Skip to content
Snippets Groups Projects
Select Git revision
  • 8bccd85ffbaf8ff1448d1235fa6594e207695531
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

mempolicy.c

Blame
  • bitmap.c 38.05 KiB
    // SPDX-License-Identifier: GPL-2.0-only
    /*
     * lib/bitmap.c
     * Helper functions for bitmap.h.
     */
    
    #include <linux/bitmap.h>
    #include <linux/bitops.h>
    #include <linux/bug.h>
    #include <linux/ctype.h>
    #include <linux/errno.h>
    #include <linux/export.h>
    #include <linux/kernel.h>
    #include <linux/mm.h>
    #include <linux/slab.h>
    #include <linux/string.h>
    #include <linux/thread_info.h>
    #include <linux/uaccess.h>
    
    #include <asm/page.h>
    
    #include "kstrtox.h"
    
    /**
     * DOC: bitmap introduction
     *
     * bitmaps provide an array of bits, implemented using an
     * array of unsigned longs.  The number of valid bits in a
     * given bitmap does _not_ need to be an exact multiple of
     * BITS_PER_LONG.
     *
     * The possible unused bits in the last, partially used word
     * of a bitmap are 'don't care'.  The implementation makes
     * no particular effort to keep them zero.  It ensures that
     * their value will not affect the results of any operation.
     * The bitmap operations that return Boolean (bitmap_empty,
     * for example) or scalar (bitmap_weight, for example) results
     * carefully filter out these unused bits from impacting their
     * results.
     *
     * The byte ordering of bitmaps is more natural on little
     * endian architectures.  See the big-endian headers
     * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
     * for the best explanations of this ordering.
     */
    
    int __bitmap_equal(const unsigned long *bitmap1,
    		const unsigned long *bitmap2, unsigned int bits)
    {
    	unsigned int k, lim = bits/BITS_PER_LONG;
    	for (k = 0; k < lim; ++k)
    		if (bitmap1[k] != bitmap2[k])
    			return 0;
    
    	if (bits % BITS_PER_LONG)
    		if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
    			return 0;
    
    	return 1;
    }
    EXPORT_SYMBOL(__bitmap_equal);
    
    bool __bitmap_or_equal(const unsigned long *bitmap1,
    		       const unsigned long *bitmap2,
    		       const unsigned long *bitmap3,
    		       unsigned int bits)
    {
    	unsigned int k, lim = bits / BITS_PER_LONG;
    	unsigned long tmp;
    
    	for (k = 0; k < lim; ++k) {
    		if ((bitmap1[k] | bitmap2[k]) != bitmap3[k])
    			return false;
    	}
    
    	if (!(bits % BITS_PER_LONG))
    		return true;
    
    	tmp = (bitmap1[k] | bitmap2[k]) ^ bitmap3[k];
    	return (tmp & BITMAP_LAST_WORD_MASK(bits)) == 0;
    }
    
    void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
    {
    	unsigned int k, lim = BITS_TO_LONGS(bits);
    	for (k = 0; k < lim; ++k)
    		dst[k] = ~src[k];
    }
    EXPORT_SYMBOL(__bitmap_complement);
    
    /**
     * __bitmap_shift_right - logical right shift of the bits in a bitmap
     *   @dst : destination bitmap
     *   @src : source bitmap
     *   @shift : shift by this many bits
     *   @nbits : bitmap size, in bits
     *
     * Shifting right (dividing) means moving bits in the MS -> LS bit
     * direction.  Zeros are fed into the vacated MS positions and the
     * LS bits shifted off the bottom are lost.
     */
    void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
    			unsigned shift, unsigned nbits)
    {
    	unsigned k, lim = BITS_TO_LONGS(nbits);
    	unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
    	unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
    	for (k = 0; off + k < lim; ++k) {
    		unsigned long upper, lower;
    
    		/*
    		 * If shift is not word aligned, take lower rem bits of
    		 * word above and make them the top rem bits of result.
    		 */
    		if (!rem || off + k + 1 >= lim)
    			upper = 0;
    		else {
    			upper = src[off + k + 1];
    			if (off + k + 1 == lim - 1)
    				upper &= mask;
    			upper <<= (BITS_PER_LONG - rem);
    		}
    		lower = src[off + k];
    		if (off + k == lim - 1)
    			lower &= mask;
    		lower >>= rem;
    		dst[k] = lower | upper;
    	}
    	if (off)
    		memset(&dst[lim - off], 0, off*sizeof(unsigned long));
    }
    EXPORT_SYMBOL(__bitmap_shift_right);
    
    
    /**
     * __bitmap_shift_left - logical left shift of the bits in a bitmap
     *   @dst : destination bitmap
     *   @src : source bitmap
     *   @shift : shift by this many bits
     *   @nbits : bitmap size, in bits
     *
     * Shifting left (multiplying) means moving bits in the LS -> MS
     * direction.  Zeros are fed into the vacated LS bit positions
     * and those MS bits shifted off the top are lost.
     */
    
    void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
    			unsigned int shift, unsigned int nbits)
    {
    	int k;
    	unsigned int lim = BITS_TO_LONGS(nbits);
    	unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
    	for (k = lim - off - 1; k >= 0; --k) {
    		unsigned long upper, lower;
    
    		/*
    		 * If shift is not word aligned, take upper rem bits of
    		 * word below and make them the bottom rem bits of result.
    		 */
    		if (rem && k > 0)
    			lower = src[k - 1] >> (BITS_PER_LONG - rem);
    		else
    			lower = 0;
    		upper = src[k] << rem;
    		dst[k + off] = lower | upper;
    	}
    	if (off)
    		memset(dst, 0, off*sizeof(unsigned long));
    }
    EXPORT_SYMBOL(__bitmap_shift_left);
    
    /**
     * bitmap_cut() - remove bit region from bitmap and right shift remaining bits
     * @dst: destination bitmap, might overlap with src
     * @src: source bitmap
     * @first: start bit of region to be removed
     * @cut: number of bits to remove
     * @nbits: bitmap size, in bits
     *
     * Set the n-th bit of @dst iff the n-th bit of @src is set and
     * n is less than @first, or the m-th bit of @src is set for any
     * m such that @first <= n < nbits, and m = n + @cut.
     *
     * In pictures, example for a big-endian 32-bit architecture:
     *
     * The @src bitmap is::
     *
     *   31                                   63
     *   |                                    |
     *   10000000 11000001 11110010 00010101  10000000 11000001 01110010 00010101
     *                   |  |              |                                    |
     *                  16  14             0                                   32
     *
     * if @cut is 3, and @first is 14, bits 14-16 in @src are cut and @dst is::
     *
     *   31                                   63
     *   |                                    |
     *   10110000 00011000 00110010 00010101  00010000 00011000 00101110 01000010
     *                      |              |                                    |
     *                      14 (bit 17     0                                   32
     *                          from @src)
     *
     * Note that @dst and @src might overlap partially or entirely.
     *
     * This is implemented in the obvious way, with a shift and carry
     * step for each moved bit. Optimisation is left as an exercise
     * for the compiler.
     */
    void bitmap_cut(unsigned long *dst, const unsigned long *src,
    		unsigned int first, unsigned int cut, unsigned int nbits)
    {
    	unsigned int len = BITS_TO_LONGS(nbits);
    	unsigned long keep = 0, carry;
    	int i;
    
    	if (first % BITS_PER_LONG) {
    		keep = src[first / BITS_PER_LONG] &
    		       (~0UL >> (BITS_PER_LONG - first % BITS_PER_LONG));
    	}
    
    	memmove(dst, src, len * sizeof(*dst));
    
    	while (cut--) {
    		for (i = first / BITS_PER_LONG; i < len; i++) {
    			if (i < len - 1)
    				carry = dst[i + 1] & 1UL;
    			else
    				carry = 0;
    
    			dst[i] = (dst[i] >> 1) | (carry << (BITS_PER_LONG - 1));
    		}
    	}
    
    	dst[first / BITS_PER_LONG] &= ~0UL << (first % BITS_PER_LONG);
    	dst[first / BITS_PER_LONG] |= keep;
    }
    EXPORT_SYMBOL(bitmap_cut);
    
    int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
    				const unsigned long *bitmap2, unsigned int bits)
    {
    	unsigned int k;
    	unsigned int lim = bits/BITS_PER_LONG;
    	unsigned long result = 0;
    
    	for (k = 0; k < lim; k++)
    		result |= (dst[k] = bitmap1[k] & bitmap2[k]);
    	if (bits % BITS_PER_LONG)
    		result |= (dst[k] = bitmap1[k] & bitmap2[k] &
    			   BITMAP_LAST_WORD_MASK(bits));
    	return result != 0;
    }
    EXPORT_SYMBOL(__bitmap_and);
    
    void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
    				const unsigned long *bitmap2, unsigned int bits)
    {
    	unsigned int k;
    	unsigned int nr = BITS_TO_LONGS(bits);
    
    	for (k = 0; k < nr; k++)
    		dst[k] = bitmap1[k] | bitmap2[k];
    }
    EXPORT_SYMBOL(__bitmap_or);
    
    void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
    				const unsigned long *bitmap2, unsigned int bits)
    {
    	unsigned int k;
    	unsigned int nr = BITS_TO_LONGS(bits);
    
    	for (k = 0; k < nr; k++)
    		dst[k] = bitmap1[k] ^ bitmap2[k];
    }
    EXPORT_SYMBOL(__bitmap_xor);
    
    int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
    				const unsigned long *bitmap2, unsigned int bits)
    {
    	unsigned int k;
    	unsigned int lim = bits/BITS_PER_LONG;
    	unsigned long result = 0;
    
    	for (k = 0; k < lim; k++)
    		result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
    	if (bits % BITS_PER_LONG)
    		result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
    			   BITMAP_LAST_WORD_MASK(bits));
    	return result != 0;
    }
    EXPORT_SYMBOL(__bitmap_andnot);
    
    void __bitmap_replace(unsigned long *dst,
    		      const unsigned long *old, const unsigned long *new,
    		      const unsigned long *mask, unsigned int nbits)
    {
    	unsigned int k;
    	unsigned int nr = BITS_TO_LONGS(nbits);
    
    	for (k = 0; k < nr; k++)
    		dst[k] = (old[k] & ~mask[k]) | (new[k] & mask[k]);
    }
    EXPORT_SYMBOL(__bitmap_replace);
    
    int __bitmap_intersects(const unsigned long *bitmap1,
    			const unsigned long *bitmap2, unsigned int bits)
    {
    	unsigned int k, lim = bits/BITS_PER_LONG;
    	for (k = 0; k < lim; ++k)
    		if (bitmap1[k] & bitmap2[k])
    			return 1;
    
    	if (bits % BITS_PER_LONG)
    		if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
    			return 1;
    	return 0;
    }
    EXPORT_SYMBOL(__bitmap_intersects);
    
    int __bitmap_subset(const unsigned long *bitmap1,
    		    const unsigned long *bitmap2, unsigned int bits)
    {
    	unsigned int k, lim = bits/BITS_PER_LONG;
    	for (k = 0; k < lim; ++k)
    		if (bitmap1[k] & ~bitmap2[k])
    			return 0;
    
    	if (bits % BITS_PER_LONG)
    		if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
    			return 0;
    	return 1;
    }
    EXPORT_SYMBOL(__bitmap_subset);
    
    int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
    {
    	unsigned int k, lim = bits/BITS_PER_LONG;
    	int w = 0;
    
    	for (k = 0; k < lim; k++)
    		w += hweight_long(bitmap[k]);
    
    	if (bits % BITS_PER_LONG)
    		w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
    
    	return w;
    }
    EXPORT_SYMBOL(__bitmap_weight);
    
    void __bitmap_set(unsigned long *map, unsigned int start, int len)
    {
    	unsigned long *p = map + BIT_WORD(start);
    	const unsigned int size = start + len;
    	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
    	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
    
    	while (len - bits_to_set >= 0) {
    		*p |= mask_to_set;
    		len -= bits_to_set;
    		bits_to_set = BITS_PER_LONG;
    		mask_to_set = ~0UL;
    		p++;
    	}
    	if (len) {
    		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
    		*p |= mask_to_set;
    	}
    }
    EXPORT_SYMBOL(__bitmap_set);
    
    void __bitmap_clear(unsigned long *map, unsigned int start, int len)
    {
    	unsigned long *p = map + BIT_WORD(start);
    	const unsigned int size = start + len;
    	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
    	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
    
    	while (len - bits_to_clear >= 0) {
    		*p &= ~mask_to_clear;
    		len -= bits_to_clear;
    		bits_to_clear = BITS_PER_LONG;
    		mask_to_clear = ~0UL;
    		p++;
    	}
    	if (len) {
    		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
    		*p &= ~mask_to_clear;
    	}
    }
    EXPORT_SYMBOL(__bitmap_clear);
    
    /**
     * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
     * @map: The address to base the search on
     * @size: The bitmap size in bits
     * @start: The bitnumber to start searching at
     * @nr: The number of zeroed bits we're looking for
     * @align_mask: Alignment mask for zero area
     * @align_offset: Alignment offset for zero area.
     *
     * The @align_mask should be one less than a power of 2; the effect is that
     * the bit offset of all zero areas this function finds plus @align_offset
     * is multiple of that power of 2.
     */
    unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
    					     unsigned long size,
    					     unsigned long start,
    					     unsigned int nr,
    					     unsigned long align_mask,
    					     unsigned long align_offset)
    {
    	unsigned long index, end, i;
    again:
    	index = find_next_zero_bit(map, size, start);
    
    	/* Align allocation */
    	index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
    
    	end = index + nr;
    	if (end > size)
    		return end;
    	i = find_next_bit(map, end, index);
    	if (i < end) {
    		start = i + 1;
    		goto again;
    	}
    	return index;
    }
    EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
    
    /*
     * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
     * second version by Paul Jackson, third by Joe Korty.
     */
    
    /**
     * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
     *
     * @ubuf: pointer to user buffer containing string.
     * @ulen: buffer size in bytes.  If string is smaller than this
     *    then it must be terminated with a \0.
     * @maskp: pointer to bitmap array that will contain result.
     * @nmaskbits: size of bitmap, in bits.
     */
    int bitmap_parse_user(const char __user *ubuf,
    			unsigned int ulen, unsigned long *maskp,
    			int nmaskbits)
    {
    	char *buf;
    	int ret;
    
    	buf = memdup_user_nul(ubuf, ulen);
    	if (IS_ERR(buf))
    		return PTR_ERR(buf);
    
    	ret = bitmap_parse(buf, UINT_MAX, maskp, nmaskbits);
    
    	kfree(buf);
    	return ret;
    }
    EXPORT_SYMBOL(bitmap_parse_user);
    
    /**
     * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
     * @list: indicates whether the bitmap must be list
     * @buf: page aligned buffer into which string is placed
     * @maskp: pointer to bitmap to convert
     * @nmaskbits: size of bitmap, in bits
     *
     * Output format is a comma-separated list of decimal numbers and
     * ranges if list is specified or hex digits grouped into comma-separated
     * sets of 8 digits/set. Returns the number of characters written to buf.
     *
     * It is assumed that @buf is a pointer into a PAGE_SIZE, page-aligned
     * area and that sufficient storage remains at @buf to accommodate the
     * bitmap_print_to_pagebuf() output. Returns the number of characters
     * actually printed to @buf, excluding terminating '\0'.
     */
    int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
    			    int nmaskbits)
    {
    	ptrdiff_t len = PAGE_SIZE - offset_in_page(buf);
    
    	return list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) :
    		      scnprintf(buf, len, "%*pb\n", nmaskbits, maskp);
    }
    EXPORT_SYMBOL(bitmap_print_to_pagebuf);
    
    /*
     * Region 9-38:4/10 describes the following bitmap structure:
     * 0	   9  12    18			38
     * .........****......****......****......
     *	    ^  ^     ^			 ^
     *      start  off   group_len	       end
     */
    struct region {
    	unsigned int start;
    	unsigned int off;
    	unsigned int group_len;
    	unsigned int end;
    };
    
    static int bitmap_set_region(const struct region *r,
    				unsigned long *bitmap, int nbits)
    {
    	unsigned int start;
    
    	if (r->end >= nbits)
    		return -ERANGE;
    
    	for (start = r->start; start <= r->end; start += r->group_len)
    		bitmap_set(bitmap, start, min(r->end - start + 1, r->off));
    
    	return 0;
    }
    
    static int bitmap_check_region(const struct region *r)
    {
    	if (r->start > r->end || r->group_len == 0 || r->off > r->group_len)
    		return -EINVAL;
    
    	return 0;
    }
    
    static const char *bitmap_getnum(const char *str, unsigned int *num)
    {
    	unsigned long long n;
    	unsigned int len;
    
    	len = _parse_integer(str, 10, &n);
    	if (!len)
    		return ERR_PTR(-EINVAL);
    	if (len & KSTRTOX_OVERFLOW || n != (unsigned int)n)
    		return ERR_PTR(-EOVERFLOW);
    
    	*num = n;
    	return str + len;
    }
    
    static inline bool end_of_str(char c)
    {
    	return c == '\0' || c == '\n';
    }
    
    static inline bool __end_of_region(char c)
    {
    	return isspace(c) || c == ',';
    }
    
    static inline bool end_of_region(char c)
    {
    	return __end_of_region(c) || end_of_str(c);
    }
    
    /*
     * The format allows commas and whitespaces at the beginning
     * of the region.
     */
    static const char *bitmap_find_region(const char *str)
    {
    	while (__end_of_region(*str))
    		str++;
    
    	return end_of_str(*str) ? NULL : str;
    }
    
    static const char *bitmap_find_region_reverse(const char *start, const char *end)
    {
    	while (start <= end && __end_of_region(*end))
    		end--;
    
    	return end;
    }
    
    static const char *bitmap_parse_region(const char *str, struct region *r)
    {
    	str = bitmap_getnum(str, &r->start);
    	if (IS_ERR(str))
    		return str;
    
    	if (end_of_region(*str))
    		goto no_end;
    
    	if (*str != '-')
    		return ERR_PTR(-EINVAL);
    
    	str = bitmap_getnum(str + 1, &r->end);
    	if (IS_ERR(str))
    		return str;
    
    	if (end_of_region(*str))
    		goto no_pattern;
    
    	if (*str != ':')
    		return ERR_PTR(-EINVAL);
    
    	str = bitmap_getnum(str + 1, &r->off);
    	if (IS_ERR(str))
    		return str;
    
    	if (*str != '/')
    		return ERR_PTR(-EINVAL);
    
    	return bitmap_getnum(str + 1, &r->group_len);
    
    no_end:
    	r->end = r->start;
    no_pattern:
    	r->off = r->end + 1;
    	r->group_len = r->end + 1;
    
    	return end_of_str(*str) ? NULL : str;
    }
    
    /**
     * bitmap_parselist - convert list format ASCII string to bitmap
     * @buf: read user string from this buffer; must be terminated
     *    with a \0 or \n.
     * @maskp: write resulting mask here
     * @nmaskbits: number of bits in mask to be written
     *
     * Input format is a comma-separated list of decimal numbers and
     * ranges.  Consecutively set bits are shown as two hyphen-separated
     * decimal numbers, the smallest and largest bit numbers set in
     * the range.
     * Optionally each range can be postfixed to denote that only parts of it
     * should be set. The range will divided to groups of specific size.
     * From each group will be used only defined amount of bits.
     * Syntax: range:used_size/group_size
     * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769
     *
     * Returns: 0 on success, -errno on invalid input strings. Error values:
     *
     *   - ``-EINVAL``: wrong region format
     *   - ``-EINVAL``: invalid character in string
     *   - ``-ERANGE``: bit number specified too large for mask
     *   - ``-EOVERFLOW``: integer overflow in the input parameters
     */
    int bitmap_parselist(const char *buf, unsigned long *maskp, int nmaskbits)
    {
    	struct region r;
    	long ret;
    
    	bitmap_zero(maskp, nmaskbits);
    
    	while (buf) {
    		buf = bitmap_find_region(buf);
    		if (buf == NULL)
    			return 0;
    
    		buf = bitmap_parse_region(buf, &r);
    		if (IS_ERR(buf))
    			return PTR_ERR(buf);
    
    		ret = bitmap_check_region(&r);
    		if (ret)
    			return ret;
    
    		ret = bitmap_set_region(&r, maskp, nmaskbits);
    		if (ret)
    			return ret;
    	}
    
    	return 0;
    }
    EXPORT_SYMBOL(bitmap_parselist);
    
    
    /**
     * bitmap_parselist_user()
     *
     * @ubuf: pointer to user buffer containing string.
     * @ulen: buffer size in bytes.  If string is smaller than this
     *    then it must be terminated with a \0.
     * @maskp: pointer to bitmap array that will contain result.
     * @nmaskbits: size of bitmap, in bits.
     *
     * Wrapper for bitmap_parselist(), providing it with user buffer.
     */
    int bitmap_parselist_user(const char __user *ubuf,
    			unsigned int ulen, unsigned long *maskp,
    			int nmaskbits)
    {
    	char *buf;
    	int ret;
    
    	buf = memdup_user_nul(ubuf, ulen);
    	if (IS_ERR(buf))
    		return PTR_ERR(buf);
    
    	ret = bitmap_parselist(buf, maskp, nmaskbits);
    
    	kfree(buf);
    	return ret;
    }
    EXPORT_SYMBOL(bitmap_parselist_user);
    
    static const char *bitmap_get_x32_reverse(const char *start,
    					const char *end, u32 *num)
    {
    	u32 ret = 0;
    	int c, i;
    
    	for (i = 0; i < 32; i += 4) {
    		c = hex_to_bin(*end--);
    		if (c < 0)
    			return ERR_PTR(-EINVAL);
    
    		ret |= c << i;
    
    		if (start > end || __end_of_region(*end))
    			goto out;
    	}
    
    	if (hex_to_bin(*end--) >= 0)
    		return ERR_PTR(-EOVERFLOW);
    out:
    	*num = ret;
    	return end;
    }
    
    /**
     * bitmap_parse - convert an ASCII hex string into a bitmap.
     * @start: pointer to buffer containing string.
     * @buflen: buffer size in bytes.  If string is smaller than this
     *    then it must be terminated with a \0 or \n. In that case,
     *    UINT_MAX may be provided instead of string length.
     * @maskp: pointer to bitmap array that will contain result.
     * @nmaskbits: size of bitmap, in bits.
     *
     * Commas group hex digits into chunks.  Each chunk defines exactly 32
     * bits of the resultant bitmask.  No chunk may specify a value larger
     * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
     * then leading 0-bits are prepended.  %-EINVAL is returned for illegal
     * characters. Grouping such as "1,,5", ",44", "," or "" is allowed.
     * Leading, embedded and trailing whitespace accepted.
     */
    int bitmap_parse(const char *start, unsigned int buflen,
    		unsigned long *maskp, int nmaskbits)
    {
    	const char *end = strnchrnul(start, buflen, '\n') - 1;
    	int chunks = BITS_TO_U32(nmaskbits);
    	u32 *bitmap = (u32 *)maskp;
    	int unset_bit;
    	int chunk;
    
    	for (chunk = 0; ; chunk++) {
    		end = bitmap_find_region_reverse(start, end);
    		if (start > end)
    			break;
    
    		if (!chunks--)
    			return -EOVERFLOW;
    
    #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
    		end = bitmap_get_x32_reverse(start, end, &bitmap[chunk ^ 1]);
    #else
    		end = bitmap_get_x32_reverse(start, end, &bitmap[chunk]);
    #endif
    		if (IS_ERR(end))
    			return PTR_ERR(end);
    	}
    
    	unset_bit = (BITS_TO_U32(nmaskbits) - chunks) * 32;
    	if (unset_bit < nmaskbits) {
    		bitmap_clear(maskp, unset_bit, nmaskbits - unset_bit);
    		return 0;
    	}
    
    	if (find_next_bit(maskp, unset_bit, nmaskbits) != unset_bit)
    		return -EOVERFLOW;
    
    	return 0;
    }
    EXPORT_SYMBOL(bitmap_parse);
    
    
    #ifdef CONFIG_NUMA
    /**
     * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
     *	@buf: pointer to a bitmap
     *	@pos: a bit position in @buf (0 <= @pos < @nbits)
     *	@nbits: number of valid bit positions in @buf
     *
     * Map the bit at position @pos in @buf (of length @nbits) to the
     * ordinal of which set bit it is.  If it is not set or if @pos
     * is not a valid bit position, map to -1.
     *
     * If for example, just bits 4 through 7 are set in @buf, then @pos
     * values 4 through 7 will get mapped to 0 through 3, respectively,
     * and other @pos values will get mapped to -1.  When @pos value 7
     * gets mapped to (returns) @ord value 3 in this example, that means
     * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
     *
     * The bit positions 0 through @bits are valid positions in @buf.
     */
    static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
    {
    	if (pos >= nbits || !test_bit(pos, buf))
    		return -1;
    
    	return __bitmap_weight(buf, pos);
    }
    
    /**
     * bitmap_ord_to_pos - find position of n-th set bit in bitmap
     *	@buf: pointer to bitmap
     *	@ord: ordinal bit position (n-th set bit, n >= 0)
     *	@nbits: number of valid bit positions in @buf
     *
     * Map the ordinal offset of bit @ord in @buf to its position in @buf.
     * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord
     * >= weight(buf), returns @nbits.
     *
     * If for example, just bits 4 through 7 are set in @buf, then @ord
     * values 0 through 3 will get mapped to 4 through 7, respectively,
     * and all other @ord values returns @nbits.  When @ord value 3
     * gets mapped to (returns) @pos value 7 in this example, that means
     * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
     *
     * The bit positions 0 through @nbits-1 are valid positions in @buf.
     */
    unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits)
    {
    	unsigned int pos;
    
    	for (pos = find_first_bit(buf, nbits);
    	     pos < nbits && ord;
    	     pos = find_next_bit(buf, nbits, pos + 1))
    		ord--;
    
    	return pos;
    }
    
    /**
     * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
     *	@dst: remapped result
     *	@src: subset to be remapped
     *	@old: defines domain of map
     *	@new: defines range of map
     *	@nbits: number of bits in each of these bitmaps
     *
     * Let @old and @new define a mapping of bit positions, such that
     * whatever position is held by the n-th set bit in @old is mapped
     * to the n-th set bit in @new.  In the more general case, allowing
     * for the possibility that the weight 'w' of @new is less than the
     * weight of @old, map the position of the n-th set bit in @old to
     * the position of the m-th set bit in @new, where m == n % w.
     *
     * If either of the @old and @new bitmaps are empty, or if @src and
     * @dst point to the same location, then this routine copies @src
     * to @dst.
     *
     * The positions of unset bits in @old are mapped to themselves
     * (the identify map).
     *
     * Apply the above specified mapping to @src, placing the result in
     * @dst, clearing any bits previously set in @dst.
     *
     * For example, lets say that @old has bits 4 through 7 set, and
     * @new has bits 12 through 15 set.  This defines the mapping of bit
     * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
     * bit positions unchanged.  So if say @src comes into this routine
     * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
     * 13 and 15 set.
     */
    void bitmap_remap(unsigned long *dst, const unsigned long *src,
    		const unsigned long *old, const unsigned long *new,
    		unsigned int nbits)
    {
    	unsigned int oldbit, w;
    
    	if (dst == src)		/* following doesn't handle inplace remaps */
    		return;
    	bitmap_zero(dst, nbits);
    
    	w = bitmap_weight(new, nbits);
    	for_each_set_bit(oldbit, src, nbits) {
    		int n = bitmap_pos_to_ord(old, oldbit, nbits);
    
    		if (n < 0 || w == 0)
    			set_bit(oldbit, dst);	/* identity map */
    		else
    			set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst);
    	}
    }
    
    /**
     * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
     *	@oldbit: bit position to be mapped
     *	@old: defines domain of map
     *	@new: defines range of map
     *	@bits: number of bits in each of these bitmaps
     *
     * Let @old and @new define a mapping of bit positions, such that
     * whatever position is held by the n-th set bit in @old is mapped
     * to the n-th set bit in @new.  In the more general case, allowing
     * for the possibility that the weight 'w' of @new is less than the
     * weight of @old, map the position of the n-th set bit in @old to
     * the position of the m-th set bit in @new, where m == n % w.
     *
     * The positions of unset bits in @old are mapped to themselves
     * (the identify map).
     *
     * Apply the above specified mapping to bit position @oldbit, returning
     * the new bit position.
     *
     * For example, lets say that @old has bits 4 through 7 set, and
     * @new has bits 12 through 15 set.  This defines the mapping of bit
     * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
     * bit positions unchanged.  So if say @oldbit is 5, then this routine
     * returns 13.
     */
    int bitmap_bitremap(int oldbit, const unsigned long *old,
    				const unsigned long *new, int bits)
    {
    	int w = bitmap_weight(new, bits);
    	int n = bitmap_pos_to_ord(old, oldbit, bits);
    	if (n < 0 || w == 0)
    		return oldbit;
    	else
    		return bitmap_ord_to_pos(new, n % w, bits);
    }
    
    /**
     * bitmap_onto - translate one bitmap relative to another
     *	@dst: resulting translated bitmap
     * 	@orig: original untranslated bitmap
     * 	@relmap: bitmap relative to which translated
     *	@bits: number of bits in each of these bitmaps
     *
     * Set the n-th bit of @dst iff there exists some m such that the
     * n-th bit of @relmap is set, the m-th bit of @orig is set, and
     * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
     * (If you understood the previous sentence the first time your
     * read it, you're overqualified for your current job.)
     *
     * In other words, @orig is mapped onto (surjectively) @dst,
     * using the map { <n, m> | the n-th bit of @relmap is the
     * m-th set bit of @relmap }.
     *
     * Any set bits in @orig above bit number W, where W is the
     * weight of (number of set bits in) @relmap are mapped nowhere.
     * In particular, if for all bits m set in @orig, m >= W, then
     * @dst will end up empty.  In situations where the possibility
     * of such an empty result is not desired, one way to avoid it is
     * to use the bitmap_fold() operator, below, to first fold the
     * @orig bitmap over itself so that all its set bits x are in the
     * range 0 <= x < W.  The bitmap_fold() operator does this by
     * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
     *
     * Example [1] for bitmap_onto():
     *  Let's say @relmap has bits 30-39 set, and @orig has bits
     *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine,
     *  @dst will have bits 31, 33, 35, 37 and 39 set.
     *
     *  When bit 0 is set in @orig, it means turn on the bit in
     *  @dst corresponding to whatever is the first bit (if any)
     *  that is turned on in @relmap.  Since bit 0 was off in the
     *  above example, we leave off that bit (bit 30) in @dst.
     *
     *  When bit 1 is set in @orig (as in the above example), it
     *  means turn on the bit in @dst corresponding to whatever
     *  is the second bit that is turned on in @relmap.  The second
     *  bit in @relmap that was turned on in the above example was
     *  bit 31, so we turned on bit 31 in @dst.
     *
     *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
     *  because they were the 4th, 6th, 8th and 10th set bits
     *  set in @relmap, and the 4th, 6th, 8th and 10th bits of
     *  @orig (i.e. bits 3, 5, 7 and 9) were also set.
     *
     *  When bit 11 is set in @orig, it means turn on the bit in
     *  @dst corresponding to whatever is the twelfth bit that is
     *  turned on in @relmap.  In the above example, there were
     *  only ten bits turned on in @relmap (30..39), so that bit
     *  11 was set in @orig had no affect on @dst.
     *
     * Example [2] for bitmap_fold() + bitmap_onto():
     *  Let's say @relmap has these ten bits set::
     *
     *		40 41 42 43 45 48 53 61 74 95
     *
     *  (for the curious, that's 40 plus the first ten terms of the
     *  Fibonacci sequence.)
     *
     *  Further lets say we use the following code, invoking
     *  bitmap_fold() then bitmap_onto, as suggested above to
     *  avoid the possibility of an empty @dst result::
     *
     *	unsigned long *tmp;	// a temporary bitmap's bits
     *
     *	bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
     *	bitmap_onto(dst, tmp, relmap, bits);
     *
     *  Then this table shows what various values of @dst would be, for
     *  various @orig's.  I list the zero-based positions of each set bit.
     *  The tmp column shows the intermediate result, as computed by
     *  using bitmap_fold() to fold the @orig bitmap modulo ten
     *  (the weight of @relmap):
     *
     *      =============== ============== =================
     *      @orig           tmp            @dst
     *      0                0             40
     *      1                1             41
     *      9                9             95
     *      10               0             40 [#f1]_
     *      1 3 5 7          1 3 5 7       41 43 48 61
     *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45
     *      0 9 18 27        0 9 8 7       40 61 74 95
     *      0 10 20 30       0             40
     *      0 11 22 33       0 1 2 3       40 41 42 43
     *      0 12 24 36       0 2 4 6       40 42 45 53
     *      78 102 211       1 2 8         41 42 74 [#f1]_
     *      =============== ============== =================
     *
     * .. [#f1]
     *
     *     For these marked lines, if we hadn't first done bitmap_fold()
     *     into tmp, then the @dst result would have been empty.
     *
     * If either of @orig or @relmap is empty (no set bits), then @dst
     * will be returned empty.
     *
     * If (as explained above) the only set bits in @orig are in positions
     * m where m >= W, (where W is the weight of @relmap) then @dst will
     * once again be returned empty.
     *
     * All bits in @dst not set by the above rule are cleared.
     */
    void bitmap_onto(unsigned long *dst, const unsigned long *orig,
    			const unsigned long *relmap, unsigned int bits)
    {
    	unsigned int n, m;	/* same meaning as in above comment */
    
    	if (dst == orig)	/* following doesn't handle inplace mappings */
    		return;
    	bitmap_zero(dst, bits);
    
    	/*
    	 * The following code is a more efficient, but less
    	 * obvious, equivalent to the loop:
    	 *	for (m = 0; m < bitmap_weight(relmap, bits); m++) {
    	 *		n = bitmap_ord_to_pos(orig, m, bits);
    	 *		if (test_bit(m, orig))
    	 *			set_bit(n, dst);
    	 *	}
    	 */
    
    	m = 0;
    	for_each_set_bit(n, relmap, bits) {
    		/* m == bitmap_pos_to_ord(relmap, n, bits) */
    		if (test_bit(m, orig))
    			set_bit(n, dst);
    		m++;
    	}
    }
    
    /**
     * bitmap_fold - fold larger bitmap into smaller, modulo specified size
     *	@dst: resulting smaller bitmap
     *	@orig: original larger bitmap
     *	@sz: specified size
     *	@nbits: number of bits in each of these bitmaps
     *
     * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
     * Clear all other bits in @dst.  See further the comment and
     * Example [2] for bitmap_onto() for why and how to use this.
     */
    void bitmap_fold(unsigned long *dst, const unsigned long *orig,
    			unsigned int sz, unsigned int nbits)
    {
    	unsigned int oldbit;
    
    	if (dst == orig)	/* following doesn't handle inplace mappings */
    		return;
    	bitmap_zero(dst, nbits);
    
    	for_each_set_bit(oldbit, orig, nbits)
    		set_bit(oldbit % sz, dst);
    }
    #endif /* CONFIG_NUMA */
    
    /*
     * Common code for bitmap_*_region() routines.
     *	bitmap: array of unsigned longs corresponding to the bitmap
     *	pos: the beginning of the region
     *	order: region size (log base 2 of number of bits)
     *	reg_op: operation(s) to perform on that region of bitmap
     *
     * Can set, verify and/or release a region of bits in a bitmap,
     * depending on which combination of REG_OP_* flag bits is set.
     *
     * A region of a bitmap is a sequence of bits in the bitmap, of
     * some size '1 << order' (a power of two), aligned to that same
     * '1 << order' power of two.
     *
     * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
     * Returns 0 in all other cases and reg_ops.
     */
    
    enum {
    	REG_OP_ISFREE,		/* true if region is all zero bits */
    	REG_OP_ALLOC,		/* set all bits in region */
    	REG_OP_RELEASE,		/* clear all bits in region */
    };
    
    static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
    {
    	int nbits_reg;		/* number of bits in region */
    	int index;		/* index first long of region in bitmap */
    	int offset;		/* bit offset region in bitmap[index] */
    	int nlongs_reg;		/* num longs spanned by region in bitmap */
    	int nbitsinlong;	/* num bits of region in each spanned long */
    	unsigned long mask;	/* bitmask for one long of region */
    	int i;			/* scans bitmap by longs */
    	int ret = 0;		/* return value */
    
    	/*
    	 * Either nlongs_reg == 1 (for small orders that fit in one long)
    	 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
    	 */
    	nbits_reg = 1 << order;
    	index = pos / BITS_PER_LONG;
    	offset = pos - (index * BITS_PER_LONG);
    	nlongs_reg = BITS_TO_LONGS(nbits_reg);
    	nbitsinlong = min(nbits_reg,  BITS_PER_LONG);
    
    	/*
    	 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
    	 * overflows if nbitsinlong == BITS_PER_LONG.
    	 */
    	mask = (1UL << (nbitsinlong - 1));
    	mask += mask - 1;
    	mask <<= offset;
    
    	switch (reg_op) {
    	case REG_OP_ISFREE:
    		for (i = 0; i < nlongs_reg; i++) {
    			if (bitmap[index + i] & mask)
    				goto done;
    		}
    		ret = 1;	/* all bits in region free (zero) */
    		break;
    
    	case REG_OP_ALLOC:
    		for (i = 0; i < nlongs_reg; i++)
    			bitmap[index + i] |= mask;
    		break;
    
    	case REG_OP_RELEASE:
    		for (i = 0; i < nlongs_reg; i++)
    			bitmap[index + i] &= ~mask;
    		break;
    	}
    done:
    	return ret;
    }
    
    /**
     * bitmap_find_free_region - find a contiguous aligned mem region
     *	@bitmap: array of unsigned longs corresponding to the bitmap
     *	@bits: number of bits in the bitmap
     *	@order: region size (log base 2 of number of bits) to find
     *
     * Find a region of free (zero) bits in a @bitmap of @bits bits and
     * allocate them (set them to one).  Only consider regions of length
     * a power (@order) of two, aligned to that power of two, which
     * makes the search algorithm much faster.
     *
     * Return the bit offset in bitmap of the allocated region,
     * or -errno on failure.
     */
    int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
    {
    	unsigned int pos, end;		/* scans bitmap by regions of size order */
    
    	for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
    		if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
    			continue;
    		__reg_op(bitmap, pos, order, REG_OP_ALLOC);
    		return pos;
    	}
    	return -ENOMEM;
    }
    EXPORT_SYMBOL(bitmap_find_free_region);
    
    /**
     * bitmap_release_region - release allocated bitmap region
     *	@bitmap: array of unsigned longs corresponding to the bitmap
     *	@pos: beginning of bit region to release
     *	@order: region size (log base 2 of number of bits) to release
     *
     * This is the complement to __bitmap_find_free_region() and releases
     * the found region (by clearing it in the bitmap).
     *
     * No return value.
     */
    void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
    {
    	__reg_op(bitmap, pos, order, REG_OP_RELEASE);
    }
    EXPORT_SYMBOL(bitmap_release_region);
    
    /**
     * bitmap_allocate_region - allocate bitmap region
     *	@bitmap: array of unsigned longs corresponding to the bitmap
     *	@pos: beginning of bit region to allocate
     *	@order: region size (log base 2 of number of bits) to allocate
     *
     * Allocate (set bits in) a specified region of a bitmap.
     *
     * Return 0 on success, or %-EBUSY if specified region wasn't
     * free (not all bits were zero).
     */
    int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
    {
    	if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
    		return -EBUSY;
    	return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
    }
    EXPORT_SYMBOL(bitmap_allocate_region);
    
    /**
     * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
     * @dst:   destination buffer
     * @src:   bitmap to copy
     * @nbits: number of bits in the bitmap
     *
     * Require nbits % BITS_PER_LONG == 0.
     */
    #ifdef __BIG_ENDIAN
    void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits)
    {
    	unsigned int i;
    
    	for (i = 0; i < nbits/BITS_PER_LONG; i++) {
    		if (BITS_PER_LONG == 64)
    			dst[i] = cpu_to_le64(src[i]);
    		else
    			dst[i] = cpu_to_le32(src[i]);
    	}
    }
    EXPORT_SYMBOL(bitmap_copy_le);
    #endif
    
    unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags)
    {
    	return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long),
    			     flags);
    }
    EXPORT_SYMBOL(bitmap_alloc);
    
    unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags)
    {
    	return bitmap_alloc(nbits, flags | __GFP_ZERO);
    }
    EXPORT_SYMBOL(bitmap_zalloc);
    
    void bitmap_free(const unsigned long *bitmap)
    {
    	kfree(bitmap);
    }
    EXPORT_SYMBOL(bitmap_free);
    
    #if BITS_PER_LONG == 64
    /**
     * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap
     *	@bitmap: array of unsigned longs, the destination bitmap
     *	@buf: array of u32 (in host byte order), the source bitmap
     *	@nbits: number of bits in @bitmap
     */
    void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits)
    {
    	unsigned int i, halfwords;
    
    	halfwords = DIV_ROUND_UP(nbits, 32);
    	for (i = 0; i < halfwords; i++) {
    		bitmap[i/2] = (unsigned long) buf[i];
    		if (++i < halfwords)
    			bitmap[i/2] |= ((unsigned long) buf[i]) << 32;
    	}
    
    	/* Clear tail bits in last word beyond nbits. */
    	if (nbits % BITS_PER_LONG)
    		bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits);
    }
    EXPORT_SYMBOL(bitmap_from_arr32);
    
    /**
     * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits
     *	@buf: array of u32 (in host byte order), the dest bitmap
     *	@bitmap: array of unsigned longs, the source bitmap
     *	@nbits: number of bits in @bitmap
     */
    void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits)
    {
    	unsigned int i, halfwords;
    
    	halfwords = DIV_ROUND_UP(nbits, 32);
    	for (i = 0; i < halfwords; i++) {
    		buf[i] = (u32) (bitmap[i/2] & UINT_MAX);
    		if (++i < halfwords)
    			buf[i] = (u32) (bitmap[i/2] >> 32);
    	}
    
    	/* Clear tail bits in last element of array beyond nbits. */
    	if (nbits % BITS_PER_LONG)
    		buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31));
    }
    EXPORT_SYMBOL(bitmap_to_arr32);
    
    #endif