Skip to content
Snippets Groups Projects
Select Git revision
  • 9950cda2a0187314c3cd6a86415ab9050074c5f8
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

amdgpu_irq.c

Blame
  • page_alloc.c 211.17 KiB
    /*
     *  linux/mm/page_alloc.c
     *
     *  Manages the free list, the system allocates free pages here.
     *  Note that kmalloc() lives in slab.c
     *
     *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
     *  Swap reorganised 29.12.95, Stephen Tweedie
     *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
     *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
     *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
     *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
     *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
     *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
     */
    
    #include <linux/stddef.h>
    #include <linux/mm.h>
    #include <linux/swap.h>
    #include <linux/interrupt.h>
    #include <linux/pagemap.h>
    #include <linux/jiffies.h>
    #include <linux/bootmem.h>
    #include <linux/memblock.h>
    #include <linux/compiler.h>
    #include <linux/kernel.h>
    #include <linux/kmemcheck.h>
    #include <linux/kasan.h>
    #include <linux/module.h>
    #include <linux/suspend.h>
    #include <linux/pagevec.h>
    #include <linux/blkdev.h>
    #include <linux/slab.h>
    #include <linux/ratelimit.h>
    #include <linux/oom.h>
    #include <linux/notifier.h>
    #include <linux/topology.h>
    #include <linux/sysctl.h>
    #include <linux/cpu.h>
    #include <linux/cpuset.h>
    #include <linux/memory_hotplug.h>
    #include <linux/nodemask.h>
    #include <linux/vmalloc.h>
    #include <linux/vmstat.h>
    #include <linux/mempolicy.h>
    #include <linux/memremap.h>
    #include <linux/stop_machine.h>
    #include <linux/sort.h>
    #include <linux/pfn.h>
    #include <linux/backing-dev.h>
    #include <linux/fault-inject.h>
    #include <linux/page-isolation.h>
    #include <linux/page_ext.h>
    #include <linux/debugobjects.h>
    #include <linux/kmemleak.h>
    #include <linux/compaction.h>
    #include <trace/events/kmem.h>
    #include <trace/events/oom.h>
    #include <linux/prefetch.h>
    #include <linux/mm_inline.h>
    #include <linux/migrate.h>
    #include <linux/hugetlb.h>
    #include <linux/sched/rt.h>
    #include <linux/sched/mm.h>
    #include <linux/page_owner.h>
    #include <linux/kthread.h>
    #include <linux/memcontrol.h>
    #include <linux/ftrace.h>
    #include <linux/lockdep.h>
    #include <linux/nmi.h>
    
    #include <asm/sections.h>
    #include <asm/tlbflush.h>
    #include <asm/div64.h>
    #include "internal.h"
    
    /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
    static DEFINE_MUTEX(pcp_batch_high_lock);
    #define MIN_PERCPU_PAGELIST_FRACTION	(8)
    
    #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
    DEFINE_PER_CPU(int, numa_node);
    EXPORT_PER_CPU_SYMBOL(numa_node);
    #endif
    
    #ifdef CONFIG_HAVE_MEMORYLESS_NODES
    /*
     * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
     * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
     * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
     * defined in <linux/topology.h>.
     */
    DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
    EXPORT_PER_CPU_SYMBOL(_numa_mem_);
    int _node_numa_mem_[MAX_NUMNODES];
    #endif
    
    /* work_structs for global per-cpu drains */
    DEFINE_MUTEX(pcpu_drain_mutex);
    DEFINE_PER_CPU(struct work_struct, pcpu_drain);
    
    #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
    volatile unsigned long latent_entropy __latent_entropy;
    EXPORT_SYMBOL(latent_entropy);
    #endif
    
    /*
     * Array of node states.
     */
    nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
    	[N_POSSIBLE] = NODE_MASK_ALL,
    	[N_ONLINE] = { { [0] = 1UL } },
    #ifndef CONFIG_NUMA
    	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
    #ifdef CONFIG_HIGHMEM
    	[N_HIGH_MEMORY] = { { [0] = 1UL } },
    #endif
    	[N_MEMORY] = { { [0] = 1UL } },
    	[N_CPU] = { { [0] = 1UL } },
    #endif	/* NUMA */
    };
    EXPORT_SYMBOL(node_states);
    
    /* Protect totalram_pages and zone->managed_pages */
    static DEFINE_SPINLOCK(managed_page_count_lock);
    
    unsigned long totalram_pages __read_mostly;
    unsigned long totalreserve_pages __read_mostly;
    unsigned long totalcma_pages __read_mostly;
    
    int percpu_pagelist_fraction;
    gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
    
    /*
     * A cached value of the page's pageblock's migratetype, used when the page is
     * put on a pcplist. Used to avoid the pageblock migratetype lookup when
     * freeing from pcplists in most cases, at the cost of possibly becoming stale.
     * Also the migratetype set in the page does not necessarily match the pcplist
     * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
     * other index - this ensures that it will be put on the correct CMA freelist.
     */
    static inline int get_pcppage_migratetype(struct page *page)
    {
    	return page->index;
    }
    
    static inline void set_pcppage_migratetype(struct page *page, int migratetype)
    {
    	page->index = migratetype;
    }
    
    #ifdef CONFIG_PM_SLEEP
    /*
     * The following functions are used by the suspend/hibernate code to temporarily
     * change gfp_allowed_mask in order to avoid using I/O during memory allocations
     * while devices are suspended.  To avoid races with the suspend/hibernate code,
     * they should always be called with pm_mutex held (gfp_allowed_mask also should
     * only be modified with pm_mutex held, unless the suspend/hibernate code is
     * guaranteed not to run in parallel with that modification).
     */
    
    static gfp_t saved_gfp_mask;
    
    void pm_restore_gfp_mask(void)
    {
    	WARN_ON(!mutex_is_locked(&pm_mutex));
    	if (saved_gfp_mask) {
    		gfp_allowed_mask = saved_gfp_mask;
    		saved_gfp_mask = 0;
    	}
    }
    
    void pm_restrict_gfp_mask(void)
    {
    	WARN_ON(!mutex_is_locked(&pm_mutex));
    	WARN_ON(saved_gfp_mask);
    	saved_gfp_mask = gfp_allowed_mask;
    	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
    }
    
    bool pm_suspended_storage(void)
    {
    	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
    		return false;
    	return true;
    }
    #endif /* CONFIG_PM_SLEEP */
    
    #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
    unsigned int pageblock_order __read_mostly;
    #endif
    
    static void __free_pages_ok(struct page *page, unsigned int order);
    
    /*
     * results with 256, 32 in the lowmem_reserve sysctl:
     *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
     *	1G machine -> (16M dma, 784M normal, 224M high)
     *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
     *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
     *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
     *
     * TBD: should special case ZONE_DMA32 machines here - in those we normally
     * don't need any ZONE_NORMAL reservation
     */
    int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
    #ifdef CONFIG_ZONE_DMA
    	 256,
    #endif
    #ifdef CONFIG_ZONE_DMA32
    	 256,
    #endif
    #ifdef CONFIG_HIGHMEM
    	 32,
    #endif
    	 32,
    };
    
    EXPORT_SYMBOL(totalram_pages);
    
    static char * const zone_names[MAX_NR_ZONES] = {
    #ifdef CONFIG_ZONE_DMA
    	 "DMA",
    #endif
    #ifdef CONFIG_ZONE_DMA32
    	 "DMA32",
    #endif
    	 "Normal",
    #ifdef CONFIG_HIGHMEM
    	 "HighMem",
    #endif
    	 "Movable",
    #ifdef CONFIG_ZONE_DEVICE
    	 "Device",
    #endif
    };
    
    char * const migratetype_names[MIGRATE_TYPES] = {
    	"Unmovable",
    	"Movable",
    	"Reclaimable",
    	"HighAtomic",
    #ifdef CONFIG_CMA
    	"CMA",
    #endif
    #ifdef CONFIG_MEMORY_ISOLATION
    	"Isolate",
    #endif
    };
    
    compound_page_dtor * const compound_page_dtors[] = {
    	NULL,
    	free_compound_page,
    #ifdef CONFIG_HUGETLB_PAGE
    	free_huge_page,
    #endif
    #ifdef CONFIG_TRANSPARENT_HUGEPAGE
    	free_transhuge_page,
    #endif
    };
    
    int min_free_kbytes = 1024;
    int user_min_free_kbytes = -1;
    int watermark_scale_factor = 10;
    
    static unsigned long __meminitdata nr_kernel_pages;
    static unsigned long __meminitdata nr_all_pages;
    static unsigned long __meminitdata dma_reserve;
    
    #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
    static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
    static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
    static unsigned long __initdata required_kernelcore;
    static unsigned long __initdata required_movablecore;
    static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
    static bool mirrored_kernelcore;
    
    /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
    int movable_zone;
    EXPORT_SYMBOL(movable_zone);
    #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
    
    #if MAX_NUMNODES > 1
    int nr_node_ids __read_mostly = MAX_NUMNODES;
    int nr_online_nodes __read_mostly = 1;
    EXPORT_SYMBOL(nr_node_ids);
    EXPORT_SYMBOL(nr_online_nodes);
    #endif
    
    int page_group_by_mobility_disabled __read_mostly;
    
    #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
    static inline void reset_deferred_meminit(pg_data_t *pgdat)
    {
    	unsigned long max_initialise;
    	unsigned long reserved_lowmem;
    
    	/*
    	 * Initialise at least 2G of a node but also take into account that
    	 * two large system hashes that can take up 1GB for 0.25TB/node.
    	 */
    	max_initialise = max(2UL << (30 - PAGE_SHIFT),
    		(pgdat->node_spanned_pages >> 8));
    
    	/*
    	 * Compensate the all the memblock reservations (e.g. crash kernel)
    	 * from the initial estimation to make sure we will initialize enough
    	 * memory to boot.
    	 */
    	reserved_lowmem = memblock_reserved_memory_within(pgdat->node_start_pfn,
    			pgdat->node_start_pfn + max_initialise);
    	max_initialise += reserved_lowmem;
    
    	pgdat->static_init_size = min(max_initialise, pgdat->node_spanned_pages);
    	pgdat->first_deferred_pfn = ULONG_MAX;
    }
    
    /* Returns true if the struct page for the pfn is uninitialised */
    static inline bool __meminit early_page_uninitialised(unsigned long pfn)
    {
    	int nid = early_pfn_to_nid(pfn);
    
    	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
    		return true;
    
    	return false;
    }
    
    /*
     * Returns false when the remaining initialisation should be deferred until
     * later in the boot cycle when it can be parallelised.
     */
    static inline bool update_defer_init(pg_data_t *pgdat,
    				unsigned long pfn, unsigned long zone_end,
    				unsigned long *nr_initialised)
    {
    	/* Always populate low zones for address-contrained allocations */
    	if (zone_end < pgdat_end_pfn(pgdat))
    		return true;
    	(*nr_initialised)++;
    	if ((*nr_initialised > pgdat->static_init_size) &&
    	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
    		pgdat->first_deferred_pfn = pfn;
    		return false;
    	}
    
    	return true;
    }
    #else
    static inline void reset_deferred_meminit(pg_data_t *pgdat)
    {
    }
    
    static inline bool early_page_uninitialised(unsigned long pfn)
    {
    	return false;
    }
    
    static inline bool update_defer_init(pg_data_t *pgdat,
    				unsigned long pfn, unsigned long zone_end,
    				unsigned long *nr_initialised)
    {
    	return true;
    }
    #endif
    
    /* Return a pointer to the bitmap storing bits affecting a block of pages */
    static inline unsigned long *get_pageblock_bitmap(struct page *page,
    							unsigned long pfn)
    {
    #ifdef CONFIG_SPARSEMEM
    	return __pfn_to_section(pfn)->pageblock_flags;
    #else
    	return page_zone(page)->pageblock_flags;
    #endif /* CONFIG_SPARSEMEM */
    }
    
    static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
    {
    #ifdef CONFIG_SPARSEMEM
    	pfn &= (PAGES_PER_SECTION-1);
    	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
    #else
    	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
    	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
    #endif /* CONFIG_SPARSEMEM */
    }
    
    /**
     * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
     * @page: The page within the block of interest
     * @pfn: The target page frame number
     * @end_bitidx: The last bit of interest to retrieve
     * @mask: mask of bits that the caller is interested in
     *
     * Return: pageblock_bits flags
     */
    static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
    					unsigned long pfn,
    					unsigned long end_bitidx,
    					unsigned long mask)
    {
    	unsigned long *bitmap;
    	unsigned long bitidx, word_bitidx;
    	unsigned long word;
    
    	bitmap = get_pageblock_bitmap(page, pfn);
    	bitidx = pfn_to_bitidx(page, pfn);
    	word_bitidx = bitidx / BITS_PER_LONG;
    	bitidx &= (BITS_PER_LONG-1);
    
    	word = bitmap[word_bitidx];
    	bitidx += end_bitidx;
    	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
    }
    
    unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
    					unsigned long end_bitidx,
    					unsigned long mask)
    {
    	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
    }
    
    static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
    {
    	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
    }
    
    /**
     * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
     * @page: The page within the block of interest
     * @flags: The flags to set
     * @pfn: The target page frame number
     * @end_bitidx: The last bit of interest
     * @mask: mask of bits that the caller is interested in
     */
    void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
    					unsigned long pfn,
    					unsigned long end_bitidx,
    					unsigned long mask)
    {
    	unsigned long *bitmap;
    	unsigned long bitidx, word_bitidx;
    	unsigned long old_word, word;
    
    	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
    
    	bitmap = get_pageblock_bitmap(page, pfn);
    	bitidx = pfn_to_bitidx(page, pfn);
    	word_bitidx = bitidx / BITS_PER_LONG;
    	bitidx &= (BITS_PER_LONG-1);
    
    	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
    
    	bitidx += end_bitidx;
    	mask <<= (BITS_PER_LONG - bitidx - 1);
    	flags <<= (BITS_PER_LONG - bitidx - 1);
    
    	word = READ_ONCE(bitmap[word_bitidx]);
    	for (;;) {
    		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
    		if (word == old_word)
    			break;
    		word = old_word;
    	}
    }
    
    void set_pageblock_migratetype(struct page *page, int migratetype)
    {
    	if (unlikely(page_group_by_mobility_disabled &&
    		     migratetype < MIGRATE_PCPTYPES))
    		migratetype = MIGRATE_UNMOVABLE;
    
    	set_pageblock_flags_group(page, (unsigned long)migratetype,
    					PB_migrate, PB_migrate_end);
    }
    
    #ifdef CONFIG_DEBUG_VM
    static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
    {
    	int ret = 0;
    	unsigned seq;
    	unsigned long pfn = page_to_pfn(page);
    	unsigned long sp, start_pfn;
    
    	do {
    		seq = zone_span_seqbegin(zone);
    		start_pfn = zone->zone_start_pfn;
    		sp = zone->spanned_pages;
    		if (!zone_spans_pfn(zone, pfn))
    			ret = 1;
    	} while (zone_span_seqretry(zone, seq));
    
    	if (ret)
    		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
    			pfn, zone_to_nid(zone), zone->name,
    			start_pfn, start_pfn + sp);
    
    	return ret;
    }
    
    static int page_is_consistent(struct zone *zone, struct page *page)
    {
    	if (!pfn_valid_within(page_to_pfn(page)))
    		return 0;
    	if (zone != page_zone(page))
    		return 0;
    
    	return 1;
    }
    /*
     * Temporary debugging check for pages not lying within a given zone.
     */
    static int __maybe_unused bad_range(struct zone *zone, struct page *page)
    {
    	if (page_outside_zone_boundaries(zone, page))
    		return 1;
    	if (!page_is_consistent(zone, page))
    		return 1;
    
    	return 0;
    }
    #else
    static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
    {
    	return 0;
    }
    #endif
    
    static void bad_page(struct page *page, const char *reason,
    		unsigned long bad_flags)
    {
    	static unsigned long resume;
    	static unsigned long nr_shown;
    	static unsigned long nr_unshown;
    
    	/*
    	 * Allow a burst of 60 reports, then keep quiet for that minute;
    	 * or allow a steady drip of one report per second.
    	 */
    	if (nr_shown == 60) {
    		if (time_before(jiffies, resume)) {
    			nr_unshown++;
    			goto out;
    		}
    		if (nr_unshown) {
    			pr_alert(
    			      "BUG: Bad page state: %lu messages suppressed\n",
    				nr_unshown);
    			nr_unshown = 0;
    		}
    		nr_shown = 0;
    	}
    	if (nr_shown++ == 0)
    		resume = jiffies + 60 * HZ;
    
    	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
    		current->comm, page_to_pfn(page));
    	__dump_page(page, reason);
    	bad_flags &= page->flags;
    	if (bad_flags)
    		pr_alert("bad because of flags: %#lx(%pGp)\n",
    						bad_flags, &bad_flags);
    	dump_page_owner(page);
    
    	print_modules();
    	dump_stack();
    out:
    	/* Leave bad fields for debug, except PageBuddy could make trouble */
    	page_mapcount_reset(page); /* remove PageBuddy */
    	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
    }
    
    /*
     * Higher-order pages are called "compound pages".  They are structured thusly:
     *
     * The first PAGE_SIZE page is called the "head page" and have PG_head set.
     *
     * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
     * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
     *
     * The first tail page's ->compound_dtor holds the offset in array of compound
     * page destructors. See compound_page_dtors.
     *
     * The first tail page's ->compound_order holds the order of allocation.
     * This usage means that zero-order pages may not be compound.
     */
    
    void free_compound_page(struct page *page)
    {
    	__free_pages_ok(page, compound_order(page));
    }
    
    void prep_compound_page(struct page *page, unsigned int order)
    {
    	int i;
    	int nr_pages = 1 << order;
    
    	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
    	set_compound_order(page, order);
    	__SetPageHead(page);
    	for (i = 1; i < nr_pages; i++) {
    		struct page *p = page + i;
    		set_page_count(p, 0);
    		p->mapping = TAIL_MAPPING;
    		set_compound_head(p, page);
    	}
    	atomic_set(compound_mapcount_ptr(page), -1);
    }
    
    #ifdef CONFIG_DEBUG_PAGEALLOC
    unsigned int _debug_guardpage_minorder;
    bool _debug_pagealloc_enabled __read_mostly
    			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
    EXPORT_SYMBOL(_debug_pagealloc_enabled);
    bool _debug_guardpage_enabled __read_mostly;
    
    static int __init early_debug_pagealloc(char *buf)
    {
    	if (!buf)
    		return -EINVAL;
    	return kstrtobool(buf, &_debug_pagealloc_enabled);
    }
    early_param("debug_pagealloc", early_debug_pagealloc);
    
    static bool need_debug_guardpage(void)
    {
    	/* If we don't use debug_pagealloc, we don't need guard page */
    	if (!debug_pagealloc_enabled())
    		return false;
    
    	if (!debug_guardpage_minorder())
    		return false;
    
    	return true;
    }
    
    static void init_debug_guardpage(void)
    {
    	if (!debug_pagealloc_enabled())
    		return;
    
    	if (!debug_guardpage_minorder())
    		return;
    
    	_debug_guardpage_enabled = true;
    }
    
    struct page_ext_operations debug_guardpage_ops = {
    	.need = need_debug_guardpage,
    	.init = init_debug_guardpage,
    };
    
    static int __init debug_guardpage_minorder_setup(char *buf)
    {
    	unsigned long res;
    
    	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
    		pr_err("Bad debug_guardpage_minorder value\n");
    		return 0;
    	}
    	_debug_guardpage_minorder = res;
    	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
    	return 0;
    }
    early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
    
    static inline bool set_page_guard(struct zone *zone, struct page *page,
    				unsigned int order, int migratetype)
    {
    	struct page_ext *page_ext;
    
    	if (!debug_guardpage_enabled())
    		return false;
    
    	if (order >= debug_guardpage_minorder())
    		return false;
    
    	page_ext = lookup_page_ext(page);
    	if (unlikely(!page_ext))
    		return false;
    
    	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
    
    	INIT_LIST_HEAD(&page->lru);
    	set_page_private(page, order);
    	/* Guard pages are not available for any usage */
    	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
    
    	return true;
    }
    
    static inline void clear_page_guard(struct zone *zone, struct page *page,
    				unsigned int order, int migratetype)
    {
    	struct page_ext *page_ext;
    
    	if (!debug_guardpage_enabled())
    		return;
    
    	page_ext = lookup_page_ext(page);
    	if (unlikely(!page_ext))
    		return;
    
    	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
    
    	set_page_private(page, 0);
    	if (!is_migrate_isolate(migratetype))
    		__mod_zone_freepage_state(zone, (1 << order), migratetype);
    }
    #else
    struct page_ext_operations debug_guardpage_ops;
    static inline bool set_page_guard(struct zone *zone, struct page *page,
    			unsigned int order, int migratetype) { return false; }
    static inline void clear_page_guard(struct zone *zone, struct page *page,
    				unsigned int order, int migratetype) {}
    #endif
    
    static inline void set_page_order(struct page *page, unsigned int order)
    {
    	set_page_private(page, order);
    	__SetPageBuddy(page);
    }
    
    static inline void rmv_page_order(struct page *page)
    {
    	__ClearPageBuddy(page);
    	set_page_private(page, 0);
    }
    
    /*
     * This function checks whether a page is free && is the buddy
     * we can do coalesce a page and its buddy if
     * (a) the buddy is not in a hole (check before calling!) &&
     * (b) the buddy is in the buddy system &&
     * (c) a page and its buddy have the same order &&
     * (d) a page and its buddy are in the same zone.
     *
     * For recording whether a page is in the buddy system, we set ->_mapcount
     * PAGE_BUDDY_MAPCOUNT_VALUE.
     * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
     * serialized by zone->lock.
     *
     * For recording page's order, we use page_private(page).
     */
    static inline int page_is_buddy(struct page *page, struct page *buddy,
    							unsigned int order)
    {
    	if (page_is_guard(buddy) && page_order(buddy) == order) {
    		if (page_zone_id(page) != page_zone_id(buddy))
    			return 0;
    
    		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
    
    		return 1;
    	}
    
    	if (PageBuddy(buddy) && page_order(buddy) == order) {
    		/*
    		 * zone check is done late to avoid uselessly
    		 * calculating zone/node ids for pages that could
    		 * never merge.
    		 */
    		if (page_zone_id(page) != page_zone_id(buddy))
    			return 0;
    
    		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
    
    		return 1;
    	}
    	return 0;
    }
    
    /*
     * Freeing function for a buddy system allocator.
     *
     * The concept of a buddy system is to maintain direct-mapped table
     * (containing bit values) for memory blocks of various "orders".
     * The bottom level table contains the map for the smallest allocatable
     * units of memory (here, pages), and each level above it describes
     * pairs of units from the levels below, hence, "buddies".
     * At a high level, all that happens here is marking the table entry
     * at the bottom level available, and propagating the changes upward
     * as necessary, plus some accounting needed to play nicely with other
     * parts of the VM system.
     * At each level, we keep a list of pages, which are heads of continuous
     * free pages of length of (1 << order) and marked with _mapcount
     * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
     * field.
     * So when we are allocating or freeing one, we can derive the state of the
     * other.  That is, if we allocate a small block, and both were
     * free, the remainder of the region must be split into blocks.
     * If a block is freed, and its buddy is also free, then this
     * triggers coalescing into a block of larger size.
     *
     * -- nyc
     */
    
    static inline void __free_one_page(struct page *page,
    		unsigned long pfn,
    		struct zone *zone, unsigned int order,
    		int migratetype)
    {
    	unsigned long combined_pfn;
    	unsigned long uninitialized_var(buddy_pfn);
    	struct page *buddy;
    	unsigned int max_order;
    
    	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
    
    	VM_BUG_ON(!zone_is_initialized(zone));
    	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
    
    	VM_BUG_ON(migratetype == -1);
    	if (likely(!is_migrate_isolate(migratetype)))
    		__mod_zone_freepage_state(zone, 1 << order, migratetype);
    
    	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
    	VM_BUG_ON_PAGE(bad_range(zone, page), page);
    
    continue_merging:
    	while (order < max_order - 1) {
    		buddy_pfn = __find_buddy_pfn(pfn, order);
    		buddy = page + (buddy_pfn - pfn);
    
    		if (!pfn_valid_within(buddy_pfn))
    			goto done_merging;
    		if (!page_is_buddy(page, buddy, order))
    			goto done_merging;
    		/*
    		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
    		 * merge with it and move up one order.
    		 */
    		if (page_is_guard(buddy)) {
    			clear_page_guard(zone, buddy, order, migratetype);
    		} else {
    			list_del(&buddy->lru);
    			zone->free_area[order].nr_free--;
    			rmv_page_order(buddy);
    		}
    		combined_pfn = buddy_pfn & pfn;
    		page = page + (combined_pfn - pfn);
    		pfn = combined_pfn;
    		order++;
    	}
    	if (max_order < MAX_ORDER) {
    		/* If we are here, it means order is >= pageblock_order.
    		 * We want to prevent merge between freepages on isolate
    		 * pageblock and normal pageblock. Without this, pageblock
    		 * isolation could cause incorrect freepage or CMA accounting.
    		 *
    		 * We don't want to hit this code for the more frequent
    		 * low-order merging.
    		 */
    		if (unlikely(has_isolate_pageblock(zone))) {
    			int buddy_mt;
    
    			buddy_pfn = __find_buddy_pfn(pfn, order);
    			buddy = page + (buddy_pfn - pfn);
    			buddy_mt = get_pageblock_migratetype(buddy);
    
    			if (migratetype != buddy_mt
    					&& (is_migrate_isolate(migratetype) ||
    						is_migrate_isolate(buddy_mt)))
    				goto done_merging;
    		}
    		max_order++;
    		goto continue_merging;
    	}
    
    done_merging:
    	set_page_order(page, order);
    
    	/*
    	 * If this is not the largest possible page, check if the buddy
    	 * of the next-highest order is free. If it is, it's possible
    	 * that pages are being freed that will coalesce soon. In case,
    	 * that is happening, add the free page to the tail of the list
    	 * so it's less likely to be used soon and more likely to be merged
    	 * as a higher order page
    	 */
    	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
    		struct page *higher_page, *higher_buddy;
    		combined_pfn = buddy_pfn & pfn;
    		higher_page = page + (combined_pfn - pfn);
    		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
    		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
    		if (pfn_valid_within(buddy_pfn) &&
    		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
    			list_add_tail(&page->lru,
    				&zone->free_area[order].free_list[migratetype]);
    			goto out;
    		}
    	}
    
    	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
    out:
    	zone->free_area[order].nr_free++;
    }
    
    /*
     * A bad page could be due to a number of fields. Instead of multiple branches,
     * try and check multiple fields with one check. The caller must do a detailed
     * check if necessary.
     */
    static inline bool page_expected_state(struct page *page,
    					unsigned long check_flags)
    {
    	if (unlikely(atomic_read(&page->_mapcount) != -1))
    		return false;
    
    	if (unlikely((unsigned long)page->mapping |
    			page_ref_count(page) |
    #ifdef CONFIG_MEMCG
    			(unsigned long)page->mem_cgroup |
    #endif
    			(page->flags & check_flags)))
    		return false;
    
    	return true;
    }
    
    static void free_pages_check_bad(struct page *page)
    {
    	const char *bad_reason;
    	unsigned long bad_flags;
    
    	bad_reason = NULL;
    	bad_flags = 0;
    
    	if (unlikely(atomic_read(&page->_mapcount) != -1))
    		bad_reason = "nonzero mapcount";
    	if (unlikely(page->mapping != NULL))
    		bad_reason = "non-NULL mapping";
    	if (unlikely(page_ref_count(page) != 0))
    		bad_reason = "nonzero _refcount";
    	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
    		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
    		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
    	}
    #ifdef CONFIG_MEMCG
    	if (unlikely(page->mem_cgroup))
    		bad_reason = "page still charged to cgroup";
    #endif
    	bad_page(page, bad_reason, bad_flags);
    }
    
    static inline int free_pages_check(struct page *page)
    {
    	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
    		return 0;
    
    	/* Something has gone sideways, find it */
    	free_pages_check_bad(page);
    	return 1;
    }
    
    static int free_tail_pages_check(struct page *head_page, struct page *page)
    {
    	int ret = 1;
    
    	/*
    	 * We rely page->lru.next never has bit 0 set, unless the page
    	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
    	 */
    	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
    
    	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
    		ret = 0;
    		goto out;
    	}
    	switch (page - head_page) {
    	case 1:
    		/* the first tail page: ->mapping is compound_mapcount() */
    		if (unlikely(compound_mapcount(page))) {
    			bad_page(page, "nonzero compound_mapcount", 0);
    			goto out;
    		}
    		break;
    	case 2:
    		/*
    		 * the second tail page: ->mapping is
    		 * page_deferred_list().next -- ignore value.
    		 */
    		break;
    	default:
    		if (page->mapping != TAIL_MAPPING) {
    			bad_page(page, "corrupted mapping in tail page", 0);
    			goto out;
    		}
    		break;
    	}
    	if (unlikely(!PageTail(page))) {
    		bad_page(page, "PageTail not set", 0);
    		goto out;
    	}
    	if (unlikely(compound_head(page) != head_page)) {
    		bad_page(page, "compound_head not consistent", 0);
    		goto out;
    	}
    	ret = 0;
    out:
    	page->mapping = NULL;
    	clear_compound_head(page);
    	return ret;
    }
    
    static __always_inline bool free_pages_prepare(struct page *page,
    					unsigned int order, bool check_free)
    {
    	int bad = 0;
    
    	VM_BUG_ON_PAGE(PageTail(page), page);
    
    	trace_mm_page_free(page, order);
    	kmemcheck_free_shadow(page, order);
    
    	/*
    	 * Check tail pages before head page information is cleared to
    	 * avoid checking PageCompound for order-0 pages.
    	 */
    	if (unlikely(order)) {
    		bool compound = PageCompound(page);
    		int i;
    
    		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
    
    		if (compound)
    			ClearPageDoubleMap(page);
    		for (i = 1; i < (1 << order); i++) {
    			if (compound)
    				bad += free_tail_pages_check(page, page + i);
    			if (unlikely(free_pages_check(page + i))) {
    				bad++;
    				continue;
    			}
    			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
    		}
    	}
    	if (PageMappingFlags(page))
    		page->mapping = NULL;
    	if (memcg_kmem_enabled() && PageKmemcg(page))
    		memcg_kmem_uncharge(page, order);
    	if (check_free)
    		bad += free_pages_check(page);
    	if (bad)
    		return false;
    
    	page_cpupid_reset_last(page);
    	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
    	reset_page_owner(page, order);
    
    	if (!PageHighMem(page)) {
    		debug_check_no_locks_freed(page_address(page),
    					   PAGE_SIZE << order);
    		debug_check_no_obj_freed(page_address(page),
    					   PAGE_SIZE << order);
    	}
    	arch_free_page(page, order);
    	kernel_poison_pages(page, 1 << order, 0);
    	kernel_map_pages(page, 1 << order, 0);
    	kasan_free_pages(page, order);
    
    	return true;
    }
    
    #ifdef CONFIG_DEBUG_VM
    static inline bool free_pcp_prepare(struct page *page)
    {
    	return free_pages_prepare(page, 0, true);
    }
    
    static inline bool bulkfree_pcp_prepare(struct page *page)
    {
    	return false;
    }
    #else
    static bool free_pcp_prepare(struct page *page)
    {
    	return free_pages_prepare(page, 0, false);
    }
    
    static bool bulkfree_pcp_prepare(struct page *page)
    {
    	return free_pages_check(page);
    }
    #endif /* CONFIG_DEBUG_VM */
    
    /*
     * Frees a number of pages from the PCP lists
     * Assumes all pages on list are in same zone, and of same order.
     * count is the number of pages to free.
     *
     * If the zone was previously in an "all pages pinned" state then look to
     * see if this freeing clears that state.
     *
     * And clear the zone's pages_scanned counter, to hold off the "all pages are
     * pinned" detection logic.
     */
    static void free_pcppages_bulk(struct zone *zone, int count,
    					struct per_cpu_pages *pcp)
    {
    	int migratetype = 0;
    	int batch_free = 0;
    	bool isolated_pageblocks;
    
    	spin_lock(&zone->lock);
    	isolated_pageblocks = has_isolate_pageblock(zone);
    
    	while (count) {
    		struct page *page;
    		struct list_head *list;
    
    		/*
    		 * Remove pages from lists in a round-robin fashion. A
    		 * batch_free count is maintained that is incremented when an
    		 * empty list is encountered.  This is so more pages are freed
    		 * off fuller lists instead of spinning excessively around empty
    		 * lists
    		 */
    		do {
    			batch_free++;
    			if (++migratetype == MIGRATE_PCPTYPES)
    				migratetype = 0;
    			list = &pcp->lists[migratetype];
    		} while (list_empty(list));
    
    		/* This is the only non-empty list. Free them all. */
    		if (batch_free == MIGRATE_PCPTYPES)
    			batch_free = count;
    
    		do {
    			int mt;	/* migratetype of the to-be-freed page */
    
    			page = list_last_entry(list, struct page, lru);
    			/* must delete as __free_one_page list manipulates */
    			list_del(&page->lru);
    
    			mt = get_pcppage_migratetype(page);
    			/* MIGRATE_ISOLATE page should not go to pcplists */
    			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
    			/* Pageblock could have been isolated meanwhile */
    			if (unlikely(isolated_pageblocks))
    				mt = get_pageblock_migratetype(page);
    
    			if (bulkfree_pcp_prepare(page))
    				continue;
    
    			__free_one_page(page, page_to_pfn(page), zone, 0, mt);
    			trace_mm_page_pcpu_drain(page, 0, mt);
    		} while (--count && --batch_free && !list_empty(list));
    	}
    	spin_unlock(&zone->lock);
    }
    
    static void free_one_page(struct zone *zone,
    				struct page *page, unsigned long pfn,
    				unsigned int order,
    				int migratetype)
    {
    	spin_lock(&zone->lock);
    	if (unlikely(has_isolate_pageblock(zone) ||
    		is_migrate_isolate(migratetype))) {
    		migratetype = get_pfnblock_migratetype(page, pfn);
    	}
    	__free_one_page(page, pfn, zone, order, migratetype);
    	spin_unlock(&zone->lock);
    }
    
    static void __meminit __init_single_page(struct page *page, unsigned long pfn,
    				unsigned long zone, int nid)
    {
    	set_page_links(page, zone, nid, pfn);
    	init_page_count(page);
    	page_mapcount_reset(page);
    	page_cpupid_reset_last(page);
    
    	INIT_LIST_HEAD(&page->lru);
    #ifdef WANT_PAGE_VIRTUAL
    	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
    	if (!is_highmem_idx(zone))
    		set_page_address(page, __va(pfn << PAGE_SHIFT));
    #endif
    }
    
    static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
    					int nid)
    {
    	return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
    }
    
    #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
    static void init_reserved_page(unsigned long pfn)
    {
    	pg_data_t *pgdat;
    	int nid, zid;
    
    	if (!early_page_uninitialised(pfn))
    		return;
    
    	nid = early_pfn_to_nid(pfn);
    	pgdat = NODE_DATA(nid);
    
    	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
    		struct zone *zone = &pgdat->node_zones[zid];
    
    		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
    			break;
    	}
    	__init_single_pfn(pfn, zid, nid);
    }
    #else
    static inline void init_reserved_page(unsigned long pfn)
    {
    }
    #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
    
    /*
     * Initialised pages do not have PageReserved set. This function is
     * called for each range allocated by the bootmem allocator and
     * marks the pages PageReserved. The remaining valid pages are later
     * sent to the buddy page allocator.
     */
    void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
    {
    	unsigned long start_pfn = PFN_DOWN(start);
    	unsigned long end_pfn = PFN_UP(end);
    
    	for (; start_pfn < end_pfn; start_pfn++) {
    		if (pfn_valid(start_pfn)) {
    			struct page *page = pfn_to_page(start_pfn);
    
    			init_reserved_page(start_pfn);
    
    			/* Avoid false-positive PageTail() */
    			INIT_LIST_HEAD(&page->lru);
    
    			SetPageReserved(page);
    		}
    	}
    }
    
    static void __free_pages_ok(struct page *page, unsigned int order)
    {
    	unsigned long flags;
    	int migratetype;
    	unsigned long pfn = page_to_pfn(page);
    
    	if (!free_pages_prepare(page, order, true))
    		return;
    
    	migratetype = get_pfnblock_migratetype(page, pfn);
    	local_irq_save(flags);
    	__count_vm_events(PGFREE, 1 << order);
    	free_one_page(page_zone(page), page, pfn, order, migratetype);
    	local_irq_restore(flags);
    }
    
    static void __init __free_pages_boot_core(struct page *page, unsigned int order)
    {
    	unsigned int nr_pages = 1 << order;
    	struct page *p = page;
    	unsigned int loop;
    
    	prefetchw(p);
    	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
    		prefetchw(p + 1);
    		__ClearPageReserved(p);
    		set_page_count(p, 0);
    	}
    	__ClearPageReserved(p);
    	set_page_count(p, 0);
    
    	page_zone(page)->managed_pages += nr_pages;
    	set_page_refcounted(page);
    	__free_pages(page, order);
    }
    
    #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
    	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
    
    static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
    
    int __meminit early_pfn_to_nid(unsigned long pfn)
    {
    	static DEFINE_SPINLOCK(early_pfn_lock);
    	int nid;
    
    	spin_lock(&early_pfn_lock);
    	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
    	if (nid < 0)
    		nid = first_online_node;
    	spin_unlock(&early_pfn_lock);
    
    	return nid;
    }
    #endif
    
    #ifdef CONFIG_NODES_SPAN_OTHER_NODES
    static inline bool __meminit __maybe_unused
    meminit_pfn_in_nid(unsigned long pfn, int node,
    		   struct mminit_pfnnid_cache *state)
    {
    	int nid;
    
    	nid = __early_pfn_to_nid(pfn, state);
    	if (nid >= 0 && nid != node)
    		return false;
    	return true;
    }
    
    /* Only safe to use early in boot when initialisation is single-threaded */
    static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
    {
    	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
    }
    
    #else
    
    static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
    {
    	return true;
    }
    static inline bool __meminit  __maybe_unused
    meminit_pfn_in_nid(unsigned long pfn, int node,
    		   struct mminit_pfnnid_cache *state)
    {
    	return true;
    }
    #endif
    
    
    void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
    							unsigned int order)
    {
    	if (early_page_uninitialised(pfn))
    		return;
    	return __free_pages_boot_core(page, order);
    }
    
    /*
     * Check that the whole (or subset of) a pageblock given by the interval of
     * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
     * with the migration of free compaction scanner. The scanners then need to
     * use only pfn_valid_within() check for arches that allow holes within
     * pageblocks.
     *
     * Return struct page pointer of start_pfn, or NULL if checks were not passed.
     *
     * It's possible on some configurations to have a setup like node0 node1 node0
     * i.e. it's possible that all pages within a zones range of pages do not
     * belong to a single zone. We assume that a border between node0 and node1
     * can occur within a single pageblock, but not a node0 node1 node0
     * interleaving within a single pageblock. It is therefore sufficient to check
     * the first and last page of a pageblock and avoid checking each individual
     * page in a pageblock.
     */
    struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
    				     unsigned long end_pfn, struct zone *zone)
    {
    	struct page *start_page;
    	struct page *end_page;
    
    	/* end_pfn is one past the range we are checking */
    	end_pfn--;
    
    	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
    		return NULL;
    
    	start_page = pfn_to_online_page(start_pfn);
    	if (!start_page)
    		return NULL;
    
    	if (page_zone(start_page) != zone)
    		return NULL;
    
    	end_page = pfn_to_page(end_pfn);
    
    	/* This gives a shorter code than deriving page_zone(end_page) */
    	if (page_zone_id(start_page) != page_zone_id(end_page))
    		return NULL;
    
    	return start_page;
    }
    
    void set_zone_contiguous(struct zone *zone)
    {
    	unsigned long block_start_pfn = zone->zone_start_pfn;
    	unsigned long block_end_pfn;
    
    	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
    	for (; block_start_pfn < zone_end_pfn(zone);
    			block_start_pfn = block_end_pfn,
    			 block_end_pfn += pageblock_nr_pages) {
    
    		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
    
    		if (!__pageblock_pfn_to_page(block_start_pfn,
    					     block_end_pfn, zone))
    			return;
    	}
    
    	/* We confirm that there is no hole */
    	zone->contiguous = true;
    }
    
    void clear_zone_contiguous(struct zone *zone)
    {
    	zone->contiguous = false;
    }
    
    #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
    static void __init deferred_free_range(struct page *page,
    					unsigned long pfn, int nr_pages)
    {
    	int i;
    
    	if (!page)
    		return;
    
    	/* Free a large naturally-aligned chunk if possible */
    	if (nr_pages == pageblock_nr_pages &&
    	    (pfn & (pageblock_nr_pages - 1)) == 0) {
    		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
    		__free_pages_boot_core(page, pageblock_order);
    		return;
    	}
    
    	for (i = 0; i < nr_pages; i++, page++, pfn++) {
    		if ((pfn & (pageblock_nr_pages - 1)) == 0)
    			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
    		__free_pages_boot_core(page, 0);
    	}
    }
    
    /* Completion tracking for deferred_init_memmap() threads */
    static atomic_t pgdat_init_n_undone __initdata;
    static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
    
    static inline void __init pgdat_init_report_one_done(void)
    {
    	if (atomic_dec_and_test(&pgdat_init_n_undone))
    		complete(&pgdat_init_all_done_comp);
    }
    
    /* Initialise remaining memory on a node */
    static int __init deferred_init_memmap(void *data)
    {
    	pg_data_t *pgdat = data;
    	int nid = pgdat->node_id;
    	struct mminit_pfnnid_cache nid_init_state = { };
    	unsigned long start = jiffies;
    	unsigned long nr_pages = 0;
    	unsigned long walk_start, walk_end;
    	int i, zid;
    	struct zone *zone;
    	unsigned long first_init_pfn = pgdat->first_deferred_pfn;
    	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
    
    	if (first_init_pfn == ULONG_MAX) {
    		pgdat_init_report_one_done();
    		return 0;
    	}
    
    	/* Bind memory initialisation thread to a local node if possible */
    	if (!cpumask_empty(cpumask))
    		set_cpus_allowed_ptr(current, cpumask);
    
    	/* Sanity check boundaries */
    	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
    	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
    	pgdat->first_deferred_pfn = ULONG_MAX;
    
    	/* Only the highest zone is deferred so find it */
    	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
    		zone = pgdat->node_zones + zid;
    		if (first_init_pfn < zone_end_pfn(zone))
    			break;
    	}
    
    	for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
    		unsigned long pfn, end_pfn;
    		struct page *page = NULL;
    		struct page *free_base_page = NULL;
    		unsigned long free_base_pfn = 0;
    		int nr_to_free = 0;
    
    		end_pfn = min(walk_end, zone_end_pfn(zone));
    		pfn = first_init_pfn;
    		if (pfn < walk_start)
    			pfn = walk_start;
    		if (pfn < zone->zone_start_pfn)
    			pfn = zone->zone_start_pfn;
    
    		for (; pfn < end_pfn; pfn++) {
    			if (!pfn_valid_within(pfn))
    				goto free_range;
    
    			/*
    			 * Ensure pfn_valid is checked every
    			 * pageblock_nr_pages for memory holes
    			 */
    			if ((pfn & (pageblock_nr_pages - 1)) == 0) {
    				if (!pfn_valid(pfn)) {
    					page = NULL;
    					goto free_range;
    				}
    			}
    
    			if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
    				page = NULL;
    				goto free_range;
    			}
    
    			/* Minimise pfn page lookups and scheduler checks */
    			if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
    				page++;
    			} else {
    				nr_pages += nr_to_free;
    				deferred_free_range(free_base_page,
    						free_base_pfn, nr_to_free);
    				free_base_page = NULL;
    				free_base_pfn = nr_to_free = 0;
    
    				page = pfn_to_page(pfn);
    				cond_resched();
    			}
    
    			if (page->flags) {
    				VM_BUG_ON(page_zone(page) != zone);
    				goto free_range;
    			}
    
    			__init_single_page(page, pfn, zid, nid);
    			if (!free_base_page) {
    				free_base_page = page;
    				free_base_pfn = pfn;
    				nr_to_free = 0;
    			}
    			nr_to_free++;
    
    			/* Where possible, batch up pages for a single free */
    			continue;
    free_range:
    			/* Free the current block of pages to allocator */
    			nr_pages += nr_to_free;
    			deferred_free_range(free_base_page, free_base_pfn,
    								nr_to_free);
    			free_base_page = NULL;
    			free_base_pfn = nr_to_free = 0;
    		}
    		/* Free the last block of pages to allocator */
    		nr_pages += nr_to_free;
    		deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
    
    		first_init_pfn = max(end_pfn, first_init_pfn);
    	}
    
    	/* Sanity check that the next zone really is unpopulated */
    	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
    
    	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
    					jiffies_to_msecs(jiffies - start));
    
    	pgdat_init_report_one_done();
    	return 0;
    }
    #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
    
    void __init page_alloc_init_late(void)
    {
    	struct zone *zone;
    
    #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
    	int nid;
    
    	/* There will be num_node_state(N_MEMORY) threads */
    	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
    	for_each_node_state(nid, N_MEMORY) {
    		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
    	}
    
    	/* Block until all are initialised */
    	wait_for_completion(&pgdat_init_all_done_comp);
    
    	/* Reinit limits that are based on free pages after the kernel is up */
    	files_maxfiles_init();
    #endif
    #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
    	/* Discard memblock private memory */
    	memblock_discard();
    #endif
    
    	for_each_populated_zone(zone)
    		set_zone_contiguous(zone);
    }
    
    #ifdef CONFIG_CMA
    /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
    void __init init_cma_reserved_pageblock(struct page *page)
    {
    	unsigned i = pageblock_nr_pages;
    	struct page *p = page;
    
    	do {
    		__ClearPageReserved(p);
    		set_page_count(p, 0);
    	} while (++p, --i);
    
    	set_pageblock_migratetype(page, MIGRATE_CMA);
    
    	if (pageblock_order >= MAX_ORDER) {
    		i = pageblock_nr_pages;
    		p = page;
    		do {
    			set_page_refcounted(p);
    			__free_pages(p, MAX_ORDER - 1);
    			p += MAX_ORDER_NR_PAGES;
    		} while (i -= MAX_ORDER_NR_PAGES);
    	} else {
    		set_page_refcounted(page);
    		__free_pages(page, pageblock_order);
    	}
    
    	adjust_managed_page_count(page, pageblock_nr_pages);
    }
    #endif
    
    /*
     * The order of subdivision here is critical for the IO subsystem.
     * Please do not alter this order without good reasons and regression
     * testing. Specifically, as large blocks of memory are subdivided,
     * the order in which smaller blocks are delivered depends on the order
     * they're subdivided in this function. This is the primary factor
     * influencing the order in which pages are delivered to the IO
     * subsystem according to empirical testing, and this is also justified
     * by considering the behavior of a buddy system containing a single
     * large block of memory acted on by a series of small allocations.
     * This behavior is a critical factor in sglist merging's success.
     *
     * -- nyc
     */
    static inline void expand(struct zone *zone, struct page *page,
    	int low, int high, struct free_area *area,
    	int migratetype)
    {
    	unsigned long size = 1 << high;
    
    	while (high > low) {
    		area--;
    		high--;
    		size >>= 1;
    		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
    
    		/*
    		 * Mark as guard pages (or page), that will allow to
    		 * merge back to allocator when buddy will be freed.
    		 * Corresponding page table entries will not be touched,
    		 * pages will stay not present in virtual address space
    		 */
    		if (set_page_guard(zone, &page[size], high, migratetype))
    			continue;
    
    		list_add(&page[size].lru, &area->free_list[migratetype]);
    		area->nr_free++;
    		set_page_order(&page[size], high);
    	}
    }
    
    static void check_new_page_bad(struct page *page)
    {
    	const char *bad_reason = NULL;
    	unsigned long bad_flags = 0;
    
    	if (unlikely(atomic_read(&page->_mapcount) != -1))
    		bad_reason = "nonzero mapcount";
    	if (unlikely(page->mapping != NULL))
    		bad_reason = "non-NULL mapping";
    	if (unlikely(page_ref_count(page) != 0))
    		bad_reason = "nonzero _count";
    	if (unlikely(page->flags & __PG_HWPOISON)) {
    		bad_reason = "HWPoisoned (hardware-corrupted)";
    		bad_flags = __PG_HWPOISON;
    		/* Don't complain about hwpoisoned pages */
    		page_mapcount_reset(page); /* remove PageBuddy */
    		return;
    	}
    	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
    		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
    		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
    	}
    #ifdef CONFIG_MEMCG
    	if (unlikely(page->mem_cgroup))
    		bad_reason = "page still charged to cgroup";
    #endif
    	bad_page(page, bad_reason, bad_flags);
    }
    
    /*
     * This page is about to be returned from the page allocator
     */
    static inline int check_new_page(struct page *page)
    {
    	if (likely(page_expected_state(page,
    				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
    		return 0;
    
    	check_new_page_bad(page);
    	return 1;
    }
    
    static inline bool free_pages_prezeroed(void)
    {
    	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
    		page_poisoning_enabled();
    }
    
    #ifdef CONFIG_DEBUG_VM
    static bool check_pcp_refill(struct page *page)
    {
    	return false;
    }
    
    static bool check_new_pcp(struct page *page)
    {
    	return check_new_page(page);
    }
    #else
    static bool check_pcp_refill(struct page *page)
    {
    	return check_new_page(page);
    }
    static bool check_new_pcp(struct page *page)
    {
    	return false;
    }
    #endif /* CONFIG_DEBUG_VM */
    
    static bool check_new_pages(struct page *page, unsigned int order)
    {
    	int i;
    	for (i = 0; i < (1 << order); i++) {
    		struct page *p = page + i;
    
    		if (unlikely(check_new_page(p)))
    			return true;
    	}
    
    	return false;
    }
    
    inline void post_alloc_hook(struct page *page, unsigned int order,
    				gfp_t gfp_flags)
    {
    	set_page_private(page, 0);
    	set_page_refcounted(page);
    
    	arch_alloc_page(page, order);
    	kernel_map_pages(page, 1 << order, 1);
    	kernel_poison_pages(page, 1 << order, 1);
    	kasan_alloc_pages(page, order);
    	set_page_owner(page, order, gfp_flags);
    }
    
    static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
    							unsigned int alloc_flags)
    {
    	int i;
    
    	post_alloc_hook(page, order, gfp_flags);
    
    	if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
    		for (i = 0; i < (1 << order); i++)
    			clear_highpage(page + i);
    
    	if (order && (gfp_flags & __GFP_COMP))
    		prep_compound_page(page, order);
    
    	/*
    	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
    	 * allocate the page. The expectation is that the caller is taking
    	 * steps that will free more memory. The caller should avoid the page
    	 * being used for !PFMEMALLOC purposes.
    	 */
    	if (alloc_flags & ALLOC_NO_WATERMARKS)
    		set_page_pfmemalloc(page);
    	else
    		clear_page_pfmemalloc(page);
    }
    
    /*
     * Go through the free lists for the given migratetype and remove
     * the smallest available page from the freelists
     */
    static inline
    struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
    						int migratetype)
    {
    	unsigned int current_order;
    	struct free_area *area;
    	struct page *page;
    
    	/* Find a page of the appropriate size in the preferred list */
    	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
    		area = &(zone->free_area[current_order]);
    		page = list_first_entry_or_null(&area->free_list[migratetype],
    							struct page, lru);
    		if (!page)
    			continue;
    		list_del(&page->lru);
    		rmv_page_order(page);
    		area->nr_free--;
    		expand(zone, page, order, current_order, area, migratetype);
    		set_pcppage_migratetype(page, migratetype);
    		return page;
    	}
    
    	return NULL;
    }
    
    
    /*
     * This array describes the order lists are fallen back to when
     * the free lists for the desirable migrate type are depleted
     */
    static int fallbacks[MIGRATE_TYPES][4] = {
    	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
    	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
    	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
    #ifdef CONFIG_CMA
    	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
    #endif
    #ifdef CONFIG_MEMORY_ISOLATION
    	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
    #endif
    };
    
    #ifdef CONFIG_CMA
    static struct page *__rmqueue_cma_fallback(struct zone *zone,
    					unsigned int order)
    {
    	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
    }
    #else
    static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
    					unsigned int order) { return NULL; }
    #endif
    
    /*
     * Move the free pages in a range to the free lists of the requested type.
     * Note that start_page and end_pages are not aligned on a pageblock
     * boundary. If alignment is required, use move_freepages_block()
     */
    static int move_freepages(struct zone *zone,
    			  struct page *start_page, struct page *end_page,
    			  int migratetype, int *num_movable)
    {
    	struct page *page;
    	unsigned int order;
    	int pages_moved = 0;
    
    #ifndef CONFIG_HOLES_IN_ZONE
    	/*
    	 * page_zone is not safe to call in this context when
    	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
    	 * anyway as we check zone boundaries in move_freepages_block().
    	 * Remove at a later date when no bug reports exist related to
    	 * grouping pages by mobility
    	 */
    	VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
    #endif
    
    	if (num_movable)
    		*num_movable = 0;
    
    	for (page = start_page; page <= end_page;) {
    		if (!pfn_valid_within(page_to_pfn(page))) {
    			page++;
    			continue;
    		}
    
    		/* Make sure we are not inadvertently changing nodes */
    		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
    
    		if (!PageBuddy(page)) {
    			/*
    			 * We assume that pages that could be isolated for
    			 * migration are movable. But we don't actually try
    			 * isolating, as that would be expensive.
    			 */
    			if (num_movable &&
    					(PageLRU(page) || __PageMovable(page)))
    				(*num_movable)++;
    
    			page++;
    			continue;
    		}
    
    		order = page_order(page);
    		list_move(&page->lru,
    			  &zone->free_area[order].free_list[migratetype]);
    		page += 1 << order;
    		pages_moved += 1 << order;
    	}
    
    	return pages_moved;
    }
    
    int move_freepages_block(struct zone *zone, struct page *page,
    				int migratetype, int *num_movable)
    {
    	unsigned long start_pfn, end_pfn;
    	struct page *start_page, *end_page;
    
    	start_pfn = page_to_pfn(page);
    	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
    	start_page = pfn_to_page(start_pfn);
    	end_page = start_page + pageblock_nr_pages - 1;
    	end_pfn = start_pfn + pageblock_nr_pages - 1;
    
    	/* Do not cross zone boundaries */
    	if (!zone_spans_pfn(zone, start_pfn))
    		start_page = page;
    	if (!zone_spans_pfn(zone, end_pfn))
    		return 0;
    
    	return move_freepages(zone, start_page, end_page, migratetype,
    								num_movable);
    }
    
    static void change_pageblock_range(struct page *pageblock_page,
    					int start_order, int migratetype)
    {
    	int nr_pageblocks = 1 << (start_order - pageblock_order);
    
    	while (nr_pageblocks--) {
    		set_pageblock_migratetype(pageblock_page, migratetype);
    		pageblock_page += pageblock_nr_pages;
    	}
    }
    
    /*
     * When we are falling back to another migratetype during allocation, try to
     * steal extra free pages from the same pageblocks to satisfy further
     * allocations, instead of polluting multiple pageblocks.
     *
     * If we are stealing a relatively large buddy page, it is likely there will
     * be more free pages in the pageblock, so try to steal them all. For
     * reclaimable and unmovable allocations, we steal regardless of page size,
     * as fragmentation caused by those allocations polluting movable pageblocks
     * is worse than movable allocations stealing from unmovable and reclaimable
     * pageblocks.
     */
    static bool can_steal_fallback(unsigned int order, int start_mt)
    {
    	/*
    	 * Leaving this order check is intended, although there is
    	 * relaxed order check in next check. The reason is that
    	 * we can actually steal whole pageblock if this condition met,
    	 * but, below check doesn't guarantee it and that is just heuristic
    	 * so could be changed anytime.
    	 */
    	if (order >= pageblock_order)
    		return true;
    
    	if (order >= pageblock_order / 2 ||
    		start_mt == MIGRATE_RECLAIMABLE ||
    		start_mt == MIGRATE_UNMOVABLE ||
    		page_group_by_mobility_disabled)
    		return true;
    
    	return false;
    }
    
    /*
     * This function implements actual steal behaviour. If order is large enough,
     * we can steal whole pageblock. If not, we first move freepages in this
     * pageblock to our migratetype and determine how many already-allocated pages
     * are there in the pageblock with a compatible migratetype. If at least half
     * of pages are free or compatible, we can change migratetype of the pageblock
     * itself, so pages freed in the future will be put on the correct free list.
     */
    static void steal_suitable_fallback(struct zone *zone, struct page *page,
    					int start_type, bool whole_block)
    {
    	unsigned int current_order = page_order(page);
    	struct free_area *area;
    	int free_pages, movable_pages, alike_pages;
    	int old_block_type;
    
    	old_block_type = get_pageblock_migratetype(page);
    
    	/*
    	 * This can happen due to races and we want to prevent broken
    	 * highatomic accounting.
    	 */
    	if (is_migrate_highatomic(old_block_type))
    		goto single_page;
    
    	/* Take ownership for orders >= pageblock_order */
    	if (current_order >= pageblock_order) {
    		change_pageblock_range(page, current_order, start_type);
    		goto single_page;
    	}
    
    	/* We are not allowed to try stealing from the whole block */
    	if (!whole_block)
    		goto single_page;
    
    	free_pages = move_freepages_block(zone, page, start_type,
    						&movable_pages);
    	/*
    	 * Determine how many pages are compatible with our allocation.
    	 * For movable allocation, it's the number of movable pages which
    	 * we just obtained. For other types it's a bit more tricky.
    	 */
    	if (start_type == MIGRATE_MOVABLE) {
    		alike_pages = movable_pages;
    	} else {
    		/*
    		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
    		 * to MOVABLE pageblock, consider all non-movable pages as
    		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
    		 * vice versa, be conservative since we can't distinguish the
    		 * exact migratetype of non-movable pages.
    		 */
    		if (old_block_type == MIGRATE_MOVABLE)
    			alike_pages = pageblock_nr_pages
    						- (free_pages + movable_pages);
    		else
    			alike_pages = 0;
    	}
    
    	/* moving whole block can fail due to zone boundary conditions */
    	if (!free_pages)
    		goto single_page;
    
    	/*
    	 * If a sufficient number of pages in the block are either free or of
    	 * comparable migratability as our allocation, claim the whole block.
    	 */
    	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
    			page_group_by_mobility_disabled)
    		set_pageblock_migratetype(page, start_type);
    
    	return;
    
    single_page:
    	area = &zone->free_area[current_order];
    	list_move(&page->lru, &area->free_list[start_type]);
    }
    
    /*
     * Check whether there is a suitable fallback freepage with requested order.
     * If only_stealable is true, this function returns fallback_mt only if
     * we can steal other freepages all together. This would help to reduce
     * fragmentation due to mixed migratetype pages in one pageblock.
     */
    int find_suitable_fallback(struct free_area *area, unsigned int order,
    			int migratetype, bool only_stealable, bool *can_steal)
    {
    	int i;
    	int fallback_mt;
    
    	if (area->nr_free == 0)
    		return -1;
    
    	*can_steal = false;
    	for (i = 0;; i++) {
    		fallback_mt = fallbacks[migratetype][i];
    		if (fallback_mt == MIGRATE_TYPES)
    			break;
    
    		if (list_empty(&area->free_list[fallback_mt]))
    			continue;
    
    		if (can_steal_fallback(order, migratetype))
    			*can_steal = true;
    
    		if (!only_stealable)
    			return fallback_mt;
    
    		if (*can_steal)
    			return fallback_mt;
    	}
    
    	return -1;
    }
    
    /*
     * Reserve a pageblock for exclusive use of high-order atomic allocations if
     * there are no empty page blocks that contain a page with a suitable order
     */
    static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
    				unsigned int alloc_order)
    {
    	int mt;
    	unsigned long max_managed, flags;
    
    	/*
    	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
    	 * Check is race-prone but harmless.
    	 */
    	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
    	if (zone->nr_reserved_highatomic >= max_managed)
    		return;
    
    	spin_lock_irqsave(&zone->lock, flags);
    
    	/* Recheck the nr_reserved_highatomic limit under the lock */
    	if (zone->nr_reserved_highatomic >= max_managed)
    		goto out_unlock;
    
    	/* Yoink! */
    	mt = get_pageblock_migratetype(page);
    	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
    	    && !is_migrate_cma(mt)) {
    		zone->nr_reserved_highatomic += pageblock_nr_pages;
    		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
    		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
    	}
    
    out_unlock:
    	spin_unlock_irqrestore(&zone->lock, flags);
    }
    
    /*
     * Used when an allocation is about to fail under memory pressure. This
     * potentially hurts the reliability of high-order allocations when under
     * intense memory pressure but failed atomic allocations should be easier
     * to recover from than an OOM.
     *
     * If @force is true, try to unreserve a pageblock even though highatomic
     * pageblock is exhausted.
     */
    static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
    						bool force)
    {
    	struct zonelist *zonelist = ac->zonelist;
    	unsigned long flags;
    	struct zoneref *z;
    	struct zone *zone;
    	struct page *page;
    	int order;
    	bool ret;
    
    	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
    								ac->nodemask) {
    		/*
    		 * Preserve at least one pageblock unless memory pressure
    		 * is really high.
    		 */
    		if (!force && zone->nr_reserved_highatomic <=
    					pageblock_nr_pages)
    			continue;
    
    		spin_lock_irqsave(&zone->lock, flags);
    		for (order = 0; order < MAX_ORDER; order++) {
    			struct free_area *area = &(zone->free_area[order]);
    
    			page = list_first_entry_or_null(
    					&area->free_list[MIGRATE_HIGHATOMIC],
    					struct page, lru);
    			if (!page)
    				continue;
    
    			/*
    			 * In page freeing path, migratetype change is racy so
    			 * we can counter several free pages in a pageblock
    			 * in this loop althoug we changed the pageblock type
    			 * from highatomic to ac->migratetype. So we should
    			 * adjust the count once.
    			 */
    			if (is_migrate_highatomic_page(page)) {
    				/*
    				 * It should never happen but changes to
    				 * locking could inadvertently allow a per-cpu
    				 * drain to add pages to MIGRATE_HIGHATOMIC
    				 * while unreserving so be safe and watch for
    				 * underflows.
    				 */
    				zone->nr_reserved_highatomic -= min(
    						pageblock_nr_pages,
    						zone->nr_reserved_highatomic);
    			}
    
    			/*
    			 * Convert to ac->migratetype and avoid the normal
    			 * pageblock stealing heuristics. Minimally, the caller
    			 * is doing the work and needs the pages. More
    			 * importantly, if the block was always converted to
    			 * MIGRATE_UNMOVABLE or another type then the number
    			 * of pageblocks that cannot be completely freed
    			 * may increase.
    			 */
    			set_pageblock_migratetype(page, ac->migratetype);
    			ret = move_freepages_block(zone, page, ac->migratetype,
    									NULL);
    			if (ret) {
    				spin_unlock_irqrestore(&zone->lock, flags);
    				return ret;
    			}
    		}
    		spin_unlock_irqrestore(&zone->lock, flags);
    	}
    
    	return false;
    }
    
    /*
     * Try finding a free buddy page on the fallback list and put it on the free
     * list of requested migratetype, possibly along with other pages from the same
     * block, depending on fragmentation avoidance heuristics. Returns true if
     * fallback was found so that __rmqueue_smallest() can grab it.
     *
     * The use of signed ints for order and current_order is a deliberate
     * deviation from the rest of this file, to make the for loop
     * condition simpler.
     */
    static inline bool
    __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
    {
    	struct free_area *area;
    	int current_order;
    	struct page *page;
    	int fallback_mt;
    	bool can_steal;
    
    	/*
    	 * Find the largest available free page in the other list. This roughly
    	 * approximates finding the pageblock with the most free pages, which
    	 * would be too costly to do exactly.
    	 */
    	for (current_order = MAX_ORDER - 1; current_order >= order;
    				--current_order) {
    		area = &(zone->free_area[current_order]);
    		fallback_mt = find_suitable_fallback(area, current_order,
    				start_migratetype, false, &can_steal);
    		if (fallback_mt == -1)
    			continue;
    
    		/*
    		 * We cannot steal all free pages from the pageblock and the
    		 * requested migratetype is movable. In that case it's better to
    		 * steal and split the smallest available page instead of the
    		 * largest available page, because even if the next movable
    		 * allocation falls back into a different pageblock than this
    		 * one, it won't cause permanent fragmentation.
    		 */
    		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
    					&& current_order > order)
    			goto find_smallest;
    
    		goto do_steal;
    	}
    
    	return false;
    
    find_smallest:
    	for (current_order = order; current_order < MAX_ORDER;
    							current_order++) {
    		area = &(zone->free_area[current_order]);
    		fallback_mt = find_suitable_fallback(area, current_order,
    				start_migratetype, false, &can_steal);
    		if (fallback_mt != -1)
    			break;
    	}
    
    	/*
    	 * This should not happen - we already found a suitable fallback
    	 * when looking for the largest page.
    	 */
    	VM_BUG_ON(current_order == MAX_ORDER);
    
    do_steal:
    	page = list_first_entry(&area->free_list[fallback_mt],
    							struct page, lru);
    
    	steal_suitable_fallback(zone, page, start_migratetype, can_steal);
    
    	trace_mm_page_alloc_extfrag(page, order, current_order,
    		start_migratetype, fallback_mt);
    
    	return true;
    
    }
    
    /*
     * Do the hard work of removing an element from the buddy allocator.
     * Call me with the zone->lock already held.
     */
    static struct page *__rmqueue(struct zone *zone, unsigned int order,
    				int migratetype)
    {
    	struct page *page;
    
    retry:
    	page = __rmqueue_smallest(zone, order, migratetype);
    	if (unlikely(!page)) {
    		if (migratetype == MIGRATE_MOVABLE)
    			page = __rmqueue_cma_fallback(zone, order);
    
    		if (!page && __rmqueue_fallback(zone, order, migratetype))
    			goto retry;
    	}
    
    	trace_mm_page_alloc_zone_locked(page, order, migratetype);
    	return page;
    }
    
    /*
     * Obtain a specified number of elements from the buddy allocator, all under
     * a single hold of the lock, for efficiency.  Add them to the supplied list.
     * Returns the number of new pages which were placed at *list.
     */
    static int rmqueue_bulk(struct zone *zone, unsigned int order,
    			unsigned long count, struct list_head *list,
    			int migratetype, bool cold)
    {
    	int i, alloced = 0;
    
    	spin_lock(&zone->lock);
    	for (i = 0; i < count; ++i) {
    		struct page *page = __rmqueue(zone, order, migratetype);
    		if (unlikely(page == NULL))
    			break;
    
    		if (unlikely(check_pcp_refill(page)))
    			continue;
    
    		/*
    		 * Split buddy pages returned by expand() are received here
    		 * in physical page order. The page is added to the callers and
    		 * list and the list head then moves forward. From the callers
    		 * perspective, the linked list is ordered by page number in
    		 * some conditions. This is useful for IO devices that can
    		 * merge IO requests if the physical pages are ordered
    		 * properly.
    		 */
    		if (likely(!cold))
    			list_add(&page->lru, list);
    		else
    			list_add_tail(&page->lru, list);
    		list = &page->lru;
    		alloced++;
    		if (is_migrate_cma(get_pcppage_migratetype(page)))
    			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
    					      -(1 << order));
    	}
    
    	/*
    	 * i pages were removed from the buddy list even if some leak due
    	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
    	 * on i. Do not confuse with 'alloced' which is the number of
    	 * pages added to the pcp list.
    	 */
    	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
    	spin_unlock(&zone->lock);
    	return alloced;
    }
    
    #ifdef CONFIG_NUMA
    /*
     * Called from the vmstat counter updater to drain pagesets of this
     * currently executing processor on remote nodes after they have
     * expired.
     *
     * Note that this function must be called with the thread pinned to
     * a single processor.
     */
    void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
    {
    	unsigned long flags;
    	int to_drain, batch;
    
    	local_irq_save(flags);
    	batch = READ_ONCE(pcp->batch);
    	to_drain = min(pcp->count, batch);
    	if (to_drain > 0) {
    		free_pcppages_bulk(zone, to_drain, pcp);
    		pcp->count -= to_drain;
    	}
    	local_irq_restore(flags);
    }
    #endif
    
    /*
     * Drain pcplists of the indicated processor and zone.
     *
     * The processor must either be the current processor and the
     * thread pinned to the current processor or a processor that
     * is not online.
     */
    static void drain_pages_zone(unsigned int cpu, struct zone *zone)
    {
    	unsigned long flags;
    	struct per_cpu_pageset *pset;
    	struct per_cpu_pages *pcp;
    
    	local_irq_save(flags);
    	pset = per_cpu_ptr(zone->pageset, cpu);
    
    	pcp = &pset->pcp;
    	if (pcp->count) {
    		free_pcppages_bulk(zone, pcp->count, pcp);
    		pcp->count = 0;
    	}
    	local_irq_restore(flags);
    }
    
    /*
     * Drain pcplists of all zones on the indicated processor.
     *
     * The processor must either be the current processor and the
     * thread pinned to the current processor or a processor that
     * is not online.
     */
    static void drain_pages(unsigned int cpu)
    {
    	struct zone *zone;
    
    	for_each_populated_zone(zone) {
    		drain_pages_zone(cpu, zone);
    	}
    }
    
    /*
     * Spill all of this CPU's per-cpu pages back into the buddy allocator.
     *
     * The CPU has to be pinned. When zone parameter is non-NULL, spill just
     * the single zone's pages.
     */
    void drain_local_pages(struct zone *zone)
    {
    	int cpu = smp_processor_id();
    
    	if (zone)
    		drain_pages_zone(cpu, zone);
    	else
    		drain_pages(cpu);
    }
    
    static void drain_local_pages_wq(struct work_struct *work)
    {
    	/*
    	 * drain_all_pages doesn't use proper cpu hotplug protection so
    	 * we can race with cpu offline when the WQ can move this from
    	 * a cpu pinned worker to an unbound one. We can operate on a different
    	 * cpu which is allright but we also have to make sure to not move to
    	 * a different one.
    	 */
    	preempt_disable();
    	drain_local_pages(NULL);
    	preempt_enable();
    }
    
    /*
     * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
     *
     * When zone parameter is non-NULL, spill just the single zone's pages.
     *
     * Note that this can be extremely slow as the draining happens in a workqueue.
     */
    void drain_all_pages(struct zone *zone)
    {
    	int cpu;
    
    	/*
    	 * Allocate in the BSS so we wont require allocation in
    	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
    	 */
    	static cpumask_t cpus_with_pcps;
    
    	/*
    	 * Make sure nobody triggers this path before mm_percpu_wq is fully
    	 * initialized.
    	 */
    	if (WARN_ON_ONCE(!mm_percpu_wq))
    		return;
    
    	/* Workqueues cannot recurse */
    	if (current->flags & PF_WQ_WORKER)
    		return;
    
    	/*
    	 * Do not drain if one is already in progress unless it's specific to
    	 * a zone. Such callers are primarily CMA and memory hotplug and need
    	 * the drain to be complete when the call returns.
    	 */
    	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
    		if (!zone)
    			return;
    		mutex_lock(&pcpu_drain_mutex);
    	}
    
    	/*
    	 * We don't care about racing with CPU hotplug event
    	 * as offline notification will cause the notified
    	 * cpu to drain that CPU pcps and on_each_cpu_mask
    	 * disables preemption as part of its processing
    	 */
    	for_each_online_cpu(cpu) {
    		struct per_cpu_pageset *pcp;
    		struct zone *z;
    		bool has_pcps = false;
    
    		if (zone) {
    			pcp = per_cpu_ptr(zone->pageset, cpu);
    			if (pcp->pcp.count)
    				has_pcps = true;
    		} else {
    			for_each_populated_zone(z) {
    				pcp = per_cpu_ptr(z->pageset, cpu);
    				if (pcp->pcp.count) {
    					has_pcps = true;
    					break;
    				}
    			}
    		}
    
    		if (has_pcps)
    			cpumask_set_cpu(cpu, &cpus_with_pcps);
    		else
    			cpumask_clear_cpu(cpu, &cpus_with_pcps);
    	}
    
    	for_each_cpu(cpu, &cpus_with_pcps) {
    		struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
    		INIT_WORK(work, drain_local_pages_wq);
    		queue_work_on(cpu, mm_percpu_wq, work);
    	}
    	for_each_cpu(cpu, &cpus_with_pcps)
    		flush_work(per_cpu_ptr(&pcpu_drain, cpu));
    
    	mutex_unlock(&pcpu_drain_mutex);
    }
    
    #ifdef CONFIG_HIBERNATION
    
    /*
     * Touch the watchdog for every WD_PAGE_COUNT pages.
     */
    #define WD_PAGE_COUNT	(128*1024)
    
    void mark_free_pages(struct zone *zone)
    {
    	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
    	unsigned long flags;
    	unsigned int order, t;
    	struct page *page;
    
    	if (zone_is_empty(zone))
    		return;
    
    	spin_lock_irqsave(&zone->lock, flags);
    
    	max_zone_pfn = zone_end_pfn(zone);
    	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
    		if (pfn_valid(pfn)) {
    			page = pfn_to_page(pfn);
    
    			if (!--page_count) {
    				touch_nmi_watchdog();
    				page_count = WD_PAGE_COUNT;
    			}
    
    			if (page_zone(page) != zone)
    				continue;
    
    			if (!swsusp_page_is_forbidden(page))
    				swsusp_unset_page_free(page);
    		}
    
    	for_each_migratetype_order(order, t) {
    		list_for_each_entry(page,
    				&zone->free_area[order].free_list[t], lru) {
    			unsigned long i;
    
    			pfn = page_to_pfn(page);
    			for (i = 0; i < (1UL << order); i++) {
    				if (!--page_count) {
    					touch_nmi_watchdog();
    					page_count = WD_PAGE_COUNT;
    				}
    				swsusp_set_page_free(pfn_to_page(pfn + i));
    			}
    		}
    	}
    	spin_unlock_irqrestore(&zone->lock, flags);
    }
    #endif /* CONFIG_PM */
    
    /*
     * Free a 0-order page
     * cold == true ? free a cold page : free a hot page
     */
    void free_hot_cold_page(struct page *page, bool cold)
    {
    	struct zone *zone = page_zone(page);
    	struct per_cpu_pages *pcp;
    	unsigned long flags;
    	unsigned long pfn = page_to_pfn(page);
    	int migratetype;
    
    	if (!free_pcp_prepare(page))
    		return;
    
    	migratetype = get_pfnblock_migratetype(page, pfn);
    	set_pcppage_migratetype(page, migratetype);
    	local_irq_save(flags);
    	__count_vm_event(PGFREE);
    
    	/*
    	 * We only track unmovable, reclaimable and movable on pcp lists.
    	 * Free ISOLATE pages back to the allocator because they are being
    	 * offlined but treat HIGHATOMIC as movable pages so we can get those
    	 * areas back if necessary. Otherwise, we may have to free
    	 * excessively into the page allocator
    	 */
    	if (migratetype >= MIGRATE_PCPTYPES) {
    		if (unlikely(is_migrate_isolate(migratetype))) {
    			free_one_page(zone, page, pfn, 0, migratetype);
    			goto out;
    		}
    		migratetype = MIGRATE_MOVABLE;
    	}
    
    	pcp = &this_cpu_ptr(zone->pageset)->pcp;
    	if (!cold)
    		list_add(&page->lru, &pcp->lists[migratetype]);
    	else
    		list_add_tail(&page->lru, &pcp->lists[migratetype]);
    	pcp->count++;
    	if (pcp->count >= pcp->high) {
    		unsigned long batch = READ_ONCE(pcp->batch);
    		free_pcppages_bulk(zone, batch, pcp);
    		pcp->count -= batch;
    	}
    
    out:
    	local_irq_restore(flags);
    }
    
    /*
     * Free a list of 0-order pages
     */
    void free_hot_cold_page_list(struct list_head *list, bool cold)
    {
    	struct page *page, *next;
    
    	list_for_each_entry_safe(page, next, list, lru) {
    		trace_mm_page_free_batched(page, cold);
    		free_hot_cold_page(page, cold);
    	}
    }
    
    /*
     * split_page takes a non-compound higher-order page, and splits it into
     * n (1<<order) sub-pages: page[0..n]
     * Each sub-page must be freed individually.
     *
     * Note: this is probably too low level an operation for use in drivers.
     * Please consult with lkml before using this in your driver.
     */
    void split_page(struct page *page, unsigned int order)
    {
    	int i;
    
    	VM_BUG_ON_PAGE(PageCompound(page), page);
    	VM_BUG_ON_PAGE(!page_count(page), page);
    
    #ifdef CONFIG_KMEMCHECK
    	/*
    	 * Split shadow pages too, because free(page[0]) would
    	 * otherwise free the whole shadow.
    	 */
    	if (kmemcheck_page_is_tracked(page))
    		split_page(virt_to_page(page[0].shadow), order);
    #endif
    
    	for (i = 1; i < (1 << order); i++)
    		set_page_refcounted(page + i);
    	split_page_owner(page, order);
    }
    EXPORT_SYMBOL_GPL(split_page);
    
    int __isolate_free_page(struct page *page, unsigned int order)
    {
    	unsigned long watermark;
    	struct zone *zone;
    	int mt;
    
    	BUG_ON(!PageBuddy(page));
    
    	zone = page_zone(page);
    	mt = get_pageblock_migratetype(page);
    
    	if (!is_migrate_isolate(mt)) {
    		/*
    		 * Obey watermarks as if the page was being allocated. We can
    		 * emulate a high-order watermark check with a raised order-0
    		 * watermark, because we already know our high-order page
    		 * exists.
    		 */
    		watermark = min_wmark_pages(zone) + (1UL << order);
    		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
    			return 0;
    
    		__mod_zone_freepage_state(zone, -(1UL << order), mt);
    	}
    
    	/* Remove page from free list */
    	list_del(&page->lru);
    	zone->free_area[order].nr_free--;
    	rmv_page_order(page);
    
    	/*
    	 * Set the pageblock if the isolated page is at least half of a
    	 * pageblock
    	 */
    	if (order >= pageblock_order - 1) {
    		struct page *endpage = page + (1 << order) - 1;
    		for (; page < endpage; page += pageblock_nr_pages) {
    			int mt = get_pageblock_migratetype(page);
    			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
    			    && !is_migrate_highatomic(mt))
    				set_pageblock_migratetype(page,
    							  MIGRATE_MOVABLE);
    		}
    	}
    
    
    	return 1UL << order;
    }
    
    /*
     * Update NUMA hit/miss statistics
     *
     * Must be called with interrupts disabled.
     */
    static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
    {
    #ifdef CONFIG_NUMA
    	enum numa_stat_item local_stat = NUMA_LOCAL;
    
    	if (z->node != numa_node_id())
    		local_stat = NUMA_OTHER;
    
    	if (z->node == preferred_zone->node)
    		__inc_numa_state(z, NUMA_HIT);
    	else {
    		__inc_numa_state(z, NUMA_MISS);
    		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
    	}
    	__inc_numa_state(z, local_stat);
    #endif
    }
    
    /* Remove page from the per-cpu list, caller must protect the list */
    static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
    			bool cold, struct per_cpu_pages *pcp,
    			struct list_head *list)
    {
    	struct page *page;
    
    	do {
    		if (list_empty(list)) {
    			pcp->count += rmqueue_bulk(zone, 0,
    					pcp->batch, list,
    					migratetype, cold);
    			if (unlikely(list_empty(list)))
    				return NULL;
    		}
    
    		if (cold)
    			page = list_last_entry(list, struct page, lru);
    		else
    			page = list_first_entry(list, struct page, lru);
    
    		list_del(&page->lru);
    		pcp->count--;
    	} while (check_new_pcp(page));
    
    	return page;
    }
    
    /* Lock and remove page from the per-cpu list */
    static struct page *rmqueue_pcplist(struct zone *preferred_zone,
    			struct zone *zone, unsigned int order,
    			gfp_t gfp_flags, int migratetype)
    {
    	struct per_cpu_pages *pcp;
    	struct list_head *list;
    	bool cold = ((gfp_flags & __GFP_COLD) != 0);
    	struct page *page;
    	unsigned long flags;
    
    	local_irq_save(flags);
    	pcp = &this_cpu_ptr(zone->pageset)->pcp;
    	list = &pcp->lists[migratetype];
    	page = __rmqueue_pcplist(zone,  migratetype, cold, pcp, list);
    	if (page) {
    		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
    		zone_statistics(preferred_zone, zone);
    	}
    	local_irq_restore(flags);
    	return page;
    }
    
    /*
     * Allocate a page from the given zone. Use pcplists for order-0 allocations.
     */
    static inline
    struct page *rmqueue(struct zone *preferred_zone,
    			struct zone *zone, unsigned int order,
    			gfp_t gfp_flags, unsigned int alloc_flags,
    			int migratetype)
    {
    	unsigned long flags;
    	struct page *page;
    
    	if (likely(order == 0)) {
    		page = rmqueue_pcplist(preferred_zone, zone, order,
    				gfp_flags, migratetype);
    		goto out;
    	}
    
    	/*
    	 * We most definitely don't want callers attempting to
    	 * allocate greater than order-1 page units with __GFP_NOFAIL.
    	 */
    	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
    	spin_lock_irqsave(&zone->lock, flags);
    
    	do {
    		page = NULL;
    		if (alloc_flags & ALLOC_HARDER) {
    			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
    			if (page)
    				trace_mm_page_alloc_zone_locked(page, order, migratetype);
    		}
    		if (!page)
    			page = __rmqueue(zone, order, migratetype);
    	} while (page && check_new_pages(page, order));
    	spin_unlock(&zone->lock);
    	if (!page)
    		goto failed;
    	__mod_zone_freepage_state(zone, -(1 << order),
    				  get_pcppage_migratetype(page));
    
    	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
    	zone_statistics(preferred_zone, zone);
    	local_irq_restore(flags);
    
    out:
    	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
    	return page;
    
    failed:
    	local_irq_restore(flags);
    	return NULL;
    }
    
    #ifdef CONFIG_FAIL_PAGE_ALLOC
    
    static struct {
    	struct fault_attr attr;
    
    	bool ignore_gfp_highmem;
    	bool ignore_gfp_reclaim;
    	u32 min_order;
    } fail_page_alloc = {
    	.attr = FAULT_ATTR_INITIALIZER,
    	.ignore_gfp_reclaim = true,
    	.ignore_gfp_highmem = true,
    	.min_order = 1,
    };
    
    static int __init setup_fail_page_alloc(char *str)
    {
    	return setup_fault_attr(&fail_page_alloc.attr, str);
    }
    __setup("fail_page_alloc=", setup_fail_page_alloc);
    
    static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
    {
    	if (order < fail_page_alloc.min_order)
    		return false;
    	if (gfp_mask & __GFP_NOFAIL)
    		return false;
    	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
    		return false;
    	if (fail_page_alloc.ignore_gfp_reclaim &&
    			(gfp_mask & __GFP_DIRECT_RECLAIM))
    		return false;
    
    	return should_fail(&fail_page_alloc.attr, 1 << order);
    }
    
    #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
    
    static int __init fail_page_alloc_debugfs(void)
    {
    	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
    	struct dentry *dir;
    
    	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
    					&fail_page_alloc.attr);
    	if (IS_ERR(dir))
    		return PTR_ERR(dir);
    
    	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
    				&fail_page_alloc.ignore_gfp_reclaim))
    		goto fail;
    	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
    				&fail_page_alloc.ignore_gfp_highmem))
    		goto fail;
    	if (!debugfs_create_u32("min-order", mode, dir,
    				&fail_page_alloc.min_order))
    		goto fail;
    
    	return 0;
    fail:
    	debugfs_remove_recursive(dir);
    
    	return -ENOMEM;
    }
    
    late_initcall(fail_page_alloc_debugfs);
    
    #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
    
    #else /* CONFIG_FAIL_PAGE_ALLOC */
    
    static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
    {
    	return false;
    }
    
    #endif /* CONFIG_FAIL_PAGE_ALLOC */
    
    /*
     * Return true if free base pages are above 'mark'. For high-order checks it
     * will return true of the order-0 watermark is reached and there is at least
     * one free page of a suitable size. Checking now avoids taking the zone lock
     * to check in the allocation paths if no pages are free.
     */
    bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
    			 int classzone_idx, unsigned int alloc_flags,
    			 long free_pages)
    {
    	long min = mark;
    	int o;
    	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
    
    	/* free_pages may go negative - that's OK */
    	free_pages -= (1 << order) - 1;
    
    	if (alloc_flags & ALLOC_HIGH)
    		min -= min / 2;
    
    	/*
    	 * If the caller does not have rights to ALLOC_HARDER then subtract
    	 * the high-atomic reserves. This will over-estimate the size of the
    	 * atomic reserve but it avoids a search.
    	 */
    	if (likely(!alloc_harder)) {
    		free_pages -= z->nr_reserved_highatomic;
    	} else {
    		/*
    		 * OOM victims can try even harder than normal ALLOC_HARDER
    		 * users on the grounds that it's definitely going to be in
    		 * the exit path shortly and free memory. Any allocation it
    		 * makes during the free path will be small and short-lived.
    		 */
    		if (alloc_flags & ALLOC_OOM)
    			min -= min / 2;
    		else
    			min -= min / 4;
    	}
    
    
    #ifdef CONFIG_CMA
    	/* If allocation can't use CMA areas don't use free CMA pages */
    	if (!(alloc_flags & ALLOC_CMA))
    		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
    #endif
    
    	/*
    	 * Check watermarks for an order-0 allocation request. If these
    	 * are not met, then a high-order request also cannot go ahead
    	 * even if a suitable page happened to be free.
    	 */
    	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
    		return false;
    
    	/* If this is an order-0 request then the watermark is fine */
    	if (!order)
    		return true;
    
    	/* For a high-order request, check at least one suitable page is free */
    	for (o = order; o < MAX_ORDER; o++) {
    		struct free_area *area = &z->free_area[o];
    		int mt;
    
    		if (!area->nr_free)
    			continue;
    
    		if (alloc_harder)
    			return true;
    
    		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
    			if (!list_empty(&area->free_list[mt]))
    				return true;
    		}
    
    #ifdef CONFIG_CMA
    		if ((alloc_flags & ALLOC_CMA) &&
    		    !list_empty(&area->free_list[MIGRATE_CMA])) {
    			return true;
    		}
    #endif
    	}
    	return false;
    }
    
    bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
    		      int classzone_idx, unsigned int alloc_flags)
    {
    	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
    					zone_page_state(z, NR_FREE_PAGES));
    }
    
    static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
    		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
    {
    	long free_pages = zone_page_state(z, NR_FREE_PAGES);
    	long cma_pages = 0;
    
    #ifdef CONFIG_CMA
    	/* If allocation can't use CMA areas don't use free CMA pages */
    	if (!(alloc_flags & ALLOC_CMA))
    		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
    #endif
    
    	/*
    	 * Fast check for order-0 only. If this fails then the reserves
    	 * need to be calculated. There is a corner case where the check
    	 * passes but only the high-order atomic reserve are free. If
    	 * the caller is !atomic then it'll uselessly search the free
    	 * list. That corner case is then slower but it is harmless.
    	 */
    	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
    		return true;
    
    	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
    					free_pages);
    }
    
    bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
    			unsigned long mark, int classzone_idx)
    {
    	long free_pages = zone_page_state(z, NR_FREE_PAGES);
    
    	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
    		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
    
    	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
    								free_pages);
    }
    
    #ifdef CONFIG_NUMA
    static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
    {
    	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
    				RECLAIM_DISTANCE;
    }
    #else	/* CONFIG_NUMA */
    static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
    {
    	return true;
    }
    #endif	/* CONFIG_NUMA */
    
    /*
     * get_page_from_freelist goes through the zonelist trying to allocate
     * a page.
     */
    static struct page *
    get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
    						const struct alloc_context *ac)
    {
    	struct zoneref *z = ac->preferred_zoneref;
    	struct zone *zone;
    	struct pglist_data *last_pgdat_dirty_limit = NULL;
    
    	/*
    	 * Scan zonelist, looking for a zone with enough free.
    	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
    	 */
    	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
    								ac->nodemask) {
    		struct page *page;
    		unsigned long mark;
    
    		if (cpusets_enabled() &&
    			(alloc_flags & ALLOC_CPUSET) &&
    			!__cpuset_zone_allowed(zone, gfp_mask))
    				continue;
    		/*
    		 * When allocating a page cache page for writing, we
    		 * want to get it from a node that is within its dirty
    		 * limit, such that no single node holds more than its
    		 * proportional share of globally allowed dirty pages.
    		 * The dirty limits take into account the node's
    		 * lowmem reserves and high watermark so that kswapd
    		 * should be able to balance it without having to
    		 * write pages from its LRU list.
    		 *
    		 * XXX: For now, allow allocations to potentially
    		 * exceed the per-node dirty limit in the slowpath
    		 * (spread_dirty_pages unset) before going into reclaim,
    		 * which is important when on a NUMA setup the allowed
    		 * nodes are together not big enough to reach the
    		 * global limit.  The proper fix for these situations
    		 * will require awareness of nodes in the
    		 * dirty-throttling and the flusher threads.
    		 */
    		if (ac->spread_dirty_pages) {
    			if (last_pgdat_dirty_limit == zone->zone_pgdat)
    				continue;
    
    			if (!node_dirty_ok(zone->zone_pgdat)) {
    				last_pgdat_dirty_limit = zone->zone_pgdat;
    				continue;
    			}
    		}
    
    		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
    		if (!zone_watermark_fast(zone, order, mark,
    				       ac_classzone_idx(ac), alloc_flags)) {
    			int ret;
    
    			/* Checked here to keep the fast path fast */
    			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
    			if (alloc_flags & ALLOC_NO_WATERMARKS)
    				goto try_this_zone;
    
    			if (node_reclaim_mode == 0 ||
    			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
    				continue;
    
    			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
    			switch (ret) {
    			case NODE_RECLAIM_NOSCAN:
    				/* did not scan */
    				continue;
    			case NODE_RECLAIM_FULL:
    				/* scanned but unreclaimable */
    				continue;
    			default:
    				/* did we reclaim enough */
    				if (zone_watermark_ok(zone, order, mark,
    						ac_classzone_idx(ac), alloc_flags))
    					goto try_this_zone;
    
    				continue;
    			}
    		}
    
    try_this_zone:
    		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
    				gfp_mask, alloc_flags, ac->migratetype);
    		if (page) {
    			prep_new_page(page, order, gfp_mask, alloc_flags);
    
    			/*
    			 * If this is a high-order atomic allocation then check
    			 * if the pageblock should be reserved for the future
    			 */
    			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
    				reserve_highatomic_pageblock(page, zone, order);
    
    			return page;
    		}
    	}
    
    	return NULL;
    }
    
    /*
     * Large machines with many possible nodes should not always dump per-node
     * meminfo in irq context.
     */
    static inline bool should_suppress_show_mem(void)
    {
    	bool ret = false;
    
    #if NODES_SHIFT > 8
    	ret = in_interrupt();
    #endif
    	return ret;
    }
    
    static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
    {
    	unsigned int filter = SHOW_MEM_FILTER_NODES;
    	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
    
    	if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
    		return;
    
    	/*
    	 * This documents exceptions given to allocations in certain
    	 * contexts that are allowed to allocate outside current's set
    	 * of allowed nodes.
    	 */
    	if (!(gfp_mask & __GFP_NOMEMALLOC))
    		if (tsk_is_oom_victim(current) ||
    		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
    			filter &= ~SHOW_MEM_FILTER_NODES;
    	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
    		filter &= ~SHOW_MEM_FILTER_NODES;
    
    	show_mem(filter, nodemask);
    }
    
    void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
    {
    	struct va_format vaf;
    	va_list args;
    	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
    				      DEFAULT_RATELIMIT_BURST);
    
    	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
    		return;
    
    	pr_warn("%s: ", current->comm);
    
    	va_start(args, fmt);
    	vaf.fmt = fmt;
    	vaf.va = &args;
    	pr_cont("%pV", &vaf);
    	va_end(args);
    
    	pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask);
    	if (nodemask)
    		pr_cont("%*pbl\n", nodemask_pr_args(nodemask));
    	else
    		pr_cont("(null)\n");
    
    	cpuset_print_current_mems_allowed();
    
    	dump_stack();
    	warn_alloc_show_mem(gfp_mask, nodemask);
    }
    
    static inline struct page *
    __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
    			      unsigned int alloc_flags,
    			      const struct alloc_context *ac)
    {
    	struct page *page;
    
    	page = get_page_from_freelist(gfp_mask, order,
    			alloc_flags|ALLOC_CPUSET, ac);
    	/*
    	 * fallback to ignore cpuset restriction if our nodes
    	 * are depleted
    	 */
    	if (!page)
    		page = get_page_from_freelist(gfp_mask, order,
    				alloc_flags, ac);
    
    	return page;
    }
    
    static inline struct page *
    __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
    	const struct alloc_context *ac, unsigned long *did_some_progress)
    {
    	struct oom_control oc = {
    		.zonelist = ac->zonelist,
    		.nodemask = ac->nodemask,
    		.memcg = NULL,
    		.gfp_mask = gfp_mask,
    		.order = order,
    	};
    	struct page *page;
    
    	*did_some_progress = 0;
    
    	/*
    	 * Acquire the oom lock.  If that fails, somebody else is
    	 * making progress for us.
    	 */
    	if (!mutex_trylock(&oom_lock)) {
    		*did_some_progress = 1;
    		schedule_timeout_uninterruptible(1);
    		return NULL;
    	}
    
    	/*
    	 * Go through the zonelist yet one more time, keep very high watermark
    	 * here, this is only to catch a parallel oom killing, we must fail if
    	 * we're still under heavy pressure. But make sure that this reclaim
    	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
    	 * allocation which will never fail due to oom_lock already held.
    	 */
    	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
    				      ~__GFP_DIRECT_RECLAIM, order,
    				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
    	if (page)
    		goto out;
    
    	/* Coredumps can quickly deplete all memory reserves */
    	if (current->flags & PF_DUMPCORE)
    		goto out;
    	/* The OOM killer will not help higher order allocs */
    	if (order > PAGE_ALLOC_COSTLY_ORDER)
    		goto out;
    	/*
    	 * We have already exhausted all our reclaim opportunities without any
    	 * success so it is time to admit defeat. We will skip the OOM killer
    	 * because it is very likely that the caller has a more reasonable
    	 * fallback than shooting a random task.
    	 */
    	if (gfp_mask & __GFP_RETRY_MAYFAIL)
    		goto out;
    	/* The OOM killer does not needlessly kill tasks for lowmem */
    	if (ac->high_zoneidx < ZONE_NORMAL)
    		goto out;
    	if (pm_suspended_storage())
    		goto out;
    	/*
    	 * XXX: GFP_NOFS allocations should rather fail than rely on
    	 * other request to make a forward progress.
    	 * We are in an unfortunate situation where out_of_memory cannot
    	 * do much for this context but let's try it to at least get
    	 * access to memory reserved if the current task is killed (see
    	 * out_of_memory). Once filesystems are ready to handle allocation
    	 * failures more gracefully we should just bail out here.
    	 */
    
    	/* The OOM killer may not free memory on a specific node */
    	if (gfp_mask & __GFP_THISNODE)
    		goto out;
    
    	/* Exhausted what can be done so it's blamo time */
    	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
    		*did_some_progress = 1;
    
    		/*
    		 * Help non-failing allocations by giving them access to memory
    		 * reserves
    		 */
    		if (gfp_mask & __GFP_NOFAIL)
    			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
    					ALLOC_NO_WATERMARKS, ac);
    	}
    out:
    	mutex_unlock(&oom_lock);
    	return page;
    }
    
    /*
     * Maximum number of compaction retries wit a progress before OOM
     * killer is consider as the only way to move forward.
     */
    #define MAX_COMPACT_RETRIES 16
    
    #ifdef CONFIG_COMPACTION
    /* Try memory compaction for high-order allocations before reclaim */
    static struct page *
    __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
    		unsigned int alloc_flags, const struct alloc_context *ac,
    		enum compact_priority prio, enum compact_result *compact_result)
    {
    	struct page *page;
    	unsigned int noreclaim_flag;
    
    	if (!order)
    		return NULL;
    
    	noreclaim_flag = memalloc_noreclaim_save();
    	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
    									prio);
    	memalloc_noreclaim_restore(noreclaim_flag);
    
    	if (*compact_result <= COMPACT_INACTIVE)
    		return NULL;
    
    	/*
    	 * At least in one zone compaction wasn't deferred or skipped, so let's
    	 * count a compaction stall
    	 */
    	count_vm_event(COMPACTSTALL);
    
    	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
    
    	if (page) {
    		struct zone *zone = page_zone(page);
    
    		zone->compact_blockskip_flush = false;
    		compaction_defer_reset(zone, order, true);
    		count_vm_event(COMPACTSUCCESS);
    		return page;
    	}
    
    	/*
    	 * It's bad if compaction run occurs and fails. The most likely reason
    	 * is that pages exist, but not enough to satisfy watermarks.
    	 */
    	count_vm_event(COMPACTFAIL);
    
    	cond_resched();
    
    	return NULL;
    }
    
    static inline bool
    should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
    		     enum compact_result compact_result,
    		     enum compact_priority *compact_priority,
    		     int *compaction_retries)
    {
    	int max_retries = MAX_COMPACT_RETRIES;
    	int min_priority;
    	bool ret = false;
    	int retries = *compaction_retries;
    	enum compact_priority priority = *compact_priority;
    
    	if (!order)
    		return false;
    
    	if (compaction_made_progress(compact_result))
    		(*compaction_retries)++;
    
    	/*
    	 * compaction considers all the zone as desperately out of memory
    	 * so it doesn't really make much sense to retry except when the
    	 * failure could be caused by insufficient priority
    	 */
    	if (compaction_failed(compact_result))
    		goto check_priority;
    
    	/*
    	 * make sure the compaction wasn't deferred or didn't bail out early
    	 * due to locks contention before we declare that we should give up.
    	 * But do not retry if the given zonelist is not suitable for
    	 * compaction.
    	 */
    	if (compaction_withdrawn(compact_result)) {
    		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
    		goto out;
    	}
    
    	/*
    	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
    	 * costly ones because they are de facto nofail and invoke OOM
    	 * killer to move on while costly can fail and users are ready
    	 * to cope with that. 1/4 retries is rather arbitrary but we
    	 * would need much more detailed feedback from compaction to
    	 * make a better decision.
    	 */
    	if (order > PAGE_ALLOC_COSTLY_ORDER)
    		max_retries /= 4;
    	if (*compaction_retries <= max_retries) {
    		ret = true;
    		goto out;
    	}
    
    	/*
    	 * Make sure there are attempts at the highest priority if we exhausted
    	 * all retries or failed at the lower priorities.
    	 */
    check_priority:
    	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
    			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
    
    	if (*compact_priority > min_priority) {
    		(*compact_priority)--;
    		*compaction_retries = 0;
    		ret = true;
    	}
    out:
    	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
    	return ret;
    }
    #else
    static inline struct page *
    __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
    		unsigned int alloc_flags, const struct alloc_context *ac,
    		enum compact_priority prio, enum compact_result *compact_result)
    {
    	*compact_result = COMPACT_SKIPPED;
    	return NULL;
    }
    
    static inline bool
    should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
    		     enum compact_result compact_result,
    		     enum compact_priority *compact_priority,
    		     int *compaction_retries)
    {
    	struct zone *zone;
    	struct zoneref *z;
    
    	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
    		return false;
    
    	/*
    	 * There are setups with compaction disabled which would prefer to loop
    	 * inside the allocator rather than hit the oom killer prematurely.
    	 * Let's give them a good hope and keep retrying while the order-0
    	 * watermarks are OK.
    	 */
    	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
    					ac->nodemask) {
    		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
    					ac_classzone_idx(ac), alloc_flags))
    			return true;
    	}
    	return false;
    }
    #endif /* CONFIG_COMPACTION */
    
    #ifdef CONFIG_LOCKDEP
    struct lockdep_map __fs_reclaim_map =
    	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
    
    static bool __need_fs_reclaim(gfp_t gfp_mask)
    {
    	gfp_mask = current_gfp_context(gfp_mask);
    
    	/* no reclaim without waiting on it */
    	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
    		return false;
    
    	/* this guy won't enter reclaim */
    	if ((current->flags & PF_MEMALLOC) && !(gfp_mask & __GFP_NOMEMALLOC))
    		return false;
    
    	/* We're only interested __GFP_FS allocations for now */
    	if (!(gfp_mask & __GFP_FS))
    		return false;
    
    	if (gfp_mask & __GFP_NOLOCKDEP)
    		return false;
    
    	return true;
    }
    
    void fs_reclaim_acquire(gfp_t gfp_mask)
    {
    	if (__need_fs_reclaim(gfp_mask))
    		lock_map_acquire(&__fs_reclaim_map);
    }
    EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
    
    void fs_reclaim_release(gfp_t gfp_mask)
    {
    	if (__need_fs_reclaim(gfp_mask))
    		lock_map_release(&__fs_reclaim_map);
    }
    EXPORT_SYMBOL_GPL(fs_reclaim_release);
    #endif
    
    /* Perform direct synchronous page reclaim */
    static int
    __perform_reclaim(gfp_t gfp_mask, unsigned int order,
    					const struct alloc_context *ac)
    {
    	struct reclaim_state reclaim_state;
    	int progress;
    	unsigned int noreclaim_flag;
    
    	cond_resched();
    
    	/* We now go into synchronous reclaim */
    	cpuset_memory_pressure_bump();
    	noreclaim_flag = memalloc_noreclaim_save();
    	fs_reclaim_acquire(gfp_mask);
    	reclaim_state.reclaimed_slab = 0;
    	current->reclaim_state = &reclaim_state;
    
    	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
    								ac->nodemask);
    
    	current->reclaim_state = NULL;
    	fs_reclaim_release(gfp_mask);
    	memalloc_noreclaim_restore(noreclaim_flag);
    
    	cond_resched();
    
    	return progress;
    }
    
    /* The really slow allocator path where we enter direct reclaim */
    static inline struct page *
    __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
    		unsigned int alloc_flags, const struct alloc_context *ac,
    		unsigned long *did_some_progress)
    {
    	struct page *page = NULL;
    	bool drained = false;
    
    	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
    	if (unlikely(!(*did_some_progress)))
    		return NULL;
    
    retry:
    	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
    
    	/*
    	 * If an allocation failed after direct reclaim, it could be because
    	 * pages are pinned on the per-cpu lists or in high alloc reserves.
    	 * Shrink them them and try again
    	 */
    	if (!page && !drained) {
    		unreserve_highatomic_pageblock(ac, false);
    		drain_all_pages(NULL);
    		drained = true;
    		goto retry;
    	}
    
    	return page;
    }
    
    static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
    {
    	struct zoneref *z;
    	struct zone *zone;
    	pg_data_t *last_pgdat = NULL;
    
    	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
    					ac->high_zoneidx, ac->nodemask) {
    		if (last_pgdat != zone->zone_pgdat)
    			wakeup_kswapd(zone, order, ac->high_zoneidx);
    		last_pgdat = zone->zone_pgdat;
    	}
    }
    
    static inline unsigned int
    gfp_to_alloc_flags(gfp_t gfp_mask)
    {
    	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
    
    	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
    	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
    
    	/*
    	 * The caller may dip into page reserves a bit more if the caller
    	 * cannot run direct reclaim, or if the caller has realtime scheduling
    	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
    	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
    	 */
    	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
    
    	if (gfp_mask & __GFP_ATOMIC) {
    		/*
    		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
    		 * if it can't schedule.
    		 */
    		if (!(gfp_mask & __GFP_NOMEMALLOC))
    			alloc_flags |= ALLOC_HARDER;
    		/*
    		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
    		 * comment for __cpuset_node_allowed().
    		 */
    		alloc_flags &= ~ALLOC_CPUSET;
    	} else if (unlikely(rt_task(current)) && !in_interrupt())
    		alloc_flags |= ALLOC_HARDER;
    
    #ifdef CONFIG_CMA
    	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
    		alloc_flags |= ALLOC_CMA;
    #endif
    	return alloc_flags;
    }
    
    static bool oom_reserves_allowed(struct task_struct *tsk)
    {
    	if (!tsk_is_oom_victim(tsk))
    		return false;
    
    	/*
    	 * !MMU doesn't have oom reaper so give access to memory reserves
    	 * only to the thread with TIF_MEMDIE set
    	 */
    	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
    		return false;
    
    	return true;
    }
    
    /*
     * Distinguish requests which really need access to full memory
     * reserves from oom victims which can live with a portion of it
     */
    static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
    {
    	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
    		return 0;
    	if (gfp_mask & __GFP_MEMALLOC)
    		return ALLOC_NO_WATERMARKS;
    	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
    		return ALLOC_NO_WATERMARKS;
    	if (!in_interrupt()) {
    		if (current->flags & PF_MEMALLOC)
    			return ALLOC_NO_WATERMARKS;
    		else if (oom_reserves_allowed(current))
    			return ALLOC_OOM;
    	}
    
    	return 0;
    }
    
    bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
    {
    	return !!__gfp_pfmemalloc_flags(gfp_mask);
    }
    
    /*
     * Checks whether it makes sense to retry the reclaim to make a forward progress
     * for the given allocation request.
     *
     * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
     * without success, or when we couldn't even meet the watermark if we
     * reclaimed all remaining pages on the LRU lists.
     *
     * Returns true if a retry is viable or false to enter the oom path.
     */
    static inline bool
    should_reclaim_retry(gfp_t gfp_mask, unsigned order,
    		     struct alloc_context *ac, int alloc_flags,
    		     bool did_some_progress, int *no_progress_loops)
    {
    	struct zone *zone;
    	struct zoneref *z;
    
    	/*
    	 * Costly allocations might have made a progress but this doesn't mean
    	 * their order will become available due to high fragmentation so
    	 * always increment the no progress counter for them
    	 */
    	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
    		*no_progress_loops = 0;
    	else
    		(*no_progress_loops)++;
    
    	/*
    	 * Make sure we converge to OOM if we cannot make any progress
    	 * several times in the row.
    	 */
    	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
    		/* Before OOM, exhaust highatomic_reserve */
    		return unreserve_highatomic_pageblock(ac, true);
    	}
    
    	/*
    	 * Keep reclaiming pages while there is a chance this will lead
    	 * somewhere.  If none of the target zones can satisfy our allocation
    	 * request even if all reclaimable pages are considered then we are
    	 * screwed and have to go OOM.
    	 */
    	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
    					ac->nodemask) {
    		unsigned long available;
    		unsigned long reclaimable;
    		unsigned long min_wmark = min_wmark_pages(zone);
    		bool wmark;
    
    		available = reclaimable = zone_reclaimable_pages(zone);
    		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
    
    		/*
    		 * Would the allocation succeed if we reclaimed all
    		 * reclaimable pages?
    		 */
    		wmark = __zone_watermark_ok(zone, order, min_wmark,
    				ac_classzone_idx(ac), alloc_flags, available);
    		trace_reclaim_retry_zone(z, order, reclaimable,
    				available, min_wmark, *no_progress_loops, wmark);
    		if (wmark) {
    			/*
    			 * If we didn't make any progress and have a lot of
    			 * dirty + writeback pages then we should wait for
    			 * an IO to complete to slow down the reclaim and
    			 * prevent from pre mature OOM
    			 */
    			if (!did_some_progress) {
    				unsigned long write_pending;
    
    				write_pending = zone_page_state_snapshot(zone,
    							NR_ZONE_WRITE_PENDING);
    
    				if (2 * write_pending > reclaimable) {
    					congestion_wait(BLK_RW_ASYNC, HZ/10);
    					return true;
    				}
    			}
    
    			/*
    			 * Memory allocation/reclaim might be called from a WQ
    			 * context and the current implementation of the WQ
    			 * concurrency control doesn't recognize that
    			 * a particular WQ is congested if the worker thread is
    			 * looping without ever sleeping. Therefore we have to
    			 * do a short sleep here rather than calling
    			 * cond_resched().
    			 */
    			if (current->flags & PF_WQ_WORKER)
    				schedule_timeout_uninterruptible(1);
    			else
    				cond_resched();
    
    			return true;
    		}
    	}
    
    	return false;
    }
    
    static inline bool
    check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
    {
    	/*
    	 * It's possible that cpuset's mems_allowed and the nodemask from
    	 * mempolicy don't intersect. This should be normally dealt with by
    	 * policy_nodemask(), but it's possible to race with cpuset update in
    	 * such a way the check therein was true, and then it became false
    	 * before we got our cpuset_mems_cookie here.
    	 * This assumes that for all allocations, ac->nodemask can come only
    	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
    	 * when it does not intersect with the cpuset restrictions) or the
    	 * caller can deal with a violated nodemask.
    	 */
    	if (cpusets_enabled() && ac->nodemask &&
    			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
    		ac->nodemask = NULL;
    		return true;
    	}
    
    	/*
    	 * When updating a task's mems_allowed or mempolicy nodemask, it is
    	 * possible to race with parallel threads in such a way that our
    	 * allocation can fail while the mask is being updated. If we are about
    	 * to fail, check if the cpuset changed during allocation and if so,
    	 * retry.
    	 */
    	if (read_mems_allowed_retry(cpuset_mems_cookie))
    		return true;
    
    	return false;
    }
    
    static inline struct page *
    __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
    						struct alloc_context *ac)
    {
    	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
    	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
    	struct page *page = NULL;
    	unsigned int alloc_flags;
    	unsigned long did_some_progress;
    	enum compact_priority compact_priority;
    	enum compact_result compact_result;
    	int compaction_retries;
    	int no_progress_loops;
    	unsigned long alloc_start = jiffies;
    	unsigned int stall_timeout = 10 * HZ;
    	unsigned int cpuset_mems_cookie;
    	int reserve_flags;
    
    	/*
    	 * In the slowpath, we sanity check order to avoid ever trying to
    	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
    	 * be using allocators in order of preference for an area that is
    	 * too large.
    	 */
    	if (order >= MAX_ORDER) {
    		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
    		return NULL;
    	}
    
    	/*
    	 * We also sanity check to catch abuse of atomic reserves being used by
    	 * callers that are not in atomic context.
    	 */
    	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
    				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
    		gfp_mask &= ~__GFP_ATOMIC;
    
    retry_cpuset:
    	compaction_retries = 0;
    	no_progress_loops = 0;
    	compact_priority = DEF_COMPACT_PRIORITY;
    	cpuset_mems_cookie = read_mems_allowed_begin();
    
    	/*
    	 * The fast path uses conservative alloc_flags to succeed only until
    	 * kswapd needs to be woken up, and to avoid the cost of setting up
    	 * alloc_flags precisely. So we do that now.
    	 */
    	alloc_flags = gfp_to_alloc_flags(gfp_mask);
    
    	/*
    	 * We need to recalculate the starting point for the zonelist iterator
    	 * because we might have used different nodemask in the fast path, or
    	 * there was a cpuset modification and we are retrying - otherwise we
    	 * could end up iterating over non-eligible zones endlessly.
    	 */
    	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
    					ac->high_zoneidx, ac->nodemask);
    	if (!ac->preferred_zoneref->zone)
    		goto nopage;
    
    	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
    		wake_all_kswapds(order, ac);
    
    	/*
    	 * The adjusted alloc_flags might result in immediate success, so try
    	 * that first
    	 */
    	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
    	if (page)
    		goto got_pg;
    
    	/*
    	 * For costly allocations, try direct compaction first, as it's likely
    	 * that we have enough base pages and don't need to reclaim. For non-
    	 * movable high-order allocations, do that as well, as compaction will
    	 * try prevent permanent fragmentation by migrating from blocks of the
    	 * same migratetype.
    	 * Don't try this for allocations that are allowed to ignore
    	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
    	 */
    	if (can_direct_reclaim &&
    			(costly_order ||
    			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
    			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
    		page = __alloc_pages_direct_compact(gfp_mask, order,
    						alloc_flags, ac,
    						INIT_COMPACT_PRIORITY,
    						&compact_result);
    		if (page)
    			goto got_pg;
    
    		/*
    		 * Checks for costly allocations with __GFP_NORETRY, which
    		 * includes THP page fault allocations
    		 */
    		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
    			/*
    			 * If compaction is deferred for high-order allocations,
    			 * it is because sync compaction recently failed. If
    			 * this is the case and the caller requested a THP
    			 * allocation, we do not want to heavily disrupt the
    			 * system, so we fail the allocation instead of entering
    			 * direct reclaim.
    			 */
    			if (compact_result == COMPACT_DEFERRED)
    				goto nopage;
    
    			/*
    			 * Looks like reclaim/compaction is worth trying, but
    			 * sync compaction could be very expensive, so keep
    			 * using async compaction.
    			 */
    			compact_priority = INIT_COMPACT_PRIORITY;
    		}
    	}
    
    retry:
    	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
    	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
    		wake_all_kswapds(order, ac);
    
    	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
    	if (reserve_flags)
    		alloc_flags = reserve_flags;
    
    	/*
    	 * Reset the zonelist iterators if memory policies can be ignored.
    	 * These allocations are high priority and system rather than user
    	 * orientated.
    	 */
    	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
    		ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
    		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
    					ac->high_zoneidx, ac->nodemask);
    	}
    
    	/* Attempt with potentially adjusted zonelist and alloc_flags */
    	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
    	if (page)
    		goto got_pg;
    
    	/* Caller is not willing to reclaim, we can't balance anything */
    	if (!can_direct_reclaim)
    		goto nopage;
    
    	/* Make sure we know about allocations which stall for too long */
    	if (time_after(jiffies, alloc_start + stall_timeout)) {
    		warn_alloc(gfp_mask & ~__GFP_NOWARN, ac->nodemask,
    			"page allocation stalls for %ums, order:%u",
    			jiffies_to_msecs(jiffies-alloc_start), order);
    		stall_timeout += 10 * HZ;
    	}
    
    	/* Avoid recursion of direct reclaim */
    	if (current->flags & PF_MEMALLOC)
    		goto nopage;
    
    	/* Try direct reclaim and then allocating */
    	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
    							&did_some_progress);
    	if (page)
    		goto got_pg;
    
    	/* Try direct compaction and then allocating */
    	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
    					compact_priority, &compact_result);
    	if (page)
    		goto got_pg;
    
    	/* Do not loop if specifically requested */
    	if (gfp_mask & __GFP_NORETRY)
    		goto nopage;
    
    	/*
    	 * Do not retry costly high order allocations unless they are
    	 * __GFP_RETRY_MAYFAIL
    	 */
    	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
    		goto nopage;
    
    	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
    				 did_some_progress > 0, &no_progress_loops))
    		goto retry;
    
    	/*
    	 * It doesn't make any sense to retry for the compaction if the order-0
    	 * reclaim is not able to make any progress because the current
    	 * implementation of the compaction depends on the sufficient amount
    	 * of free memory (see __compaction_suitable)
    	 */
    	if (did_some_progress > 0 &&
    			should_compact_retry(ac, order, alloc_flags,
    				compact_result, &compact_priority,
    				&compaction_retries))
    		goto retry;
    
    
    	/* Deal with possible cpuset update races before we start OOM killing */
    	if (check_retry_cpuset(cpuset_mems_cookie, ac))
    		goto retry_cpuset;
    
    	/* Reclaim has failed us, start killing things */
    	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
    	if (page)
    		goto got_pg;
    
    	/* Avoid allocations with no watermarks from looping endlessly */
    	if (tsk_is_oom_victim(current) &&
    	    (alloc_flags == ALLOC_OOM ||
    	     (gfp_mask & __GFP_NOMEMALLOC)))
    		goto nopage;
    
    	/* Retry as long as the OOM killer is making progress */
    	if (did_some_progress) {
    		no_progress_loops = 0;
    		goto retry;
    	}
    
    nopage:
    	/* Deal with possible cpuset update races before we fail */
    	if (check_retry_cpuset(cpuset_mems_cookie, ac))
    		goto retry_cpuset;
    
    	/*
    	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
    	 * we always retry
    	 */
    	if (gfp_mask & __GFP_NOFAIL) {
    		/*
    		 * All existing users of the __GFP_NOFAIL are blockable, so warn
    		 * of any new users that actually require GFP_NOWAIT
    		 */
    		if (WARN_ON_ONCE(!can_direct_reclaim))
    			goto fail;
    
    		/*
    		 * PF_MEMALLOC request from this context is rather bizarre
    		 * because we cannot reclaim anything and only can loop waiting
    		 * for somebody to do a work for us
    		 */
    		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
    
    		/*
    		 * non failing costly orders are a hard requirement which we
    		 * are not prepared for much so let's warn about these users
    		 * so that we can identify them and convert them to something
    		 * else.
    		 */
    		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
    
    		/*
    		 * Help non-failing allocations by giving them access to memory
    		 * reserves but do not use ALLOC_NO_WATERMARKS because this
    		 * could deplete whole memory reserves which would just make
    		 * the situation worse
    		 */
    		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
    		if (page)
    			goto got_pg;
    
    		cond_resched();
    		goto retry;
    	}
    fail:
    	warn_alloc(gfp_mask, ac->nodemask,
    			"page allocation failure: order:%u", order);
    got_pg:
    	return page;
    }
    
    static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
    		int preferred_nid, nodemask_t *nodemask,
    		struct alloc_context *ac, gfp_t *alloc_mask,
    		unsigned int *alloc_flags)
    {
    	ac->high_zoneidx = gfp_zone(gfp_mask);
    	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
    	ac->nodemask = nodemask;
    	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
    
    	if (cpusets_enabled()) {
    		*alloc_mask |= __GFP_HARDWALL;
    		if (!ac->nodemask)
    			ac->nodemask = &cpuset_current_mems_allowed;
    		else
    			*alloc_flags |= ALLOC_CPUSET;
    	}
    
    	fs_reclaim_acquire(gfp_mask);
    	fs_reclaim_release(gfp_mask);
    
    	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
    
    	if (should_fail_alloc_page(gfp_mask, order))
    		return false;
    
    	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
    		*alloc_flags |= ALLOC_CMA;
    
    	return true;
    }
    
    /* Determine whether to spread dirty pages and what the first usable zone */
    static inline void finalise_ac(gfp_t gfp_mask,
    		unsigned int order, struct alloc_context *ac)
    {
    	/* Dirty zone balancing only done in the fast path */
    	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
    
    	/*
    	 * The preferred zone is used for statistics but crucially it is
    	 * also used as the starting point for the zonelist iterator. It
    	 * may get reset for allocations that ignore memory policies.
    	 */
    	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
    					ac->high_zoneidx, ac->nodemask);
    }
    
    /*
     * This is the 'heart' of the zoned buddy allocator.
     */
    struct page *
    __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
    							nodemask_t *nodemask)
    {
    	struct page *page;
    	unsigned int alloc_flags = ALLOC_WMARK_LOW;
    	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
    	struct alloc_context ac = { };
    
    	gfp_mask &= gfp_allowed_mask;
    	alloc_mask = gfp_mask;
    	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
    		return NULL;
    
    	finalise_ac(gfp_mask, order, &ac);
    
    	/* First allocation attempt */
    	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
    	if (likely(page))
    		goto out;
    
    	/*
    	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
    	 * resp. GFP_NOIO which has to be inherited for all allocation requests
    	 * from a particular context which has been marked by
    	 * memalloc_no{fs,io}_{save,restore}.
    	 */
    	alloc_mask = current_gfp_context(gfp_mask);
    	ac.spread_dirty_pages = false;
    
    	/*
    	 * Restore the original nodemask if it was potentially replaced with
    	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
    	 */
    	if (unlikely(ac.nodemask != nodemask))
    		ac.nodemask = nodemask;
    
    	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
    
    out:
    	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
    	    unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
    		__free_pages(page, order);
    		page = NULL;
    	}
    
    	if (kmemcheck_enabled && page)
    		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
    
    	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
    
    	return page;
    }
    EXPORT_SYMBOL(__alloc_pages_nodemask);
    
    /*
     * Common helper functions.
     */
    unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
    {
    	struct page *page;
    
    	/*
    	 * __get_free_pages() returns a 32-bit address, which cannot represent
    	 * a highmem page
    	 */
    	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
    
    	page = alloc_pages(gfp_mask, order);
    	if (!page)
    		return 0;
    	return (unsigned long) page_address(page);
    }
    EXPORT_SYMBOL(__get_free_pages);
    
    unsigned long get_zeroed_page(gfp_t gfp_mask)
    {
    	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
    }
    EXPORT_SYMBOL(get_zeroed_page);
    
    void __free_pages(struct page *page, unsigned int order)
    {
    	if (put_page_testzero(page)) {
    		if (order == 0)
    			free_hot_cold_page(page, false);
    		else
    			__free_pages_ok(page, order);
    	}
    }
    
    EXPORT_SYMBOL(__free_pages);
    
    void free_pages(unsigned long addr, unsigned int order)
    {
    	if (addr != 0) {
    		VM_BUG_ON(!virt_addr_valid((void *)addr));
    		__free_pages(virt_to_page((void *)addr), order);
    	}
    }
    
    EXPORT_SYMBOL(free_pages);
    
    /*
     * Page Fragment:
     *  An arbitrary-length arbitrary-offset area of memory which resides
     *  within a 0 or higher order page.  Multiple fragments within that page
     *  are individually refcounted, in the page's reference counter.
     *
     * The page_frag functions below provide a simple allocation framework for
     * page fragments.  This is used by the network stack and network device
     * drivers to provide a backing region of memory for use as either an
     * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
     */
    static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
    					     gfp_t gfp_mask)
    {
    	struct page *page = NULL;
    	gfp_t gfp = gfp_mask;
    
    #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
    	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
    		    __GFP_NOMEMALLOC;
    	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
    				PAGE_FRAG_CACHE_MAX_ORDER);
    	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
    #endif
    	if (unlikely(!page))
    		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
    
    	nc->va = page ? page_address(page) : NULL;
    
    	return page;
    }
    
    void __page_frag_cache_drain(struct page *page, unsigned int count)
    {
    	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
    
    	if (page_ref_sub_and_test(page, count)) {
    		unsigned int order = compound_order(page);
    
    		if (order == 0)
    			free_hot_cold_page(page, false);
    		else
    			__free_pages_ok(page, order);
    	}
    }
    EXPORT_SYMBOL(__page_frag_cache_drain);
    
    void *page_frag_alloc(struct page_frag_cache *nc,
    		      unsigned int fragsz, gfp_t gfp_mask)
    {
    	unsigned int size = PAGE_SIZE;
    	struct page *page;
    	int offset;
    
    	if (unlikely(!nc->va)) {
    refill:
    		page = __page_frag_cache_refill(nc, gfp_mask);
    		if (!page)
    			return NULL;
    
    #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
    		/* if size can vary use size else just use PAGE_SIZE */
    		size = nc->size;
    #endif
    		/* Even if we own the page, we do not use atomic_set().
    		 * This would break get_page_unless_zero() users.
    		 */
    		page_ref_add(page, size - 1);
    
    		/* reset page count bias and offset to start of new frag */
    		nc->pfmemalloc = page_is_pfmemalloc(page);
    		nc->pagecnt_bias = size;
    		nc->offset = size;
    	}
    
    	offset = nc->offset - fragsz;
    	if (unlikely(offset < 0)) {
    		page = virt_to_page(nc->va);
    
    		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
    			goto refill;
    
    #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
    		/* if size can vary use size else just use PAGE_SIZE */
    		size = nc->size;
    #endif
    		/* OK, page count is 0, we can safely set it */
    		set_page_count(page, size);
    
    		/* reset page count bias and offset to start of new frag */
    		nc->pagecnt_bias = size;
    		offset = size - fragsz;
    	}
    
    	nc->pagecnt_bias--;
    	nc->offset = offset;
    
    	return nc->va + offset;
    }
    EXPORT_SYMBOL(page_frag_alloc);
    
    /*
     * Frees a page fragment allocated out of either a compound or order 0 page.
     */
    void page_frag_free(void *addr)
    {
    	struct page *page = virt_to_head_page(addr);
    
    	if (unlikely(put_page_testzero(page)))
    		__free_pages_ok(page, compound_order(page));
    }
    EXPORT_SYMBOL(page_frag_free);
    
    static void *make_alloc_exact(unsigned long addr, unsigned int order,
    		size_t size)
    {
    	if (addr) {
    		unsigned long alloc_end = addr + (PAGE_SIZE << order);
    		unsigned long used = addr + PAGE_ALIGN(size);
    
    		split_page(virt_to_page((void *)addr), order);
    		while (used < alloc_end) {
    			free_page(used);
    			used += PAGE_SIZE;
    		}
    	}
    	return (void *)addr;
    }
    
    /**
     * alloc_pages_exact - allocate an exact number physically-contiguous pages.
     * @size: the number of bytes to allocate
     * @gfp_mask: GFP flags for the allocation
     *
     * This function is similar to alloc_pages(), except that it allocates the
     * minimum number of pages to satisfy the request.  alloc_pages() can only
     * allocate memory in power-of-two pages.
     *
     * This function is also limited by MAX_ORDER.
     *
     * Memory allocated by this function must be released by free_pages_exact().
     */
    void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
    {
    	unsigned int order = get_order(size);
    	unsigned long addr;
    
    	addr = __get_free_pages(gfp_mask, order);
    	return make_alloc_exact(addr, order, size);
    }
    EXPORT_SYMBOL(alloc_pages_exact);
    
    /**
     * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
     *			   pages on a node.
     * @nid: the preferred node ID where memory should be allocated
     * @size: the number of bytes to allocate
     * @gfp_mask: GFP flags for the allocation
     *
     * Like alloc_pages_exact(), but try to allocate on node nid first before falling
     * back.
     */
    void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
    {
    	unsigned int order = get_order(size);
    	struct page *p = alloc_pages_node(nid, gfp_mask, order);
    	if (!p)
    		return NULL;
    	return make_alloc_exact((unsigned long)page_address(p), order, size);
    }
    
    /**
     * free_pages_exact - release memory allocated via alloc_pages_exact()
     * @virt: the value returned by alloc_pages_exact.
     * @size: size of allocation, same value as passed to alloc_pages_exact().
     *
     * Release the memory allocated by a previous call to alloc_pages_exact.
     */
    void free_pages_exact(void *virt, size_t size)
    {
    	unsigned long addr = (unsigned long)virt;
    	unsigned long end = addr + PAGE_ALIGN(size);
    
    	while (addr < end) {
    		free_page(addr);
    		addr += PAGE_SIZE;
    	}
    }
    EXPORT_SYMBOL(free_pages_exact);
    
    /**
     * nr_free_zone_pages - count number of pages beyond high watermark
     * @offset: The zone index of the highest zone
     *
     * nr_free_zone_pages() counts the number of counts pages which are beyond the
     * high watermark within all zones at or below a given zone index.  For each
     * zone, the number of pages is calculated as:
     *
     *     nr_free_zone_pages = managed_pages - high_pages
     */
    static unsigned long nr_free_zone_pages(int offset)
    {
    	struct zoneref *z;
    	struct zone *zone;
    
    	/* Just pick one node, since fallback list is circular */
    	unsigned long sum = 0;
    
    	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
    
    	for_each_zone_zonelist(zone, z, zonelist, offset) {
    		unsigned long size = zone->managed_pages;
    		unsigned long high = high_wmark_pages(zone);
    		if (size > high)
    			sum += size - high;
    	}
    
    	return sum;
    }
    
    /**
     * nr_free_buffer_pages - count number of pages beyond high watermark
     *
     * nr_free_buffer_pages() counts the number of pages which are beyond the high
     * watermark within ZONE_DMA and ZONE_NORMAL.
     */
    unsigned long nr_free_buffer_pages(void)
    {
    	return nr_free_zone_pages(gfp_zone(GFP_USER));
    }
    EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
    
    /**
     * nr_free_pagecache_pages - count number of pages beyond high watermark
     *
     * nr_free_pagecache_pages() counts the number of pages which are beyond the
     * high watermark within all zones.
     */
    unsigned long nr_free_pagecache_pages(void)
    {
    	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
    }
    
    static inline void show_node(struct zone *zone)
    {
    	if (IS_ENABLED(CONFIG_NUMA))
    		printk("Node %d ", zone_to_nid(zone));
    }
    
    long si_mem_available(void)
    {
    	long available;
    	unsigned long pagecache;
    	unsigned long wmark_low = 0;
    	unsigned long pages[NR_LRU_LISTS];
    	struct zone *zone;
    	int lru;
    
    	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
    		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
    
    	for_each_zone(zone)
    		wmark_low += zone->watermark[WMARK_LOW];
    
    	/*
    	 * Estimate the amount of memory available for userspace allocations,
    	 * without causing swapping.
    	 */
    	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
    
    	/*
    	 * Not all the page cache can be freed, otherwise the system will
    	 * start swapping. Assume at least half of the page cache, or the
    	 * low watermark worth of cache, needs to stay.
    	 */
    	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
    	pagecache -= min(pagecache / 2, wmark_low);
    	available += pagecache;
    
    	/*
    	 * Part of the reclaimable slab consists of items that are in use,
    	 * and cannot be freed. Cap this estimate at the low watermark.
    	 */
    	available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
    		     min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
    			 wmark_low);
    
    	if (available < 0)
    		available = 0;
    	return available;
    }
    EXPORT_SYMBOL_GPL(si_mem_available);
    
    void si_meminfo(struct sysinfo *val)
    {
    	val->totalram = totalram_pages;
    	val->sharedram = global_node_page_state(NR_SHMEM);
    	val->freeram = global_zone_page_state(NR_FREE_PAGES);
    	val->bufferram = nr_blockdev_pages();
    	val->totalhigh = totalhigh_pages;
    	val->freehigh = nr_free_highpages();
    	val->mem_unit = PAGE_SIZE;
    }
    
    EXPORT_SYMBOL(si_meminfo);
    
    #ifdef CONFIG_NUMA
    void si_meminfo_node(struct sysinfo *val, int nid)
    {
    	int zone_type;		/* needs to be signed */
    	unsigned long managed_pages = 0;
    	unsigned long managed_highpages = 0;
    	unsigned long free_highpages = 0;
    	pg_data_t *pgdat = NODE_DATA(nid);
    
    	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
    		managed_pages += pgdat->node_zones[zone_type].managed_pages;
    	val->totalram = managed_pages;
    	val->sharedram = node_page_state(pgdat, NR_SHMEM);
    	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
    #ifdef CONFIG_HIGHMEM
    	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
    		struct zone *zone = &pgdat->node_zones[zone_type];
    
    		if (is_highmem(zone)) {
    			managed_highpages += zone->managed_pages;
    			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
    		}
    	}
    	val->totalhigh = managed_highpages;
    	val->freehigh = free_highpages;
    #else
    	val->totalhigh = managed_highpages;
    	val->freehigh = free_highpages;
    #endif
    	val->mem_unit = PAGE_SIZE;
    }
    #endif
    
    /*
     * Determine whether the node should be displayed or not, depending on whether
     * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
     */
    static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
    {
    	if (!(flags & SHOW_MEM_FILTER_NODES))
    		return false;
    
    	/*
    	 * no node mask - aka implicit memory numa policy. Do not bother with
    	 * the synchronization - read_mems_allowed_begin - because we do not
    	 * have to be precise here.
    	 */
    	if (!nodemask)
    		nodemask = &cpuset_current_mems_allowed;
    
    	return !node_isset(nid, *nodemask);
    }
    
    #define K(x) ((x) << (PAGE_SHIFT-10))
    
    static void show_migration_types(unsigned char type)
    {
    	static const char types[MIGRATE_TYPES] = {
    		[MIGRATE_UNMOVABLE]	= 'U',
    		[MIGRATE_MOVABLE]	= 'M',
    		[MIGRATE_RECLAIMABLE]	= 'E',
    		[MIGRATE_HIGHATOMIC]	= 'H',
    #ifdef CONFIG_CMA
    		[MIGRATE_CMA]		= 'C',
    #endif
    #ifdef CONFIG_MEMORY_ISOLATION
    		[MIGRATE_ISOLATE]	= 'I',
    #endif
    	};
    	char tmp[MIGRATE_TYPES + 1];
    	char *p = tmp;
    	int i;
    
    	for (i = 0; i < MIGRATE_TYPES; i++) {
    		if (type & (1 << i))
    			*p++ = types[i];
    	}
    
    	*p = '\0';
    	printk(KERN_CONT "(%s) ", tmp);
    }
    
    /*
     * Show free area list (used inside shift_scroll-lock stuff)
     * We also calculate the percentage fragmentation. We do this by counting the
     * memory on each free list with the exception of the first item on the list.
     *
     * Bits in @filter:
     * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
     *   cpuset.
     */
    void show_free_areas(unsigned int filter, nodemask_t *nodemask)
    {
    	unsigned long free_pcp = 0;
    	int cpu;
    	struct zone *zone;
    	pg_data_t *pgdat;
    
    	for_each_populated_zone(zone) {
    		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
    			continue;
    
    		for_each_online_cpu(cpu)
    			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
    	}
    
    	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
    		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
    		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
    		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
    		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
    		" free:%lu free_pcp:%lu free_cma:%lu\n",
    		global_node_page_state(NR_ACTIVE_ANON),
    		global_node_page_state(NR_INACTIVE_ANON),
    		global_node_page_state(NR_ISOLATED_ANON),
    		global_node_page_state(NR_ACTIVE_FILE),
    		global_node_page_state(NR_INACTIVE_FILE),
    		global_node_page_state(NR_ISOLATED_FILE),
    		global_node_page_state(NR_UNEVICTABLE),
    		global_node_page_state(NR_FILE_DIRTY),
    		global_node_page_state(NR_WRITEBACK),
    		global_node_page_state(NR_UNSTABLE_NFS),
    		global_node_page_state(NR_SLAB_RECLAIMABLE),
    		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
    		global_node_page_state(NR_FILE_MAPPED),
    		global_node_page_state(NR_SHMEM),
    		global_zone_page_state(NR_PAGETABLE),
    		global_zone_page_state(NR_BOUNCE),
    		global_zone_page_state(NR_FREE_PAGES),
    		free_pcp,
    		global_zone_page_state(NR_FREE_CMA_PAGES));
    
    	for_each_online_pgdat(pgdat) {
    		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
    			continue;
    
    		printk("Node %d"
    			" active_anon:%lukB"
    			" inactive_anon:%lukB"
    			" active_file:%lukB"
    			" inactive_file:%lukB"
    			" unevictable:%lukB"
    			" isolated(anon):%lukB"
    			" isolated(file):%lukB"
    			" mapped:%lukB"
    			" dirty:%lukB"
    			" writeback:%lukB"
    			" shmem:%lukB"
    #ifdef CONFIG_TRANSPARENT_HUGEPAGE
    			" shmem_thp: %lukB"
    			" shmem_pmdmapped: %lukB"
    			" anon_thp: %lukB"
    #endif
    			" writeback_tmp:%lukB"
    			" unstable:%lukB"
    			" all_unreclaimable? %s"
    			"\n",
    			pgdat->node_id,
    			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
    			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
    			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
    			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
    			K(node_page_state(pgdat, NR_UNEVICTABLE)),
    			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
    			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
    			K(node_page_state(pgdat, NR_FILE_MAPPED)),
    			K(node_page_state(pgdat, NR_FILE_DIRTY)),
    			K(node_page_state(pgdat, NR_WRITEBACK)),
    			K(node_page_state(pgdat, NR_SHMEM)),
    #ifdef CONFIG_TRANSPARENT_HUGEPAGE
    			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
    			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
    					* HPAGE_PMD_NR),
    			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
    #endif
    			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
    			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
    			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
    				"yes" : "no");
    	}
    
    	for_each_populated_zone(zone) {
    		int i;
    
    		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
    			continue;
    
    		free_pcp = 0;
    		for_each_online_cpu(cpu)
    			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
    
    		show_node(zone);
    		printk(KERN_CONT
    			"%s"
    			" free:%lukB"
    			" min:%lukB"
    			" low:%lukB"
    			" high:%lukB"
    			" active_anon:%lukB"
    			" inactive_anon:%lukB"
    			" active_file:%lukB"
    			" inactive_file:%lukB"
    			" unevictable:%lukB"
    			" writepending:%lukB"
    			" present:%lukB"
    			" managed:%lukB"
    			" mlocked:%lukB"
    			" kernel_stack:%lukB"
    			" pagetables:%lukB"
    			" bounce:%lukB"
    			" free_pcp:%lukB"
    			" local_pcp:%ukB"
    			" free_cma:%lukB"
    			"\n",
    			zone->name,
    			K(zone_page_state(zone, NR_FREE_PAGES)),
    			K(min_wmark_pages(zone)),
    			K(low_wmark_pages(zone)),
    			K(high_wmark_pages(zone)),
    			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
    			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
    			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
    			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
    			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
    			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
    			K(zone->present_pages),
    			K(zone->managed_pages),
    			K(zone_page_state(zone, NR_MLOCK)),
    			zone_page_state(zone, NR_KERNEL_STACK_KB),
    			K(zone_page_state(zone, NR_PAGETABLE)),
    			K(zone_page_state(zone, NR_BOUNCE)),
    			K(free_pcp),
    			K(this_cpu_read(zone->pageset->pcp.count)),
    			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
    		printk("lowmem_reserve[]:");
    		for (i = 0; i < MAX_NR_ZONES; i++)
    			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
    		printk(KERN_CONT "\n");
    	}
    
    	for_each_populated_zone(zone) {
    		unsigned int order;
    		unsigned long nr[MAX_ORDER], flags, total = 0;
    		unsigned char types[MAX_ORDER];
    
    		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
    			continue;
    		show_node(zone);
    		printk(KERN_CONT "%s: ", zone->name);
    
    		spin_lock_irqsave(&zone->lock, flags);
    		for (order = 0; order < MAX_ORDER; order++) {
    			struct free_area *area = &zone->free_area[order];
    			int type;
    
    			nr[order] = area->nr_free;
    			total += nr[order] << order;
    
    			types[order] = 0;
    			for (type = 0; type < MIGRATE_TYPES; type++) {
    				if (!list_empty(&area->free_list[type]))
    					types[order] |= 1 << type;
    			}
    		}
    		spin_unlock_irqrestore(&zone->lock, flags);
    		for (order = 0; order < MAX_ORDER; order++) {
    			printk(KERN_CONT "%lu*%lukB ",
    			       nr[order], K(1UL) << order);
    			if (nr[order])
    				show_migration_types(types[order]);
    		}
    		printk(KERN_CONT "= %lukB\n", K(total));
    	}
    
    	hugetlb_show_meminfo();
    
    	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
    
    	show_swap_cache_info();
    }
    
    static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
    {
    	zoneref->zone = zone;
    	zoneref->zone_idx = zone_idx(zone);
    }
    
    /*
     * Builds allocation fallback zone lists.
     *
     * Add all populated zones of a node to the zonelist.
     */
    static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
    {
    	struct zone *zone;
    	enum zone_type zone_type = MAX_NR_ZONES;
    	int nr_zones = 0;
    
    	do {
    		zone_type--;
    		zone = pgdat->node_zones + zone_type;
    		if (managed_zone(zone)) {
    			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
    			check_highest_zone(zone_type);
    		}
    	} while (zone_type);
    
    	return nr_zones;
    }
    
    #ifdef CONFIG_NUMA
    
    static int __parse_numa_zonelist_order(char *s)
    {
    	/*
    	 * We used to support different zonlists modes but they turned
    	 * out to be just not useful. Let's keep the warning in place
    	 * if somebody still use the cmd line parameter so that we do
    	 * not fail it silently
    	 */
    	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
    		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
    		return -EINVAL;
    	}
    	return 0;
    }
    
    static __init int setup_numa_zonelist_order(char *s)
    {
    	if (!s)
    		return 0;
    
    	return __parse_numa_zonelist_order(s);
    }
    early_param("numa_zonelist_order", setup_numa_zonelist_order);
    
    char numa_zonelist_order[] = "Node";
    
    /*
     * sysctl handler for numa_zonelist_order
     */
    int numa_zonelist_order_handler(struct ctl_table *table, int write,
    		void __user *buffer, size_t *length,
    		loff_t *ppos)
    {
    	char *str;
    	int ret;
    
    	if (!write)
    		return proc_dostring(table, write, buffer, length, ppos);
    	str = memdup_user_nul(buffer, 16);
    	if (IS_ERR(str))
    		return PTR_ERR(str);
    
    	ret = __parse_numa_zonelist_order(str);
    	kfree(str);
    	return ret;
    }
    
    
    #define MAX_NODE_LOAD (nr_online_nodes)
    static int node_load[MAX_NUMNODES];
    
    /**
     * find_next_best_node - find the next node that should appear in a given node's fallback list
     * @node: node whose fallback list we're appending
     * @used_node_mask: nodemask_t of already used nodes
     *
     * We use a number of factors to determine which is the next node that should
     * appear on a given node's fallback list.  The node should not have appeared
     * already in @node's fallback list, and it should be the next closest node
     * according to the distance array (which contains arbitrary distance values
     * from each node to each node in the system), and should also prefer nodes
     * with no CPUs, since presumably they'll have very little allocation pressure
     * on them otherwise.
     * It returns -1 if no node is found.
     */
    static int find_next_best_node(int node, nodemask_t *used_node_mask)
    {
    	int n, val;
    	int min_val = INT_MAX;
    	int best_node = NUMA_NO_NODE;
    	const struct cpumask *tmp = cpumask_of_node(0);
    
    	/* Use the local node if we haven't already */
    	if (!node_isset(node, *used_node_mask)) {
    		node_set(node, *used_node_mask);
    		return node;
    	}
    
    	for_each_node_state(n, N_MEMORY) {
    
    		/* Don't want a node to appear more than once */
    		if (node_isset(n, *used_node_mask))
    			continue;
    
    		/* Use the distance array to find the distance */
    		val = node_distance(node, n);
    
    		/* Penalize nodes under us ("prefer the next node") */
    		val += (n < node);
    
    		/* Give preference to headless and unused nodes */
    		tmp = cpumask_of_node(n);
    		if (!cpumask_empty(tmp))
    			val += PENALTY_FOR_NODE_WITH_CPUS;
    
    		/* Slight preference for less loaded node */
    		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
    		val += node_load[n];
    
    		if (val < min_val) {
    			min_val = val;
    			best_node = n;
    		}
    	}
    
    	if (best_node >= 0)
    		node_set(best_node, *used_node_mask);
    
    	return best_node;
    }
    
    
    /*
     * Build zonelists ordered by node and zones within node.
     * This results in maximum locality--normal zone overflows into local
     * DMA zone, if any--but risks exhausting DMA zone.
     */
    static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
    		unsigned nr_nodes)
    {
    	struct zoneref *zonerefs;
    	int i;
    
    	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
    
    	for (i = 0; i < nr_nodes; i++) {
    		int nr_zones;
    
    		pg_data_t *node = NODE_DATA(node_order[i]);
    
    		nr_zones = build_zonerefs_node(node, zonerefs);
    		zonerefs += nr_zones;
    	}
    	zonerefs->zone = NULL;
    	zonerefs->zone_idx = 0;
    }
    
    /*
     * Build gfp_thisnode zonelists
     */
    static void build_thisnode_zonelists(pg_data_t *pgdat)
    {
    	struct zoneref *zonerefs;
    	int nr_zones;
    
    	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
    	nr_zones = build_zonerefs_node(pgdat, zonerefs);
    	zonerefs += nr_zones;
    	zonerefs->zone = NULL;
    	zonerefs->zone_idx = 0;
    }
    
    /*
     * Build zonelists ordered by zone and nodes within zones.
     * This results in conserving DMA zone[s] until all Normal memory is
     * exhausted, but results in overflowing to remote node while memory
     * may still exist in local DMA zone.
     */
    
    static void build_zonelists(pg_data_t *pgdat)
    {
    	static int node_order[MAX_NUMNODES];
    	int node, load, nr_nodes = 0;
    	nodemask_t used_mask;
    	int local_node, prev_node;
    
    	/* NUMA-aware ordering of nodes */
    	local_node = pgdat->node_id;
    	load = nr_online_nodes;
    	prev_node = local_node;
    	nodes_clear(used_mask);
    
    	memset(node_order, 0, sizeof(node_order));
    	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
    		/*
    		 * We don't want to pressure a particular node.
    		 * So adding penalty to the first node in same
    		 * distance group to make it round-robin.
    		 */
    		if (node_distance(local_node, node) !=
    		    node_distance(local_node, prev_node))
    			node_load[node] = load;
    
    		node_order[nr_nodes++] = node;
    		prev_node = node;
    		load--;
    	}
    
    	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
    	build_thisnode_zonelists(pgdat);
    }
    
    #ifdef CONFIG_HAVE_MEMORYLESS_NODES
    /*
     * Return node id of node used for "local" allocations.
     * I.e., first node id of first zone in arg node's generic zonelist.
     * Used for initializing percpu 'numa_mem', which is used primarily
     * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
     */
    int local_memory_node(int node)
    {
    	struct zoneref *z;
    
    	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
    				   gfp_zone(GFP_KERNEL),
    				   NULL);
    	return z->zone->node;
    }
    #endif
    
    static void setup_min_unmapped_ratio(void);
    static void setup_min_slab_ratio(void);
    #else	/* CONFIG_NUMA */
    
    static void build_zonelists(pg_data_t *pgdat)
    {
    	int node, local_node;
    	struct zoneref *zonerefs;
    	int nr_zones;
    
    	local_node = pgdat->node_id;
    
    	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
    	nr_zones = build_zonerefs_node(pgdat, zonerefs);
    	zonerefs += nr_zones;
    
    	/*
    	 * Now we build the zonelist so that it contains the zones
    	 * of all the other nodes.
    	 * We don't want to pressure a particular node, so when
    	 * building the zones for node N, we make sure that the
    	 * zones coming right after the local ones are those from
    	 * node N+1 (modulo N)
    	 */
    	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
    		if (!node_online(node))
    			continue;
    		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
    		zonerefs += nr_zones;
    	}
    	for (node = 0; node < local_node; node++) {
    		if (!node_online(node))
    			continue;
    		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
    		zonerefs += nr_zones;
    	}
    
    	zonerefs->zone = NULL;
    	zonerefs->zone_idx = 0;
    }
    
    #endif	/* CONFIG_NUMA */
    
    /*
     * Boot pageset table. One per cpu which is going to be used for all
     * zones and all nodes. The parameters will be set in such a way
     * that an item put on a list will immediately be handed over to
     * the buddy list. This is safe since pageset manipulation is done
     * with interrupts disabled.
     *
     * The boot_pagesets must be kept even after bootup is complete for
     * unused processors and/or zones. They do play a role for bootstrapping
     * hotplugged processors.
     *
     * zoneinfo_show() and maybe other functions do
     * not check if the processor is online before following the pageset pointer.
     * Other parts of the kernel may not check if the zone is available.
     */
    static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
    static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
    static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
    
    static void __build_all_zonelists(void *data)
    {
    	int nid;
    	int __maybe_unused cpu;
    	pg_data_t *self = data;
    	static DEFINE_SPINLOCK(lock);
    
    	spin_lock(&lock);
    
    #ifdef CONFIG_NUMA
    	memset(node_load, 0, sizeof(node_load));
    #endif
    
    	/*
    	 * This node is hotadded and no memory is yet present.   So just
    	 * building zonelists is fine - no need to touch other nodes.
    	 */
    	if (self && !node_online(self->node_id)) {
    		build_zonelists(self);
    	} else {
    		for_each_online_node(nid) {
    			pg_data_t *pgdat = NODE_DATA(nid);
    
    			build_zonelists(pgdat);
    		}
    
    #ifdef CONFIG_HAVE_MEMORYLESS_NODES
    		/*
    		 * We now know the "local memory node" for each node--
    		 * i.e., the node of the first zone in the generic zonelist.
    		 * Set up numa_mem percpu variable for on-line cpus.  During
    		 * boot, only the boot cpu should be on-line;  we'll init the
    		 * secondary cpus' numa_mem as they come on-line.  During
    		 * node/memory hotplug, we'll fixup all on-line cpus.
    		 */
    		for_each_online_cpu(cpu)
    			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
    #endif
    	}
    
    	spin_unlock(&lock);
    }
    
    static noinline void __init
    build_all_zonelists_init(void)
    {
    	int cpu;
    
    	__build_all_zonelists(NULL);
    
    	/*
    	 * Initialize the boot_pagesets that are going to be used
    	 * for bootstrapping processors. The real pagesets for
    	 * each zone will be allocated later when the per cpu
    	 * allocator is available.
    	 *
    	 * boot_pagesets are used also for bootstrapping offline
    	 * cpus if the system is already booted because the pagesets
    	 * are needed to initialize allocators on a specific cpu too.
    	 * F.e. the percpu allocator needs the page allocator which
    	 * needs the percpu allocator in order to allocate its pagesets
    	 * (a chicken-egg dilemma).
    	 */
    	for_each_possible_cpu(cpu)
    		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
    
    	mminit_verify_zonelist();
    	cpuset_init_current_mems_allowed();
    }
    
    /*
     * unless system_state == SYSTEM_BOOTING.
     *
     * __ref due to call of __init annotated helper build_all_zonelists_init
     * [protected by SYSTEM_BOOTING].
     */
    void __ref build_all_zonelists(pg_data_t *pgdat)
    {
    	if (system_state == SYSTEM_BOOTING) {
    		build_all_zonelists_init();
    	} else {
    		__build_all_zonelists(pgdat);
    		/* cpuset refresh routine should be here */
    	}
    	vm_total_pages = nr_free_pagecache_pages();
    	/*
    	 * Disable grouping by mobility if the number of pages in the
    	 * system is too low to allow the mechanism to work. It would be
    	 * more accurate, but expensive to check per-zone. This check is
    	 * made on memory-hotadd so a system can start with mobility
    	 * disabled and enable it later
    	 */
    	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
    		page_group_by_mobility_disabled = 1;
    	else
    		page_group_by_mobility_disabled = 0;
    
    	pr_info("Built %i zonelists, mobility grouping %s.  Total pages: %ld\n",
    		nr_online_nodes,
    		page_group_by_mobility_disabled ? "off" : "on",
    		vm_total_pages);
    #ifdef CONFIG_NUMA
    	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
    #endif
    }
    
    /*
     * Initially all pages are reserved - free ones are freed
     * up by free_all_bootmem() once the early boot process is
     * done. Non-atomic initialization, single-pass.
     */
    void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
    		unsigned long start_pfn, enum memmap_context context)
    {
    	struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
    	unsigned long end_pfn = start_pfn + size;
    	pg_data_t *pgdat = NODE_DATA(nid);
    	unsigned long pfn;
    	unsigned long nr_initialised = 0;
    #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
    	struct memblock_region *r = NULL, *tmp;
    #endif
    
    	if (highest_memmap_pfn < end_pfn - 1)
    		highest_memmap_pfn = end_pfn - 1;
    
    	/*
    	 * Honor reservation requested by the driver for this ZONE_DEVICE
    	 * memory
    	 */
    	if (altmap && start_pfn == altmap->base_pfn)
    		start_pfn += altmap->reserve;
    
    	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
    		/*
    		 * There can be holes in boot-time mem_map[]s handed to this
    		 * function.  They do not exist on hotplugged memory.
    		 */
    		if (context != MEMMAP_EARLY)
    			goto not_early;
    
    		if (!early_pfn_valid(pfn)) {
    #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
    			/*
    			 * Skip to the pfn preceding the next valid one (or
    			 * end_pfn), such that we hit a valid pfn (or end_pfn)
    			 * on our next iteration of the loop.
    			 */
    			pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
    #endif
    			continue;
    		}
    		if (!early_pfn_in_nid(pfn, nid))
    			continue;
    		if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
    			break;
    
    #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
    		/*
    		 * Check given memblock attribute by firmware which can affect
    		 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
    		 * mirrored, it's an overlapped memmap init. skip it.
    		 */
    		if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
    			if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
    				for_each_memblock(memory, tmp)
    					if (pfn < memblock_region_memory_end_pfn(tmp))
    						break;
    				r = tmp;
    			}
    			if (pfn >= memblock_region_memory_base_pfn(r) &&
    			    memblock_is_mirror(r)) {
    				/* already initialized as NORMAL */
    				pfn = memblock_region_memory_end_pfn(r);
    				continue;
    			}
    		}
    #endif
    
    not_early:
    		/*
    		 * Mark the block movable so that blocks are reserved for
    		 * movable at startup. This will force kernel allocations
    		 * to reserve their blocks rather than leaking throughout
    		 * the address space during boot when many long-lived
    		 * kernel allocations are made.
    		 *
    		 * bitmap is created for zone's valid pfn range. but memmap
    		 * can be created for invalid pages (for alignment)
    		 * check here not to call set_pageblock_migratetype() against
    		 * pfn out of zone.
    		 */
    		if (!(pfn & (pageblock_nr_pages - 1))) {
    			struct page *page = pfn_to_page(pfn);
    
    			__init_single_page(page, pfn, zone, nid);
    			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
    		} else {
    			__init_single_pfn(pfn, zone, nid);
    		}
    	}
    }
    
    static void __meminit zone_init_free_lists(struct zone *zone)
    {
    	unsigned int order, t;
    	for_each_migratetype_order(order, t) {
    		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
    		zone->free_area[order].nr_free = 0;
    	}
    }
    
    #ifndef __HAVE_ARCH_MEMMAP_INIT
    #define memmap_init(size, nid, zone, start_pfn) \
    	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
    #endif
    
    static int zone_batchsize(struct zone *zone)
    {
    #ifdef CONFIG_MMU
    	int batch;
    
    	/*
    	 * The per-cpu-pages pools are set to around 1000th of the
    	 * size of the zone.  But no more than 1/2 of a meg.
    	 *
    	 * OK, so we don't know how big the cache is.  So guess.
    	 */
    	batch = zone->managed_pages / 1024;
    	if (batch * PAGE_SIZE > 512 * 1024)
    		batch = (512 * 1024) / PAGE_SIZE;
    	batch /= 4;		/* We effectively *= 4 below */
    	if (batch < 1)
    		batch = 1;
    
    	/*
    	 * Clamp the batch to a 2^n - 1 value. Having a power
    	 * of 2 value was found to be more likely to have
    	 * suboptimal cache aliasing properties in some cases.
    	 *
    	 * For example if 2 tasks are alternately allocating
    	 * batches of pages, one task can end up with a lot
    	 * of pages of one half of the possible page colors
    	 * and the other with pages of the other colors.
    	 */
    	batch = rounddown_pow_of_two(batch + batch/2) - 1;
    
    	return batch;
    
    #else
    	/* The deferral and batching of frees should be suppressed under NOMMU
    	 * conditions.
    	 *
    	 * The problem is that NOMMU needs to be able to allocate large chunks
    	 * of contiguous memory as there's no hardware page translation to
    	 * assemble apparent contiguous memory from discontiguous pages.
    	 *
    	 * Queueing large contiguous runs of pages for batching, however,
    	 * causes the pages to actually be freed in smaller chunks.  As there
    	 * can be a significant delay between the individual batches being
    	 * recycled, this leads to the once large chunks of space being
    	 * fragmented and becoming unavailable for high-order allocations.
    	 */
    	return 0;
    #endif
    }
    
    /*
     * pcp->high and pcp->batch values are related and dependent on one another:
     * ->batch must never be higher then ->high.
     * The following function updates them in a safe manner without read side
     * locking.
     *
     * Any new users of pcp->batch and pcp->high should ensure they can cope with
     * those fields changing asynchronously (acording the the above rule).
     *
     * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
     * outside of boot time (or some other assurance that no concurrent updaters
     * exist).
     */
    static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
    		unsigned long batch)
    {
           /* start with a fail safe value for batch */
    	pcp->batch = 1;
    	smp_wmb();
    
           /* Update high, then batch, in order */
    	pcp->high = high;
    	smp_wmb();
    
    	pcp->batch = batch;
    }
    
    /* a companion to pageset_set_high() */
    static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
    {
    	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
    }
    
    static void pageset_init(struct per_cpu_pageset *p)
    {
    	struct per_cpu_pages *pcp;
    	int migratetype;
    
    	memset(p, 0, sizeof(*p));
    
    	pcp = &p->pcp;
    	pcp->count = 0;
    	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
    		INIT_LIST_HEAD(&pcp->lists[migratetype]);
    }
    
    static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
    {
    	pageset_init(p);
    	pageset_set_batch(p, batch);
    }
    
    /*
     * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
     * to the value high for the pageset p.
     */
    static void pageset_set_high(struct per_cpu_pageset *p,
    				unsigned long high)
    {
    	unsigned long batch = max(1UL, high / 4);
    	if ((high / 4) > (PAGE_SHIFT * 8))
    		batch = PAGE_SHIFT * 8;
    
    	pageset_update(&p->pcp, high, batch);
    }
    
    static void pageset_set_high_and_batch(struct zone *zone,
    				       struct per_cpu_pageset *pcp)
    {
    	if (percpu_pagelist_fraction)
    		pageset_set_high(pcp,
    			(zone->managed_pages /
    				percpu_pagelist_fraction));
    	else
    		pageset_set_batch(pcp, zone_batchsize(zone));
    }
    
    static void __meminit zone_pageset_init(struct zone *zone, int cpu)
    {
    	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
    
    	pageset_init(pcp);
    	pageset_set_high_and_batch(zone, pcp);
    }
    
    void __meminit setup_zone_pageset(struct zone *zone)
    {
    	int cpu;
    	zone->pageset = alloc_percpu(struct per_cpu_pageset);
    	for_each_possible_cpu(cpu)
    		zone_pageset_init(zone, cpu);
    }
    
    /*
     * Allocate per cpu pagesets and initialize them.
     * Before this call only boot pagesets were available.
     */
    void __init setup_per_cpu_pageset(void)
    {
    	struct pglist_data *pgdat;
    	struct zone *zone;
    
    	for_each_populated_zone(zone)
    		setup_zone_pageset(zone);
    
    	for_each_online_pgdat(pgdat)
    		pgdat->per_cpu_nodestats =
    			alloc_percpu(struct per_cpu_nodestat);
    }
    
    static __meminit void zone_pcp_init(struct zone *zone)
    {
    	/*
    	 * per cpu subsystem is not up at this point. The following code
    	 * relies on the ability of the linker to provide the
    	 * offset of a (static) per cpu variable into the per cpu area.
    	 */
    	zone->pageset = &boot_pageset;
    
    	if (populated_zone(zone))
    		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
    			zone->name, zone->present_pages,
    					 zone_batchsize(zone));
    }
    
    void __meminit init_currently_empty_zone(struct zone *zone,
    					unsigned long zone_start_pfn,
    					unsigned long size)
    {
    	struct pglist_data *pgdat = zone->zone_pgdat;
    
    	pgdat->nr_zones = zone_idx(zone) + 1;
    
    	zone->zone_start_pfn = zone_start_pfn;
    
    	mminit_dprintk(MMINIT_TRACE, "memmap_init",
    			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
    			pgdat->node_id,
    			(unsigned long)zone_idx(zone),
    			zone_start_pfn, (zone_start_pfn + size));
    
    	zone_init_free_lists(zone);
    	zone->initialized = 1;
    }
    
    #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
    #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
    
    /*
     * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
     */
    int __meminit __early_pfn_to_nid(unsigned long pfn,
    					struct mminit_pfnnid_cache *state)
    {
    	unsigned long start_pfn, end_pfn;
    	int nid;
    
    	if (state->last_start <= pfn && pfn < state->last_end)
    		return state->last_nid;
    
    	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
    	if (nid != -1) {
    		state->last_start = start_pfn;
    		state->last_end = end_pfn;
    		state->last_nid = nid;
    	}
    
    	return nid;
    }
    #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
    
    /**
     * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
     * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
     * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
     *
     * If an architecture guarantees that all ranges registered contain no holes
     * and may be freed, this this function may be used instead of calling
     * memblock_free_early_nid() manually.
     */
    void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
    {
    	unsigned long start_pfn, end_pfn;
    	int i, this_nid;
    
    	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
    		start_pfn = min(start_pfn, max_low_pfn);
    		end_pfn = min(end_pfn, max_low_pfn);
    
    		if (start_pfn < end_pfn)
    			memblock_free_early_nid(PFN_PHYS(start_pfn),
    					(end_pfn - start_pfn) << PAGE_SHIFT,
    					this_nid);
    	}
    }
    
    /**
     * sparse_memory_present_with_active_regions - Call memory_present for each active range
     * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
     *
     * If an architecture guarantees that all ranges registered contain no holes and may
     * be freed, this function may be used instead of calling memory_present() manually.
     */
    void __init sparse_memory_present_with_active_regions(int nid)
    {
    	unsigned long start_pfn, end_pfn;
    	int i, this_nid;
    
    	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
    		memory_present(this_nid, start_pfn, end_pfn);
    }
    
    /**
     * get_pfn_range_for_nid - Return the start and end page frames for a node
     * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
     * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
     * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
     *
     * It returns the start and end page frame of a node based on information
     * provided by memblock_set_node(). If called for a node
     * with no available memory, a warning is printed and the start and end
     * PFNs will be 0.
     */
    void __meminit get_pfn_range_for_nid(unsigned int nid,
    			unsigned long *start_pfn, unsigned long *end_pfn)
    {
    	unsigned long this_start_pfn, this_end_pfn;
    	int i;
    
    	*start_pfn = -1UL;
    	*end_pfn = 0;
    
    	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
    		*start_pfn = min(*start_pfn, this_start_pfn);
    		*end_pfn = max(*end_pfn, this_end_pfn);
    	}
    
    	if (*start_pfn == -1UL)
    		*start_pfn = 0;
    }
    
    /*
     * This finds a zone that can be used for ZONE_MOVABLE pages. The
     * assumption is made that zones within a node are ordered in monotonic
     * increasing memory addresses so that the "highest" populated zone is used
     */
    static void __init find_usable_zone_for_movable(void)
    {
    	int zone_index;
    	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
    		if (zone_index == ZONE_MOVABLE)
    			continue;
    
    		if (arch_zone_highest_possible_pfn[zone_index] >
    				arch_zone_lowest_possible_pfn[zone_index])
    			break;
    	}
    
    	VM_BUG_ON(zone_index == -1);
    	movable_zone = zone_index;
    }
    
    /*
     * The zone ranges provided by the architecture do not include ZONE_MOVABLE
     * because it is sized independent of architecture. Unlike the other zones,
     * the starting point for ZONE_MOVABLE is not fixed. It may be different
     * in each node depending on the size of each node and how evenly kernelcore
     * is distributed. This helper function adjusts the zone ranges
     * provided by the architecture for a given node by using the end of the
     * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
     * zones within a node are in order of monotonic increases memory addresses
     */
    static void __meminit adjust_zone_range_for_zone_movable(int nid,
    					unsigned long zone_type,
    					unsigned long node_start_pfn,
    					unsigned long node_end_pfn,
    					unsigned long *zone_start_pfn,
    					unsigned long *zone_end_pfn)
    {
    	/* Only adjust if ZONE_MOVABLE is on this node */
    	if (zone_movable_pfn[nid]) {
    		/* Size ZONE_MOVABLE */
    		if (zone_type == ZONE_MOVABLE) {
    			*zone_start_pfn = zone_movable_pfn[nid];
    			*zone_end_pfn = min(node_end_pfn,
    				arch_zone_highest_possible_pfn[movable_zone]);
    
    		/* Adjust for ZONE_MOVABLE starting within this range */
    		} else if (!mirrored_kernelcore &&
    			*zone_start_pfn < zone_movable_pfn[nid] &&
    			*zone_end_pfn > zone_movable_pfn[nid]) {
    			*zone_end_pfn = zone_movable_pfn[nid];
    
    		/* Check if this whole range is within ZONE_MOVABLE */
    		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
    			*zone_start_pfn = *zone_end_pfn;
    	}
    }
    
    /*
     * Return the number of pages a zone spans in a node, including holes
     * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
     */
    static unsigned long __meminit zone_spanned_pages_in_node(int nid,
    					unsigned long zone_type,
    					unsigned long node_start_pfn,
    					unsigned long node_end_pfn,
    					unsigned long *zone_start_pfn,
    					unsigned long *zone_end_pfn,
    					unsigned long *ignored)
    {
    	/* When hotadd a new node from cpu_up(), the node should be empty */
    	if (!node_start_pfn && !node_end_pfn)
    		return 0;
    
    	/* Get the start and end of the zone */
    	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
    	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
    	adjust_zone_range_for_zone_movable(nid, zone_type,
    				node_start_pfn, node_end_pfn,
    				zone_start_pfn, zone_end_pfn);
    
    	/* Check that this node has pages within the zone's required range */
    	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
    		return 0;
    
    	/* Move the zone boundaries inside the node if necessary */
    	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
    	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
    
    	/* Return the spanned pages */
    	return *zone_end_pfn - *zone_start_pfn;
    }
    
    /*
     * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
     * then all holes in the requested range will be accounted for.
     */
    unsigned long __meminit __absent_pages_in_range(int nid,
    				unsigned long range_start_pfn,
    				unsigned long range_end_pfn)
    {
    	unsigned long nr_absent = range_end_pfn - range_start_pfn;
    	unsigned long start_pfn, end_pfn;
    	int i;
    
    	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
    		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
    		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
    		nr_absent -= end_pfn - start_pfn;
    	}
    	return nr_absent;
    }
    
    /**
     * absent_pages_in_range - Return number of page frames in holes within a range
     * @start_pfn: The start PFN to start searching for holes
     * @end_pfn: The end PFN to stop searching for holes
     *
     * It returns the number of pages frames in memory holes within a range.
     */
    unsigned long __init absent_pages_in_range(unsigned long start_pfn,
    							unsigned long end_pfn)
    {
    	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
    }
    
    /* Return the number of page frames in holes in a zone on a node */
    static unsigned long __meminit zone_absent_pages_in_node(int nid,
    					unsigned long zone_type,
    					unsigned long node_start_pfn,
    					unsigned long node_end_pfn,
    					unsigned long *ignored)
    {
    	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
    	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
    	unsigned long zone_start_pfn, zone_end_pfn;
    	unsigned long nr_absent;
    
    	/* When hotadd a new node from cpu_up(), the node should be empty */
    	if (!node_start_pfn && !node_end_pfn)
    		return 0;
    
    	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
    	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
    
    	adjust_zone_range_for_zone_movable(nid, zone_type,
    			node_start_pfn, node_end_pfn,
    			&zone_start_pfn, &zone_end_pfn);
    	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
    
    	/*
    	 * ZONE_MOVABLE handling.
    	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
    	 * and vice versa.
    	 */
    	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
    		unsigned long start_pfn, end_pfn;
    		struct memblock_region *r;
    
    		for_each_memblock(memory, r) {
    			start_pfn = clamp(memblock_region_memory_base_pfn(r),
    					  zone_start_pfn, zone_end_pfn);
    			end_pfn = clamp(memblock_region_memory_end_pfn(r),
    					zone_start_pfn, zone_end_pfn);
    
    			if (zone_type == ZONE_MOVABLE &&
    			    memblock_is_mirror(r))
    				nr_absent += end_pfn - start_pfn;
    
    			if (zone_type == ZONE_NORMAL &&
    			    !memblock_is_mirror(r))
    				nr_absent += end_pfn - start_pfn;
    		}
    	}
    
    	return nr_absent;
    }
    
    #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
    static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
    					unsigned long zone_type,
    					unsigned long node_start_pfn,
    					unsigned long node_end_pfn,
    					unsigned long *zone_start_pfn,
    					unsigned long *zone_end_pfn,
    					unsigned long *zones_size)
    {
    	unsigned int zone;
    
    	*zone_start_pfn = node_start_pfn;
    	for (zone = 0; zone < zone_type; zone++)
    		*zone_start_pfn += zones_size[zone];
    
    	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
    
    	return zones_size[zone_type];
    }
    
    static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
    						unsigned long zone_type,
    						unsigned long node_start_pfn,
    						unsigned long node_end_pfn,
    						unsigned long *zholes_size)
    {
    	if (!zholes_size)
    		return 0;
    
    	return zholes_size[zone_type];
    }
    
    #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
    
    static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
    						unsigned long node_start_pfn,
    						unsigned long node_end_pfn,
    						unsigned long *zones_size,
    						unsigned long *zholes_size)
    {
    	unsigned long realtotalpages = 0, totalpages = 0;
    	enum zone_type i;
    
    	for (i = 0; i < MAX_NR_ZONES; i++) {
    		struct zone *zone = pgdat->node_zones + i;
    		unsigned long zone_start_pfn, zone_end_pfn;
    		unsigned long size, real_size;
    
    		size = zone_spanned_pages_in_node(pgdat->node_id, i,
    						  node_start_pfn,
    						  node_end_pfn,
    						  &zone_start_pfn,
    						  &zone_end_pfn,
    						  zones_size);
    		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
    						  node_start_pfn, node_end_pfn,
    						  zholes_size);
    		if (size)
    			zone->zone_start_pfn = zone_start_pfn;
    		else
    			zone->zone_start_pfn = 0;
    		zone->spanned_pages = size;
    		zone->present_pages = real_size;
    
    		totalpages += size;
    		realtotalpages += real_size;
    	}
    
    	pgdat->node_spanned_pages = totalpages;
    	pgdat->node_present_pages = realtotalpages;
    	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
    							realtotalpages);
    }
    
    #ifndef CONFIG_SPARSEMEM
    /*
     * Calculate the size of the zone->blockflags rounded to an unsigned long
     * Start by making sure zonesize is a multiple of pageblock_order by rounding
     * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
     * round what is now in bits to nearest long in bits, then return it in
     * bytes.
     */
    static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
    {
    	unsigned long usemapsize;
    
    	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
    	usemapsize = roundup(zonesize, pageblock_nr_pages);
    	usemapsize = usemapsize >> pageblock_order;
    	usemapsize *= NR_PAGEBLOCK_BITS;
    	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
    
    	return usemapsize / 8;
    }
    
    static void __init setup_usemap(struct pglist_data *pgdat,
    				struct zone *zone,
    				unsigned long zone_start_pfn,
    				unsigned long zonesize)
    {
    	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
    	zone->pageblock_flags = NULL;
    	if (usemapsize)
    		zone->pageblock_flags =
    			memblock_virt_alloc_node_nopanic(usemapsize,
    							 pgdat->node_id);
    }
    #else
    static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
    				unsigned long zone_start_pfn, unsigned long zonesize) {}
    #endif /* CONFIG_SPARSEMEM */
    
    #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
    
    /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
    void __paginginit set_pageblock_order(void)
    {
    	unsigned int order;
    
    	/* Check that pageblock_nr_pages has not already been setup */
    	if (pageblock_order)
    		return;
    
    	if (HPAGE_SHIFT > PAGE_SHIFT)
    		order = HUGETLB_PAGE_ORDER;
    	else
    		order = MAX_ORDER - 1;
    
    	/*
    	 * Assume the largest contiguous order of interest is a huge page.
    	 * This value may be variable depending on boot parameters on IA64 and
    	 * powerpc.
    	 */
    	pageblock_order = order;
    }
    #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
    
    /*
     * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
     * is unused as pageblock_order is set at compile-time. See
     * include/linux/pageblock-flags.h for the values of pageblock_order based on
     * the kernel config
     */
    void __paginginit set_pageblock_order(void)
    {
    }
    
    #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
    
    static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
    						   unsigned long present_pages)
    {
    	unsigned long pages = spanned_pages;
    
    	/*
    	 * Provide a more accurate estimation if there are holes within
    	 * the zone and SPARSEMEM is in use. If there are holes within the
    	 * zone, each populated memory region may cost us one or two extra
    	 * memmap pages due to alignment because memmap pages for each
    	 * populated regions may not be naturally aligned on page boundary.
    	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
    	 */
    	if (spanned_pages > present_pages + (present_pages >> 4) &&
    	    IS_ENABLED(CONFIG_SPARSEMEM))
    		pages = present_pages;
    
    	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
    }
    
    /*
     * Set up the zone data structures:
     *   - mark all pages reserved
     *   - mark all memory queues empty
     *   - clear the memory bitmaps
     *
     * NOTE: pgdat should get zeroed by caller.
     */
    static void __paginginit free_area_init_core(struct pglist_data *pgdat)
    {
    	enum zone_type j;
    	int nid = pgdat->node_id;
    
    	pgdat_resize_init(pgdat);
    #ifdef CONFIG_NUMA_BALANCING
    	spin_lock_init(&pgdat->numabalancing_migrate_lock);
    	pgdat->numabalancing_migrate_nr_pages = 0;
    	pgdat->numabalancing_migrate_next_window = jiffies;
    #endif
    #ifdef CONFIG_TRANSPARENT_HUGEPAGE
    	spin_lock_init(&pgdat->split_queue_lock);
    	INIT_LIST_HEAD(&pgdat->split_queue);
    	pgdat->split_queue_len = 0;
    #endif
    	init_waitqueue_head(&pgdat->kswapd_wait);
    	init_waitqueue_head(&pgdat->pfmemalloc_wait);
    #ifdef CONFIG_COMPACTION
    	init_waitqueue_head(&pgdat->kcompactd_wait);
    #endif
    	pgdat_page_ext_init(pgdat);
    	spin_lock_init(&pgdat->lru_lock);
    	lruvec_init(node_lruvec(pgdat));
    
    	pgdat->per_cpu_nodestats = &boot_nodestats;
    
    	for (j = 0; j < MAX_NR_ZONES; j++) {
    		struct zone *zone = pgdat->node_zones + j;
    		unsigned long size, realsize, freesize, memmap_pages;
    		unsigned long zone_start_pfn = zone->zone_start_pfn;
    
    		size = zone->spanned_pages;
    		realsize = freesize = zone->present_pages;
    
    		/*
    		 * Adjust freesize so that it accounts for how much memory
    		 * is used by this zone for memmap. This affects the watermark
    		 * and per-cpu initialisations
    		 */
    		memmap_pages = calc_memmap_size(size, realsize);
    		if (!is_highmem_idx(j)) {
    			if (freesize >= memmap_pages) {
    				freesize -= memmap_pages;
    				if (memmap_pages)
    					printk(KERN_DEBUG
    					       "  %s zone: %lu pages used for memmap\n",
    					       zone_names[j], memmap_pages);
    			} else
    				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
    					zone_names[j], memmap_pages, freesize);
    		}
    
    		/* Account for reserved pages */
    		if (j == 0 && freesize > dma_reserve) {
    			freesize -= dma_reserve;
    			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
    					zone_names[0], dma_reserve);
    		}
    
    		if (!is_highmem_idx(j))
    			nr_kernel_pages += freesize;
    		/* Charge for highmem memmap if there are enough kernel pages */
    		else if (nr_kernel_pages > memmap_pages * 2)
    			nr_kernel_pages -= memmap_pages;
    		nr_all_pages += freesize;
    
    		/*
    		 * Set an approximate value for lowmem here, it will be adjusted
    		 * when the bootmem allocator frees pages into the buddy system.
    		 * And all highmem pages will be managed by the buddy system.
    		 */
    		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
    #ifdef CONFIG_NUMA
    		zone->node = nid;
    #endif
    		zone->name = zone_names[j];
    		zone->zone_pgdat = pgdat;
    		spin_lock_init(&zone->lock);
    		zone_seqlock_init(zone);
    		zone_pcp_init(zone);
    
    		if (!size)
    			continue;
    
    		set_pageblock_order();
    		setup_usemap(pgdat, zone, zone_start_pfn, size);
    		init_currently_empty_zone(zone, zone_start_pfn, size);
    		memmap_init(size, nid, j, zone_start_pfn);
    	}
    }
    
    static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
    {
    	unsigned long __maybe_unused start = 0;
    	unsigned long __maybe_unused offset = 0;
    
    	/* Skip empty nodes */
    	if (!pgdat->node_spanned_pages)
    		return;
    
    #ifdef CONFIG_FLAT_NODE_MEM_MAP
    	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
    	offset = pgdat->node_start_pfn - start;
    	/* ia64 gets its own node_mem_map, before this, without bootmem */
    	if (!pgdat->node_mem_map) {
    		unsigned long size, end;
    		struct page *map;
    
    		/*
    		 * The zone's endpoints aren't required to be MAX_ORDER
    		 * aligned but the node_mem_map endpoints must be in order
    		 * for the buddy allocator to function correctly.
    		 */
    		end = pgdat_end_pfn(pgdat);
    		end = ALIGN(end, MAX_ORDER_NR_PAGES);
    		size =  (end - start) * sizeof(struct page);
    		map = alloc_remap(pgdat->node_id, size);
    		if (!map)
    			map = memblock_virt_alloc_node_nopanic(size,
    							       pgdat->node_id);
    		pgdat->node_mem_map = map + offset;
    	}
    #ifndef CONFIG_NEED_MULTIPLE_NODES
    	/*
    	 * With no DISCONTIG, the global mem_map is just set as node 0's
    	 */
    	if (pgdat == NODE_DATA(0)) {
    		mem_map = NODE_DATA(0)->node_mem_map;
    #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
    		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
    			mem_map -= offset;
    #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
    	}
    #endif
    #endif /* CONFIG_FLAT_NODE_MEM_MAP */
    }
    
    void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
    		unsigned long node_start_pfn, unsigned long *zholes_size)
    {
    	pg_data_t *pgdat = NODE_DATA(nid);
    	unsigned long start_pfn = 0;
    	unsigned long end_pfn = 0;
    
    	/* pg_data_t should be reset to zero when it's allocated */
    	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
    
    	pgdat->node_id = nid;
    	pgdat->node_start_pfn = node_start_pfn;
    	pgdat->per_cpu_nodestats = NULL;
    #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
    	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
    	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
    		(u64)start_pfn << PAGE_SHIFT,
    		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
    #else
    	start_pfn = node_start_pfn;
    #endif
    	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
    				  zones_size, zholes_size);
    
    	alloc_node_mem_map(pgdat);
    #ifdef CONFIG_FLAT_NODE_MEM_MAP
    	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
    		nid, (unsigned long)pgdat,
    		(unsigned long)pgdat->node_mem_map);
    #endif
    
    	reset_deferred_meminit(pgdat);
    	free_area_init_core(pgdat);
    }
    
    #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
    
    #if MAX_NUMNODES > 1
    /*
     * Figure out the number of possible node ids.
     */
    void __init setup_nr_node_ids(void)
    {
    	unsigned int highest;
    
    	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
    	nr_node_ids = highest + 1;
    }
    #endif
    
    /**
     * node_map_pfn_alignment - determine the maximum internode alignment
     *
     * This function should be called after node map is populated and sorted.
     * It calculates the maximum power of two alignment which can distinguish
     * all the nodes.
     *
     * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
     * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
     * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
     * shifted, 1GiB is enough and this function will indicate so.
     *
     * This is used to test whether pfn -> nid mapping of the chosen memory
     * model has fine enough granularity to avoid incorrect mapping for the
     * populated node map.
     *
     * Returns the determined alignment in pfn's.  0 if there is no alignment
     * requirement (single node).
     */
    unsigned long __init node_map_pfn_alignment(void)
    {
    	unsigned long accl_mask = 0, last_end = 0;
    	unsigned long start, end, mask;
    	int last_nid = -1;
    	int i, nid;
    
    	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
    		if (!start || last_nid < 0 || last_nid == nid) {
    			last_nid = nid;
    			last_end = end;
    			continue;
    		}
    
    		/*
    		 * Start with a mask granular enough to pin-point to the
    		 * start pfn and tick off bits one-by-one until it becomes
    		 * too coarse to separate the current node from the last.
    		 */
    		mask = ~((1 << __ffs(start)) - 1);
    		while (mask && last_end <= (start & (mask << 1)))
    			mask <<= 1;
    
    		/* accumulate all internode masks */
    		accl_mask |= mask;
    	}
    
    	/* convert mask to number of pages */
    	return ~accl_mask + 1;
    }
    
    /* Find the lowest pfn for a node */
    static unsigned long __init find_min_pfn_for_node(int nid)
    {
    	unsigned long min_pfn = ULONG_MAX;
    	unsigned long start_pfn;
    	int i;
    
    	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
    		min_pfn = min(min_pfn, start_pfn);
    
    	if (min_pfn == ULONG_MAX) {
    		pr_warn("Could not find start_pfn for node %d\n", nid);
    		return 0;
    	}
    
    	return min_pfn;
    }
    
    /**
     * find_min_pfn_with_active_regions - Find the minimum PFN registered
     *
     * It returns the minimum PFN based on information provided via
     * memblock_set_node().
     */
    unsigned long __init find_min_pfn_with_active_regions(void)
    {
    	return find_min_pfn_for_node(MAX_NUMNODES);
    }
    
    /*
     * early_calculate_totalpages()
     * Sum pages in active regions for movable zone.
     * Populate N_MEMORY for calculating usable_nodes.
     */
    static unsigned long __init early_calculate_totalpages(void)
    {
    	unsigned long totalpages = 0;
    	unsigned long start_pfn, end_pfn;
    	int i, nid;
    
    	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
    		unsigned long pages = end_pfn - start_pfn;
    
    		totalpages += pages;
    		if (pages)
    			node_set_state(nid, N_MEMORY);
    	}
    	return totalpages;
    }
    
    /*
     * Find the PFN the Movable zone begins in each node. Kernel memory
     * is spread evenly between nodes as long as the nodes have enough
     * memory. When they don't, some nodes will have more kernelcore than
     * others
     */
    static void __init find_zone_movable_pfns_for_nodes(void)
    {
    	int i, nid;
    	unsigned long usable_startpfn;
    	unsigned long kernelcore_node, kernelcore_remaining;
    	/* save the state before borrow the nodemask */
    	nodemask_t saved_node_state = node_states[N_MEMORY];
    	unsigned long totalpages = early_calculate_totalpages();
    	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
    	struct memblock_region *r;
    
    	/* Need to find movable_zone earlier when movable_node is specified. */
    	find_usable_zone_for_movable();
    
    	/*
    	 * If movable_node is specified, ignore kernelcore and movablecore
    	 * options.
    	 */
    	if (movable_node_is_enabled()) {
    		for_each_memblock(memory, r) {
    			if (!memblock_is_hotpluggable(r))
    				continue;
    
    			nid = r->nid;
    
    			usable_startpfn = PFN_DOWN(r->base);
    			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
    				min(usable_startpfn, zone_movable_pfn[nid]) :
    				usable_startpfn;
    		}
    
    		goto out2;
    	}
    
    	/*
    	 * If kernelcore=mirror is specified, ignore movablecore option
    	 */
    	if (mirrored_kernelcore) {
    		bool mem_below_4gb_not_mirrored = false;
    
    		for_each_memblock(memory, r) {
    			if (memblock_is_mirror(r))
    				continue;
    
    			nid = r->nid;
    
    			usable_startpfn = memblock_region_memory_base_pfn(r);
    
    			if (usable_startpfn < 0x100000) {
    				mem_below_4gb_not_mirrored = true;
    				continue;
    			}
    
    			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
    				min(usable_startpfn, zone_movable_pfn[nid]) :
    				usable_startpfn;
    		}
    
    		if (mem_below_4gb_not_mirrored)
    			pr_warn("This configuration results in unmirrored kernel memory.");
    
    		goto out2;
    	}
    
    	/*
    	 * If movablecore=nn[KMG] was specified, calculate what size of
    	 * kernelcore that corresponds so that memory usable for
    	 * any allocation type is evenly spread. If both kernelcore
    	 * and movablecore are specified, then the value of kernelcore
    	 * will be used for required_kernelcore if it's greater than
    	 * what movablecore would have allowed.
    	 */
    	if (required_movablecore) {
    		unsigned long corepages;
    
    		/*
    		 * Round-up so that ZONE_MOVABLE is at least as large as what
    		 * was requested by the user
    		 */
    		required_movablecore =
    			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
    		required_movablecore = min(totalpages, required_movablecore);
    		corepages = totalpages - required_movablecore;
    
    		required_kernelcore = max(required_kernelcore, corepages);
    	}
    
    	/*
    	 * If kernelcore was not specified or kernelcore size is larger
    	 * than totalpages, there is no ZONE_MOVABLE.
    	 */
    	if (!required_kernelcore || required_kernelcore >= totalpages)
    		goto out;
    
    	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
    	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
    
    restart:
    	/* Spread kernelcore memory as evenly as possible throughout nodes */
    	kernelcore_node = required_kernelcore / usable_nodes;
    	for_each_node_state(nid, N_MEMORY) {
    		unsigned long start_pfn, end_pfn;
    
    		/*
    		 * Recalculate kernelcore_node if the division per node
    		 * now exceeds what is necessary to satisfy the requested
    		 * amount of memory for the kernel
    		 */
    		if (required_kernelcore < kernelcore_node)
    			kernelcore_node = required_kernelcore / usable_nodes;
    
    		/*
    		 * As the map is walked, we track how much memory is usable
    		 * by the kernel using kernelcore_remaining. When it is
    		 * 0, the rest of the node is usable by ZONE_MOVABLE
    		 */
    		kernelcore_remaining = kernelcore_node;
    
    		/* Go through each range of PFNs within this node */
    		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
    			unsigned long size_pages;
    
    			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
    			if (start_pfn >= end_pfn)
    				continue;
    
    			/* Account for what is only usable for kernelcore */
    			if (start_pfn < usable_startpfn) {
    				unsigned long kernel_pages;
    				kernel_pages = min(end_pfn, usable_startpfn)
    								- start_pfn;
    
    				kernelcore_remaining -= min(kernel_pages,
    							kernelcore_remaining);
    				required_kernelcore -= min(kernel_pages,
    							required_kernelcore);
    
    				/* Continue if range is now fully accounted */
    				if (end_pfn <= usable_startpfn) {
    
    					/*
    					 * Push zone_movable_pfn to the end so
    					 * that if we have to rebalance
    					 * kernelcore across nodes, we will
    					 * not double account here
    					 */
    					zone_movable_pfn[nid] = end_pfn;
    					continue;
    				}
    				start_pfn = usable_startpfn;
    			}
    
    			/*
    			 * The usable PFN range for ZONE_MOVABLE is from
    			 * start_pfn->end_pfn. Calculate size_pages as the
    			 * number of pages used as kernelcore
    			 */
    			size_pages = end_pfn - start_pfn;
    			if (size_pages > kernelcore_remaining)
    				size_pages = kernelcore_remaining;
    			zone_movable_pfn[nid] = start_pfn + size_pages;
    
    			/*
    			 * Some kernelcore has been met, update counts and
    			 * break if the kernelcore for this node has been
    			 * satisfied
    			 */
    			required_kernelcore -= min(required_kernelcore,
    								size_pages);
    			kernelcore_remaining -= size_pages;
    			if (!kernelcore_remaining)
    				break;
    		}
    	}
    
    	/*
    	 * If there is still required_kernelcore, we do another pass with one
    	 * less node in the count. This will push zone_movable_pfn[nid] further
    	 * along on the nodes that still have memory until kernelcore is
    	 * satisfied
    	 */
    	usable_nodes--;
    	if (usable_nodes && required_kernelcore > usable_nodes)
    		goto restart;
    
    out2:
    	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
    	for (nid = 0; nid < MAX_NUMNODES; nid++)
    		zone_movable_pfn[nid] =
    			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
    
    out:
    	/* restore the node_state */
    	node_states[N_MEMORY] = saved_node_state;
    }
    
    /* Any regular or high memory on that node ? */
    static void check_for_memory(pg_data_t *pgdat, int nid)
    {
    	enum zone_type zone_type;
    
    	if (N_MEMORY == N_NORMAL_MEMORY)
    		return;
    
    	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
    		struct zone *zone = &pgdat->node_zones[zone_type];
    		if (populated_zone(zone)) {
    			node_set_state(nid, N_HIGH_MEMORY);
    			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
    			    zone_type <= ZONE_NORMAL)
    				node_set_state(nid, N_NORMAL_MEMORY);
    			break;
    		}
    	}
    }
    
    /**
     * free_area_init_nodes - Initialise all pg_data_t and zone data
     * @max_zone_pfn: an array of max PFNs for each zone
     *
     * This will call free_area_init_node() for each active node in the system.
     * Using the page ranges provided by memblock_set_node(), the size of each
     * zone in each node and their holes is calculated. If the maximum PFN
     * between two adjacent zones match, it is assumed that the zone is empty.
     * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
     * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
     * starts where the previous one ended. For example, ZONE_DMA32 starts
     * at arch_max_dma_pfn.
     */
    void __init free_area_init_nodes(unsigned long *max_zone_pfn)
    {
    	unsigned long start_pfn, end_pfn;
    	int i, nid;
    
    	/* Record where the zone boundaries are */
    	memset(arch_zone_lowest_possible_pfn, 0,
    				sizeof(arch_zone_lowest_possible_pfn));
    	memset(arch_zone_highest_possible_pfn, 0,
    				sizeof(arch_zone_highest_possible_pfn));
    
    	start_pfn = find_min_pfn_with_active_regions();
    
    	for (i = 0; i < MAX_NR_ZONES; i++) {
    		if (i == ZONE_MOVABLE)
    			continue;
    
    		end_pfn = max(max_zone_pfn[i], start_pfn);
    		arch_zone_lowest_possible_pfn[i] = start_pfn;
    		arch_zone_highest_possible_pfn[i] = end_pfn;
    
    		start_pfn = end_pfn;
    	}
    
    	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
    	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
    	find_zone_movable_pfns_for_nodes();
    
    	/* Print out the zone ranges */
    	pr_info("Zone ranges:\n");
    	for (i = 0; i < MAX_NR_ZONES; i++) {
    		if (i == ZONE_MOVABLE)
    			continue;
    		pr_info("  %-8s ", zone_names[i]);
    		if (arch_zone_lowest_possible_pfn[i] ==
    				arch_zone_highest_possible_pfn[i])
    			pr_cont("empty\n");
    		else
    			pr_cont("[mem %#018Lx-%#018Lx]\n",
    				(u64)arch_zone_lowest_possible_pfn[i]
    					<< PAGE_SHIFT,
    				((u64)arch_zone_highest_possible_pfn[i]
    					<< PAGE_SHIFT) - 1);
    	}
    
    	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
    	pr_info("Movable zone start for each node\n");
    	for (i = 0; i < MAX_NUMNODES; i++) {
    		if (zone_movable_pfn[i])
    			pr_info("  Node %d: %#018Lx\n", i,
    			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
    	}
    
    	/* Print out the early node map */
    	pr_info("Early memory node ranges\n");
    	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
    		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
    			(u64)start_pfn << PAGE_SHIFT,
    			((u64)end_pfn << PAGE_SHIFT) - 1);
    
    	/* Initialise every node */
    	mminit_verify_pageflags_layout();
    	setup_nr_node_ids();
    	for_each_online_node(nid) {
    		pg_data_t *pgdat = NODE_DATA(nid);
    		free_area_init_node(nid, NULL,
    				find_min_pfn_for_node(nid), NULL);
    
    		/* Any memory on that node */
    		if (pgdat->node_present_pages)
    			node_set_state(nid, N_MEMORY);
    		check_for_memory(pgdat, nid);
    	}
    }
    
    static int __init cmdline_parse_core(char *p, unsigned long *core)
    {
    	unsigned long long coremem;
    	if (!p)
    		return -EINVAL;
    
    	coremem = memparse(p, &p);
    	*core = coremem >> PAGE_SHIFT;
    
    	/* Paranoid check that UL is enough for the coremem value */
    	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
    
    	return 0;
    }
    
    /*
     * kernelcore=size sets the amount of memory for use for allocations that
     * cannot be reclaimed or migrated.
     */
    static int __init cmdline_parse_kernelcore(char *p)
    {
    	/* parse kernelcore=mirror */
    	if (parse_option_str(p, "mirror")) {
    		mirrored_kernelcore = true;
    		return 0;
    	}
    
    	return cmdline_parse_core(p, &required_kernelcore);
    }
    
    /*
     * movablecore=size sets the amount of memory for use for allocations that
     * can be reclaimed or migrated.
     */
    static int __init cmdline_parse_movablecore(char *p)
    {
    	return cmdline_parse_core(p, &required_movablecore);
    }
    
    early_param("kernelcore", cmdline_parse_kernelcore);
    early_param("movablecore", cmdline_parse_movablecore);
    
    #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
    
    void adjust_managed_page_count(struct page *page, long count)
    {
    	spin_lock(&managed_page_count_lock);
    	page_zone(page)->managed_pages += count;
    	totalram_pages += count;
    #ifdef CONFIG_HIGHMEM
    	if (PageHighMem(page))
    		totalhigh_pages += count;
    #endif
    	spin_unlock(&managed_page_count_lock);
    }
    EXPORT_SYMBOL(adjust_managed_page_count);
    
    unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
    {
    	void *pos;
    	unsigned long pages = 0;
    
    	start = (void *)PAGE_ALIGN((unsigned long)start);
    	end = (void *)((unsigned long)end & PAGE_MASK);
    	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
    		if ((unsigned int)poison <= 0xFF)
    			memset(pos, poison, PAGE_SIZE);
    		free_reserved_page(virt_to_page(pos));
    	}
    
    	if (pages && s)
    		pr_info("Freeing %s memory: %ldK\n",
    			s, pages << (PAGE_SHIFT - 10));
    
    	return pages;
    }
    EXPORT_SYMBOL(free_reserved_area);
    
    #ifdef	CONFIG_HIGHMEM
    void free_highmem_page(struct page *page)
    {
    	__free_reserved_page(page);
    	totalram_pages++;
    	page_zone(page)->managed_pages++;
    	totalhigh_pages++;
    }
    #endif
    
    
    void __init mem_init_print_info(const char *str)
    {
    	unsigned long physpages, codesize, datasize, rosize, bss_size;
    	unsigned long init_code_size, init_data_size;
    
    	physpages = get_num_physpages();
    	codesize = _etext - _stext;
    	datasize = _edata - _sdata;
    	rosize = __end_rodata - __start_rodata;
    	bss_size = __bss_stop - __bss_start;
    	init_data_size = __init_end - __init_begin;
    	init_code_size = _einittext - _sinittext;
    
    	/*
    	 * Detect special cases and adjust section sizes accordingly:
    	 * 1) .init.* may be embedded into .data sections
    	 * 2) .init.text.* may be out of [__init_begin, __init_end],
    	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
    	 * 3) .rodata.* may be embedded into .text or .data sections.
    	 */
    #define adj_init_size(start, end, size, pos, adj) \
    	do { \
    		if (start <= pos && pos < end && size > adj) \
    			size -= adj; \
    	} while (0)
    
    	adj_init_size(__init_begin, __init_end, init_data_size,
    		     _sinittext, init_code_size);
    	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
    	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
    	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
    	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
    
    #undef	adj_init_size
    
    	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
    #ifdef	CONFIG_HIGHMEM
    		", %luK highmem"
    #endif
    		"%s%s)\n",
    		nr_free_pages() << (PAGE_SHIFT - 10),
    		physpages << (PAGE_SHIFT - 10),
    		codesize >> 10, datasize >> 10, rosize >> 10,
    		(init_data_size + init_code_size) >> 10, bss_size >> 10,
    		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
    		totalcma_pages << (PAGE_SHIFT - 10),
    #ifdef	CONFIG_HIGHMEM
    		totalhigh_pages << (PAGE_SHIFT - 10),
    #endif
    		str ? ", " : "", str ? str : "");
    }
    
    /**
     * set_dma_reserve - set the specified number of pages reserved in the first zone
     * @new_dma_reserve: The number of pages to mark reserved
     *
     * The per-cpu batchsize and zone watermarks are determined by managed_pages.
     * In the DMA zone, a significant percentage may be consumed by kernel image
     * and other unfreeable allocations which can skew the watermarks badly. This
     * function may optionally be used to account for unfreeable pages in the
     * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
     * smaller per-cpu batchsize.
     */
    void __init set_dma_reserve(unsigned long new_dma_reserve)
    {
    	dma_reserve = new_dma_reserve;
    }
    
    void __init free_area_init(unsigned long *zones_size)
    {
    	free_area_init_node(0, zones_size,
    			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
    }
    
    static int page_alloc_cpu_dead(unsigned int cpu)
    {
    
    	lru_add_drain_cpu(cpu);
    	drain_pages(cpu);
    
    	/*
    	 * Spill the event counters of the dead processor
    	 * into the current processors event counters.
    	 * This artificially elevates the count of the current
    	 * processor.
    	 */
    	vm_events_fold_cpu(cpu);
    
    	/*
    	 * Zero the differential counters of the dead processor
    	 * so that the vm statistics are consistent.
    	 *
    	 * This is only okay since the processor is dead and cannot
    	 * race with what we are doing.
    	 */
    	cpu_vm_stats_fold(cpu);
    	return 0;
    }
    
    void __init page_alloc_init(void)
    {
    	int ret;
    
    	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
    					"mm/page_alloc:dead", NULL,
    					page_alloc_cpu_dead);
    	WARN_ON(ret < 0);
    }
    
    /*
     * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
     *	or min_free_kbytes changes.
     */
    static void calculate_totalreserve_pages(void)
    {
    	struct pglist_data *pgdat;
    	unsigned long reserve_pages = 0;
    	enum zone_type i, j;
    
    	for_each_online_pgdat(pgdat) {
    
    		pgdat->totalreserve_pages = 0;
    
    		for (i = 0; i < MAX_NR_ZONES; i++) {
    			struct zone *zone = pgdat->node_zones + i;
    			long max = 0;
    
    			/* Find valid and maximum lowmem_reserve in the zone */
    			for (j = i; j < MAX_NR_ZONES; j++) {
    				if (zone->lowmem_reserve[j] > max)
    					max = zone->lowmem_reserve[j];
    			}
    
    			/* we treat the high watermark as reserved pages. */
    			max += high_wmark_pages(zone);
    
    			if (max > zone->managed_pages)
    				max = zone->managed_pages;
    
    			pgdat->totalreserve_pages += max;
    
    			reserve_pages += max;
    		}
    	}
    	totalreserve_pages = reserve_pages;
    }
    
    /*
     * setup_per_zone_lowmem_reserve - called whenever
     *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
     *	has a correct pages reserved value, so an adequate number of
     *	pages are left in the zone after a successful __alloc_pages().
     */
    static void setup_per_zone_lowmem_reserve(void)
    {
    	struct pglist_data *pgdat;
    	enum zone_type j, idx;
    
    	for_each_online_pgdat(pgdat) {
    		for (j = 0; j < MAX_NR_ZONES; j++) {
    			struct zone *zone = pgdat->node_zones + j;
    			unsigned long managed_pages = zone->managed_pages;
    
    			zone->lowmem_reserve[j] = 0;
    
    			idx = j;
    			while (idx) {
    				struct zone *lower_zone;
    
    				idx--;
    
    				if (sysctl_lowmem_reserve_ratio[idx] < 1)
    					sysctl_lowmem_reserve_ratio[idx] = 1;
    
    				lower_zone = pgdat->node_zones + idx;
    				lower_zone->lowmem_reserve[j] = managed_pages /
    					sysctl_lowmem_reserve_ratio[idx];
    				managed_pages += lower_zone->managed_pages;
    			}
    		}
    	}
    
    	/* update totalreserve_pages */
    	calculate_totalreserve_pages();
    }
    
    static void __setup_per_zone_wmarks(void)
    {
    	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
    	unsigned long lowmem_pages = 0;
    	struct zone *zone;
    	unsigned long flags;
    
    	/* Calculate total number of !ZONE_HIGHMEM pages */
    	for_each_zone(zone) {
    		if (!is_highmem(zone))
    			lowmem_pages += zone->managed_pages;
    	}
    
    	for_each_zone(zone) {
    		u64 tmp;
    
    		spin_lock_irqsave(&zone->lock, flags);
    		tmp = (u64)pages_min * zone->managed_pages;
    		do_div(tmp, lowmem_pages);
    		if (is_highmem(zone)) {
    			/*
    			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
    			 * need highmem pages, so cap pages_min to a small
    			 * value here.
    			 *
    			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
    			 * deltas control asynch page reclaim, and so should
    			 * not be capped for highmem.
    			 */
    			unsigned long min_pages;
    
    			min_pages = zone->managed_pages / 1024;
    			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
    			zone->watermark[WMARK_MIN] = min_pages;
    		} else {
    			/*
    			 * If it's a lowmem zone, reserve a number of pages
    			 * proportionate to the zone's size.
    			 */
    			zone->watermark[WMARK_MIN] = tmp;
    		}
    
    		/*
    		 * Set the kswapd watermarks distance according to the
    		 * scale factor in proportion to available memory, but
    		 * ensure a minimum size on small systems.
    		 */
    		tmp = max_t(u64, tmp >> 2,
    			    mult_frac(zone->managed_pages,
    				      watermark_scale_factor, 10000));
    
    		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
    		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
    
    		spin_unlock_irqrestore(&zone->lock, flags);
    	}
    
    	/* update totalreserve_pages */
    	calculate_totalreserve_pages();
    }
    
    /**
     * setup_per_zone_wmarks - called when min_free_kbytes changes
     * or when memory is hot-{added|removed}
     *
     * Ensures that the watermark[min,low,high] values for each zone are set
     * correctly with respect to min_free_kbytes.
     */
    void setup_per_zone_wmarks(void)
    {
    	static DEFINE_SPINLOCK(lock);
    
    	spin_lock(&lock);
    	__setup_per_zone_wmarks();
    	spin_unlock(&lock);
    }
    
    /*
     * Initialise min_free_kbytes.
     *
     * For small machines we want it small (128k min).  For large machines
     * we want it large (64MB max).  But it is not linear, because network
     * bandwidth does not increase linearly with machine size.  We use
     *
     *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
     *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
     *
     * which yields
     *
     * 16MB:	512k
     * 32MB:	724k
     * 64MB:	1024k
     * 128MB:	1448k
     * 256MB:	2048k
     * 512MB:	2896k
     * 1024MB:	4096k
     * 2048MB:	5792k
     * 4096MB:	8192k
     * 8192MB:	11584k
     * 16384MB:	16384k
     */
    int __meminit init_per_zone_wmark_min(void)
    {
    	unsigned long lowmem_kbytes;
    	int new_min_free_kbytes;
    
    	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
    	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
    
    	if (new_min_free_kbytes > user_min_free_kbytes) {
    		min_free_kbytes = new_min_free_kbytes;
    		if (min_free_kbytes < 128)
    			min_free_kbytes = 128;
    		if (min_free_kbytes > 65536)
    			min_free_kbytes = 65536;
    	} else {
    		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
    				new_min_free_kbytes, user_min_free_kbytes);
    	}
    	setup_per_zone_wmarks();
    	refresh_zone_stat_thresholds();
    	setup_per_zone_lowmem_reserve();
    
    #ifdef CONFIG_NUMA
    	setup_min_unmapped_ratio();
    	setup_min_slab_ratio();
    #endif
    
    	return 0;
    }
    core_initcall(init_per_zone_wmark_min)
    
    /*
     * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
     *	that we can call two helper functions whenever min_free_kbytes
     *	changes.
     */
    int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
    	void __user *buffer, size_t *length, loff_t *ppos)
    {
    	int rc;
    
    	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
    	if (rc)
    		return rc;
    
    	if (write) {
    		user_min_free_kbytes = min_free_kbytes;
    		setup_per_zone_wmarks();
    	}
    	return 0;
    }
    
    int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
    	void __user *buffer, size_t *length, loff_t *ppos)
    {
    	int rc;
    
    	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
    	if (rc)
    		return rc;
    
    	if (write)
    		setup_per_zone_wmarks();
    
    	return 0;
    }
    
    #ifdef CONFIG_NUMA
    static void setup_min_unmapped_ratio(void)
    {
    	pg_data_t *pgdat;
    	struct zone *zone;
    
    	for_each_online_pgdat(pgdat)
    		pgdat->min_unmapped_pages = 0;
    
    	for_each_zone(zone)
    		zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
    				sysctl_min_unmapped_ratio) / 100;
    }
    
    
    int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
    	void __user *buffer, size_t *length, loff_t *ppos)
    {
    	int rc;
    
    	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
    	if (rc)
    		return rc;
    
    	setup_min_unmapped_ratio();
    
    	return 0;
    }
    
    static void setup_min_slab_ratio(void)
    {
    	pg_data_t *pgdat;
    	struct zone *zone;
    
    	for_each_online_pgdat(pgdat)
    		pgdat->min_slab_pages = 0;
    
    	for_each_zone(zone)
    		zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
    				sysctl_min_slab_ratio) / 100;
    }
    
    int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
    	void __user *buffer, size_t *length, loff_t *ppos)
    {
    	int rc;
    
    	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
    	if (rc)
    		return rc;
    
    	setup_min_slab_ratio();
    
    	return 0;
    }
    #endif
    
    /*
     * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
     *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
     *	whenever sysctl_lowmem_reserve_ratio changes.
     *
     * The reserve ratio obviously has absolutely no relation with the
     * minimum watermarks. The lowmem reserve ratio can only make sense
     * if in function of the boot time zone sizes.
     */
    int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
    	void __user *buffer, size_t *length, loff_t *ppos)
    {
    	proc_dointvec_minmax(table, write, buffer, length, ppos);
    	setup_per_zone_lowmem_reserve();
    	return 0;
    }
    
    /*
     * percpu_pagelist_fraction - changes the pcp->high for each zone on each
     * cpu.  It is the fraction of total pages in each zone that a hot per cpu
     * pagelist can have before it gets flushed back to buddy allocator.
     */
    int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
    	void __user *buffer, size_t *length, loff_t *ppos)
    {
    	struct zone *zone;
    	int old_percpu_pagelist_fraction;
    	int ret;
    
    	mutex_lock(&pcp_batch_high_lock);
    	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
    
    	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
    	if (!write || ret < 0)
    		goto out;
    
    	/* Sanity checking to avoid pcp imbalance */
    	if (percpu_pagelist_fraction &&
    	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
    		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
    		ret = -EINVAL;
    		goto out;
    	}
    
    	/* No change? */
    	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
    		goto out;
    
    	for_each_populated_zone(zone) {
    		unsigned int cpu;
    
    		for_each_possible_cpu(cpu)
    			pageset_set_high_and_batch(zone,
    					per_cpu_ptr(zone->pageset, cpu));
    	}
    out:
    	mutex_unlock(&pcp_batch_high_lock);
    	return ret;
    }
    
    #ifdef CONFIG_NUMA
    int hashdist = HASHDIST_DEFAULT;
    
    static int __init set_hashdist(char *str)
    {
    	if (!str)
    		return 0;
    	hashdist = simple_strtoul(str, &str, 0);
    	return 1;
    }
    __setup("hashdist=", set_hashdist);
    #endif
    
    #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
    /*
     * Returns the number of pages that arch has reserved but
     * is not known to alloc_large_system_hash().
     */
    static unsigned long __init arch_reserved_kernel_pages(void)
    {
    	return 0;
    }
    #endif
    
    /*
     * Adaptive scale is meant to reduce sizes of hash tables on large memory
     * machines. As memory size is increased the scale is also increased but at
     * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
     * quadruples the scale is increased by one, which means the size of hash table
     * only doubles, instead of quadrupling as well.
     * Because 32-bit systems cannot have large physical memory, where this scaling
     * makes sense, it is disabled on such platforms.
     */
    #if __BITS_PER_LONG > 32
    #define ADAPT_SCALE_BASE	(64ul << 30)
    #define ADAPT_SCALE_SHIFT	2
    #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
    #endif
    
    /*
     * allocate a large system hash table from bootmem
     * - it is assumed that the hash table must contain an exact power-of-2
     *   quantity of entries
     * - limit is the number of hash buckets, not the total allocation size
     */
    void *__init alloc_large_system_hash(const char *tablename,
    				     unsigned long bucketsize,
    				     unsigned long numentries,
    				     int scale,
    				     int flags,
    				     unsigned int *_hash_shift,
    				     unsigned int *_hash_mask,
    				     unsigned long low_limit,
    				     unsigned long high_limit)
    {
    	unsigned long long max = high_limit;
    	unsigned long log2qty, size;
    	void *table = NULL;
    	gfp_t gfp_flags;
    
    	/* allow the kernel cmdline to have a say */
    	if (!numentries) {
    		/* round applicable memory size up to nearest megabyte */
    		numentries = nr_kernel_pages;
    		numentries -= arch_reserved_kernel_pages();
    
    		/* It isn't necessary when PAGE_SIZE >= 1MB */
    		if (PAGE_SHIFT < 20)
    			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
    
    #if __BITS_PER_LONG > 32
    		if (!high_limit) {
    			unsigned long adapt;
    
    			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
    			     adapt <<= ADAPT_SCALE_SHIFT)
    				scale++;
    		}
    #endif
    
    		/* limit to 1 bucket per 2^scale bytes of low memory */
    		if (scale > PAGE_SHIFT)
    			numentries >>= (scale - PAGE_SHIFT);
    		else
    			numentries <<= (PAGE_SHIFT - scale);
    
    		/* Make sure we've got at least a 0-order allocation.. */
    		if (unlikely(flags & HASH_SMALL)) {
    			/* Makes no sense without HASH_EARLY */
    			WARN_ON(!(flags & HASH_EARLY));
    			if (!(numentries >> *_hash_shift)) {
    				numentries = 1UL << *_hash_shift;
    				BUG_ON(!numentries);
    			}
    		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
    			numentries = PAGE_SIZE / bucketsize;
    	}
    	numentries = roundup_pow_of_two(numentries);
    
    	/* limit allocation size to 1/16 total memory by default */
    	if (max == 0) {
    		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
    		do_div(max, bucketsize);
    	}
    	max = min(max, 0x80000000ULL);
    
    	if (numentries < low_limit)
    		numentries = low_limit;
    	if (numentries > max)
    		numentries = max;
    
    	log2qty = ilog2(numentries);
    
    	/*
    	 * memblock allocator returns zeroed memory already, so HASH_ZERO is
    	 * currently not used when HASH_EARLY is specified.
    	 */
    	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
    	do {
    		size = bucketsize << log2qty;
    		if (flags & HASH_EARLY)
    			table = memblock_virt_alloc_nopanic(size, 0);
    		else if (hashdist)
    			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
    		else {
    			/*
    			 * If bucketsize is not a power-of-two, we may free
    			 * some pages at the end of hash table which
    			 * alloc_pages_exact() automatically does
    			 */
    			if (get_order(size) < MAX_ORDER) {
    				table = alloc_pages_exact(size, gfp_flags);
    				kmemleak_alloc(table, size, 1, gfp_flags);
    			}
    		}
    	} while (!table && size > PAGE_SIZE && --log2qty);
    
    	if (!table)
    		panic("Failed to allocate %s hash table\n", tablename);
    
    	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
    		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
    
    	if (_hash_shift)
    		*_hash_shift = log2qty;
    	if (_hash_mask)
    		*_hash_mask = (1 << log2qty) - 1;
    
    	return table;
    }
    
    /*
     * This function checks whether pageblock includes unmovable pages or not.
     * If @count is not zero, it is okay to include less @count unmovable pages
     *
     * PageLRU check without isolation or lru_lock could race so that
     * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
     * check without lock_page also may miss some movable non-lru pages at
     * race condition. So you can't expect this function should be exact.
     */
    bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
    			 bool skip_hwpoisoned_pages)
    {
    	unsigned long pfn, iter, found;
    	int mt;
    
    	/*
    	 * For avoiding noise data, lru_add_drain_all() should be called
    	 * If ZONE_MOVABLE, the zone never contains unmovable pages
    	 */
    	if (zone_idx(zone) == ZONE_MOVABLE)
    		return false;
    	mt = get_pageblock_migratetype(page);
    	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
    		return false;
    
    	pfn = page_to_pfn(page);
    	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
    		unsigned long check = pfn + iter;
    
    		if (!pfn_valid_within(check))
    			continue;
    
    		page = pfn_to_page(check);
    
    		/*
    		 * Hugepages are not in LRU lists, but they're movable.
    		 * We need not scan over tail pages bacause we don't
    		 * handle each tail page individually in migration.
    		 */
    		if (PageHuge(page)) {
    			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
    			continue;
    		}
    
    		/*
    		 * We can't use page_count without pin a page
    		 * because another CPU can free compound page.
    		 * This check already skips compound tails of THP
    		 * because their page->_refcount is zero at all time.
    		 */
    		if (!page_ref_count(page)) {
    			if (PageBuddy(page))
    				iter += (1 << page_order(page)) - 1;
    			continue;
    		}
    
    		/*
    		 * The HWPoisoned page may be not in buddy system, and
    		 * page_count() is not 0.
    		 */
    		if (skip_hwpoisoned_pages && PageHWPoison(page))
    			continue;
    
    		if (__PageMovable(page))
    			continue;
    
    		if (!PageLRU(page))
    			found++;
    		/*
    		 * If there are RECLAIMABLE pages, we need to check
    		 * it.  But now, memory offline itself doesn't call
    		 * shrink_node_slabs() and it still to be fixed.
    		 */
    		/*
    		 * If the page is not RAM, page_count()should be 0.
    		 * we don't need more check. This is an _used_ not-movable page.
    		 *
    		 * The problematic thing here is PG_reserved pages. PG_reserved
    		 * is set to both of a memory hole page and a _used_ kernel
    		 * page at boot.
    		 */
    		if (found > count)
    			return true;
    	}
    	return false;
    }
    
    bool is_pageblock_removable_nolock(struct page *page)
    {
    	struct zone *zone;
    	unsigned long pfn;
    
    	/*
    	 * We have to be careful here because we are iterating over memory
    	 * sections which are not zone aware so we might end up outside of
    	 * the zone but still within the section.
    	 * We have to take care about the node as well. If the node is offline
    	 * its NODE_DATA will be NULL - see page_zone.
    	 */
    	if (!node_online(page_to_nid(page)))
    		return false;
    
    	zone = page_zone(page);
    	pfn = page_to_pfn(page);
    	if (!zone_spans_pfn(zone, pfn))
    		return false;
    
    	return !has_unmovable_pages(zone, page, 0, true);
    }
    
    #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
    
    static unsigned long pfn_max_align_down(unsigned long pfn)
    {
    	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
    			     pageblock_nr_pages) - 1);
    }
    
    static unsigned long pfn_max_align_up(unsigned long pfn)
    {
    	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
    				pageblock_nr_pages));
    }
    
    /* [start, end) must belong to a single zone. */
    static int __alloc_contig_migrate_range(struct compact_control *cc,
    					unsigned long start, unsigned long end)
    {
    	/* This function is based on compact_zone() from compaction.c. */
    	unsigned long nr_reclaimed;
    	unsigned long pfn = start;
    	unsigned int tries = 0;
    	int ret = 0;
    
    	migrate_prep();
    
    	while (pfn < end || !list_empty(&cc->migratepages)) {
    		if (fatal_signal_pending(current)) {
    			ret = -EINTR;
    			break;
    		}
    
    		if (list_empty(&cc->migratepages)) {
    			cc->nr_migratepages = 0;
    			pfn = isolate_migratepages_range(cc, pfn, end);
    			if (!pfn) {
    				ret = -EINTR;
    				break;
    			}
    			tries = 0;
    		} else if (++tries == 5) {
    			ret = ret < 0 ? ret : -EBUSY;
    			break;
    		}
    
    		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
    							&cc->migratepages);
    		cc->nr_migratepages -= nr_reclaimed;
    
    		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
    				    NULL, 0, cc->mode, MR_CMA);
    	}
    	if (ret < 0) {
    		putback_movable_pages(&cc->migratepages);
    		return ret;
    	}
    	return 0;
    }
    
    /**
     * alloc_contig_range() -- tries to allocate given range of pages
     * @start:	start PFN to allocate
     * @end:	one-past-the-last PFN to allocate
     * @migratetype:	migratetype of the underlaying pageblocks (either
     *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
     *			in range must have the same migratetype and it must
     *			be either of the two.
     * @gfp_mask:	GFP mask to use during compaction
     *
     * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
     * aligned, however it's the caller's responsibility to guarantee that
     * we are the only thread that changes migrate type of pageblocks the
     * pages fall in.
     *
     * The PFN range must belong to a single zone.
     *
     * Returns zero on success or negative error code.  On success all
     * pages which PFN is in [start, end) are allocated for the caller and
     * need to be freed with free_contig_range().
     */
    int alloc_contig_range(unsigned long start, unsigned long end,
    		       unsigned migratetype, gfp_t gfp_mask)
    {
    	unsigned long outer_start, outer_end;
    	unsigned int order;
    	int ret = 0;
    
    	struct compact_control cc = {
    		.nr_migratepages = 0,
    		.order = -1,
    		.zone = page_zone(pfn_to_page(start)),
    		.mode = MIGRATE_SYNC,
    		.ignore_skip_hint = true,
    		.gfp_mask = current_gfp_context(gfp_mask),
    	};
    	INIT_LIST_HEAD(&cc.migratepages);
    
    	/*
    	 * What we do here is we mark all pageblocks in range as
    	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
    	 * have different sizes, and due to the way page allocator
    	 * work, we align the range to biggest of the two pages so
    	 * that page allocator won't try to merge buddies from
    	 * different pageblocks and change MIGRATE_ISOLATE to some
    	 * other migration type.
    	 *
    	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
    	 * migrate the pages from an unaligned range (ie. pages that
    	 * we are interested in).  This will put all the pages in
    	 * range back to page allocator as MIGRATE_ISOLATE.
    	 *
    	 * When this is done, we take the pages in range from page
    	 * allocator removing them from the buddy system.  This way
    	 * page allocator will never consider using them.
    	 *
    	 * This lets us mark the pageblocks back as
    	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
    	 * aligned range but not in the unaligned, original range are
    	 * put back to page allocator so that buddy can use them.
    	 */
    
    	ret = start_isolate_page_range(pfn_max_align_down(start),
    				       pfn_max_align_up(end), migratetype,
    				       false);
    	if (ret)
    		return ret;
    
    	/*
    	 * In case of -EBUSY, we'd like to know which page causes problem.
    	 * So, just fall through. We will check it in test_pages_isolated().
    	 */
    	ret = __alloc_contig_migrate_range(&cc, start, end);
    	if (ret && ret != -EBUSY)
    		goto done;
    
    	/*
    	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
    	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
    	 * more, all pages in [start, end) are free in page allocator.
    	 * What we are going to do is to allocate all pages from
    	 * [start, end) (that is remove them from page allocator).
    	 *
    	 * The only problem is that pages at the beginning and at the
    	 * end of interesting range may be not aligned with pages that
    	 * page allocator holds, ie. they can be part of higher order
    	 * pages.  Because of this, we reserve the bigger range and
    	 * once this is done free the pages we are not interested in.
    	 *
    	 * We don't have to hold zone->lock here because the pages are
    	 * isolated thus they won't get removed from buddy.
    	 */
    
    	lru_add_drain_all();
    	drain_all_pages(cc.zone);
    
    	order = 0;
    	outer_start = start;
    	while (!PageBuddy(pfn_to_page(outer_start))) {
    		if (++order >= MAX_ORDER) {
    			outer_start = start;
    			break;
    		}
    		outer_start &= ~0UL << order;
    	}
    
    	if (outer_start != start) {
    		order = page_order(pfn_to_page(outer_start));
    
    		/*
    		 * outer_start page could be small order buddy page and
    		 * it doesn't include start page. Adjust outer_start
    		 * in this case to report failed page properly
    		 * on tracepoint in test_pages_isolated()
    		 */
    		if (outer_start + (1UL << order) <= start)
    			outer_start = start;
    	}
    
    	/* Make sure the range is really isolated. */
    	if (test_pages_isolated(outer_start, end, false)) {
    		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
    			__func__, outer_start, end);
    		ret = -EBUSY;
    		goto done;
    	}
    
    	/* Grab isolated pages from freelists. */
    	outer_end = isolate_freepages_range(&cc, outer_start, end);
    	if (!outer_end) {
    		ret = -EBUSY;
    		goto done;
    	}
    
    	/* Free head and tail (if any) */
    	if (start != outer_start)
    		free_contig_range(outer_start, start - outer_start);
    	if (end != outer_end)
    		free_contig_range(end, outer_end - end);
    
    done:
    	undo_isolate_page_range(pfn_max_align_down(start),
    				pfn_max_align_up(end), migratetype);
    	return ret;
    }
    
    void free_contig_range(unsigned long pfn, unsigned nr_pages)
    {
    	unsigned int count = 0;
    
    	for (; nr_pages--; pfn++) {
    		struct page *page = pfn_to_page(pfn);
    
    		count += page_count(page) != 1;
    		__free_page(page);
    	}
    	WARN(count != 0, "%d pages are still in use!\n", count);
    }
    #endif
    
    #ifdef CONFIG_MEMORY_HOTPLUG
    /*
     * The zone indicated has a new number of managed_pages; batch sizes and percpu
     * page high values need to be recalulated.
     */
    void __meminit zone_pcp_update(struct zone *zone)
    {
    	unsigned cpu;
    	mutex_lock(&pcp_batch_high_lock);
    	for_each_possible_cpu(cpu)
    		pageset_set_high_and_batch(zone,
    				per_cpu_ptr(zone->pageset, cpu));
    	mutex_unlock(&pcp_batch_high_lock);
    }
    #endif
    
    void zone_pcp_reset(struct zone *zone)
    {
    	unsigned long flags;
    	int cpu;
    	struct per_cpu_pageset *pset;
    
    	/* avoid races with drain_pages()  */
    	local_irq_save(flags);
    	if (zone->pageset != &boot_pageset) {
    		for_each_online_cpu(cpu) {
    			pset = per_cpu_ptr(zone->pageset, cpu);
    			drain_zonestat(zone, pset);
    		}
    		free_percpu(zone->pageset);
    		zone->pageset = &boot_pageset;
    	}
    	local_irq_restore(flags);
    }
    
    #ifdef CONFIG_MEMORY_HOTREMOVE
    /*
     * All pages in the range must be in a single zone and isolated
     * before calling this.
     */
    void
    __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
    {
    	struct page *page;
    	struct zone *zone;
    	unsigned int order, i;
    	unsigned long pfn;
    	unsigned long flags;
    	/* find the first valid pfn */
    	for (pfn = start_pfn; pfn < end_pfn; pfn++)
    		if (pfn_valid(pfn))
    			break;
    	if (pfn == end_pfn)
    		return;
    	offline_mem_sections(pfn, end_pfn);
    	zone = page_zone(pfn_to_page(pfn));
    	spin_lock_irqsave(&zone->lock, flags);
    	pfn = start_pfn;
    	while (pfn < end_pfn) {
    		if (!pfn_valid(pfn)) {
    			pfn++;
    			continue;
    		}
    		page = pfn_to_page(pfn);
    		/*
    		 * The HWPoisoned page may be not in buddy system, and
    		 * page_count() is not 0.
    		 */
    		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
    			pfn++;
    			SetPageReserved(page);
    			continue;
    		}
    
    		BUG_ON(page_count(page));
    		BUG_ON(!PageBuddy(page));
    		order = page_order(page);
    #ifdef CONFIG_DEBUG_VM
    		pr_info("remove from free list %lx %d %lx\n",
    			pfn, 1 << order, end_pfn);
    #endif
    		list_del(&page->lru);
    		rmv_page_order(page);
    		zone->free_area[order].nr_free--;
    		for (i = 0; i < (1 << order); i++)
    			SetPageReserved((page+i));
    		pfn += (1 << order);
    	}
    	spin_unlock_irqrestore(&zone->lock, flags);
    }
    #endif
    
    bool is_free_buddy_page(struct page *page)
    {
    	struct zone *zone = page_zone(page);
    	unsigned long pfn = page_to_pfn(page);
    	unsigned long flags;
    	unsigned int order;
    
    	spin_lock_irqsave(&zone->lock, flags);
    	for (order = 0; order < MAX_ORDER; order++) {
    		struct page *page_head = page - (pfn & ((1 << order) - 1));
    
    		if (PageBuddy(page_head) && page_order(page_head) >= order)
    			break;
    	}
    	spin_unlock_irqrestore(&zone->lock, flags);
    
    	return order < MAX_ORDER;
    }