Skip to content
Snippets Groups Projects
Select Git revision
  • 8b9f9ebe07f4ff1340f44e40aa7ce517d55e1882
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

component.c

Blame
    • Daniel Stone's avatar
      8e7199c2
      component: remove device from master match list on failed add · 8e7199c2
      Daniel Stone authored
      
      Calling component_add() may result in the completion of a set of
      devices, which will try to bring up a master. In bringing the master
      up, we populate its match array with the current set of children.
      
      If binding any of the devices fails, component_add() itself will fail,
      free the struct component entry, and return to the caller. The
      now-freed entry is never removed from the master's match array, and
      will later be used in a futile attempt to bind to freed memory.
      
      Bring component_add's behaviour on failure to bring up a master into
      line with component_del by removing the (to-be-freed) component from
      the master's match array.
      
      The specific case which broke was:
        - rockchip_drm_drv adds a component master
        - dwhdmi_rockchip adds a child component in probe (master incomplete)
        - rockchip_drm_vop adds two children in probe, which completes the
          set
        - inside component_add, we try to bring up the master, having
          populated the master's match array, and fail with EPROBE_DEFER from
          dwhdmi_rockchip; we delete the putative component
        - rockchip_drm_vop's probe fails and returns EPROBE_DEFER
        - we later re-probe rockchip_drm_vop and add the component; the
          master is complete, so we attempt to bring it up again
        - walking the match array, we find the previous child, whose master
          pointer doesn't match (as it has been freed in the meantime)
        - rockchip_drm_vop probe fails, and will never be attempted again
      
      Fixes: ffc30b74
      Signed-off-by: Daniel Stone's avatarDaniel Stone <daniels@collabora.com>
      Cc: Russell King <rmk+kernel@arm.linux.org.uk>
      Cc: Thierry Reding <treding@nvidia.com>
      Cc: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
      Signed-off-by: default avatarRussell King <rmk+kernel@arm.linux.org.uk>
      8e7199c2
      History
      component: remove device from master match list on failed add
      Daniel Stone authored
      
      Calling component_add() may result in the completion of a set of
      devices, which will try to bring up a master. In bringing the master
      up, we populate its match array with the current set of children.
      
      If binding any of the devices fails, component_add() itself will fail,
      free the struct component entry, and return to the caller. The
      now-freed entry is never removed from the master's match array, and
      will later be used in a futile attempt to bind to freed memory.
      
      Bring component_add's behaviour on failure to bring up a master into
      line with component_del by removing the (to-be-freed) component from
      the master's match array.
      
      The specific case which broke was:
        - rockchip_drm_drv adds a component master
        - dwhdmi_rockchip adds a child component in probe (master incomplete)
        - rockchip_drm_vop adds two children in probe, which completes the
          set
        - inside component_add, we try to bring up the master, having
          populated the master's match array, and fail with EPROBE_DEFER from
          dwhdmi_rockchip; we delete the putative component
        - rockchip_drm_vop's probe fails and returns EPROBE_DEFER
        - we later re-probe rockchip_drm_vop and add the component; the
          master is complete, so we attempt to bring it up again
        - walking the match array, we find the previous child, whose master
          pointer doesn't match (as it has been freed in the meantime)
        - rockchip_drm_vop probe fails, and will never be attempted again
      
      Fixes: ffc30b74
      Signed-off-by: Daniel Stone's avatarDaniel Stone <daniels@collabora.com>
      Cc: Russell King <rmk+kernel@arm.linux.org.uk>
      Cc: Thierry Reding <treding@nvidia.com>
      Cc: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
      Signed-off-by: default avatarRussell King <rmk+kernel@arm.linux.org.uk>
    inode.c 13.11 KiB
    // SPDX-License-Identifier: GPL-2.0
    /*
     *  linux/fs/proc/inode.c
     *
     *  Copyright (C) 1991, 1992  Linus Torvalds
     */
    
    #include <linux/cache.h>
    #include <linux/time.h>
    #include <linux/proc_fs.h>
    #include <linux/kernel.h>
    #include <linux/pid_namespace.h>
    #include <linux/mm.h>
    #include <linux/string.h>
    #include <linux/stat.h>
    #include <linux/completion.h>
    #include <linux/poll.h>
    #include <linux/printk.h>
    #include <linux/file.h>
    #include <linux/limits.h>
    #include <linux/init.h>
    #include <linux/module.h>
    #include <linux/sysctl.h>
    #include <linux/seq_file.h>
    #include <linux/slab.h>
    #include <linux/mount.h>
    #include <linux/magic.h>
    
    #include <linux/uaccess.h>
    
    #include "internal.h"
    
    static void proc_evict_inode(struct inode *inode)
    {
    	struct proc_dir_entry *de;
    	struct ctl_table_header *head;
    
    	truncate_inode_pages_final(&inode->i_data);
    	clear_inode(inode);
    
    	/* Stop tracking associated processes */
    	put_pid(PROC_I(inode)->pid);
    
    	/* Let go of any associated proc directory entry */
    	de = PDE(inode);
    	if (de)
    		pde_put(de);
    
    	head = PROC_I(inode)->sysctl;
    	if (head) {
    		RCU_INIT_POINTER(PROC_I(inode)->sysctl, NULL);
    		proc_sys_evict_inode(inode, head);
    	}
    }
    
    static struct kmem_cache *proc_inode_cachep __ro_after_init;
    static struct kmem_cache *pde_opener_cache __ro_after_init;
    
    static struct inode *proc_alloc_inode(struct super_block *sb)
    {
    	struct proc_inode *ei;
    	struct inode *inode;
    
    	ei = kmem_cache_alloc(proc_inode_cachep, GFP_KERNEL);
    	if (!ei)
    		return NULL;
    	ei->pid = NULL;
    	ei->fd = 0;
    	ei->op.proc_get_link = NULL;
    	ei->pde = NULL;
    	ei->sysctl = NULL;
    	ei->sysctl_entry = NULL;
    	ei->ns_ops = NULL;
    	inode = &ei->vfs_inode;
    	return inode;
    }
    
    static void proc_i_callback(struct rcu_head *head)
    {
    	struct inode *inode = container_of(head, struct inode, i_rcu);
    	kmem_cache_free(proc_inode_cachep, PROC_I(inode));
    }
    
    static void proc_destroy_inode(struct inode *inode)
    {
    	call_rcu(&inode->i_rcu, proc_i_callback);
    }
    
    static void init_once(void *foo)
    {
    	struct proc_inode *ei = (struct proc_inode *) foo;
    
    	inode_init_once(&ei->vfs_inode);
    }
    
    void __init proc_init_kmemcache(void)
    {
    	proc_inode_cachep = kmem_cache_create("proc_inode_cache",
    					     sizeof(struct proc_inode),
    					     0, (SLAB_RECLAIM_ACCOUNT|
    						SLAB_MEM_SPREAD|SLAB_ACCOUNT|
    						SLAB_PANIC),
    					     init_once);
    	pde_opener_cache =
    		kmem_cache_create("pde_opener", sizeof(struct pde_opener), 0,
    				  SLAB_ACCOUNT|SLAB_PANIC, NULL);
    	proc_dir_entry_cache = kmem_cache_create_usercopy(
    		"proc_dir_entry", SIZEOF_PDE, 0, SLAB_PANIC,
    		offsetof(struct proc_dir_entry, inline_name),
    		SIZEOF_PDE_INLINE_NAME, NULL);
    	BUILD_BUG_ON(sizeof(struct proc_dir_entry) >= SIZEOF_PDE);
    }
    
    static int proc_show_options(struct seq_file *seq, struct dentry *root)
    {
    	struct super_block *sb = root->d_sb;
    	struct pid_namespace *pid = sb->s_fs_info;
    
    	if (!gid_eq(pid->pid_gid, GLOBAL_ROOT_GID))
    		seq_printf(seq, ",gid=%u", from_kgid_munged(&init_user_ns, pid->pid_gid));
    	if (pid->hide_pid != HIDEPID_OFF)
    		seq_printf(seq, ",hidepid=%u", pid->hide_pid);
    
    	return 0;
    }
    
    static const struct super_operations proc_sops = {
    	.alloc_inode	= proc_alloc_inode,
    	.destroy_inode	= proc_destroy_inode,
    	.drop_inode	= generic_delete_inode,
    	.evict_inode	= proc_evict_inode,
    	.statfs		= simple_statfs,
    	.remount_fs	= proc_remount,
    	.show_options	= proc_show_options,
    };
    
    enum {BIAS = -1U<<31};
    
    static inline int use_pde(struct proc_dir_entry *pde)
    {
    	return likely(atomic_inc_unless_negative(&pde->in_use));
    }
    
    static void unuse_pde(struct proc_dir_entry *pde)
    {
    	if (unlikely(atomic_dec_return(&pde->in_use) == BIAS))
    		complete(pde->pde_unload_completion);
    }
    
    /* pde is locked on entry, unlocked on exit */
    static void close_pdeo(struct proc_dir_entry *pde, struct pde_opener *pdeo)
    {
    	/*
    	 * close() (proc_reg_release()) can't delete an entry and proceed:
    	 * ->release hook needs to be available at the right moment.
    	 *
    	 * rmmod (remove_proc_entry() et al) can't delete an entry and proceed:
    	 * "struct file" needs to be available at the right moment.
    	 *
    	 * Therefore, first process to enter this function does ->release() and
    	 * signals its completion to the other process which does nothing.
    	 */
    	if (pdeo->closing) {
    		/* somebody else is doing that, just wait */
    		DECLARE_COMPLETION_ONSTACK(c);
    		pdeo->c = &c;
    		spin_unlock(&pde->pde_unload_lock);
    		wait_for_completion(&c);
    	} else {
    		struct file *file;
    		struct completion *c;
    
    		pdeo->closing = true;
    		spin_unlock(&pde->pde_unload_lock);
    		file = pdeo->file;
    		pde->proc_fops->release(file_inode(file), file);
    		spin_lock(&pde->pde_unload_lock);
    		/* After ->release. */
    		list_del(&pdeo->lh);
    		c = pdeo->c;
    		spin_unlock(&pde->pde_unload_lock);
    		if (unlikely(c))
    			complete(c);
    		kmem_cache_free(pde_opener_cache, pdeo);
    	}
    }
    
    void proc_entry_rundown(struct proc_dir_entry *de)
    {
    	DECLARE_COMPLETION_ONSTACK(c);
    	/* Wait until all existing callers into module are done. */
    	de->pde_unload_completion = &c;
    	if (atomic_add_return(BIAS, &de->in_use) != BIAS)
    		wait_for_completion(&c);
    
    	/* ->pde_openers list can't grow from now on. */
    
    	spin_lock(&de->pde_unload_lock);
    	while (!list_empty(&de->pde_openers)) {
    		struct pde_opener *pdeo;
    		pdeo = list_first_entry(&de->pde_openers, struct pde_opener, lh);
    		close_pdeo(de, pdeo);
    		spin_lock(&de->pde_unload_lock);
    	}
    	spin_unlock(&de->pde_unload_lock);
    }
    
    static loff_t proc_reg_llseek(struct file *file, loff_t offset, int whence)
    {
    	struct proc_dir_entry *pde = PDE(file_inode(file));
    	loff_t rv = -EINVAL;
    	if (use_pde(pde)) {
    		loff_t (*llseek)(struct file *, loff_t, int);
    		llseek = pde->proc_fops->llseek;
    		if (!llseek)
    			llseek = default_llseek;
    		rv = llseek(file, offset, whence);
    		unuse_pde(pde);
    	}
    	return rv;
    }
    
    static ssize_t proc_reg_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
    {
    	ssize_t (*read)(struct file *, char __user *, size_t, loff_t *);
    	struct proc_dir_entry *pde = PDE(file_inode(file));
    	ssize_t rv = -EIO;
    	if (use_pde(pde)) {
    		read = pde->proc_fops->read;
    		if (read)
    			rv = read(file, buf, count, ppos);
    		unuse_pde(pde);
    	}
    	return rv;
    }
    
    static ssize_t proc_reg_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos)
    {
    	ssize_t (*write)(struct file *, const char __user *, size_t, loff_t *);
    	struct proc_dir_entry *pde = PDE(file_inode(file));
    	ssize_t rv = -EIO;
    	if (use_pde(pde)) {
    		write = pde->proc_fops->write;
    		if (write)
    			rv = write(file, buf, count, ppos);
    		unuse_pde(pde);
    	}
    	return rv;
    }
    
    static __poll_t proc_reg_poll(struct file *file, struct poll_table_struct *pts)
    {
    	struct proc_dir_entry *pde = PDE(file_inode(file));
    	__poll_t rv = DEFAULT_POLLMASK;
    	__poll_t (*poll)(struct file *, struct poll_table_struct *);
    	if (use_pde(pde)) {
    		poll = pde->proc_fops->poll;
    		if (poll)
    			rv = poll(file, pts);
    		unuse_pde(pde);
    	}
    	return rv;
    }
    
    static long proc_reg_unlocked_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
    {
    	struct proc_dir_entry *pde = PDE(file_inode(file));
    	long rv = -ENOTTY;
    	long (*ioctl)(struct file *, unsigned int, unsigned long);
    	if (use_pde(pde)) {
    		ioctl = pde->proc_fops->unlocked_ioctl;
    		if (ioctl)
    			rv = ioctl(file, cmd, arg);
    		unuse_pde(pde);
    	}
    	return rv;
    }
    
    #ifdef CONFIG_COMPAT
    static long proc_reg_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
    {
    	struct proc_dir_entry *pde = PDE(file_inode(file));
    	long rv = -ENOTTY;
    	long (*compat_ioctl)(struct file *, unsigned int, unsigned long);
    	if (use_pde(pde)) {
    		compat_ioctl = pde->proc_fops->compat_ioctl;
    		if (compat_ioctl)
    			rv = compat_ioctl(file, cmd, arg);
    		unuse_pde(pde);
    	}
    	return rv;
    }
    #endif
    
    static int proc_reg_mmap(struct file *file, struct vm_area_struct *vma)
    {
    	struct proc_dir_entry *pde = PDE(file_inode(file));
    	int rv = -EIO;
    	int (*mmap)(struct file *, struct vm_area_struct *);
    	if (use_pde(pde)) {
    		mmap = pde->proc_fops->mmap;
    		if (mmap)
    			rv = mmap(file, vma);
    		unuse_pde(pde);
    	}
    	return rv;
    }
    
    static unsigned long
    proc_reg_get_unmapped_area(struct file *file, unsigned long orig_addr,
    			   unsigned long len, unsigned long pgoff,
    			   unsigned long flags)
    {
    	struct proc_dir_entry *pde = PDE(file_inode(file));
    	unsigned long rv = -EIO;
    
    	if (use_pde(pde)) {
    		typeof(proc_reg_get_unmapped_area) *get_area;
    
    		get_area = pde->proc_fops->get_unmapped_area;
    #ifdef CONFIG_MMU
    		if (!get_area)
    			get_area = current->mm->get_unmapped_area;
    #endif
    
    		if (get_area)
    			rv = get_area(file, orig_addr, len, pgoff, flags);
    		else
    			rv = orig_addr;
    		unuse_pde(pde);
    	}
    	return rv;
    }
    
    static int proc_reg_open(struct inode *inode, struct file *file)
    {
    	struct proc_dir_entry *pde = PDE(inode);
    	int rv = 0;
    	int (*open)(struct inode *, struct file *);
    	int (*release)(struct inode *, struct file *);
    	struct pde_opener *pdeo;
    
    	/*
    	 * Ensure that
    	 * 1) PDE's ->release hook will be called no matter what
    	 *    either normally by close()/->release, or forcefully by
    	 *    rmmod/remove_proc_entry.
    	 *
    	 * 2) rmmod isn't blocked by opening file in /proc and sitting on
    	 *    the descriptor (including "rmmod foo </proc/foo" scenario).
    	 *
    	 * Save every "struct file" with custom ->release hook.
    	 */
    	if (!use_pde(pde))
    		return -ENOENT;
    
    	release = pde->proc_fops->release;
    	if (release) {
    		pdeo = kmem_cache_alloc(pde_opener_cache, GFP_KERNEL);
    		if (!pdeo) {
    			rv = -ENOMEM;
    			goto out_unuse;
    		}
    	}
    
    	open = pde->proc_fops->open;
    	if (open)
    		rv = open(inode, file);
    
    	if (release) {
    		if (rv == 0) {
    			/* To know what to release. */
    			pdeo->file = file;
    			pdeo->closing = false;
    			pdeo->c = NULL;
    			spin_lock(&pde->pde_unload_lock);
    			list_add(&pdeo->lh, &pde->pde_openers);
    			spin_unlock(&pde->pde_unload_lock);
    		} else
    			kmem_cache_free(pde_opener_cache, pdeo);
    	}
    
    out_unuse:
    	unuse_pde(pde);
    	return rv;
    }
    
    static int proc_reg_release(struct inode *inode, struct file *file)
    {
    	struct proc_dir_entry *pde = PDE(inode);
    	struct pde_opener *pdeo;
    	spin_lock(&pde->pde_unload_lock);
    	list_for_each_entry(pdeo, &pde->pde_openers, lh) {
    		if (pdeo->file == file) {
    			close_pdeo(pde, pdeo);
    			return 0;
    		}
    	}
    	spin_unlock(&pde->pde_unload_lock);
    	return 0;
    }
    
    static const struct file_operations proc_reg_file_ops = {
    	.llseek		= proc_reg_llseek,
    	.read		= proc_reg_read,
    	.write		= proc_reg_write,
    	.poll		= proc_reg_poll,
    	.unlocked_ioctl	= proc_reg_unlocked_ioctl,
    #ifdef CONFIG_COMPAT
    	.compat_ioctl	= proc_reg_compat_ioctl,
    #endif
    	.mmap		= proc_reg_mmap,
    	.get_unmapped_area = proc_reg_get_unmapped_area,
    	.open		= proc_reg_open,
    	.release	= proc_reg_release,
    };
    
    #ifdef CONFIG_COMPAT
    static const struct file_operations proc_reg_file_ops_no_compat = {
    	.llseek		= proc_reg_llseek,
    	.read		= proc_reg_read,
    	.write		= proc_reg_write,
    	.poll		= proc_reg_poll,
    	.unlocked_ioctl	= proc_reg_unlocked_ioctl,
    	.mmap		= proc_reg_mmap,
    	.get_unmapped_area = proc_reg_get_unmapped_area,
    	.open		= proc_reg_open,
    	.release	= proc_reg_release,
    };
    #endif
    
    static void proc_put_link(void *p)
    {
    	unuse_pde(p);
    }
    
    static const char *proc_get_link(struct dentry *dentry,
    				 struct inode *inode,
    				 struct delayed_call *done)
    {
    	struct proc_dir_entry *pde = PDE(inode);
    	if (!use_pde(pde))
    		return ERR_PTR(-EINVAL);
    	set_delayed_call(done, proc_put_link, pde);
    	return pde->data;
    }
    
    const struct inode_operations proc_link_inode_operations = {
    	.get_link	= proc_get_link,
    };
    
    struct inode *proc_get_inode(struct super_block *sb, struct proc_dir_entry *de)
    {
    	struct inode *inode = new_inode_pseudo(sb);
    
    	if (inode) {
    		inode->i_ino = de->low_ino;
    		inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
    		PROC_I(inode)->pde = de;
    
    		if (is_empty_pde(de)) {
    			make_empty_dir_inode(inode);
    			return inode;
    		}
    		if (de->mode) {
    			inode->i_mode = de->mode;
    			inode->i_uid = de->uid;
    			inode->i_gid = de->gid;
    		}
    		if (de->size)
    			inode->i_size = de->size;
    		if (de->nlink)
    			set_nlink(inode, de->nlink);
    		WARN_ON(!de->proc_iops);
    		inode->i_op = de->proc_iops;
    		if (de->proc_fops) {
    			if (S_ISREG(inode->i_mode)) {
    #ifdef CONFIG_COMPAT
    				if (!de->proc_fops->compat_ioctl)
    					inode->i_fop =
    						&proc_reg_file_ops_no_compat;
    				else
    #endif
    					inode->i_fop = &proc_reg_file_ops;
    			} else {
    				inode->i_fop = de->proc_fops;
    			}
    		}
    	} else
    	       pde_put(de);
    	return inode;
    }
    
    int proc_fill_super(struct super_block *s, void *data, int silent)
    {
    	struct pid_namespace *ns = get_pid_ns(s->s_fs_info);
    	struct inode *root_inode;
    	int ret;
    
    	if (!proc_parse_options(data, ns))
    		return -EINVAL;
    
    	/* User space would break if executables or devices appear on proc */
    	s->s_iflags |= SB_I_USERNS_VISIBLE | SB_I_NOEXEC | SB_I_NODEV;
    	s->s_flags |= SB_NODIRATIME | SB_NOSUID | SB_NOEXEC;
    	s->s_blocksize = 1024;
    	s->s_blocksize_bits = 10;
    	s->s_magic = PROC_SUPER_MAGIC;
    	s->s_op = &proc_sops;
    	s->s_time_gran = 1;
    
    	/*
    	 * procfs isn't actually a stacking filesystem; however, there is
    	 * too much magic going on inside it to permit stacking things on
    	 * top of it
    	 */
    	s->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
    	
    	pde_get(&proc_root);
    	root_inode = proc_get_inode(s, &proc_root);
    	if (!root_inode) {
    		pr_err("proc_fill_super: get root inode failed\n");
    		return -ENOMEM;
    	}
    
    	s->s_root = d_make_root(root_inode);
    	if (!s->s_root) {
    		pr_err("proc_fill_super: allocate dentry failed\n");
    		return -ENOMEM;
    	}
    
    	ret = proc_setup_self(s);
    	if (ret) {
    		return ret;
    	}
    	return proc_setup_thread_self(s);
    }