Skip to content
Snippets Groups Projects
Select Git revision
  • 8f16bc97fa2a47e2e46d36f2f682e1215ee172f5
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

qed_int.c

Blame
  • qed_int.c 28.77 KiB
    /* QLogic qed NIC Driver
     * Copyright (c) 2015 QLogic Corporation
     *
     * This software is available under the terms of the GNU General Public License
     * (GPL) Version 2, available from the file COPYING in the main directory of
     * this source tree.
     */
    
    #include <linux/types.h>
    #include <asm/byteorder.h>
    #include <linux/io.h>
    #include <linux/bitops.h>
    #include <linux/delay.h>
    #include <linux/dma-mapping.h>
    #include <linux/errno.h>
    #include <linux/interrupt.h>
    #include <linux/kernel.h>
    #include <linux/pci.h>
    #include <linux/slab.h>
    #include <linux/string.h>
    #include "qed.h"
    #include "qed_hsi.h"
    #include "qed_hw.h"
    #include "qed_init_ops.h"
    #include "qed_int.h"
    #include "qed_mcp.h"
    #include "qed_reg_addr.h"
    #include "qed_sp.h"
    
    struct qed_pi_info {
    	qed_int_comp_cb_t	comp_cb;
    	void			*cookie;
    };
    
    struct qed_sb_sp_info {
    	struct qed_sb_info	sb_info;
    
    	/* per protocol index data */
    	struct qed_pi_info	pi_info_arr[PIS_PER_SB];
    };
    
    #define SB_ATTN_ALIGNED_SIZE(p_hwfn) \
    	ALIGNED_TYPE_SIZE(struct atten_status_block, p_hwfn)
    
    #define ATTN_STATE_BITS (0xfff)
    #define ATTN_BITS_MASKABLE      (0x3ff)
    struct qed_sb_attn_info {
    	/* Virtual & Physical address of the SB */
    	struct atten_status_block       *sb_attn;
    	dma_addr_t		      sb_phys;
    
    	/* Last seen running index */
    	u16			     index;
    
    	/* Previously asserted attentions, which are still unasserted */
    	u16			     known_attn;
    
    	/* Cleanup address for the link's general hw attention */
    	u32			     mfw_attn_addr;
    };
    
    static inline u16 qed_attn_update_idx(struct qed_hwfn *p_hwfn,
    				      struct qed_sb_attn_info   *p_sb_desc)
    {
    	u16     rc = 0;
    	u16     index;
    
    	/* Make certain HW write took affect */
    	mmiowb();
    
    	index = le16_to_cpu(p_sb_desc->sb_attn->sb_index);
    	if (p_sb_desc->index != index) {
    		p_sb_desc->index	= index;
    		rc		      = QED_SB_ATT_IDX;
    	}
    
    	/* Make certain we got a consistent view with HW */
    	mmiowb();
    
    	return rc;
    }
    
    /**
     *  @brief qed_int_assertion - handles asserted attention bits
     *
     *  @param p_hwfn
     *  @param asserted_bits newly asserted bits
     *  @return int
     */
    static int qed_int_assertion(struct qed_hwfn *p_hwfn,
    			     u16 asserted_bits)
    {
    	struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
    	u32 igu_mask;
    
    	/* Mask the source of the attention in the IGU */
    	igu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
    			  IGU_REG_ATTENTION_ENABLE);
    	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "IGU mask: 0x%08x --> 0x%08x\n",
    		   igu_mask, igu_mask & ~(asserted_bits & ATTN_BITS_MASKABLE));
    	igu_mask &= ~(asserted_bits & ATTN_BITS_MASKABLE);
    	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, igu_mask);
    
    	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
    		   "inner known ATTN state: 0x%04x --> 0x%04x\n",
    		   sb_attn_sw->known_attn,
    		   sb_attn_sw->known_attn | asserted_bits);
    	sb_attn_sw->known_attn |= asserted_bits;
    
    	/* Handle MCP events */
    	if (asserted_bits & 0x100) {
    		qed_mcp_handle_events(p_hwfn, p_hwfn->p_dpc_ptt);
    		/* Clean the MCP attention */
    		qed_wr(p_hwfn, p_hwfn->p_dpc_ptt,
    		       sb_attn_sw->mfw_attn_addr, 0);
    	}
    
    	DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview +
    		      GTT_BAR0_MAP_REG_IGU_CMD +
    		      ((IGU_CMD_ATTN_BIT_SET_UPPER -
    			IGU_CMD_INT_ACK_BASE) << 3),
    		      (u32)asserted_bits);
    
    	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "set cmd IGU: 0x%04x\n",
    		   asserted_bits);
    
    	return 0;
    }
    
    /**
     * @brief - handles deassertion of previously asserted attentions.
     *
     * @param p_hwfn
     * @param deasserted_bits - newly deasserted bits
     * @return int
     *
     */
    static int qed_int_deassertion(struct qed_hwfn  *p_hwfn,
    			       u16 deasserted_bits)
    {
    	struct qed_sb_attn_info *sb_attn_sw = p_hwfn->p_sb_attn;
    	u32 aeu_mask;
    
    	if (deasserted_bits != 0x100)
    		DP_ERR(p_hwfn, "Unexpected - non-link deassertion\n");
    
    	/* Clear IGU indication for the deasserted bits */
    	DIRECT_REG_WR((u8 __iomem *)p_hwfn->regview +
    		      GTT_BAR0_MAP_REG_IGU_CMD +
    		      ((IGU_CMD_ATTN_BIT_CLR_UPPER -
    			IGU_CMD_INT_ACK_BASE) << 3),
    		      ~((u32)deasserted_bits));
    
    	/* Unmask deasserted attentions in IGU */
    	aeu_mask = qed_rd(p_hwfn, p_hwfn->p_dpc_ptt,
    			  IGU_REG_ATTENTION_ENABLE);
    	aeu_mask |= (deasserted_bits & ATTN_BITS_MASKABLE);
    	qed_wr(p_hwfn, p_hwfn->p_dpc_ptt, IGU_REG_ATTENTION_ENABLE, aeu_mask);
    
    	/* Clear deassertion from inner state */
    	sb_attn_sw->known_attn &= ~deasserted_bits;
    
    	return 0;
    }
    
    static int qed_int_attentions(struct qed_hwfn *p_hwfn)
    {
    	struct qed_sb_attn_info *p_sb_attn_sw = p_hwfn->p_sb_attn;
    	struct atten_status_block *p_sb_attn = p_sb_attn_sw->sb_attn;
    	u32 attn_bits = 0, attn_acks = 0;
    	u16 asserted_bits, deasserted_bits;
    	__le16 index;
    	int rc = 0;
    
    	/* Read current attention bits/acks - safeguard against attentions
    	 * by guaranting work on a synchronized timeframe
    	 */
    	do {
    		index = p_sb_attn->sb_index;
    		attn_bits = le32_to_cpu(p_sb_attn->atten_bits);
    		attn_acks = le32_to_cpu(p_sb_attn->atten_ack);
    	} while (index != p_sb_attn->sb_index);
    	p_sb_attn->sb_index = index;
    
    	/* Attention / Deassertion are meaningful (and in correct state)
    	 * only when they differ and consistent with known state - deassertion
    	 * when previous attention & current ack, and assertion when current
    	 * attention with no previous attention
    	 */
    	asserted_bits = (attn_bits & ~attn_acks & ATTN_STATE_BITS) &
    		~p_sb_attn_sw->known_attn;
    	deasserted_bits = (~attn_bits & attn_acks & ATTN_STATE_BITS) &
    		p_sb_attn_sw->known_attn;
    
    	if ((asserted_bits & ~0x100) || (deasserted_bits & ~0x100)) {
    		DP_INFO(p_hwfn,
    			"Attention: Index: 0x%04x, Bits: 0x%08x, Acks: 0x%08x, asserted: 0x%04x, De-asserted 0x%04x [Prev. known: 0x%04x]\n",
    			index, attn_bits, attn_acks, asserted_bits,
    			deasserted_bits, p_sb_attn_sw->known_attn);
    	} else if (asserted_bits == 0x100) {
    		DP_INFO(p_hwfn,
    			"MFW indication via attention\n");
    	} else {
    		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
    			   "MFW indication [deassertion]\n");
    	}
    
    	if (asserted_bits) {
    		rc = qed_int_assertion(p_hwfn, asserted_bits);
    		if (rc)
    			return rc;
    	}
    
    	if (deasserted_bits) {
    		rc = qed_int_deassertion(p_hwfn, deasserted_bits);
    		if (rc)
    			return rc;
    	}
    
    	return rc;
    }
    
    static void qed_sb_ack_attn(struct qed_hwfn *p_hwfn,
    			    void __iomem *igu_addr,
    			    u32 ack_cons)
    {
    	struct igu_prod_cons_update igu_ack = { 0 };
    
    	igu_ack.sb_id_and_flags =
    		((ack_cons << IGU_PROD_CONS_UPDATE_SB_INDEX_SHIFT) |
    		 (1 << IGU_PROD_CONS_UPDATE_UPDATE_FLAG_SHIFT) |
    		 (IGU_INT_NOP << IGU_PROD_CONS_UPDATE_ENABLE_INT_SHIFT) |
    		 (IGU_SEG_ACCESS_ATTN <<
    		  IGU_PROD_CONS_UPDATE_SEGMENT_ACCESS_SHIFT));
    
    	DIRECT_REG_WR(igu_addr, igu_ack.sb_id_and_flags);
    
    	/* Both segments (interrupts & acks) are written to same place address;
    	 * Need to guarantee all commands will be received (in-order) by HW.
    	 */
    	mmiowb();
    	barrier();
    }
    
    void qed_int_sp_dpc(unsigned long hwfn_cookie)
    {
    	struct qed_hwfn *p_hwfn = (struct qed_hwfn *)hwfn_cookie;
    	struct qed_pi_info *pi_info = NULL;
    	struct qed_sb_attn_info *sb_attn;
    	struct qed_sb_info *sb_info;
    	int arr_size;
    	u16 rc = 0;
    
    	if (!p_hwfn->p_sp_sb) {
    		DP_ERR(p_hwfn->cdev, "DPC called - no p_sp_sb\n");
    		return;
    	}
    
    	sb_info = &p_hwfn->p_sp_sb->sb_info;
    	arr_size = ARRAY_SIZE(p_hwfn->p_sp_sb->pi_info_arr);
    	if (!sb_info) {
    		DP_ERR(p_hwfn->cdev,
    		       "Status block is NULL - cannot ack interrupts\n");
    		return;
    	}
    
    	if (!p_hwfn->p_sb_attn) {
    		DP_ERR(p_hwfn->cdev, "DPC called - no p_sb_attn");
    		return;
    	}
    	sb_attn = p_hwfn->p_sb_attn;
    
    	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "DPC Called! (hwfn %p %d)\n",
    		   p_hwfn, p_hwfn->my_id);
    
    	/* Disable ack for def status block. Required both for msix +
    	 * inta in non-mask mode, in inta does no harm.
    	 */
    	qed_sb_ack(sb_info, IGU_INT_DISABLE, 0);
    
    	/* Gather Interrupts/Attentions information */
    	if (!sb_info->sb_virt) {
    		DP_ERR(
    			p_hwfn->cdev,
    			"Interrupt Status block is NULL - cannot check for new interrupts!\n");
    	} else {
    		u32 tmp_index = sb_info->sb_ack;
    
    		rc = qed_sb_update_sb_idx(sb_info);
    		DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR,
    			   "Interrupt indices: 0x%08x --> 0x%08x\n",
    			   tmp_index, sb_info->sb_ack);
    	}
    
    	if (!sb_attn || !sb_attn->sb_attn) {
    		DP_ERR(
    			p_hwfn->cdev,
    			"Attentions Status block is NULL - cannot check for new attentions!\n");
    	} else {
    		u16 tmp_index = sb_attn->index;
    
    		rc |= qed_attn_update_idx(p_hwfn, sb_attn);
    		DP_VERBOSE(p_hwfn->cdev, NETIF_MSG_INTR,
    			   "Attention indices: 0x%08x --> 0x%08x\n",
    			   tmp_index, sb_attn->index);
    	}
    
    	/* Check if we expect interrupts at this time. if not just ack them */
    	if (!(rc & QED_SB_EVENT_MASK)) {
    		qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
    		return;
    	}
    
    	/* Check the validity of the DPC ptt. If not ack interrupts and fail */
    	if (!p_hwfn->p_dpc_ptt) {
    		DP_NOTICE(p_hwfn->cdev, "Failed to allocate PTT\n");
    		qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
    		return;
    	}
    
    	if (rc & QED_SB_ATT_IDX)
    		qed_int_attentions(p_hwfn);
    
    	if (rc & QED_SB_IDX) {
    		int pi;
    
    		/* Look for a free index */
    		for (pi = 0; pi < arr_size; pi++) {
    			pi_info = &p_hwfn->p_sp_sb->pi_info_arr[pi];
    			if (pi_info->comp_cb)
    				pi_info->comp_cb(p_hwfn, pi_info->cookie);
    		}
    	}
    
    	if (sb_attn && (rc & QED_SB_ATT_IDX))
    		/* This should be done before the interrupts are enabled,
    		 * since otherwise a new attention will be generated.
    		 */
    		qed_sb_ack_attn(p_hwfn, sb_info->igu_addr, sb_attn->index);
    
    	qed_sb_ack(sb_info, IGU_INT_ENABLE, 1);
    }
    
    static void qed_int_sb_attn_free(struct qed_hwfn *p_hwfn)
    {
    	struct qed_dev *cdev   = p_hwfn->cdev;
    	struct qed_sb_attn_info *p_sb   = p_hwfn->p_sb_attn;
    
    	if (p_sb) {
    		if (p_sb->sb_attn)
    			dma_free_coherent(&cdev->pdev->dev,
    					  SB_ATTN_ALIGNED_SIZE(p_hwfn),
    					  p_sb->sb_attn,
    					  p_sb->sb_phys);
    		kfree(p_sb);
    	}
    }
    
    static void qed_int_sb_attn_setup(struct qed_hwfn *p_hwfn,
    				  struct qed_ptt *p_ptt)
    {
    	struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
    
    	memset(sb_info->sb_attn, 0, sizeof(*sb_info->sb_attn));
    
    	sb_info->index = 0;
    	sb_info->known_attn = 0;
    
    	/* Configure Attention Status Block in IGU */
    	qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_L,
    	       lower_32_bits(p_hwfn->p_sb_attn->sb_phys));
    	qed_wr(p_hwfn, p_ptt, IGU_REG_ATTN_MSG_ADDR_H,
    	       upper_32_bits(p_hwfn->p_sb_attn->sb_phys));
    }
    
    static void qed_int_sb_attn_init(struct qed_hwfn *p_hwfn,
    				 struct qed_ptt *p_ptt,
    				 void *sb_virt_addr,
    				 dma_addr_t sb_phy_addr)
    {
    	struct qed_sb_attn_info *sb_info = p_hwfn->p_sb_attn;
    
    	sb_info->sb_attn = sb_virt_addr;
    	sb_info->sb_phys = sb_phy_addr;
    
    	/* Set the address of cleanup for the mcp attention */
    	sb_info->mfw_attn_addr = (p_hwfn->rel_pf_id << 3) +
    				 MISC_REG_AEU_GENERAL_ATTN_0;
    
    	qed_int_sb_attn_setup(p_hwfn, p_ptt);
    }
    
    static int qed_int_sb_attn_alloc(struct qed_hwfn *p_hwfn,
    				 struct qed_ptt *p_ptt)
    {
    	struct qed_dev *cdev = p_hwfn->cdev;
    	struct qed_sb_attn_info *p_sb;
    	void *p_virt;
    	dma_addr_t p_phys = 0;
    
    	/* SB struct */
    	p_sb = kmalloc(sizeof(*p_sb), GFP_ATOMIC);
    	if (!p_sb) {
    		DP_NOTICE(cdev, "Failed to allocate `struct qed_sb_attn_info'\n");
    		return -ENOMEM;
    	}
    
    	/* SB ring  */
    	p_virt = dma_alloc_coherent(&cdev->pdev->dev,
    				    SB_ATTN_ALIGNED_SIZE(p_hwfn),
    				    &p_phys, GFP_KERNEL);
    
    	if (!p_virt) {
    		DP_NOTICE(cdev, "Failed to allocate status block (attentions)\n");
    		kfree(p_sb);
    		return -ENOMEM;
    	}
    
    	/* Attention setup */
    	p_hwfn->p_sb_attn = p_sb;
    	qed_int_sb_attn_init(p_hwfn, p_ptt, p_virt, p_phys);
    
    	return 0;
    }
    
    /* coalescing timeout = timeset << (timer_res + 1) */
    #define QED_CAU_DEF_RX_USECS 24
    #define QED_CAU_DEF_TX_USECS 48
    
    void qed_init_cau_sb_entry(struct qed_hwfn *p_hwfn,
    			   struct cau_sb_entry *p_sb_entry,
    			   u8 pf_id,
    			   u16 vf_number,
    			   u8 vf_valid)
    {
    	u32 cau_state;
    
    	memset(p_sb_entry, 0, sizeof(*p_sb_entry));
    
    	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_PF_NUMBER, pf_id);
    	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_NUMBER, vf_number);
    	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_VF_VALID, vf_valid);
    	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET0, 0x7F);
    	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_SB_TIMESET1, 0x7F);
    
    	/* setting the time resultion to a fixed value ( = 1) */
    	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES0,
    		  QED_CAU_DEF_RX_TIMER_RES);
    	SET_FIELD(p_sb_entry->params, CAU_SB_ENTRY_TIMER_RES1,
    		  QED_CAU_DEF_TX_TIMER_RES);
    
    	cau_state = CAU_HC_DISABLE_STATE;
    
    	if (p_hwfn->cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) {
    		cau_state = CAU_HC_ENABLE_STATE;
    		if (!p_hwfn->cdev->rx_coalesce_usecs)
    			p_hwfn->cdev->rx_coalesce_usecs =
    				QED_CAU_DEF_RX_USECS;
    		if (!p_hwfn->cdev->tx_coalesce_usecs)
    			p_hwfn->cdev->tx_coalesce_usecs =
    				QED_CAU_DEF_TX_USECS;
    	}
    
    	SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE0, cau_state);
    	SET_FIELD(p_sb_entry->data, CAU_SB_ENTRY_STATE1, cau_state);
    }
    
    void qed_int_cau_conf_sb(struct qed_hwfn *p_hwfn,
    			 struct qed_ptt *p_ptt,
    			 dma_addr_t sb_phys,
    			 u16 igu_sb_id,
    			 u16 vf_number,
    			 u8 vf_valid)
    {
    	struct cau_sb_entry sb_entry;
    	u32 val;
    
    	qed_init_cau_sb_entry(p_hwfn, &sb_entry, p_hwfn->rel_pf_id,
    			      vf_number, vf_valid);
    
    	if (p_hwfn->hw_init_done) {
    		val = CAU_REG_SB_ADDR_MEMORY + igu_sb_id * sizeof(u64);
    		qed_wr(p_hwfn, p_ptt, val, lower_32_bits(sb_phys));
    		qed_wr(p_hwfn, p_ptt, val + sizeof(u32),
    		       upper_32_bits(sb_phys));
    
    		val = CAU_REG_SB_VAR_MEMORY + igu_sb_id * sizeof(u64);
    		qed_wr(p_hwfn, p_ptt, val, sb_entry.data);
    		qed_wr(p_hwfn, p_ptt, val + sizeof(u32), sb_entry.params);
    	} else {
    		/* Initialize Status Block Address */
    		STORE_RT_REG_AGG(p_hwfn,
    				 CAU_REG_SB_ADDR_MEMORY_RT_OFFSET +
    				 igu_sb_id * 2,
    				 sb_phys);
    
    		STORE_RT_REG_AGG(p_hwfn,
    				 CAU_REG_SB_VAR_MEMORY_RT_OFFSET +
    				 igu_sb_id * 2,
    				 sb_entry);
    	}
    
    	/* Configure pi coalescing if set */
    	if (p_hwfn->cdev->int_coalescing_mode == QED_COAL_MODE_ENABLE) {
    		u8 timeset = p_hwfn->cdev->rx_coalesce_usecs >>
    			     (QED_CAU_DEF_RX_TIMER_RES + 1);
    		u8 num_tc = 1, i;
    
    		qed_int_cau_conf_pi(p_hwfn, p_ptt, igu_sb_id, RX_PI,
    				    QED_COAL_RX_STATE_MACHINE,
    				    timeset);
    
    		timeset = p_hwfn->cdev->tx_coalesce_usecs >>
    			  (QED_CAU_DEF_TX_TIMER_RES + 1);
    
    		for (i = 0; i < num_tc; i++) {
    			qed_int_cau_conf_pi(p_hwfn, p_ptt,
    					    igu_sb_id, TX_PI(i),
    					    QED_COAL_TX_STATE_MACHINE,
    					    timeset);
    		}
    	}
    }
    
    void qed_int_cau_conf_pi(struct qed_hwfn *p_hwfn,
    			 struct qed_ptt *p_ptt,
    			 u16 igu_sb_id,
    			 u32 pi_index,
    			 enum qed_coalescing_fsm coalescing_fsm,
    			 u8 timeset)
    {
    	struct cau_pi_entry pi_entry;
    	u32 sb_offset;
    	u32 pi_offset;
    
    	sb_offset = igu_sb_id * PIS_PER_SB;
    	memset(&pi_entry, 0, sizeof(struct cau_pi_entry));
    
    	SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_PI_TIMESET, timeset);
    	if (coalescing_fsm == QED_COAL_RX_STATE_MACHINE)
    		SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 0);
    	else
    		SET_FIELD(pi_entry.prod, CAU_PI_ENTRY_FSM_SEL, 1);
    
    	pi_offset = sb_offset + pi_index;
    	if (p_hwfn->hw_init_done) {
    		qed_wr(p_hwfn, p_ptt,
    		       CAU_REG_PI_MEMORY + pi_offset * sizeof(u32),
    		       *((u32 *)&(pi_entry)));
    	} else {
    		STORE_RT_REG(p_hwfn,
    			     CAU_REG_PI_MEMORY_RT_OFFSET + pi_offset,
    			     *((u32 *)&(pi_entry)));
    	}
    }
    
    void qed_int_sb_setup(struct qed_hwfn *p_hwfn,
    		      struct qed_ptt *p_ptt,
    		      struct qed_sb_info *sb_info)
    {
    	/* zero status block and ack counter */
    	sb_info->sb_ack = 0;
    	memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
    
    	qed_int_cau_conf_sb(p_hwfn, p_ptt, sb_info->sb_phys,
    			    sb_info->igu_sb_id, 0, 0);
    }
    
    /**
     * @brief qed_get_igu_sb_id - given a sw sb_id return the
     *        igu_sb_id
     *
     * @param p_hwfn
     * @param sb_id
     *
     * @return u16
     */
    static u16 qed_get_igu_sb_id(struct qed_hwfn *p_hwfn,
    			     u16 sb_id)
    {
    	u16 igu_sb_id;
    
    	/* Assuming continuous set of IGU SBs dedicated for given PF */
    	if (sb_id == QED_SP_SB_ID)
    		igu_sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id;
    	else
    		igu_sb_id = sb_id + p_hwfn->hw_info.p_igu_info->igu_base_sb;
    
    	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR, "SB [%s] index is 0x%04x\n",
    		   (sb_id == QED_SP_SB_ID) ? "DSB" : "non-DSB", igu_sb_id);
    
    	return igu_sb_id;
    }
    
    int qed_int_sb_init(struct qed_hwfn *p_hwfn,
    		    struct qed_ptt *p_ptt,
    		    struct qed_sb_info *sb_info,
    		    void *sb_virt_addr,
    		    dma_addr_t sb_phy_addr,
    		    u16 sb_id)
    {
    	sb_info->sb_virt = sb_virt_addr;
    	sb_info->sb_phys = sb_phy_addr;
    
    	sb_info->igu_sb_id = qed_get_igu_sb_id(p_hwfn, sb_id);
    
    	if (sb_id != QED_SP_SB_ID) {
    		p_hwfn->sbs_info[sb_id] = sb_info;
    		p_hwfn->num_sbs++;
    	}
    
    	sb_info->cdev = p_hwfn->cdev;
    
    	/* The igu address will hold the absolute address that needs to be
    	 * written to for a specific status block
    	 */
    	sb_info->igu_addr = (u8 __iomem *)p_hwfn->regview +
    					  GTT_BAR0_MAP_REG_IGU_CMD +
    					  (sb_info->igu_sb_id << 3);
    
    	sb_info->flags |= QED_SB_INFO_INIT;
    
    	qed_int_sb_setup(p_hwfn, p_ptt, sb_info);
    
    	return 0;
    }
    
    int qed_int_sb_release(struct qed_hwfn *p_hwfn,
    		       struct qed_sb_info *sb_info,
    		       u16 sb_id)
    {
    	if (sb_id == QED_SP_SB_ID) {
    		DP_ERR(p_hwfn, "Do Not free sp sb using this function");
    		return -EINVAL;
    	}
    
    	/* zero status block and ack counter */
    	sb_info->sb_ack = 0;
    	memset(sb_info->sb_virt, 0, sizeof(*sb_info->sb_virt));
    
    	p_hwfn->sbs_info[sb_id] = NULL;
    	p_hwfn->num_sbs--;
    
    	return 0;
    }
    
    static void qed_int_sp_sb_free(struct qed_hwfn *p_hwfn)
    {
    	struct qed_sb_sp_info *p_sb = p_hwfn->p_sp_sb;
    
    	if (p_sb) {
    		if (p_sb->sb_info.sb_virt)
    			dma_free_coherent(&p_hwfn->cdev->pdev->dev,
    					  SB_ALIGNED_SIZE(p_hwfn),
    					  p_sb->sb_info.sb_virt,
    					  p_sb->sb_info.sb_phys);
    		kfree(p_sb);
    	}
    }
    
    static int qed_int_sp_sb_alloc(struct qed_hwfn *p_hwfn,
    			       struct qed_ptt *p_ptt)
    {
    	struct qed_sb_sp_info *p_sb;
    	dma_addr_t p_phys = 0;
    	void *p_virt;
    
    	/* SB struct */
    	p_sb = kmalloc(sizeof(*p_sb), GFP_ATOMIC);
    	if (!p_sb) {
    		DP_NOTICE(p_hwfn, "Failed to allocate `struct qed_sb_info'\n");
    		return -ENOMEM;
    	}
    
    	/* SB ring  */
    	p_virt = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
    				    SB_ALIGNED_SIZE(p_hwfn),
    				    &p_phys, GFP_KERNEL);
    	if (!p_virt) {
    		DP_NOTICE(p_hwfn, "Failed to allocate status block\n");
    		kfree(p_sb);
    		return -ENOMEM;
    	}
    
    	/* Status Block setup */
    	p_hwfn->p_sp_sb = p_sb;
    	qed_int_sb_init(p_hwfn, p_ptt, &p_sb->sb_info, p_virt,
    			p_phys, QED_SP_SB_ID);
    
    	memset(p_sb->pi_info_arr, 0, sizeof(p_sb->pi_info_arr));
    
    	return 0;
    }
    
    static void qed_int_sp_sb_setup(struct qed_hwfn *p_hwfn,
    				struct qed_ptt *p_ptt)
    {
    	if (!p_hwfn)
    		return;
    
    	if (p_hwfn->p_sp_sb)
    		qed_int_sb_setup(p_hwfn, p_ptt, &p_hwfn->p_sp_sb->sb_info);
    	else
    		DP_NOTICE(p_hwfn->cdev,
    			  "Failed to setup Slow path status block - NULL pointer\n");
    
    	if (p_hwfn->p_sb_attn)
    		qed_int_sb_attn_setup(p_hwfn, p_ptt);
    	else
    		DP_NOTICE(p_hwfn->cdev,
    			  "Failed to setup attentions status block - NULL pointer\n");
    }
    
    int qed_int_register_cb(struct qed_hwfn *p_hwfn,
    			qed_int_comp_cb_t comp_cb,
    			void *cookie,
    			u8 *sb_idx,
    			__le16 **p_fw_cons)
    {
    	struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
    	int qed_status = -ENOMEM;
    	u8 pi;
    
    	/* Look for a free index */
    	for (pi = 0; pi < ARRAY_SIZE(p_sp_sb->pi_info_arr); pi++) {
    		if (!p_sp_sb->pi_info_arr[pi].comp_cb) {
    			p_sp_sb->pi_info_arr[pi].comp_cb = comp_cb;
    			p_sp_sb->pi_info_arr[pi].cookie = cookie;
    			*sb_idx = pi;
    			*p_fw_cons = &p_sp_sb->sb_info.sb_virt->pi_array[pi];
    			qed_status = 0;
    			break;
    		}
    	}
    
    	return qed_status;
    }
    
    int qed_int_unregister_cb(struct qed_hwfn *p_hwfn, u8 pi)
    {
    	struct qed_sb_sp_info *p_sp_sb = p_hwfn->p_sp_sb;
    	int qed_status = -ENOMEM;
    
    	if (p_sp_sb->pi_info_arr[pi].comp_cb) {
    		p_sp_sb->pi_info_arr[pi].comp_cb = NULL;
    		p_sp_sb->pi_info_arr[pi].cookie = NULL;
    		qed_status = 0;
    	}
    
    	return qed_status;
    }
    
    u16 qed_int_get_sp_sb_id(struct qed_hwfn *p_hwfn)
    {
    	return p_hwfn->p_sp_sb->sb_info.igu_sb_id;
    }
    
    void qed_int_igu_enable_int(struct qed_hwfn *p_hwfn,
    			    struct qed_ptt *p_ptt,
    			    enum qed_int_mode int_mode)
    {
    	u32 igu_pf_conf = IGU_PF_CONF_FUNC_EN | IGU_PF_CONF_ATTN_BIT_EN;
    
    	p_hwfn->cdev->int_mode = int_mode;
    	switch (p_hwfn->cdev->int_mode) {
    	case QED_INT_MODE_INTA:
    		igu_pf_conf |= IGU_PF_CONF_INT_LINE_EN;
    		igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
    		break;
    
    	case QED_INT_MODE_MSI:
    		igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
    		igu_pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
    		break;
    
    	case QED_INT_MODE_MSIX:
    		igu_pf_conf |= IGU_PF_CONF_MSI_MSIX_EN;
    		break;
    	case QED_INT_MODE_POLL:
    		break;
    	}
    
    	qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, igu_pf_conf);
    }
    
    int qed_int_igu_enable(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
    		       enum qed_int_mode int_mode)
    {
    	int rc, i;
    
    	/* Mask non-link attentions */
    	for (i = 0; i < 9; i++)
    		qed_wr(p_hwfn, p_ptt,
    		       MISC_REG_AEU_ENABLE1_IGU_OUT_0 + (i << 2), 0);
    
    	/* Configure AEU signal change to produce attentions for link */
    	qed_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0xfff);
    	qed_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0xfff);
    
    	/* Flush the writes to IGU */
    	mmiowb();
    
    	/* Unmask AEU signals toward IGU */
    	qed_wr(p_hwfn, p_ptt, MISC_REG_AEU_MASK_ATTN_IGU, 0xff);
    	if ((int_mode != QED_INT_MODE_INTA) || IS_LEAD_HWFN(p_hwfn)) {
    		rc = qed_slowpath_irq_req(p_hwfn);
    		if (rc != 0) {
    			DP_NOTICE(p_hwfn, "Slowpath IRQ request failed\n");
    			return -EINVAL;
    		}
    		p_hwfn->b_int_requested = true;
    	}
    	/* Enable interrupt Generation */
    	qed_int_igu_enable_int(p_hwfn, p_ptt, int_mode);
    	p_hwfn->b_int_enabled = 1;
    
    	return rc;
    }
    
    void qed_int_igu_disable_int(struct qed_hwfn *p_hwfn,
    			     struct qed_ptt *p_ptt)
    {
    	p_hwfn->b_int_enabled = 0;
    
    	qed_wr(p_hwfn, p_ptt, IGU_REG_PF_CONFIGURATION, 0);
    }
    
    #define IGU_CLEANUP_SLEEP_LENGTH                (1000)
    void qed_int_igu_cleanup_sb(struct qed_hwfn *p_hwfn,
    			    struct qed_ptt *p_ptt,
    			    u32 sb_id,
    			    bool cleanup_set,
    			    u16 opaque_fid
    			    )
    {
    	u32 pxp_addr = IGU_CMD_INT_ACK_BASE + sb_id;
    	u32 sleep_cnt = IGU_CLEANUP_SLEEP_LENGTH;
    	u32 data = 0;
    	u32 cmd_ctrl = 0;
    	u32 val = 0;
    	u32 sb_bit = 0;
    	u32 sb_bit_addr = 0;
    
    	/* Set the data field */
    	SET_FIELD(data, IGU_CLEANUP_CLEANUP_SET, cleanup_set ? 1 : 0);
    	SET_FIELD(data, IGU_CLEANUP_CLEANUP_TYPE, 0);
    	SET_FIELD(data, IGU_CLEANUP_COMMAND_TYPE, IGU_COMMAND_TYPE_SET);
    
    	/* Set the control register */
    	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_PXP_ADDR, pxp_addr);
    	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_FID, opaque_fid);
    	SET_FIELD(cmd_ctrl, IGU_CTRL_REG_TYPE, IGU_CTRL_CMD_TYPE_WR);
    
    	qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_32LSB_DATA, data);
    
    	barrier();
    
    	qed_wr(p_hwfn, p_ptt, IGU_REG_COMMAND_REG_CTRL, cmd_ctrl);
    
    	/* Flush the write to IGU */
    	mmiowb();
    
    	/* calculate where to read the status bit from */
    	sb_bit = 1 << (sb_id % 32);
    	sb_bit_addr = sb_id / 32 * sizeof(u32);
    
    	sb_bit_addr += IGU_REG_CLEANUP_STATUS_0;
    
    	/* Now wait for the command to complete */
    	do {
    		val = qed_rd(p_hwfn, p_ptt, sb_bit_addr);
    
    		if ((val & sb_bit) == (cleanup_set ? sb_bit : 0))
    			break;
    
    		usleep_range(5000, 10000);
    	} while (--sleep_cnt);
    
    	if (!sleep_cnt)
    		DP_NOTICE(p_hwfn,
    			  "Timeout waiting for clear status 0x%08x [for sb %d]\n",
    			  val, sb_id);
    }
    
    void qed_int_igu_init_pure_rt_single(struct qed_hwfn *p_hwfn,
    				     struct qed_ptt *p_ptt,
    				     u32 sb_id,
    				     u16 opaque,
    				     bool b_set)
    {
    	int pi;
    
    	/* Set */
    	if (b_set)
    		qed_int_igu_cleanup_sb(p_hwfn, p_ptt, sb_id, 1, opaque);
    
    	/* Clear */
    	qed_int_igu_cleanup_sb(p_hwfn, p_ptt, sb_id, 0, opaque);
    
    	/* Clear the CAU for the SB */
    	for (pi = 0; pi < 12; pi++)
    		qed_wr(p_hwfn, p_ptt,
    		       CAU_REG_PI_MEMORY + (sb_id * 12 + pi) * 4, 0);
    }
    
    void qed_int_igu_init_pure_rt(struct qed_hwfn *p_hwfn,
    			      struct qed_ptt *p_ptt,
    			      bool b_set,
    			      bool b_slowpath)
    {
    	u32 igu_base_sb = p_hwfn->hw_info.p_igu_info->igu_base_sb;
    	u32 igu_sb_cnt = p_hwfn->hw_info.p_igu_info->igu_sb_cnt;
    	u32 sb_id = 0;
    	u32 val = 0;
    
    	val = qed_rd(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION);
    	val |= IGU_REG_BLOCK_CONFIGURATION_VF_CLEANUP_EN;
    	val &= ~IGU_REG_BLOCK_CONFIGURATION_PXP_TPH_INTERFACE_EN;
    	qed_wr(p_hwfn, p_ptt, IGU_REG_BLOCK_CONFIGURATION, val);
    
    	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
    		   "IGU cleaning SBs [%d,...,%d]\n",
    		   igu_base_sb, igu_base_sb + igu_sb_cnt - 1);
    
    	for (sb_id = igu_base_sb; sb_id < igu_base_sb + igu_sb_cnt; sb_id++)
    		qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, sb_id,
    						p_hwfn->hw_info.opaque_fid,
    						b_set);
    
    	if (b_slowpath) {
    		sb_id = p_hwfn->hw_info.p_igu_info->igu_dsb_id;
    		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
    			   "IGU cleaning slowpath SB [%d]\n", sb_id);
    		qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt, sb_id,
    						p_hwfn->hw_info.opaque_fid,
    						b_set);
    	}
    }
    
    int qed_int_igu_read_cam(struct qed_hwfn *p_hwfn,
    			 struct qed_ptt *p_ptt)
    {
    	struct qed_igu_info *p_igu_info;
    	struct qed_igu_block *blk;
    	u32 val;
    	u16 sb_id;
    	u16 prev_sb_id = 0xFF;
    
    	p_hwfn->hw_info.p_igu_info = kzalloc(sizeof(*p_igu_info), GFP_ATOMIC);
    
    	if (!p_hwfn->hw_info.p_igu_info)
    		return -ENOMEM;
    
    	p_igu_info = p_hwfn->hw_info.p_igu_info;
    
    	/* Initialize base sb / sb cnt for PFs */
    	p_igu_info->igu_base_sb		= 0xffff;
    	p_igu_info->igu_sb_cnt		= 0;
    	p_igu_info->igu_dsb_id		= 0xffff;
    	p_igu_info->igu_base_sb_iov	= 0xffff;
    
    	for (sb_id = 0; sb_id < QED_MAPPING_MEMORY_SIZE(p_hwfn->cdev);
    	     sb_id++) {
    		blk = &p_igu_info->igu_map.igu_blocks[sb_id];
    
    		val = qed_rd(p_hwfn, p_ptt,
    			     IGU_REG_MAPPING_MEMORY + sizeof(u32) * sb_id);
    
    		/* stop scanning when hit first invalid PF entry */
    		if (!GET_FIELD(val, IGU_MAPPING_LINE_VALID) &&
    		    GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID))
    			break;
    
    		blk->status = QED_IGU_STATUS_VALID;
    		blk->function_id = GET_FIELD(val,
    					     IGU_MAPPING_LINE_FUNCTION_NUMBER);
    		blk->is_pf = GET_FIELD(val, IGU_MAPPING_LINE_PF_VALID);
    		blk->vector_number = GET_FIELD(val,
    					       IGU_MAPPING_LINE_VECTOR_NUMBER);
    
    		DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
    			   "IGU_BLOCK[sb_id]:%x:func_id = %d is_pf = %d vector_num = 0x%x\n",
    			   val, blk->function_id, blk->is_pf,
    			   blk->vector_number);
    
    		if (blk->is_pf) {
    			if (blk->function_id == p_hwfn->rel_pf_id) {
    				blk->status |= QED_IGU_STATUS_PF;
    
    				if (blk->vector_number == 0) {
    					if (p_igu_info->igu_dsb_id == 0xffff)
    						p_igu_info->igu_dsb_id = sb_id;
    				} else {
    					if (p_igu_info->igu_base_sb ==
    					    0xffff) {
    						p_igu_info->igu_base_sb = sb_id;
    					} else if (prev_sb_id != sb_id - 1) {
    						DP_NOTICE(p_hwfn->cdev,
    							  "consecutive igu vectors for HWFN %x broken",
    							  p_hwfn->rel_pf_id);
    						break;
    					}
    					prev_sb_id = sb_id;
    					/* we don't count the default */
    					(p_igu_info->igu_sb_cnt)++;
    				}
    			}
    		}
    	}
    
    	DP_VERBOSE(p_hwfn, NETIF_MSG_INTR,
    		   "IGU igu_base_sb=0x%x igu_sb_cnt=%d igu_dsb_id=0x%x\n",
    		   p_igu_info->igu_base_sb,
    		   p_igu_info->igu_sb_cnt,
    		   p_igu_info->igu_dsb_id);
    
    	if (p_igu_info->igu_base_sb == 0xffff ||
    	    p_igu_info->igu_dsb_id == 0xffff ||
    	    p_igu_info->igu_sb_cnt == 0) {
    		DP_NOTICE(p_hwfn,
    			  "IGU CAM returned invalid values igu_base_sb=0x%x igu_sb_cnt=%d igu_dsb_id=0x%x\n",
    			   p_igu_info->igu_base_sb,
    			   p_igu_info->igu_sb_cnt,
    			   p_igu_info->igu_dsb_id);
    		return -EINVAL;
    	}
    
    	return 0;
    }
    
    /**
     * @brief Initialize igu runtime registers
     *
     * @param p_hwfn
     */
    void qed_int_igu_init_rt(struct qed_hwfn *p_hwfn)
    {
    	u32 igu_pf_conf = 0;
    
    	igu_pf_conf |= IGU_PF_CONF_FUNC_EN;
    
    	STORE_RT_REG(p_hwfn, IGU_REG_PF_CONFIGURATION_RT_OFFSET, igu_pf_conf);
    }
    
    u64 qed_int_igu_read_sisr_reg(struct qed_hwfn *p_hwfn)
    {
    	u64 intr_status = 0;
    	u32 intr_status_lo = 0;
    	u32 intr_status_hi = 0;
    	u32 lsb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_LSB_UPPER -
    			       IGU_CMD_INT_ACK_BASE;
    	u32 msb_igu_cmd_addr = IGU_REG_SISR_MDPC_WMASK_MSB_UPPER -
    			       IGU_CMD_INT_ACK_BASE;
    
    	intr_status_lo = REG_RD(p_hwfn,
    				GTT_BAR0_MAP_REG_IGU_CMD +
    				lsb_igu_cmd_addr * 8);
    	intr_status_hi = REG_RD(p_hwfn,
    				GTT_BAR0_MAP_REG_IGU_CMD +
    				msb_igu_cmd_addr * 8);
    	intr_status = ((u64)intr_status_hi << 32) + (u64)intr_status_lo;
    
    	return intr_status;
    }
    
    static void qed_int_sp_dpc_setup(struct qed_hwfn *p_hwfn)
    {
    	tasklet_init(p_hwfn->sp_dpc,
    		     qed_int_sp_dpc, (unsigned long)p_hwfn);
    	p_hwfn->b_sp_dpc_enabled = true;
    }
    
    static int qed_int_sp_dpc_alloc(struct qed_hwfn *p_hwfn)
    {
    	p_hwfn->sp_dpc = kmalloc(sizeof(*p_hwfn->sp_dpc), GFP_ATOMIC);
    	if (!p_hwfn->sp_dpc)
    		return -ENOMEM;
    
    	return 0;
    }
    
    static void qed_int_sp_dpc_free(struct qed_hwfn *p_hwfn)
    {
    	kfree(p_hwfn->sp_dpc);
    }
    
    int qed_int_alloc(struct qed_hwfn *p_hwfn,
    		  struct qed_ptt *p_ptt)
    {
    	int rc = 0;
    
    	rc = qed_int_sp_dpc_alloc(p_hwfn);
    	if (rc) {
    		DP_ERR(p_hwfn->cdev, "Failed to allocate sp dpc mem\n");
    		return rc;
    	}
    	rc = qed_int_sp_sb_alloc(p_hwfn, p_ptt);
    	if (rc) {
    		DP_ERR(p_hwfn->cdev, "Failed to allocate sp sb mem\n");
    		return rc;
    	}
    	rc = qed_int_sb_attn_alloc(p_hwfn, p_ptt);
    	if (rc) {
    		DP_ERR(p_hwfn->cdev, "Failed to allocate sb attn mem\n");
    		return rc;
    	}
    	return rc;
    }
    
    void qed_int_free(struct qed_hwfn *p_hwfn)
    {
    	qed_int_sp_sb_free(p_hwfn);
    	qed_int_sb_attn_free(p_hwfn);
    	qed_int_sp_dpc_free(p_hwfn);
    }
    
    void qed_int_setup(struct qed_hwfn *p_hwfn,
    		   struct qed_ptt *p_ptt)
    {
    	qed_int_sp_sb_setup(p_hwfn, p_ptt);
    	qed_int_sp_dpc_setup(p_hwfn);
    }
    
    int qed_int_get_num_sbs(struct qed_hwfn *p_hwfn,
    			int *p_iov_blks)
    {
    	struct qed_igu_info *info = p_hwfn->hw_info.p_igu_info;
    
    	if (!info)
    		return 0;
    
    	if (p_iov_blks)
    		*p_iov_blks = info->free_blks;
    
    	return info->igu_sb_cnt;
    }
    
    void qed_int_disable_post_isr_release(struct qed_dev *cdev)
    {
    	int i;
    
    	for_each_hwfn(cdev, i)
    		cdev->hwfns[i].b_int_requested = false;
    }