basename, "rx", rx_int_idx++);
    		} else if (q_vector->tx.ring) {
    			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
    				 "%s-%s-%d", basename, "tx", tx_int_idx++);
    		} else {
    			/* skip this unused q_vector */
    			continue;
    		}
    		err = devm_request_irq(&pf->pdev->dev,
    				       pf->msix_entries[base + vector].vector,
    				       vsi->irq_handler, 0, q_vector->name,
    				       q_vector);
    		if (err) {
    			netdev_err(vsi->netdev,
    				   "MSIX request_irq failed, error: %d\n", err);
    			goto free_q_irqs;
    		}
    
    		/* register for affinity change notifications */
    		q_vector->affinity_notify.notify = ice_irq_affinity_notify;
    		q_vector->affinity_notify.release = ice_irq_affinity_release;
    		irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
    
    		/* assign the mask for this irq */
    		irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
    	}
    
    	vsi->irqs_ready = true;
    	return 0;
    
    free_q_irqs:
    	while (vector) {
    		vector--;
    		irq_num = pf->msix_entries[base + vector].vector,
    		irq_set_affinity_notifier(irq_num, NULL);
    		irq_set_affinity_hint(irq_num, NULL);
    		devm_free_irq(&pf->pdev->dev, irq_num, &vsi->q_vectors[vector]);
    	}
    	return err;
    }
    
    /**
     * ice_ena_misc_vector - enable the non-queue interrupts
     * @pf: board private structure
     */
    static void ice_ena_misc_vector(struct ice_pf *pf)
    {
    	struct ice_hw *hw = &pf->hw;
    	u32 val;
    
    	/* clear things first */
    	wr32(hw, PFINT_OICR_ENA, 0);	/* disable all */
    	rd32(hw, PFINT_OICR);		/* read to clear */
    
    	val = (PFINT_OICR_ECC_ERR_M |
    	       PFINT_OICR_MAL_DETECT_M |
    	       PFINT_OICR_GRST_M |
    	       PFINT_OICR_PCI_EXCEPTION_M |
    	       PFINT_OICR_HMC_ERR_M |
    	       PFINT_OICR_PE_CRITERR_M);
    
    	wr32(hw, PFINT_OICR_ENA, val);
    
    	/* SW_ITR_IDX = 0, but don't change INTENA */
    	wr32(hw, GLINT_DYN_CTL(pf->hw_oicr_idx),
    	     GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
    }
    
    /**
     * ice_misc_intr - misc interrupt handler
     * @irq: interrupt number
     * @data: pointer to a q_vector
     */
    static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
    {
    	struct ice_pf *pf = (struct ice_pf *)data;
    	struct ice_hw *hw = &pf->hw;
    	irqreturn_t ret = IRQ_NONE;
    	u32 oicr, ena_mask;
    
    	set_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);
    
    	oicr = rd32(hw, PFINT_OICR);
    	ena_mask = rd32(hw, PFINT_OICR_ENA);
    
    	if (oicr & PFINT_OICR_MAL_DETECT_M) {
    		ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
    		set_bit(__ICE_MDD_EVENT_PENDING, pf->state);
    	}
    
    	if (oicr & PFINT_OICR_GRST_M) {
    		u32 reset;
    
    		/* we have a reset warning */
    		ena_mask &= ~PFINT_OICR_GRST_M;
    		reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >>
    			GLGEN_RSTAT_RESET_TYPE_S;
    
    		if (reset == ICE_RESET_CORER)
    			pf->corer_count++;
    		else if (reset == ICE_RESET_GLOBR)
    			pf->globr_count++;
    		else if (reset == ICE_RESET_EMPR)
    			pf->empr_count++;
    		else
    			dev_dbg(&pf->pdev->dev, "Invalid reset type %d\n",
    				reset);
    
    		/* If a reset cycle isn't already in progress, we set a bit in
    		 * pf->state so that the service task can start a reset/rebuild.
    		 * We also make note of which reset happened so that peer
    		 * devices/drivers can be informed.
    		 */
    		if (!test_and_set_bit(__ICE_RESET_OICR_RECV, pf->state)) {
    			if (reset == ICE_RESET_CORER)
    				set_bit(__ICE_CORER_RECV, pf->state);
    			else if (reset == ICE_RESET_GLOBR)
    				set_bit(__ICE_GLOBR_RECV, pf->state);
    			else
    				set_bit(__ICE_EMPR_RECV, pf->state);
    
    			/* There are couple of different bits at play here.
    			 * hw->reset_ongoing indicates whether the hardware is
    			 * in reset. This is set to true when a reset interrupt
    			 * is received and set back to false after the driver
    			 * has determined that the hardware is out of reset.
    			 *
    			 * __ICE_RESET_OICR_RECV in pf->state indicates
    			 * that a post reset rebuild is required before the
    			 * driver is operational again. This is set above.
    			 *
    			 * As this is the start of the reset/rebuild cycle, set
    			 * both to indicate that.
    			 */
    			hw->reset_ongoing = true;
    		}
    	}
    
    	if (oicr & PFINT_OICR_HMC_ERR_M) {
    		ena_mask &= ~PFINT_OICR_HMC_ERR_M;
    		dev_dbg(&pf->pdev->dev,
    			"HMC Error interrupt - info 0x%x, data 0x%x\n",
    			rd32(hw, PFHMC_ERRORINFO),
    			rd32(hw, PFHMC_ERRORDATA));
    	}
    
    	/* Report and mask off any remaining unexpected interrupts */
    	oicr &= ena_mask;
    	if (oicr) {
    		dev_dbg(&pf->pdev->dev, "unhandled interrupt oicr=0x%08x\n",
    			oicr);
    		/* If a critical error is pending there is no choice but to
    		 * reset the device.
    		 */
    		if (oicr & (PFINT_OICR_PE_CRITERR_M |
    			    PFINT_OICR_PCI_EXCEPTION_M |
    			    PFINT_OICR_ECC_ERR_M)) {
    			set_bit(__ICE_PFR_REQ, pf->state);
    			ice_service_task_schedule(pf);
    		}
    		ena_mask &= ~oicr;
    	}
    	ret = IRQ_HANDLED;
    
    	/* re-enable interrupt causes that are not handled during this pass */
    	wr32(hw, PFINT_OICR_ENA, ena_mask);
    	if (!test_bit(__ICE_DOWN, pf->state)) {
    		ice_service_task_schedule(pf);
    		ice_irq_dynamic_ena(hw, NULL, NULL);
    	}
    
    	return ret;
    }
    
    /**
     * ice_free_irq_msix_misc - Unroll misc vector setup
     * @pf: board private structure
     */
    static void ice_free_irq_msix_misc(struct ice_pf *pf)
    {
    	/* disable OICR interrupt */
    	wr32(&pf->hw, PFINT_OICR_ENA, 0);
    	ice_flush(&pf->hw);
    
    	if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags) && pf->msix_entries) {
    		synchronize_irq(pf->msix_entries[pf->sw_oicr_idx].vector);
    		devm_free_irq(&pf->pdev->dev,
    			      pf->msix_entries[pf->sw_oicr_idx].vector, pf);
    	}
    
    	pf->num_avail_sw_msix += 1;
    	ice_free_res(pf->sw_irq_tracker, pf->sw_oicr_idx, ICE_RES_MISC_VEC_ID);
    	pf->num_avail_hw_msix += 1;
    	ice_free_res(pf->hw_irq_tracker, pf->hw_oicr_idx, ICE_RES_MISC_VEC_ID);
    }
    
    /**
     * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
     * @pf: board private structure
     *
     * This sets up the handler for MSIX 0, which is used to manage the
     * non-queue interrupts, e.g. AdminQ and errors.  This is not used
     * when in MSI or Legacy interrupt mode.
     */
    static int ice_req_irq_msix_misc(struct ice_pf *pf)
    {
    	struct ice_hw *hw = &pf->hw;
    	int oicr_idx, err = 0;
    	u8 itr_gran;
    	u32 val;
    
    	if (!pf->int_name[0])
    		snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
    			 dev_driver_string(&pf->pdev->dev),
    			 dev_name(&pf->pdev->dev));
    
    	/* Do not request IRQ but do enable OICR interrupt since settings are
    	 * lost during reset. Note that this function is called only during
    	 * rebuild path and not while reset is in progress.
    	 */
    	if (ice_is_reset_in_progress(pf->state))
    		goto skip_req_irq;
    
    	/* reserve one vector in sw_irq_tracker for misc interrupts */
    	oicr_idx = ice_get_res(pf, pf->sw_irq_tracker, 1, ICE_RES_MISC_VEC_ID);
    	if (oicr_idx < 0)
    		return oicr_idx;
    
    	pf->num_avail_sw_msix -= 1;
    	pf->sw_oicr_idx = oicr_idx;
    
    	/* reserve one vector in hw_irq_tracker for misc interrupts */
    	oicr_idx = ice_get_res(pf, pf->hw_irq_tracker, 1, ICE_RES_MISC_VEC_ID);
    	if (oicr_idx < 0) {
    		ice_free_res(pf->sw_irq_tracker, 1, ICE_RES_MISC_VEC_ID);
    		pf->num_avail_sw_msix += 1;
    		return oicr_idx;
    	}
    	pf->num_avail_hw_msix -= 1;
    	pf->hw_oicr_idx = oicr_idx;
    
    	err = devm_request_irq(&pf->pdev->dev,
    			       pf->msix_entries[pf->sw_oicr_idx].vector,
    			       ice_misc_intr, 0, pf->int_name, pf);
    	if (err) {
    		dev_err(&pf->pdev->dev,
    			"devm_request_irq for %s failed: %d\n",
    			pf->int_name, err);
    		ice_free_res(pf->sw_irq_tracker, 1, ICE_RES_MISC_VEC_ID);
    		pf->num_avail_sw_msix += 1;
    		ice_free_res(pf->hw_irq_tracker, 1, ICE_RES_MISC_VEC_ID);
    		pf->num_avail_hw_msix += 1;
    		return err;
    	}
    
    skip_req_irq:
    	ice_ena_misc_vector(pf);
    
    	val = ((pf->hw_oicr_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
    	       PFINT_OICR_CTL_CAUSE_ENA_M);
    	wr32(hw, PFINT_OICR_CTL, val);
    
    	/* This enables Admin queue Interrupt causes */
    	val = ((pf->hw_oicr_idx & PFINT_FW_CTL_MSIX_INDX_M) |
    	       PFINT_FW_CTL_CAUSE_ENA_M);
    	wr32(hw, PFINT_FW_CTL, val);
    
    	itr_gran = hw->itr_gran;
    
    	wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->hw_oicr_idx),
    	     ITR_TO_REG(ICE_ITR_8K, itr_gran));
    
    	ice_flush(hw);
    	ice_irq_dynamic_ena(hw, NULL, NULL);
    
    	return 0;
    }
    
    /**
     * ice_napi_del - Remove NAPI handler for the VSI
     * @vsi: VSI for which NAPI handler is to be removed
     */
    static void ice_napi_del(struct ice_vsi *vsi)
    {
    	int v_idx;
    
    	if (!vsi->netdev)
    		return;
    
    	for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++)
    		netif_napi_del(&vsi->q_vectors[v_idx]->napi);
    }
    
    /**
     * ice_napi_add - register NAPI handler for the VSI
     * @vsi: VSI for which NAPI handler is to be registered
     *
     * This function is only called in the driver's load path. Registering the NAPI
     * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
     * reset/rebuild, etc.)
     */
    static void ice_napi_add(struct ice_vsi *vsi)
    {
    	int v_idx;
    
    	if (!vsi->netdev)
    		return;
    
    	for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++)
    		netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi,
    			       ice_napi_poll, NAPI_POLL_WEIGHT);
    }
    
    /**
     * ice_cfg_netdev - Allocate, configure and register a netdev
     * @vsi: the VSI associated with the new netdev
     *
     * Returns 0 on success, negative value on failure
     */
    static int ice_cfg_netdev(struct ice_vsi *vsi)
    {
    	netdev_features_t csumo_features;
    	netdev_features_t vlano_features;
    	netdev_features_t dflt_features;
    	netdev_features_t tso_features;
    	struct ice_netdev_priv *np;
    	struct net_device *netdev;
    	u8 mac_addr[ETH_ALEN];
    	int err;
    
    	netdev = alloc_etherdev_mqs(sizeof(struct ice_netdev_priv),
    				    vsi->alloc_txq, vsi->alloc_rxq);
    	if (!netdev)
    		return -ENOMEM;
    
    	vsi->netdev = netdev;
    	np = netdev_priv(netdev);
    	np->vsi = vsi;
    
    	dflt_features = NETIF_F_SG	|
    			NETIF_F_HIGHDMA	|
    			NETIF_F_RXHASH;
    
    	csumo_features = NETIF_F_RXCSUM	  |
    			 NETIF_F_IP_CSUM  |
    			 NETIF_F_IPV6_CSUM;
    
    	vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
    			 NETIF_F_HW_VLAN_CTAG_TX     |
    			 NETIF_F_HW_VLAN_CTAG_RX;
    
    	tso_features = NETIF_F_TSO;
    
    	/* set features that user can change */
    	netdev->hw_features = dflt_features | csumo_features |
    			      vlano_features | tso_features;
    
    	/* enable features */
    	netdev->features |= netdev->hw_features;
    	/* encap and VLAN devices inherit default, csumo and tso features */
    	netdev->hw_enc_features |= dflt_features | csumo_features |
    				   tso_features;
    	netdev->vlan_features |= dflt_features | csumo_features |
    				 tso_features;
    
    	if (vsi->type == ICE_VSI_PF) {
    		SET_NETDEV_DEV(netdev, &vsi->back->pdev->dev);
    		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
    
    		ether_addr_copy(netdev->dev_addr, mac_addr);
    		ether_addr_copy(netdev->perm_addr, mac_addr);
    	}
    
    	netdev->priv_flags |= IFF_UNICAST_FLT;
    
    	/* assign netdev_ops */
    	netdev->netdev_ops = &ice_netdev_ops;
    
    	/* setup watchdog timeout value to be 5 second */
    	netdev->watchdog_timeo = 5 * HZ;
    
    	ice_set_ethtool_ops(netdev);
    
    	netdev->min_mtu = ETH_MIN_MTU;
    	netdev->max_mtu = ICE_MAX_MTU;
    
    	err = register_netdev(vsi->netdev);
    	if (err)
    		return err;
    
    	netif_carrier_off(vsi->netdev);
    
    	/* make sure transmit queues start off as stopped */
    	netif_tx_stop_all_queues(vsi->netdev);
    
    	return 0;
    }
    
    /**
     * ice_fill_rss_lut - Fill the RSS lookup table with default values
     * @lut: Lookup table
     * @rss_table_size: Lookup table size
     * @rss_size: Range of queue number for hashing
     */
    void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
    {
    	u16 i;
    
    	for (i = 0; i < rss_table_size; i++)
    		lut[i] = i % rss_size;
    }
    
    /**
     * ice_pf_vsi_setup - Set up a PF VSI
     * @pf: board private structure
     * @pi: pointer to the port_info instance
     *
     * Returns pointer to the successfully allocated VSI sw struct on success,
     * otherwise returns NULL on failure.
     */
    static struct ice_vsi *
    ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
    {
    	return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID);
    }
    
    /**
     * ice_vlan_rx_add_vid - Add a vlan id filter to HW offload
     * @netdev: network interface to be adjusted
     * @proto: unused protocol
     * @vid: vlan id to be added
     *
     * net_device_ops implementation for adding vlan ids
     */
    static int ice_vlan_rx_add_vid(struct net_device *netdev,
    			       __always_unused __be16 proto, u16 vid)
    {
    	struct ice_netdev_priv *np = netdev_priv(netdev);
    	struct ice_vsi *vsi = np->vsi;
    	int ret;
    
    	if (vid >= VLAN_N_VID) {
    		netdev_err(netdev, "VLAN id requested %d is out of range %d\n",
    			   vid, VLAN_N_VID);
    		return -EINVAL;
    	}
    
    	if (vsi->info.pvid)
    		return -EINVAL;
    
    	/* Enable VLAN pruning when VLAN 0 is added */
    	if (unlikely(!vid)) {
    		ret = ice_cfg_vlan_pruning(vsi, true);
    		if (ret)
    			return ret;
    	}
    
    	/* Add all VLAN ids including 0 to the switch filter. VLAN id 0 is
    	 * needed to continue allowing all untagged packets since VLAN prune
    	 * list is applied to all packets by the switch
    	 */
    	ret = ice_vsi_add_vlan(vsi, vid);
    
    	if (!ret)
    		set_bit(vid, vsi->active_vlans);
    
    	return ret;
    }
    
    /**
     * ice_vlan_rx_kill_vid - Remove a vlan id filter from HW offload
     * @netdev: network interface to be adjusted
     * @proto: unused protocol
     * @vid: vlan id to be removed
     *
     * net_device_ops implementation for removing vlan ids
     */
    static int ice_vlan_rx_kill_vid(struct net_device *netdev,
    				__always_unused __be16 proto, u16 vid)
    {
    	struct ice_netdev_priv *np = netdev_priv(netdev);
    	struct ice_vsi *vsi = np->vsi;
    	int status;
    
    	if (vsi->info.pvid)
    		return -EINVAL;
    
    	/* Make sure ice_vsi_kill_vlan is successful before updating VLAN
    	 * information
    	 */
    	status = ice_vsi_kill_vlan(vsi, vid);
    	if (status)
    		return status;
    
    	clear_bit(vid, vsi->active_vlans);
    
    	/* Disable VLAN pruning when VLAN 0 is removed */
    	if (unlikely(!vid))
    		status = ice_cfg_vlan_pruning(vsi, false);
    
    	return status;
    }
    
    /**
     * ice_setup_pf_sw - Setup the HW switch on startup or after reset
     * @pf: board private structure
     *
     * Returns 0 on success, negative value on failure
     */
    static int ice_setup_pf_sw(struct ice_pf *pf)
    {
    	LIST_HEAD(tmp_add_list);
    	u8 broadcast[ETH_ALEN];
    	struct ice_vsi *vsi;
    	int status = 0;
    
    	if (ice_is_reset_in_progress(pf->state))
    		return -EBUSY;
    
    	vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
    	if (!vsi) {
    		status = -ENOMEM;
    		goto unroll_vsi_setup;
    	}
    
    	status = ice_cfg_netdev(vsi);
    	if (status) {
    		status = -ENODEV;
    		goto unroll_vsi_setup;
    	}
    
    	/* registering the NAPI handler requires both the queues and
    	 * netdev to be created, which are done in ice_pf_vsi_setup()
    	 * and ice_cfg_netdev() respectively
    	 */
    	ice_napi_add(vsi);
    
    	/* To add a MAC filter, first add the MAC to a list and then
    	 * pass the list to ice_add_mac.
    	 */
    
    	 /* Add a unicast MAC filter so the VSI can get its packets */
    	status = ice_add_mac_to_list(vsi, &tmp_add_list,
    				     vsi->port_info->mac.perm_addr);
    	if (status)
    		goto unroll_napi_add;
    
    	/* VSI needs to receive broadcast traffic, so add the broadcast
    	 * MAC address to the list as well.
    	 */
    	eth_broadcast_addr(broadcast);
    	status = ice_add_mac_to_list(vsi, &tmp_add_list, broadcast);
    	if (status)
    		goto free_mac_list;
    
    	/* program MAC filters for entries in tmp_add_list */
    	status = ice_add_mac(&pf->hw, &tmp_add_list);
    	if (status) {
    		dev_err(&pf->pdev->dev, "Could not add MAC filters\n");
    		status = -ENOMEM;
    		goto free_mac_list;
    	}
    
    	ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
    	return status;
    
    free_mac_list:
    	ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
    
    unroll_napi_add:
    	if (vsi) {
    		ice_napi_del(vsi);
    		if (vsi->netdev) {
    			if (vsi->netdev->reg_state == NETREG_REGISTERED)
    				unregister_netdev(vsi->netdev);
    			free_netdev(vsi->netdev);
    			vsi->netdev = NULL;
    		}
    	}
    
    unroll_vsi_setup:
    	if (vsi) {
    		ice_vsi_free_q_vectors(vsi);
    		ice_vsi_delete(vsi);
    		ice_vsi_put_qs(vsi);
    		pf->q_left_tx += vsi->alloc_txq;
    		pf->q_left_rx += vsi->alloc_rxq;
    		ice_vsi_clear(vsi);
    	}
    	return status;
    }
    
    /**
     * ice_determine_q_usage - Calculate queue distribution
     * @pf: board private structure
     *
     * Return -ENOMEM if we don't get enough queues for all ports
     */
    static void ice_determine_q_usage(struct ice_pf *pf)
    {
    	u16 q_left_tx, q_left_rx;
    
    	q_left_tx = pf->hw.func_caps.common_cap.num_txq;
    	q_left_rx = pf->hw.func_caps.common_cap.num_rxq;
    
    	pf->num_lan_tx = min_t(int, q_left_tx, num_online_cpus());
    
    	/* only 1 rx queue unless RSS is enabled */
    	if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags))
    		pf->num_lan_rx = 1;
    	else
    		pf->num_lan_rx = min_t(int, q_left_rx, num_online_cpus());
    
    	pf->q_left_tx = q_left_tx - pf->num_lan_tx;
    	pf->q_left_rx = q_left_rx - pf->num_lan_rx;
    }
    
    /**
     * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
     * @pf: board private structure to initialize
     */
    static void ice_deinit_pf(struct ice_pf *pf)
    {
    	ice_service_task_stop(pf);
    	mutex_destroy(&pf->sw_mutex);
    	mutex_destroy(&pf->avail_q_mutex);
    }
    
    /**
     * ice_init_pf - Initialize general software structures (struct ice_pf)
     * @pf: board private structure to initialize
     */
    static void ice_init_pf(struct ice_pf *pf)
    {
    	bitmap_zero(pf->flags, ICE_PF_FLAGS_NBITS);
    	set_bit(ICE_FLAG_MSIX_ENA, pf->flags);
    
    	mutex_init(&pf->sw_mutex);
    	mutex_init(&pf->avail_q_mutex);
    
    	/* Clear avail_[t|r]x_qs bitmaps (set all to avail) */
    	mutex_lock(&pf->avail_q_mutex);
    	bitmap_zero(pf->avail_txqs, ICE_MAX_TXQS);
    	bitmap_zero(pf->avail_rxqs, ICE_MAX_RXQS);
    	mutex_unlock(&pf->avail_q_mutex);
    
    	if (pf->hw.func_caps.common_cap.rss_table_size)
    		set_bit(ICE_FLAG_RSS_ENA, pf->flags);
    
    	/* setup service timer and periodic service task */
    	timer_setup(&pf->serv_tmr, ice_service_timer, 0);
    	pf->serv_tmr_period = HZ;
    	INIT_WORK(&pf->serv_task, ice_service_task);
    	clear_bit(__ICE_SERVICE_SCHED, pf->state);
    }
    
    /**
     * ice_ena_msix_range - Request a range of MSIX vectors from the OS
     * @pf: board private structure
     *
     * compute the number of MSIX vectors required (v_budget) and request from
     * the OS. Return the number of vectors reserved or negative on failure
     */
    static int ice_ena_msix_range(struct ice_pf *pf)
    {
    	int v_left, v_actual, v_budget = 0;
    	int needed, err, i;
    
    	v_left = pf->hw.func_caps.common_cap.num_msix_vectors;
    
    	/* reserve one vector for miscellaneous handler */
    	needed = 1;
    	v_budget += needed;
    	v_left -= needed;
    
    	/* reserve vectors for LAN traffic */
    	pf->num_lan_msix = min_t(int, num_online_cpus(), v_left);
    	v_budget += pf->num_lan_msix;
    	v_left -= pf->num_lan_msix;
    
    	pf->msix_entries = devm_kcalloc(&pf->pdev->dev, v_budget,
    					sizeof(struct msix_entry), GFP_KERNEL);
    
    	if (!pf->msix_entries) {
    		err = -ENOMEM;
    		goto exit_err;
    	}
    
    	for (i = 0; i < v_budget; i++)
    		pf->msix_entries[i].entry = i;
    
    	/* actually reserve the vectors */
    	v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries,
    					 ICE_MIN_MSIX, v_budget);
    
    	if (v_actual < 0) {
    		dev_err(&pf->pdev->dev, "unable to reserve MSI-X vectors\n");
    		err = v_actual;
    		goto msix_err;
    	}
    
    	if (v_actual < v_budget) {
    		dev_warn(&pf->pdev->dev,
    			 "not enough vectors. requested = %d, obtained = %d\n",
    			 v_budget, v_actual);
    		if (v_actual >= (pf->num_lan_msix + 1)) {
    			pf->num_avail_sw_msix = v_actual -
    						(pf->num_lan_msix + 1);
    		} else if (v_actual >= 2) {
    			pf->num_lan_msix = 1;
    			pf->num_avail_sw_msix = v_actual - 2;
    		} else {
    			pci_disable_msix(pf->pdev);
    			err = -ERANGE;
    			goto msix_err;
    		}
    	}
    
    	return v_actual;
    
    msix_err:
    	devm_kfree(&pf->pdev->dev, pf->msix_entries);
    	goto exit_err;
    
    exit_err:
    	pf->num_lan_msix = 0;
    	clear_bit(ICE_FLAG_MSIX_ENA, pf->flags);
    	return err;
    }
    
    /**
     * ice_dis_msix - Disable MSI-X interrupt setup in OS
     * @pf: board private structure
     */
    static void ice_dis_msix(struct ice_pf *pf)
    {
    	pci_disable_msix(pf->pdev);
    	devm_kfree(&pf->pdev->dev, pf->msix_entries);
    	pf->msix_entries = NULL;
    	clear_bit(ICE_FLAG_MSIX_ENA, pf->flags);
    }
    
    /**
     * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme
     * @pf: board private structure
     */
    static void ice_clear_interrupt_scheme(struct ice_pf *pf)
    {
    	if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags))
    		ice_dis_msix(pf);
    
    	if (pf->sw_irq_tracker) {
    		devm_kfree(&pf->pdev->dev, pf->sw_irq_tracker);
    		pf->sw_irq_tracker = NULL;
    	}
    
    	if (pf->hw_irq_tracker) {
    		devm_kfree(&pf->pdev->dev, pf->hw_irq_tracker);
    		pf->hw_irq_tracker = NULL;
    	}
    }
    
    /**
     * ice_init_interrupt_scheme - Determine proper interrupt scheme
     * @pf: board private structure to initialize
     */
    static int ice_init_interrupt_scheme(struct ice_pf *pf)
    {
    	int vectors = 0, hw_vectors = 0;
    	ssize_t size;
    
    	if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags))
    		vectors = ice_ena_msix_range(pf);
    	else
    		return -ENODEV;
    
    	if (vectors < 0)
    		return vectors;
    
    	/* set up vector assignment tracking */
    	size = sizeof(struct ice_res_tracker) + (sizeof(u16) * vectors);
    
    	pf->sw_irq_tracker = devm_kzalloc(&pf->pdev->dev, size, GFP_KERNEL);
    	if (!pf->sw_irq_tracker) {
    		ice_dis_msix(pf);
    		return -ENOMEM;
    	}
    
    	/* populate SW interrupts pool with number of OS granted IRQs. */
    	pf->num_avail_sw_msix = vectors;
    	pf->sw_irq_tracker->num_entries = vectors;
    
    	/* set up HW vector assignment tracking */
    	hw_vectors = pf->hw.func_caps.common_cap.num_msix_vectors;
    	size = sizeof(struct ice_res_tracker) + (sizeof(u16) * hw_vectors);
    
    	pf->hw_irq_tracker = devm_kzalloc(&pf->pdev->dev, size, GFP_KERNEL);
    	if (!pf->hw_irq_tracker) {
    		ice_clear_interrupt_scheme(pf);
    		return -ENOMEM;
    	}
    
    	/* populate HW interrupts pool with number of HW supported irqs. */
    	pf->num_avail_hw_msix = hw_vectors;
    	pf->hw_irq_tracker->num_entries = hw_vectors;
    
    	return 0;
    }
    
    /**
     * ice_probe - Device initialization routine
     * @pdev: PCI device information struct
     * @ent: entry in ice_pci_tbl
     *
     * Returns 0 on success, negative on failure
     */
    static int ice_probe(struct pci_dev *pdev,
    		     const struct pci_device_id __always_unused *ent)
    {
    	struct ice_pf *pf;
    	struct ice_hw *hw;
    	int err;
    
    	/* this driver uses devres, see Documentation/driver-model/devres.txt */
    	err = pcim_enable_device(pdev);
    	if (err)
    		return err;
    
    	err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), pci_name(pdev));
    	if (err) {
    		dev_err(&pdev->dev, "BAR0 I/O map error %d\n", err);
    		return err;
    	}
    
    	pf = devm_kzalloc(&pdev->dev, sizeof(*pf), GFP_KERNEL);
    	if (!pf)
    		return -ENOMEM;
    
    	/* set up for high or low dma */
    	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
    	if (err)
    		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
    	if (err) {
    		dev_err(&pdev->dev, "DMA configuration failed: 0x%x\n", err);
    		return err;
    	}
    
    	pci_enable_pcie_error_reporting(pdev);
    	pci_set_master(pdev);
    
    	pf->pdev = pdev;
    	pci_set_drvdata(pdev, pf);
    	set_bit(__ICE_DOWN, pf->state);
    	/* Disable service task until DOWN bit is cleared */
    	set_bit(__ICE_SERVICE_DIS, pf->state);
    
    	hw = &pf->hw;
    	hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
    	hw->back = pf;
    	hw->vendor_id = pdev->vendor;
    	hw->device_id = pdev->device;
    	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
    	hw->subsystem_vendor_id = pdev->subsystem_vendor;
    	hw->subsystem_device_id = pdev->subsystem_device;
    	hw->bus.device = PCI_SLOT(pdev->devfn);
    	hw->bus.func = PCI_FUNC(pdev->devfn);
    	ice_set_ctrlq_len(hw);
    
    	pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
    
    #ifndef CONFIG_DYNAMIC_DEBUG
    	if (debug < -1)
    		hw->debug_mask = debug;
    #endif
    
    	err = ice_init_hw(hw);
    	if (err) {
    		dev_err(&pdev->dev, "ice_init_hw failed: %d\n", err);
    		err = -EIO;
    		goto err_exit_unroll;
    	}
    
    	dev_info(&pdev->dev, "firmware %d.%d.%05d api %d.%d\n",
    		 hw->fw_maj_ver, hw->fw_min_ver, hw->fw_build,
    		 hw->api_maj_ver, hw->api_min_ver);
    
    	ice_init_pf(pf);
    
    	ice_determine_q_usage(pf);
    
    	pf->num_alloc_vsi = min_t(u16, ICE_MAX_VSI_ALLOC,
    				  hw->func_caps.guaranteed_num_vsi);
    	if (!pf->num_alloc_vsi) {
    		err = -EIO;
    		goto err_init_pf_unroll;
    	}
    
    	pf->vsi = devm_kcalloc(&pdev->dev, pf->num_alloc_vsi,
    			       sizeof(struct ice_vsi *), GFP_KERNEL);
    	if (!pf->vsi) {
    		err = -ENOMEM;
    		goto err_init_pf_unroll;
    	}
    
    	err = ice_init_interrupt_scheme(pf);
    	if (err) {
    		dev_err(&pdev->dev,
    			"ice_init_interrupt_scheme failed: %d\n", err);
    		err = -EIO;
    		goto err_init_interrupt_unroll;
    	}
    
    	/* Driver is mostly up */
    	clear_bit(__ICE_DOWN, pf->state);
    
    	/* In case of MSIX we are going to setup the misc vector right here
    	 * to handle admin queue events etc. In case of legacy and MSI
    	 * the misc functionality and queue processing is combined in
    	 * the same vector and that gets setup at open.
    	 */
    	if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) {
    		err = ice_req_irq_msix_misc(pf);
    		if (err) {
    			dev_err(&pdev->dev,
    				"setup of misc vector failed: %d\n", err);
    			goto err_init_interrupt_unroll;
    		}
    	}
    
    	/* create switch struct for the switch element created by FW on boot */
    	pf->first_sw = devm_kzalloc(&pdev->dev, sizeof(struct ice_sw),
    				    GFP_KERNEL);
    	if (!pf->first_sw) {
    		err = -ENOMEM;
    		goto err_msix_misc_unroll;
    	}
    
    	if (hw->evb_veb)
    		pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
    	else
    		pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
    
    	pf->first_sw->pf = pf;
    
    	/* record the sw_id available for later use */
    	pf->first_sw->sw_id = hw->port_info->sw_id;
    
    	err = ice_setup_pf_sw(pf);
    	if (err) {
    		dev_err(&pdev->dev,
    			"probe failed due to setup pf switch:%d\n", err);
    		goto err_alloc_sw_unroll;
    	}
    
    	clear_bit(__ICE_SERVICE_DIS, pf->state);
    
    	/* since everything is good, start the service timer */
    	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
    
    	err = ice_init_link_events(pf->hw.port_info);
    	if (err) {
    		dev_err(&pdev->dev, "ice_init_link_events failed: %d\n", err);
    		goto err_alloc_sw_unroll;
    	}
    
    	return 0;
    
    err_alloc_sw_unroll:
    	set_bit(__ICE_SERVICE_DIS, pf->state);
    	set_bit(__ICE_DOWN, pf->state);
    	devm_kfree(&pf->pdev->dev, pf->first_sw);
    err_msix_misc_unroll:
    	ice_free_irq_msix_misc(pf);
    err_init_interrupt_unroll:
    	ice_clear_interrupt_scheme(pf);
    	devm_kfree(&pdev->dev, pf->vsi);
    err_init_pf_unroll:
    	ice_deinit_pf(pf);
    	ice_deinit_hw(hw);
    err_exit_unroll:
    	pci_disable_pcie_error_reporting(pdev);
    	return err;
    }
    
    /**
     * ice_remove - Device removal routine
     * @pdev: PCI device information struct
     */
    static void ice_remove(struct pci_dev *pdev)
    {
    	struct ice_pf *pf = pci_get_drvdata(pdev);
    	int i;
    
    	if (!pf)
    		return;
    
    	set_bit(__ICE_DOWN, pf->state);
    	ice_service_task_stop(pf);
    
    	ice_vsi_release_all(pf);
    	ice_free_irq_msix_misc(pf);
    	ice_for_each_vsi(pf, i) {
    		if (!pf->vsi[i])
    			continue;
    		ice_vsi_free_q_vectors(pf->vsi[i]);
    	}
    	ice_clear_interrupt_scheme(pf);
    	ice_deinit_pf(pf);
    	ice_deinit_hw(&pf->hw);
    	pci_disable_pcie_error_reporting(pdev);
    }
    
    /* ice_pci_tbl - PCI Device ID Table
     *
     * Wildcard entries (PCI_ANY_ID) should come last
     * Last entry must be all 0s
     *
     * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
     *   Class, Class Mask, private data (not used) }
     */
    static const struct pci_device_id ice_pci_tbl[] = {
    	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_C810_BACKPLANE), 0 },
    	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_C810_QSFP), 0 },
    	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_C810_SFP), 0 },
    	/* required last entry */
    	{ 0, }
    };
    MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
    
    static struct pci_driver ice_driver = {
    	.name = KBUILD_MODNAME,
    	.id_table = ice_pci_tbl,
    	.probe = ice_probe,
    	.remove = ice_remove,
    };
    
    /**
     * ice_module_init - Driver registration routine
     *
     * ice_module_init is the first routine called when the driver is
     * loaded. All it does is register with the PCI subsystem.
     */
    static int __init ice_module_init(void)
    {
    	int status;
    
    	pr_info("%s - version %s\n", ice_driver_string, ice_drv_ver);
    	pr_info("%s\n", ice_copyright);
    
    	ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME);
    	if (!ice_wq) {
    		pr_err("Failed to create workqueue\n");
    		return -ENOMEM;
    	}
    
    	status = pci_register_driver(&ice_driver);
    	if (status) {
    		pr_err("failed to register pci driver, err %d\n", status);
    		destroy_workqueue(ice_wq);
    	}
    
    	return status;
    }
    module_init(ice_module_init);
    
    /**
     * ice_module_exit - Driver exit cleanup routine
     *
     * ice_module_exit is called just before the driver is removed
     * from memory.
     */
    static void __exit ice_module_exit(void)
    {
    	pci_unregister_driver(&ice_driver);
    	destroy_workqueue(ice_wq);
    	pr_info("module unloaded\n");
    }
    module_exit(ice_module_exit);
    
    /**
     * ice_set_mac_address - NDO callback to set mac address
     * @netdev: network interface device structure
     * @pi: pointer to an address structure
     *
     * Returns 0 on success, negative on failure
     */
    static int ice_set_mac_address(struct net_device *netdev, void *pi)
    {
    	struct ice_netdev_priv *np = netdev_priv(netdev);
    	struct ice_vsi *vsi = np->vsi;
    	struct ice_pf *pf = vsi->back;
    	struct ice_hw *hw = &pf->hw;
    	struct sockaddr *addr = pi;
    	enum ice_status status;
    	LIST_HEAD(a_mac_list);
    	LIST_HEAD(r_mac_list);
    	u8 flags = 0;
    	int err;
    	u8 *mac;
    
    	mac = (u8 *)addr->sa_data;
    
    	if (!is_valid_ether_addr(mac))
    		return -EADDRNOTAVAIL;
    
    	if (ether_addr_equal(netdev->dev_addr, mac)) {
    		netdev_warn(netdev, "already using mac %pM\n", mac);
    		return 0;
    	}
    
    	if (test_bit(__ICE_DOWN, pf->state) ||
    	    ice_is_reset_in_progress(pf->state)) {
    		netdev_err(netdev, "can't set mac %pM. device not ready\n",
    			   mac);
    		return -EBUSY;
    	}
    
    	/* When we change the mac address we also have to change the mac address
    	 * based filter rules that were created previously for the old mac
    	 * address. So first, we remove the old filter rule using ice_remove_mac
    	 * and then create a new filter rule using ice_add_mac. Note that for
    	 * both these operations, we first need to form a "list" of mac
    	 * addresses (even though in this case, we have only 1 mac address to be
    	 * added/removed) and this done using ice_add_mac_to_list. Depending on
    	 * the ensuing operation this "list" of mac addresses is either to be
    	 * added or removed from the filter.
    	 */
    	err = ice_add_mac_to_list(vsi, &r_mac_list, netdev->dev_addr);
    	if (err) {
    		err = -EADDRNOTAVAIL;
    		goto free_lists;
    	}
    
    	status = ice_remove_mac(hw, &r_mac_list);
    	if (status) {
    		err = -EADDRNOTAVAIL;
    		goto free_lists;
    	}
    
    	err = ice_add_mac_to_list(vsi, &a_mac_list, mac);
    	if (err) {
    		err = -EADDRNOTAVAIL;
    		goto free_lists;
    	}
    
    	status = ice_add_mac(hw, &a_mac_list);
    	if (status) {
    		err = -EADDRNOTAVAIL;
    		goto free_lists;
    	}
    
    free_lists:
    	/* free list entries */
    	ice_free_fltr_list(&pf->pdev->dev, &r_mac_list);
    	ice_free_fltr_list(&pf->pdev->dev, &a_mac_list);
    
    	if (err) {
    		netdev_err(netdev, "can't set mac %pM. filter update failed\n",
    			   mac);
    		return err;
    	}
    
    	/* change the netdev's mac address */
    	memcpy(netdev->dev_addr, mac, netdev->addr_len);
    	netdev_dbg(vsi->netdev, "updated mac address to %pM\n",
    		   netdev->dev_addr);
    
    	/* write new mac address to the firmware */
    	flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
    	status = ice_aq_manage_mac_write(hw, mac, flags, NULL);
    	if (status) {
    		netdev_err(netdev, "can't set mac %pM. write to firmware failed.\n",
    			   mac);
    	}
    	return 0;
    }
    
    /**
     * ice_set_rx_mode - NDO callback to set the netdev filters
     * @netdev: network interface device structure
     */
    static void ice_set_rx_mode(struct net_device *netdev)
    {
    	struct ice_netdev_priv *np = netdev_priv(netdev);
    	struct ice_vsi *vsi = np->vsi;
    
    	if (!vsi)
    		return;
    
    	/* Set the flags to synchronize filters
    	 * ndo_set_rx_mode may be triggered even without a change in netdev
    	 * flags
    	 */
    	set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
    	set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
    	set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
    
    	/* schedule our worker thread which will take care of
    	 * applying the new filter changes
    	 */
    	ice_service_task_schedule(vsi->back);
    }
    
    /**
     * ice_fdb_add - add an entry to the hardware database
     * @ndm: the input from the stack
     * @tb: pointer to array of nladdr (unused)
     * @dev: the net device pointer
     * @addr: the MAC address entry being added
     * @vid: VLAN id
     * @flags: instructions from stack about fdb operation
     */
    static int ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
    		       struct net_device *dev, const unsigned char *addr,
    		       u16 vid, u16 flags)
    {
    	int err;
    
    	if (vid) {
    		netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
    		return -EINVAL;
    	}
    	if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
    		netdev_err(dev, "FDB only supports static addresses\n");
    		return -EINVAL;
    	}
    
    	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
    		err = dev_uc_add_excl(dev, addr);
    	else if (is_multicast_ether_addr(addr))
    		err = dev_mc_add_excl(dev, addr);
    	else
    		err = -EINVAL;
    
    	/* Only return duplicate errors if NLM_F_EXCL is set */
    	if (err == -EEXIST && !(flags & NLM_F_EXCL))
    		err = 0;
    
    	return err;
    }
    
    /**
     * ice_fdb_del - delete an entry from the hardware database
     * @ndm: the input from the stack
     * @tb: pointer to array of nladdr (unused)
     * @dev: the net device pointer
     * @addr: the MAC address entry being added
     * @vid: VLAN id
     */
    static int ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
    		       struct net_device *dev, const unsigned char *addr,
    		       __always_unused u16 vid)
    {
    	int err;
    
    	if (ndm->ndm_state & NUD_PERMANENT) {
    		netdev_err(dev, "FDB only supports static addresses\n");
    		return -EINVAL;
    	}
    
    	if (is_unicast_ether_addr(addr))
    		err = dev_uc_del(dev, addr);
    	else if (is_multicast_ether_addr(addr))
    		err = dev_mc_del(dev, addr);
    	else
    		err = -EINVAL;
    
    	return err;
    }
    
    /**
     * ice_set_features - set the netdev feature flags
     * @netdev: ptr to the netdev being adjusted
     * @features: the feature set that the stack is suggesting
     */
    static int ice_set_features(struct net_device *netdev,
    			    netdev_features_t features)
    {
    	struct ice_netdev_priv *np = netdev_priv(netdev);
    	struct ice_vsi *vsi = np->vsi;
    	int ret = 0;
    
    	if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH))
    		ret = ice_vsi_manage_rss_lut(vsi, true);
    	else if (!(features & NETIF_F_RXHASH) &&
    		 netdev->features & NETIF_F_RXHASH)
    		ret = ice_vsi_manage_rss_lut(vsi, false);
    
    	if ((features & NETIF_F_HW_VLAN_CTAG_RX) &&
    	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
    		ret = ice_vsi_manage_vlan_stripping(vsi, true);
    	else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) &&
    		 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
    		ret = ice_vsi_manage_vlan_stripping(vsi, false);
    	else if ((features & NETIF_F_HW_VLAN_CTAG_TX) &&
    		 !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
    		ret = ice_vsi_manage_vlan_insertion(vsi);
    	else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) &&
    		 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
    		ret = ice_vsi_manage_vlan_insertion(vsi);
    
    	return ret;
    }
    
    /**
     * ice_vsi_vlan_setup - Setup vlan offload properties on a VSI
     * @vsi: VSI to setup vlan properties for
     */
    static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
    {
    	int ret = 0;
    
    	if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
    		ret = ice_vsi_manage_vlan_stripping(vsi, true);
    	if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)
    		ret = ice_vsi_manage_vlan_insertion(vsi);
    
    	return ret;
    }
    
    /**
     * ice_restore_vlan - Reinstate VLANs when vsi/netdev comes back up
     * @vsi: the VSI being brought back up
     */
    static int ice_restore_vlan(struct ice_vsi *vsi)
    {
    	int err;
    	u16 vid;
    
    	if (!vsi->netdev)
    		return -EINVAL;
    
    	err = ice_vsi_vlan_setup(vsi);
    	if (err)
    		return err;
    
    	for_each_set_bit(vid, vsi->active_vlans, VLAN_N_VID) {
    		err = ice_vlan_rx_add_vid(vsi->netdev, htons(ETH_P_8021Q), vid);
    		if (err)
    			break;
    	}
    
    	return err;
    }
    
    /**
     * ice_vsi_cfg - Setup the VSI
     * @vsi: the VSI being configured
     *
     * Return 0 on success and negative value on error
     */
    static int ice_vsi_cfg(struct ice_vsi *vsi)
    {
    	int err;
    
    	if (vsi->netdev) {
    		ice_set_rx_mode(vsi->netdev);
    		err = ice_restore_vlan(vsi);
    		if (err)
    			return err;
    	}
    
    	err = ice_vsi_cfg_txqs(vsi);
    	if (!err)
    		err = ice_vsi_cfg_rxqs(vsi);
    
    	return err;
    }
    
    /**
     * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
     * @vsi: the VSI being configured
     */
    static void ice_napi_enable_all(struct ice_vsi *vsi)
    {
    	int q_idx;
    
    	if (!vsi->netdev)
    		return;
    
    	for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++)
    		napi_enable(&vsi->q_vectors[q_idx]->napi);
    }
    
    /**
     * ice_up_complete - Finish the last steps of bringing up a connection
     * @vsi: The VSI being configured
     *
     * Return 0 on success and negative value on error
     */
    static int ice_up_complete(struct ice_vsi *vsi)
    {
    	struct ice_pf *pf = vsi->back;
    	int err;
    
    	if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags))
    		ice_vsi_cfg_msix(vsi);
    	else
    		return -ENOTSUPP;
    
    	/* Enable only Rx rings, Tx rings were enabled by the FW when the
    	 * Tx queue group list was configured and the context bits were
    	 * programmed using ice_vsi_cfg_txqs
    	 */
    	err = ice_vsi_start_rx_rings(vsi);
    	if (err)
    		return err;
    
    	clear_bit(__ICE_DOWN, vsi->state);
    	ice_napi_enable_all(vsi);
    	ice_vsi_ena_irq(vsi);
    
    	if (vsi->port_info &&
    	    (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
    	    vsi->netdev) {
    		ice_print_link_msg(vsi, true);
    		netif_tx_start_all_queues(vsi->netdev);
    		netif_carrier_on(vsi->netdev);
    	}
    
    	ice_service_task_schedule(pf);
    
    	return err;
    }
    
    /**
     * ice_up - Bring the connection back up after being down
     * @vsi: VSI being configured
     */
    int ice_up(struct ice_vsi *vsi)
    {
    	int err;
    
    	err = ice_vsi_cfg(vsi);
    	if (!err)
    		err = ice_up_complete(vsi);
    
    	return err;
    }
    
    /**
     * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
     * @ring: Tx or Rx ring to read stats from
     * @pkts: packets stats counter
     * @bytes: bytes stats counter
     *
     * This function fetches stats from the ring considering the atomic operations
     * that needs to be performed to read u64 values in 32 bit machine.
     */
    static void ice_fetch_u64_stats_per_ring(struct ice_ring *ring, u64 *pkts,
    					 u64 *bytes)
    {
    	unsigned int start;
    	*pkts = 0;
    	*bytes = 0;
    
    	if (!ring)
    		return;
    	do {
    		start = u64_stats_fetch_begin_irq(&ring->syncp);
    		*pkts = ring->stats.pkts;
    		*bytes = ring->stats.bytes;
    	} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
    }
    
    /**
     * ice_update_vsi_ring_stats - Update VSI stats counters
     * @vsi: the VSI to be updated
     */
    static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
    {
    	struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats;
    	struct ice_ring *ring;
    	u64 pkts, bytes;
    	int i;
    
    	/* reset netdev stats */
    	vsi_stats->tx_packets = 0;
    	vsi_stats->tx_bytes = 0;
    	vsi_stats->rx_packets = 0;
    	vsi_stats->rx_bytes = 0;
    
    	/* reset non-netdev (extended) stats */
    	vsi->tx_restart = 0;
    	vsi->tx_busy = 0;
    	vsi->tx_linearize = 0;
    	vsi->rx_buf_failed = 0;
    	vsi->rx_page_failed = 0;
    
    	rcu_read_lock();
    
    	/* update Tx rings counters */
    	ice_for_each_txq(vsi, i) {
    		ring = READ_ONCE(vsi->tx_rings[i]);
    		ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
    		vsi_stats->tx_packets += pkts;
    		vsi_stats->tx_bytes += bytes;
    		vsi->tx_restart += ring->tx_stats.restart_q;
    		vsi->tx_busy += ring->tx_stats.tx_busy;
    		vsi->tx_linearize += ring->tx_stats.tx_linearize;
    	}
    
    	/* update Rx rings counters */
    	ice_for_each_rxq(vsi, i) {
    		ring = READ_ONCE(vsi->rx_rings[i]);
    		ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
    		vsi_stats->rx_packets += pkts;
    		vsi_stats->rx_bytes += bytes;
    		vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed;
    		vsi->rx_page_failed += ring->rx_stats.alloc_page_failed;
    	}
    
    	rcu_read_unlock();
    }
    
    /**
     * ice_update_vsi_stats - Update VSI stats counters
     * @vsi: the VSI to be updated
     */
    static void ice_update_vsi_stats(struct ice_vsi *vsi)
    {
    	struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
    	struct ice_eth_stats *cur_es = &vsi->eth_stats;
    	struct ice_pf *pf = vsi->back;
    
    	if (test_bit(__ICE_DOWN, vsi->state) ||
    	    test_bit(__ICE_CFG_BUSY, pf->state))
    		return;
    
    	/* get stats as recorded by Tx/Rx rings */
    	ice_update_vsi_ring_stats(vsi);
    
    	/* get VSI stats as recorded by the hardware */
    	ice_update_eth_stats(vsi);
    
    	cur_ns->tx_errors = cur_es->tx_errors;
    	cur_ns->rx_dropped = cur_es->rx_discards;
    	cur_ns->tx_dropped = cur_es->tx_discards;
    	cur_ns->multicast = cur_es->rx_multicast;
    
    	/* update some more netdev stats if this is main VSI */
    	if (vsi->type == ICE_VSI_PF) {
    		cur_ns->rx_crc_errors = pf->stats.crc_errors;
    		cur_ns->rx_errors = pf->stats.crc_errors +
    				    pf->stats.illegal_bytes;
    		cur_ns->rx_length_errors = pf->stats.rx_len_errors;
    	}
    }
    
    /**
     * ice_update_pf_stats - Update PF port stats counters
     * @pf: PF whose stats needs to be updated
     */
    static void ice_update_pf_stats(struct ice_pf *pf)
    {
    	struct ice_hw_port_stats *prev_ps, *cur_ps;
    	struct ice_hw *hw = &pf->hw;
    	u8 pf_id;
    
    	prev_ps = &pf->stats_prev;
    	cur_ps = &pf->stats;
    	pf_id = hw->pf_id;
    
    	ice_stat_update40(hw, GLPRT_GORCH(pf_id), GLPRT_GORCL(pf_id),
    			  pf->stat_prev_loaded, &prev_ps->eth.rx_bytes,
    			  &cur_ps->eth.rx_bytes);
    
    	ice_stat_update40(hw, GLPRT_UPRCH(pf_id), GLPRT_UPRCL(pf_id),
    			  pf->stat_prev_loaded, &prev_ps->eth.rx_unicast,
    			  &cur_ps->eth.rx_unicast);
    
    	ice_stat_update40(hw, GLPRT_MPRCH(pf_id), GLPRT_MPRCL(pf_id),
    			  pf->stat_prev_loaded, &prev_ps->eth.rx_multicast,
    			  &cur_ps->eth.rx_multicast);
    
    	ice_stat_update40(hw, GLPRT_BPRCH(pf_id), GLPRT_BPRCL(pf_id),
    			  pf->stat_prev_loaded, &prev_ps->eth.rx_broadcast,
    			  &cur_ps->eth.rx_broadcast);
    
    	ice_stat_update40(hw, GLPRT_GOTCH(pf_id), GLPRT_GOTCL(pf_id),
    			  pf->stat_prev_loaded, &prev_ps->eth.tx_bytes,
    			  &cur_ps->eth.tx_bytes);
    
    	ice_stat_update40(hw, GLPRT_UPTCH(pf_id), GLPRT_UPTCL(pf_id),
    			  pf->stat_prev_loaded, &prev_ps->eth.tx_unicast,
    			  &cur_ps->eth.tx_unicast);
    
    	ice_stat_update40(hw, GLPRT_MPTCH(pf_id), GLPRT_MPTCL(pf_id),
    			  pf->stat_prev_loaded, &prev_ps->eth.tx_multicast,
    			  &cur_ps->eth.tx_multicast);
    
    	ice_stat_update40(hw, GLPRT_BPTCH(pf_id), GLPRT_BPTCL(pf_id),
    			  pf->stat_prev_loaded, &prev_ps->eth.tx_broadcast,
    			  &cur_ps->eth.tx_broadcast);
    
    	ice_stat_update32(hw, GLPRT_TDOLD(pf_id), pf->stat_prev_loaded,
    			  &prev_ps->tx_dropped_link_down,
    			  &cur_ps->tx_dropped_link_down);
    
    	ice_stat_update40(hw, GLPRT_PRC64H(pf_id), GLPRT_PRC64L(pf_id),
    			  pf->stat_prev_loaded, &prev_ps->rx_size_64,
    			  &cur_ps->rx_size_64);
    
    	ice_stat_update40(hw, GLPRT_PRC127H(pf_id), GLPRT_PRC127L(pf_id),
    			  pf->stat_prev_loaded, &prev_ps->rx_size_127,
    			  &cur_ps->rx_size_127);
    
    	ice_stat_update40(hw, GLPRT_PRC255H(pf_id), GLPRT_PRC255L(pf_id),
    			  pf->stat_prev_loaded, &prev_ps->rx_size_255,
    			  &cur_ps->rx_size_255);
    
    	ice_stat_update40(hw, GLPRT_PRC511H(pf_id), GLPRT_PRC511L(pf_id),
    			  pf->stat_prev_loaded, &prev_ps->rx_size_511,
    			  &cur_ps->rx_size_511);
    
    	ice_stat_update40(hw, GLPRT_PRC1023H(pf_id),
    			  GLPRT_PRC1023L(pf_id), pf->stat_prev_loaded,
    			  &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
    
    	ice_stat_update40(hw, GLPRT_PRC1522H(pf_id),
    			  GLPRT_PRC1522L(pf_id), pf->stat_prev_loaded,
    			  &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
    
    	ice_stat_update40(hw, GLPRT_PRC9522H(pf_id),
    			  GLPRT_PRC9522L(pf_id), pf->stat_prev_loaded,
    			  &prev_ps->rx_size_big, &cur_ps->rx_size_big);
    
    	ice_stat_update40(hw, GLPRT_PTC64H(pf_id), GLPRT_PTC64L(pf_id),
    			  pf->stat_prev_loaded, &prev_ps->tx_size_64,
    			  &cur_ps->tx_size_64);
    
    	ice_stat_update40(hw, GLPRT_PTC127H(pf_id), GLPRT_PTC127L(pf_id),
    			  pf->stat_prev_loaded, &prev_ps->tx_size_127,
    			  &cur_ps->tx_size_127);
    
    	ice_stat_update40(hw, GLPRT_PTC255H(pf_id), GLPRT_PTC255L(pf_id),
    			  pf->stat_prev_loaded, &prev_ps->tx_size_255,
    			  &cur_ps->tx_size_255);
    
    	ice_stat_update40(hw, GLPRT_PTC511H(pf_id), GLPRT_PTC511L(pf_id),
    			  pf->stat_prev_loaded, &prev_ps->tx_size_511,
    			  &cur_ps->tx_size_511);
    
    	ice_stat_update40(hw, GLPRT_PTC1023H(pf_id),
    			  GLPRT_PTC1023L(pf_id), pf->stat_prev_loaded,
    			  &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
    
    	ice_stat_update40(hw, GLPRT_PTC1522H(pf_id),
    			  GLPRT_PTC1522L(pf_id), pf->stat_prev_loaded,
    			  &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
    
    	ice_stat_update40(hw, GLPRT_PTC9522H(pf_id),
    			  GLPRT_PTC9522L(pf_id), pf->stat_prev_loaded,
    			  &prev_ps->tx_size_big, &cur_ps->tx_size_big);
    
    	ice_stat_update32(hw, GLPRT_LXONRXC(pf_id), pf->stat_prev_loaded,
    			  &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
    
    	ice_stat_update32(hw, GLPRT_LXOFFRXC(pf_id), pf->stat_prev_loaded,
    			  &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
    
    	ice_stat_update32(hw, GLPRT_LXONTXC(pf_id), pf->stat_prev_loaded,
    			  &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
    
    	ice_stat_update32(hw, GLPRT_LXOFFTXC(pf_id), pf->stat_prev_loaded,
    			  &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
    
    	ice_stat_update32(hw, GLPRT_CRCERRS(pf_id), pf->stat_prev_loaded,
    			  &prev_ps->crc_errors, &cur_ps->crc_errors);
    
    	ice_stat_update32(hw, GLPRT_ILLERRC(pf_id), pf->stat_prev_loaded,
    			  &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
    
    	ice_stat_update32(hw, GLPRT_MLFC(pf_id), pf->stat_prev_loaded,
    			  &prev_ps->mac_local_faults,
    			  &cur_ps->mac_local_faults);
    
    	ice_stat_update32(hw, GLPRT_MRFC(pf_id), pf->stat_prev_loaded,
    			  &prev_ps->mac_remote_faults,
    			  &cur_ps->mac_remote_faults);
    
    	ice_stat_update32(hw, GLPRT_RLEC(pf_id), pf->stat_prev_loaded,
    			  &prev_ps->rx_len_errors, &cur_ps->rx_len_errors);
    
    	ice_stat_update32(hw, GLPRT_RUC(pf_id), pf->stat_prev_loaded,
    			  &prev_ps->rx_undersize, &cur_ps->rx_undersize);
    
    	ice_stat_update32(hw, GLPRT_RFC(pf_id), pf->stat_prev_loaded,
    			  &prev_ps->rx_fragments, &cur_ps->rx_fragments);
    
    	ice_stat_update32(hw, GLPRT_ROC(pf_id), pf->stat_prev_loaded,
    			  &prev_ps->rx_oversize, &cur_ps->rx_oversize);
    
    	ice_stat_update32(hw, GLPRT_RJC(pf_id), pf->stat_prev_loaded,
    			  &prev_ps->rx_jabber, &cur_ps->rx_jabber);
    
    	pf->stat_prev_loaded = true;
    }
    
    /**
     * ice_get_stats64 - get statistics for network device structure
     * @netdev: network interface device structure
     * @stats: main device statistics structure
     */
    static
    void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
    {
    	struct ice_netdev_priv *np = netdev_priv(netdev);
    	struct rtnl_link_stats64 *vsi_stats;
    	struct ice_vsi *vsi = np->vsi;
    
    	vsi_stats = &vsi->net_stats;
    
    	if (test_bit(__ICE_DOWN, vsi->state) || !vsi->num_txq || !vsi->num_rxq)
    		return;
    	/* netdev packet/byte stats come from ring counter. These are obtained
    	 * by summing up ring counters (done by ice_update_vsi_ring_stats).
    	 */
    	ice_update_vsi_ring_stats(vsi);
    	stats->tx_packets = vsi_stats->tx_packets;
    	stats->tx_bytes = vsi_stats->tx_bytes;
    	stats->rx_packets = vsi_stats->rx_packets;
    	stats->rx_bytes = vsi_stats->rx_bytes;
    
    	/* The rest of the stats can be read from the hardware but instead we
    	 * just return values that the watchdog task has already obtained from
    	 * the hardware.
    	 */
    	stats->multicast = vsi_stats->multicast;
    	stats->tx_errors = vsi_stats->tx_errors;
    	stats->tx_dropped = vsi_stats->tx_dropped;
    	stats->rx_errors = vsi_stats->rx_errors;
    	stats->rx_dropped = vsi_stats->rx_dropped;
    	stats->rx_crc_errors = vsi_stats->rx_crc_errors;
    	stats->rx_length_errors = vsi_stats->rx_length_errors;
    }
    
    /**
     * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
     * @vsi: VSI having NAPI disabled
     */
    static void ice_napi_disable_all(struct ice_vsi *vsi)
    {
    	int q_idx;
    
    	if (!vsi->netdev)
    		return;
    
    	for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++)
    		napi_disable(&vsi->q_vectors[q_idx]->napi);
    }
    
    /**
     * ice_down - Shutdown the connection
     * @vsi: The VSI being stopped
     */
    int ice_down(struct ice_vsi *vsi)
    {
    	int i, tx_err, rx_err;
    
    	/* Caller of this function is expected to set the
    	 * vsi->state __ICE_DOWN bit
    	 */
    	if (vsi->netdev) {
    		netif_carrier_off(vsi->netdev);
    		netif_tx_disable(vsi->netdev);
    	}
    
    	ice_vsi_dis_irq(vsi);
    	tx_err = ice_vsi_stop_tx_rings(vsi);
    	if (tx_err)
    		netdev_err(vsi->netdev,
    			   "Failed stop Tx rings, VSI %d error %d\n",
    			   vsi->vsi_num, tx_err);
    
    	rx_err = ice_vsi_stop_rx_rings(vsi);
    	if (rx_err)
    		netdev_err(vsi->netdev,
    			   "Failed stop Rx rings, VSI %d error %d\n",
    			   vsi->vsi_num, rx_err);
    
    	ice_napi_disable_all(vsi);
    
    	ice_for_each_txq(vsi, i)
    		ice_clean_tx_ring(vsi->tx_rings[i]);
    
    	ice_for_each_rxq(vsi, i)
    		ice_clean_rx_ring(vsi->rx_rings[i]);
    
    	if (tx_err || rx_err) {
    		netdev_err(vsi->netdev,
    			   "Failed to close VSI 0x%04X on switch 0x%04X\n",
    			   vsi->vsi_num, vsi->vsw->sw_id);
    		return -EIO;
    	}
    
    	return 0;
    }
    
    /**
     * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
     * @vsi: VSI having resources allocated
     *
     * Return 0 on success, negative on failure
     */
    static int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
    {
    	int i, err = 0;
    
    	if (!vsi->num_txq) {
    		dev_err(&vsi->back->pdev->dev, "VSI %d has 0 Tx queues\n",
    			vsi->vsi_num);
    		return -EINVAL;
    	}
    
    	ice_for_each_txq(vsi, i) {
    		vsi->tx_rings[i]->netdev = vsi->netdev;
    		err = ice_setup_tx_ring(vsi->tx_rings[i]);
    		if (err)
    			break;
    	}
    
    	return err;
    }
    
    /**
     * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
     * @vsi: VSI having resources allocated
     *
     * Return 0 on success, negative on failure
     */
    static int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
    {
    	int i, err = 0;
    
    	if (!vsi->num_rxq) {
    		dev_err(&vsi->back->pdev->dev, "VSI %d has 0 Rx queues\n",
    			vsi->vsi_num);
    		return -EINVAL;
    	}
    
    	ice_for_each_rxq(vsi, i) {
    		vsi->rx_rings[i]->netdev = vsi->netdev;
    		err = ice_setup_rx_ring(vsi->rx_rings[i]);
    		if (err)
    			break;
    	}
    
    	return err;
    }
    
    /**
     * ice_vsi_req_irq - Request IRQ from the OS
     * @vsi: The VSI IRQ is being requested for
     * @basename: name for the vector
     *
     * Return 0 on success and a negative value on error
     */
    static int ice_vsi_req_irq(struct ice_vsi *vsi, char *basename)
    {
    	struct ice_pf *pf = vsi->back;
    	int err = -EINVAL;
    
    	if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags))
    		err = ice_vsi_req_irq_msix(vsi, basename);
    
    	return err;
    }
    
    /**
     * ice_vsi_open - Called when a network interface is made active
     * @vsi: the VSI to open
     *
     * Initialization of the VSI
     *
     * Returns 0 on success, negative value on error
     */
    static int ice_vsi_open(struct ice_vsi *vsi)
    {
    	char int_name[ICE_INT_NAME_STR_LEN];
    	struct ice_pf *pf = vsi->back;
    	int err;
    
    	/* allocate descriptors */
    	err = ice_vsi_setup_tx_rings(vsi);
    	if (err)
    		goto err_setup_tx;
    
    	err = ice_vsi_setup_rx_rings(vsi);
    	if (err)
    		goto err_setup_rx;
    
    	err = ice_vsi_cfg(vsi);
    	if (err)
    		goto err_setup_rx;
    
    	snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
    		 dev_driver_string(&pf->pdev->dev), vsi->netdev->name);
    	err = ice_vsi_req_irq(vsi, int_name);
    	if (err)
    		goto err_setup_rx;
    
    	/* Notify the stack of the actual queue counts. */
    	err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
    	if (err)
    		goto err_set_qs;
    
    	err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
    	if (err)
    		goto err_set_qs;
    
    	err = ice_up_complete(vsi);
    	if (err)
    		goto err_up_complete;
    
    	return 0;
    
    err_up_complete:
    	ice_down(vsi);
    err_set_qs:
    	ice_vsi_free_irq(vsi);
    err_setup_rx:
    	ice_vsi_free_rx_rings(vsi);
    err_setup_tx:
    	ice_vsi_free_tx_rings(vsi);
    
    	return err;
    }
    
    /**
     * ice_vsi_release_all - Delete all VSIs
     * @pf: PF from which all VSIs are being removed
     */
    static void ice_vsi_release_all(struct ice_pf *pf)
    {
    	int err, i;
    
    	if (!pf->vsi)
    		return;
    
    	for (i = 0; i < pf->num_alloc_vsi; i++) {
    		if (!pf->vsi[i])
    			continue;
    
    		err = ice_vsi_release(pf->vsi[i]);
    		if (err)
    			dev_dbg(&pf->pdev->dev,
    				"Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
    				i, err, pf->vsi[i]->vsi_num);
    	}
    }
    
    /**
     * ice_dis_vsi - pause a VSI
     * @vsi: the VSI being paused
     */
    static void ice_dis_vsi(struct ice_vsi *vsi)
    {
    	if (test_bit(__ICE_DOWN, vsi->state))
    		return;
    
    	set_bit(__ICE_NEEDS_RESTART, vsi->state);
    
    	if (vsi->netdev && netif_running(vsi->netdev) &&
    	    vsi->type == ICE_VSI_PF) {
    		rtnl_lock();
    		vsi->netdev->netdev_ops->ndo_stop(vsi->netdev);
    		rtnl_unlock();
    	} else {
    		ice_vsi_close(vsi);
    	}
    }
    
    /**
     * ice_ena_vsi - resume a VSI
     * @vsi: the VSI being resume
     */
    static int ice_ena_vsi(struct ice_vsi *vsi)
    {
    	int err = 0;
    
    	if (test_and_clear_bit(__ICE_NEEDS_RESTART, vsi->state))
    		if (vsi->netdev && netif_running(vsi->netdev)) {
    			rtnl_lock();
    			err = vsi->netdev->netdev_ops->ndo_open(vsi->netdev);
    			rtnl_unlock();
    		}
    
    	return err;
    }
    
    /**
     * ice_pf_dis_all_vsi - Pause all VSIs on a PF
     * @pf: the PF
     */
    static void ice_pf_dis_all_vsi(struct ice_pf *pf)
    {
    	int v;
    
    	ice_for_each_vsi(pf, v)
    		if (pf->vsi[v])
    			ice_dis_vsi(pf->vsi[v]);
    }
    
    /**
     * ice_pf_ena_all_vsi - Resume all VSIs on a PF
     * @pf: the PF
     */
    static int ice_pf_ena_all_vsi(struct ice_pf *pf)
    {
    	int v;
    
    	ice_for_each_vsi(pf, v)
    		if (pf->vsi[v])
    			if (ice_ena_vsi(pf->vsi[v]))
    				return -EIO;
    
    	return 0;
    }
    
    /**
     * ice_vsi_rebuild_all - rebuild all VSIs in pf
     * @pf: the PF
     */
    static int ice_vsi_rebuild_all(struct ice_pf *pf)
    {
    	int i;
    
    	/* loop through pf->vsi array and reinit the VSI if found */
    	for (i = 0; i < pf->num_alloc_vsi; i++) {
    		int err;
    
    		if (!pf->vsi[i])
    			continue;
    
    		err = ice_vsi_rebuild(pf->vsi[i]);
    		if (err) {
    			dev_err(&pf->pdev->dev,
    				"VSI at index %d rebuild failed\n",
    				pf->vsi[i]->idx);
    			return err;
    		}
    
    		dev_info(&pf->pdev->dev,
    			 "VSI at index %d rebuilt. vsi_num = 0x%x\n",
    			 pf->vsi[i]->idx, pf->vsi[i]->vsi_num);
    	}
    
    	return 0;
    }
    
    /**
     * ice_vsi_replay_all - replay all VSIs configuration in the PF
     * @pf: the PF
     */
    static int ice_vsi_replay_all(struct ice_pf *pf)
    {
    	struct ice_hw *hw = &pf->hw;
    	enum ice_status ret;
    	int i;
    
    	/* loop through pf->vsi array and replay the VSI if found */
    	for (i = 0; i < pf->num_alloc_vsi; i++) {
    		if (!pf->vsi[i])
    			continue;
    
    		ret = ice_replay_vsi(hw, pf->vsi[i]->idx);
    		if (ret) {
    			dev_err(&pf->pdev->dev,
    				"VSI at index %d replay failed %d\n",
    				pf->vsi[i]->idx, ret);
    			return -EIO;
    		}
    
    		/* Re-map HW VSI number, using VSI handle that has been
    		 * previously validated in ice_replay_vsi() call above
    		 */
    		pf->vsi[i]->vsi_num = ice_get_hw_vsi_num(hw, pf->vsi[i]->idx);
    
    		dev_info(&pf->pdev->dev,
    			 "VSI at index %d filter replayed successfully - vsi_num %i\n",
    			 pf->vsi[i]->idx, pf->vsi[i]->vsi_num);
    	}
    
    	/* Clean up replay filter after successful re-configuration */
    	ice_replay_post(hw);
    	return 0;
    }
    
    /**
     * ice_rebuild - rebuild after reset
     * @pf: pf to rebuild
     */
    static void ice_rebuild(struct ice_pf *pf)
    {
    	struct device *dev = &pf->pdev->dev;
    	struct ice_hw *hw = &pf->hw;
    	enum ice_status ret;
    	int err;
    
    	if (test_bit(__ICE_DOWN, pf->state))
    		goto clear_recovery;
    
    	dev_dbg(dev, "rebuilding pf\n");
    
    	ret = ice_init_all_ctrlq(hw);
    	if (ret) {
    		dev_err(dev, "control queues init failed %d\n", ret);
    		goto err_init_ctrlq;
    	}
    
    	ret = ice_clear_pf_cfg(hw);
    	if (ret) {
    		dev_err(dev, "clear PF configuration failed %d\n", ret);
    		goto err_init_ctrlq;
    	}
    
    	ice_clear_pxe_mode(hw);
    
    	ret = ice_get_caps(hw);
    	if (ret) {
    		dev_err(dev, "ice_get_caps failed %d\n", ret);
    		goto err_init_ctrlq;
    	}
    
    	err = ice_sched_init_port(hw->port_info);
    	if (err)
    		goto err_sched_init_port;
    
    	/* reset search_hint of irq_trackers to 0 since interrupts are
    	 * reclaimed and could be allocated from beginning during VSI rebuild
    	 */
    	pf->sw_irq_tracker->search_hint = 0;
    	pf->hw_irq_tracker->search_hint = 0;
    
    	err = ice_vsi_rebuild_all(pf);
    	if (err) {
    		dev_err(dev, "ice_vsi_rebuild_all failed\n");
    		goto err_vsi_rebuild;
    	}
    
    	err = ice_update_link_info(hw->port_info);
    	if (err)
    		dev_err(&pf->pdev->dev, "Get link status error %d\n", err);
    
    	/* Replay all VSIs Configuration, including filters after reset */
    	if (ice_vsi_replay_all(pf)) {
    		dev_err(&pf->pdev->dev,
    			"error replaying VSI configurations with switch filter rules\n");
    		goto err_vsi_rebuild;
    	}
    
    	/* start misc vector */
    	if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) {
    		err = ice_req_irq_msix_misc(pf);
    		if (err) {
    			dev_err(dev, "misc vector setup failed: %d\n", err);
    			goto err_vsi_rebuild;
    		}
    	}
    
    	/* restart the VSIs that were rebuilt and running before the reset */
    	err = ice_pf_ena_all_vsi(pf);
    	if (err) {
    		dev_err(&pf->pdev->dev, "error enabling VSIs\n");
    		/* no need to disable VSIs in tear down path in ice_rebuild()
    		 * since its already taken care in ice_vsi_open()
    		 */
    		goto err_vsi_rebuild;
    	}
    
    	/* if we get here, reset flow is successful */
    	clear_bit(__ICE_RESET_FAILED, pf->state);
    	return;
    
    err_vsi_rebuild:
    	ice_vsi_release_all(pf);
    err_sched_init_port:
    	ice_sched_cleanup_all(hw);
    err_init_ctrlq:
    	ice_shutdown_all_ctrlq(hw);
    	set_bit(__ICE_RESET_FAILED, pf->state);
    clear_recovery:
    	/* set this bit in PF state to control service task scheduling */
    	set_bit(__ICE_NEEDS_RESTART, pf->state);
    	dev_err(dev, "Rebuild failed, unload and reload driver\n");
    }
    
    /**
     * ice_change_mtu - NDO callback to change the MTU
     * @netdev: network interface device structure
     * @new_mtu: new value for maximum frame size
     *
     * Returns 0 on success, negative on failure
     */
    static int ice_change_mtu(struct net_device *netdev, int new_mtu)
    {
    	struct ice_netdev_priv *np = netdev_priv(netdev);
    	struct ice_vsi *vsi = np->vsi;
    	struct ice_pf *pf = vsi->back;
    	u8 count = 0;
    
    	if (new_mtu == netdev->mtu) {
    		netdev_warn(netdev, "mtu is already %u\n", netdev->mtu);
    		return 0;
    	}
    
    	if (new_mtu < netdev->min_mtu) {
    		netdev_err(netdev, "new mtu invalid. min_mtu is %d\n",
    			   netdev->min_mtu);
    		return -EINVAL;
    	} else if (new_mtu > netdev->max_mtu) {
    		netdev_err(netdev, "new mtu invalid. max_mtu is %d\n",
    			   netdev->min_mtu);
    		return -EINVAL;
    	}
    	/* if a reset is in progress, wait for some time for it to complete */
    	do {
    		if (ice_is_reset_in_progress(pf->state)) {
    			count++;
    			usleep_range(1000, 2000);
    		} else {
    			break;
    		}
    
    	} while (count < 100);
    
    	if (count == 100) {
    		netdev_err(netdev, "can't change mtu. Device is busy\n");
    		return -EBUSY;
    	}
    
    	netdev->mtu = new_mtu;
    
    	/* if VSI is up, bring it down and then back up */
    	if (!test_and_set_bit(__ICE_DOWN, vsi->state)) {
    		int err;
    
    		err = ice_down(vsi);
    		if (err) {
    			netdev_err(netdev, "change mtu if_up err %d\n", err);
    			return err;
    		}
    
    		err = ice_up(vsi);
    		if (err) {
    			netdev_err(netdev, "change mtu if_up err %d\n", err);
    			return err;
    		}
    	}
    
    	netdev_dbg(netdev, "changed mtu to %d\n", new_mtu);
    	return 0;
    }
    
    /**
     * ice_set_rss - Set RSS keys and lut
     * @vsi: Pointer to VSI structure
     * @seed: RSS hash seed
     * @lut: Lookup table
     * @lut_size: Lookup table size
     *
     * Returns 0 on success, negative on failure
     */
    int ice_set_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
    {
    	struct ice_pf *pf = vsi->back;
    	struct ice_hw *hw = &pf->hw;
    	enum ice_status status;
    
    	if (seed) {
    		struct ice_aqc_get_set_rss_keys *buf =
    				  (struct ice_aqc_get_set_rss_keys *)seed;
    
    		status = ice_aq_set_rss_key(hw, vsi->idx, buf);
    
    		if (status) {
    			dev_err(&pf->pdev->dev,
    				"Cannot set RSS key, err %d aq_err %d\n",
    				status, hw->adminq.rq_last_status);
    			return -EIO;
    		}
    	}
    
    	if (lut) {
    		status = ice_aq_set_rss_lut(hw, vsi->idx, vsi->rss_lut_type,
    					    lut, lut_size);
    		if (status) {
    			dev_err(&pf->pdev->dev,
    				"Cannot set RSS lut, err %d aq_err %d\n",
    				status, hw->adminq.rq_last_status);
    			return -EIO;
    		}
    	}
    
    	return 0;
    }
    
    /**
     * ice_get_rss - Get RSS keys and lut
     * @vsi: Pointer to VSI structure
     * @seed: Buffer to store the keys
     * @lut: Buffer to store the lookup table entries
     * @lut_size: Size of buffer to store the lookup table entries
     *
     * Returns 0 on success, negative on failure
     */
    int ice_get_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
    {
    	struct ice_pf *pf = vsi->back;
    	struct ice_hw *hw = &pf->hw;
    	enum ice_status status;
    
    	if (seed) {
    		struct ice_aqc_get_set_rss_keys *buf =
    				  (struct ice_aqc_get_set_rss_keys *)seed;
    
    		status = ice_aq_get_rss_key(hw, vsi->idx, buf);
    		if (status) {
    			dev_err(&pf->pdev->dev,
    				"Cannot get RSS key, err %d aq_err %d\n",
    				status, hw->adminq.rq_last_status);
    			return -EIO;
    		}
    	}
    
    	if (lut) {
    		status = ice_aq_get_rss_lut(hw, vsi->idx, vsi->rss_lut_type,
    					    lut, lut_size);
    		if (status) {
    			dev_err(&pf->pdev->dev,
    				"Cannot get RSS lut, err %d aq_err %d\n",
    				status, hw->adminq.rq_last_status);
    			return -EIO;
    		}
    	}
    
    	return 0;
    }
    
    /**
     * ice_bridge_getlink - Get the hardware bridge mode
     * @skb: skb buff
     * @pid: process id
     * @seq: RTNL message seq
     * @dev: the netdev being configured
     * @filter_mask: filter mask passed in
     * @nlflags: netlink flags passed in
     *
     * Return the bridge mode (VEB/VEPA)
     */
    static int
    ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
    		   struct net_device *dev, u32 filter_mask, int nlflags)
    {
    	struct ice_netdev_priv *np = netdev_priv(dev);
    	struct ice_vsi *vsi = np->vsi;
    	struct ice_pf *pf = vsi->back;
    	u16 bmode;
    
    	bmode = pf->first_sw->bridge_mode;
    
    	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
    				       filter_mask, NULL);
    }
    
    /**
     * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
     * @vsi: Pointer to VSI structure
     * @bmode: Hardware bridge mode (VEB/VEPA)
     *
     * Returns 0 on success, negative on failure
     */
    static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
    {
    	struct device *dev = &vsi->back->pdev->dev;
    	struct ice_aqc_vsi_props *vsi_props;
    	struct ice_hw *hw = &vsi->back->hw;
    	struct ice_vsi_ctx ctxt = { 0 };
    	enum ice_status status;
    
    	vsi_props = &vsi->info;
    	ctxt.info = vsi->info;
    
    	if (bmode == BRIDGE_MODE_VEB)
    		/* change from VEPA to VEB mode */
    		ctxt.info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
    	else
    		/* change from VEB to VEPA mode */
    		ctxt.info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
    	ctxt.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
    
    	status = ice_update_vsi(hw, vsi->idx, &ctxt, NULL);
    	if (status) {
    		dev_err(dev, "update VSI for bridge mode failed, bmode = %d err %d aq_err %d\n",
    			bmode, status, hw->adminq.sq_last_status);
    		return -EIO;
    	}
    	/* Update sw flags for book keeping */
    	vsi_props->sw_flags = ctxt.info.sw_flags;
    
    	return 0;
    }
    
    /**
     * ice_bridge_setlink - Set the hardware bridge mode
     * @dev: the netdev being configured
     * @nlh: RTNL message
     * @flags: bridge setlink flags
     *
     * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
     * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
     * not already set for all VSIs connected to this switch. And also update the
     * unicast switch filter rules for the corresponding switch of the netdev.
     */
    static int
    ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
    		   u16 __always_unused flags)
    {
    	struct ice_netdev_priv *np = netdev_priv(dev);
    	struct ice_pf *pf = np->vsi->back;
    	struct nlattr *attr, *br_spec;
    	struct ice_hw *hw = &pf->hw;
    	enum ice_status status;
    	struct ice_sw *pf_sw;
    	int rem, v, err = 0;
    
    	pf_sw = pf->first_sw;
    	/* find the attribute in the netlink message */
    	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
    
    	nla_for_each_nested(attr, br_spec, rem) {
    		__u16 mode;
    
    		if (nla_type(attr) != IFLA_BRIDGE_MODE)
    			continue;
    		mode = nla_get_u16(attr);
    		if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
    			return -EINVAL;
    		/* Continue  if bridge mode is not being flipped */
    		if (mode == pf_sw->bridge_mode)
    			continue;
    		/* Iterates through the PF VSI list and update the loopback
    		 * mode of the VSI
    		 */
    		ice_for_each_vsi(pf, v) {
    			if (!pf->vsi[v])
    				continue;
    			err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
    			if (err)
    				return err;
    		}
    
    		hw->evb_veb = (mode == BRIDGE_MODE_VEB);
    		/* Update the unicast switch filter rules for the corresponding
    		 * switch of the netdev
    		 */
    		status = ice_update_sw_rule_bridge_mode(hw);
    		if (status) {
    			netdev_err(dev, "update SW_RULE for bridge mode failed,  = %d err %d aq_err %d\n",
    				   mode, status, hw->adminq.sq_last_status);
    			/* revert hw->evb_veb */
    			hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
    			return -EIO;
    		}
    
    		pf_sw->bridge_mode = mode;
    	}
    
    	return 0;
    }
    
    /**
     * ice_tx_timeout - Respond to a Tx Hang
     * @netdev: network interface device structure
     */
    static void ice_tx_timeout(struct net_device *netdev)
    {
    	struct ice_netdev_priv *np = netdev_priv(netdev);
    	struct ice_ring *tx_ring = NULL;
    	struct ice_vsi *vsi = np->vsi;
    	struct ice_pf *pf = vsi->back;
    	u32 head, val = 0, i;
    	int hung_queue = -1;
    
    	pf->tx_timeout_count++;
    
    	/* find the stopped queue the same way the stack does */
    	for (i = 0; i < netdev->num_tx_queues; i++) {
    		struct netdev_queue *q;
    		unsigned long trans_start;
    
    		q = netdev_get_tx_queue(netdev, i);
    		trans_start = q->trans_start;
    		if (netif_xmit_stopped(q) &&
    		    time_after(jiffies,
    			       (trans_start + netdev->watchdog_timeo))) {
    			hung_queue = i;
    			break;
    		}
    	}
    
    	if (i == netdev->num_tx_queues) {
    		netdev_info(netdev, "tx_timeout: no netdev hung queue found\n");
    	} else {
    		/* now that we have an index, find the tx_ring struct */
    		for (i = 0; i < vsi->num_txq; i++) {
    			if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) {
    				if (hung_queue ==
    				    vsi->tx_rings[i]->q_index) {
    					tx_ring = vsi->tx_rings[i];
    					break;
    				}
    			}
    		}
    	}
    
    	/* Reset recovery level if enough time has elapsed after last timeout.
    	 * Also ensure no new reset action happens before next timeout period.
    	 */
    	if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
    		pf->tx_timeout_recovery_level = 1;
    	else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
    				       netdev->watchdog_timeo)))
    		return;
    
    	if (tx_ring) {
    		head = tx_ring->next_to_clean;
    		/* Read interrupt register */
    		if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags))
    			val = rd32(&pf->hw,
    				   GLINT_DYN_CTL(tx_ring->q_vector->v_idx +
    					tx_ring->vsi->hw_base_vector));
    
    		netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %d, NTC: 0x%x, HWB: 0x%x, NTU: 0x%x, TAIL: 0x%x, INT: 0x%x\n",
    			    vsi->vsi_num, hung_queue, tx_ring->next_to_clean,
    			    head, tx_ring->next_to_use,
    			    readl(tx_ring->tail), val);
    	}
    
    	pf->tx_timeout_last_recovery = jiffies;
    	netdev_info(netdev, "tx_timeout recovery level %d, hung_queue %d\n",
    		    pf->tx_timeout_recovery_level, hung_queue);
    
    	switch (pf->tx_timeout_recovery_level) {
    	case 1:
    		set_bit(__ICE_PFR_REQ, pf->state);
    		break;
    	case 2:
    		set_bit(__ICE_CORER_REQ, pf->state);
    		break;
    	case 3:
    		set_bit(__ICE_GLOBR_REQ, pf->state);
    		break;
    	default:
    		netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
    		set_bit(__ICE_DOWN, pf->state);
    		set_bit(__ICE_NEEDS_RESTART, vsi->state);
    		set_bit(__ICE_SERVICE_DIS, pf->state);
    		break;
    	}
    
    	ice_service_task_schedule(pf);
    	pf->tx_timeout_recovery_level++;
    }
    
    /**
     * ice_open - Called when a network interface becomes active
     * @netdev: network interface device structure
     *
     * The open entry point is called when a network interface is made
     * active by the system (IFF_UP).  At this point all resources needed
     * for transmit and receive operations are allocated, the interrupt
     * handler is registered with the OS, the netdev watchdog is enabled,
     * and the stack is notified that the interface is ready.
     *
     * Returns 0 on success, negative value on failure
     */
    static int ice_open(struct net_device *netdev)
    {
    	struct ice_netdev_priv *np = netdev_priv(netdev);
    	struct ice_vsi *vsi = np->vsi;
    	int err;
    
    	if (test_bit(__ICE_NEEDS_RESTART, vsi->back->state)) {
    		netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
    		return -EIO;
    	}
    
    	netif_carrier_off(netdev);
    
    	err = ice_vsi_open(vsi);
    
    	if (err)
    		netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
    			   vsi->vsi_num, vsi->vsw->sw_id);
    	return err;
    }
    
    /**
     * ice_stop - Disables a network interface
     * @netdev: network interface device structure
     *
     * The stop entry point is called when an interface is de-activated by the OS,
     * and the netdevice enters the DOWN state.  The hardware is still under the
     * driver's control, but the netdev interface is disabled.
     *
     * Returns success only - not allowed to fail
     */
    static int ice_stop(struct net_device *netdev)
    {
    	struct ice_netdev_priv *np = netdev_priv(netdev);
    	struct ice_vsi *vsi = np->vsi;
    
    	ice_vsi_close(vsi);
    
    	return 0;
    }
    
    /**
     * ice_features_check - Validate encapsulated packet conforms to limits
     * @skb: skb buffer
     * @netdev: This port's netdev
     * @features: Offload features that the stack believes apply
     */
    static netdev_features_t
    ice_features_check(struct sk_buff *skb,
    		   struct net_device __always_unused *netdev,
    		   netdev_features_t features)
    {
    	size_t len;
    
    	/* No point in doing any of this if neither checksum nor GSO are
    	 * being requested for this frame.  We can rule out both by just
    	 * checking for CHECKSUM_PARTIAL
    	 */
    	if (skb->ip_summed != CHECKSUM_PARTIAL)
    		return features;
    
    	/* We cannot support GSO if the MSS is going to be less than
    	 * 64 bytes.  If it is then we need to drop support for GSO.
    	 */
    	if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
    		features &= ~NETIF_F_GSO_MASK;
    
    	len = skb_network_header(skb) - skb->data;
    	if (len & ~(ICE_TXD_MACLEN_MAX))
    		goto out_rm_features;
    
    	len = skb_transport_header(skb) - skb_network_header(skb);
    	if (len & ~(ICE_TXD_IPLEN_MAX))
    		goto out_rm_features;
    
    	if (skb->encapsulation) {
    		len = skb_inner_network_header(skb) - skb_transport_header(skb);
    		if (len & ~(ICE_TXD_L4LEN_MAX))
    			goto out_rm_features;
    
    		len = skb_inner_transport_header(skb) -
    		      skb_inner_network_header(skb);
    		if (len & ~(ICE_TXD_IPLEN_MAX))
    			goto out_rm_features;
    	}
    
    	return features;
    out_rm_features:
    	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
    }
    
    static const struct net_device_ops ice_netdev_ops = {
    	.ndo_open = ice_open,
    	.ndo_stop = ice_stop,
    	.ndo_start_xmit = ice_start_xmit,
    	.ndo_features_check = ice_features_check,
    	.ndo_set_rx_mode = ice_set_rx_mode,
    	.ndo_set_mac_address = ice_set_mac_address,
    	.ndo_validate_addr = eth_validate_addr,
    	.ndo_change_mtu = ice_change_mtu,
    	.ndo_get_stats64 = ice_get_stats64,
    	.ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
    	.ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
    	.ndo_set_features = ice_set_features,
    	.ndo_bridge_getlink = ice_bridge_getlink,
    	.ndo_bridge_setlink = ice_bridge_setlink,
    	.ndo_fdb_add = ice_fdb_add,
    	.ndo_fdb_del = ice_fdb_del,
    	.ndo_tx_timeout = ice_tx_timeout,
    };