Skip to content
Snippets Groups Projects
Select Git revision
  • 9f7d416c36124667c406978bcb39746589c35d7f
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

core.c

Blame
  • core.c 33.44 KiB
    /*
     *  Kernel Probes (KProbes)
     *
     * This program is free software; you can redistribute it and/or modify
     * it under the terms of the GNU General Public License as published by
     * the Free Software Foundation; either version 2 of the License, or
     * (at your option) any later version.
     *
     * This program is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     * GNU General Public License for more details.
     *
     * You should have received a copy of the GNU General Public License
     * along with this program; if not, write to the Free Software
     * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
     *
     * Copyright (C) IBM Corporation, 2002, 2004
     *
     * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
     *		Probes initial implementation ( includes contributions from
     *		Rusty Russell).
     * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
     *		interface to access function arguments.
     * 2004-Oct	Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
     *		<prasanna@in.ibm.com> adapted for x86_64 from i386.
     * 2005-Mar	Roland McGrath <roland@redhat.com>
     *		Fixed to handle %rip-relative addressing mode correctly.
     * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
     *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
     *		<prasanna@in.ibm.com> added function-return probes.
     * 2005-May	Rusty Lynch <rusty.lynch@intel.com>
     *		Added function return probes functionality
     * 2006-Feb	Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
     *		kprobe-booster and kretprobe-booster for i386.
     * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
     *		and kretprobe-booster for x86-64
     * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
     *		<arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
     *		unified x86 kprobes code.
     */
    #include <linux/kprobes.h>
    #include <linux/ptrace.h>
    #include <linux/string.h>
    #include <linux/slab.h>
    #include <linux/hardirq.h>
    #include <linux/preempt.h>
    #include <linux/extable.h>
    #include <linux/kdebug.h>
    #include <linux/kallsyms.h>
    #include <linux/ftrace.h>
    #include <linux/frame.h>
    #include <linux/kasan.h>
    
    #include <asm/text-patching.h>
    #include <asm/cacheflush.h>
    #include <asm/desc.h>
    #include <asm/pgtable.h>
    #include <asm/uaccess.h>
    #include <asm/alternative.h>
    #include <asm/insn.h>
    #include <asm/debugreg.h>
    
    #include "common.h"
    
    void jprobe_return_end(void);
    
    DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
    DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
    
    #define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs))
    
    #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
    	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
    	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
    	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
    	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
    	 << (row % 32))
    	/*
    	 * Undefined/reserved opcodes, conditional jump, Opcode Extension
    	 * Groups, and some special opcodes can not boost.
    	 * This is non-const and volatile to keep gcc from statically
    	 * optimizing it out, as variable_test_bit makes gcc think only
    	 * *(unsigned long*) is used.
    	 */
    static volatile u32 twobyte_is_boostable[256 / 32] = {
    	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
    	/*      ----------------------------------------------          */
    	W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
    	W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */
    	W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
    	W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
    	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
    	W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
    	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
    	W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
    	W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
    	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
    	W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
    	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
    	W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
    	W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
    	W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
    	W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0)   /* f0 */
    	/*      -----------------------------------------------         */
    	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
    };
    #undef W
    
    struct kretprobe_blackpoint kretprobe_blacklist[] = {
    	{"__switch_to", }, /* This function switches only current task, but
    			      doesn't switch kernel stack.*/
    	{NULL, NULL}	/* Terminator */
    };
    
    const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
    
    static nokprobe_inline void
    __synthesize_relative_insn(void *from, void *to, u8 op)
    {
    	struct __arch_relative_insn {
    		u8 op;
    		s32 raddr;
    	} __packed *insn;
    
    	insn = (struct __arch_relative_insn *)from;
    	insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
    	insn->op = op;
    }
    
    /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
    void synthesize_reljump(void *from, void *to)
    {
    	__synthesize_relative_insn(from, to, RELATIVEJUMP_OPCODE);
    }
    NOKPROBE_SYMBOL(synthesize_reljump);
    
    /* Insert a call instruction at address 'from', which calls address 'to'.*/
    void synthesize_relcall(void *from, void *to)
    {
    	__synthesize_relative_insn(from, to, RELATIVECALL_OPCODE);
    }
    NOKPROBE_SYMBOL(synthesize_relcall);
    
    /*
     * Skip the prefixes of the instruction.
     */
    static kprobe_opcode_t *skip_prefixes(kprobe_opcode_t *insn)
    {
    	insn_attr_t attr;
    
    	attr = inat_get_opcode_attribute((insn_byte_t)*insn);
    	while (inat_is_legacy_prefix(attr)) {
    		insn++;
    		attr = inat_get_opcode_attribute((insn_byte_t)*insn);
    	}
    #ifdef CONFIG_X86_64
    	if (inat_is_rex_prefix(attr))
    		insn++;
    #endif
    	return insn;
    }
    NOKPROBE_SYMBOL(skip_prefixes);
    
    /*
     * Returns non-zero if opcode is boostable.
     * RIP relative instructions are adjusted at copying time in 64 bits mode
     */
    int can_boost(kprobe_opcode_t *opcodes)
    {
    	kprobe_opcode_t opcode;
    	kprobe_opcode_t *orig_opcodes = opcodes;
    
    	if (search_exception_tables((unsigned long)opcodes))
    		return 0;	/* Page fault may occur on this address. */
    
    retry:
    	if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
    		return 0;
    	opcode = *(opcodes++);
    
    	/* 2nd-byte opcode */
    	if (opcode == 0x0f) {
    		if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1)
    			return 0;
    		return test_bit(*opcodes,
    				(unsigned long *)twobyte_is_boostable);
    	}
    
    	switch (opcode & 0xf0) {
    #ifdef CONFIG_X86_64
    	case 0x40:
    		goto retry; /* REX prefix is boostable */
    #endif
    	case 0x60:
    		if (0x63 < opcode && opcode < 0x67)
    			goto retry; /* prefixes */
    		/* can't boost Address-size override and bound */
    		return (opcode != 0x62 && opcode != 0x67);
    	case 0x70:
    		return 0; /* can't boost conditional jump */
    	case 0xc0:
    		/* can't boost software-interruptions */
    		return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
    	case 0xd0:
    		/* can boost AA* and XLAT */
    		return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
    	case 0xe0:
    		/* can boost in/out and absolute jmps */
    		return ((opcode & 0x04) || opcode == 0xea);
    	case 0xf0:
    		if ((opcode & 0x0c) == 0 && opcode != 0xf1)
    			goto retry; /* lock/rep(ne) prefix */
    		/* clear and set flags are boostable */
    		return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
    	default:
    		/* segment override prefixes are boostable */
    		if (opcode == 0x26 || opcode == 0x36 || opcode == 0x3e)
    			goto retry; /* prefixes */
    		/* CS override prefix and call are not boostable */
    		return (opcode != 0x2e && opcode != 0x9a);
    	}
    }
    
    static unsigned long
    __recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr)
    {
    	struct kprobe *kp;
    	unsigned long faddr;
    
    	kp = get_kprobe((void *)addr);
    	faddr = ftrace_location(addr);
    	/*
    	 * Addresses inside the ftrace location are refused by
    	 * arch_check_ftrace_location(). Something went terribly wrong
    	 * if such an address is checked here.
    	 */
    	if (WARN_ON(faddr && faddr != addr))
    		return 0UL;
    	/*
    	 * Use the current code if it is not modified by Kprobe
    	 * and it cannot be modified by ftrace.
    	 */
    	if (!kp && !faddr)
    		return addr;
    
    	/*
    	 * Basically, kp->ainsn.insn has an original instruction.
    	 * However, RIP-relative instruction can not do single-stepping
    	 * at different place, __copy_instruction() tweaks the displacement of
    	 * that instruction. In that case, we can't recover the instruction
    	 * from the kp->ainsn.insn.
    	 *
    	 * On the other hand, in case on normal Kprobe, kp->opcode has a copy
    	 * of the first byte of the probed instruction, which is overwritten
    	 * by int3. And the instruction at kp->addr is not modified by kprobes
    	 * except for the first byte, we can recover the original instruction
    	 * from it and kp->opcode.
    	 *
    	 * In case of Kprobes using ftrace, we do not have a copy of
    	 * the original instruction. In fact, the ftrace location might
    	 * be modified at anytime and even could be in an inconsistent state.
    	 * Fortunately, we know that the original code is the ideal 5-byte
    	 * long NOP.
    	 */
    	memcpy(buf, (void *)addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
    	if (faddr)
    		memcpy(buf, ideal_nops[NOP_ATOMIC5], 5);
    	else
    		buf[0] = kp->opcode;
    	return (unsigned long)buf;
    }
    
    /*
     * Recover the probed instruction at addr for further analysis.
     * Caller must lock kprobes by kprobe_mutex, or disable preemption
     * for preventing to release referencing kprobes.
     * Returns zero if the instruction can not get recovered.
     */
    unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
    {
    	unsigned long __addr;
    
    	__addr = __recover_optprobed_insn(buf, addr);
    	if (__addr != addr)
    		return __addr;
    
    	return __recover_probed_insn(buf, addr);
    }
    
    /* Check if paddr is at an instruction boundary */
    static int can_probe(unsigned long paddr)
    {
    	unsigned long addr, __addr, offset = 0;
    	struct insn insn;
    	kprobe_opcode_t buf[MAX_INSN_SIZE];
    
    	if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
    		return 0;
    
    	/* Decode instructions */
    	addr = paddr - offset;
    	while (addr < paddr) {
    		/*
    		 * Check if the instruction has been modified by another
    		 * kprobe, in which case we replace the breakpoint by the
    		 * original instruction in our buffer.
    		 * Also, jump optimization will change the breakpoint to
    		 * relative-jump. Since the relative-jump itself is
    		 * normally used, we just go through if there is no kprobe.
    		 */
    		__addr = recover_probed_instruction(buf, addr);
    		if (!__addr)
    			return 0;
    		kernel_insn_init(&insn, (void *)__addr, MAX_INSN_SIZE);
    		insn_get_length(&insn);
    
    		/*
    		 * Another debugging subsystem might insert this breakpoint.
    		 * In that case, we can't recover it.
    		 */
    		if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
    			return 0;
    		addr += insn.length;
    	}
    
    	return (addr == paddr);
    }
    
    /*
     * Returns non-zero if opcode modifies the interrupt flag.
     */
    static int is_IF_modifier(kprobe_opcode_t *insn)
    {
    	/* Skip prefixes */
    	insn = skip_prefixes(insn);
    
    	switch (*insn) {
    	case 0xfa:		/* cli */
    	case 0xfb:		/* sti */
    	case 0xcf:		/* iret/iretd */
    	case 0x9d:		/* popf/popfd */
    		return 1;
    	}
    
    	return 0;
    }
    
    /*
     * Copy an instruction and adjust the displacement if the instruction
     * uses the %rip-relative addressing mode.
     * If it does, Return the address of the 32-bit displacement word.
     * If not, return null.
     * Only applicable to 64-bit x86.
     */
    int __copy_instruction(u8 *dest, u8 *src)
    {
    	struct insn insn;
    	kprobe_opcode_t buf[MAX_INSN_SIZE];
    	int length;
    	unsigned long recovered_insn =
    		recover_probed_instruction(buf, (unsigned long)src);
    
    	if (!recovered_insn)
    		return 0;
    	kernel_insn_init(&insn, (void *)recovered_insn, MAX_INSN_SIZE);
    	insn_get_length(&insn);
    	length = insn.length;
    
    	/* Another subsystem puts a breakpoint, failed to recover */
    	if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION)
    		return 0;
    	memcpy(dest, insn.kaddr, length);
    
    #ifdef CONFIG_X86_64
    	if (insn_rip_relative(&insn)) {
    		s64 newdisp;
    		u8 *disp;
    		kernel_insn_init(&insn, dest, length);
    		insn_get_displacement(&insn);
    		/*
    		 * The copied instruction uses the %rip-relative addressing
    		 * mode.  Adjust the displacement for the difference between
    		 * the original location of this instruction and the location
    		 * of the copy that will actually be run.  The tricky bit here
    		 * is making sure that the sign extension happens correctly in
    		 * this calculation, since we need a signed 32-bit result to
    		 * be sign-extended to 64 bits when it's added to the %rip
    		 * value and yield the same 64-bit result that the sign-
    		 * extension of the original signed 32-bit displacement would
    		 * have given.
    		 */
    		newdisp = (u8 *) src + (s64) insn.displacement.value - (u8 *) dest;
    		if ((s64) (s32) newdisp != newdisp) {
    			pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp);
    			pr_err("\tSrc: %p, Dest: %p, old disp: %x\n", src, dest, insn.displacement.value);
    			return 0;
    		}
    		disp = (u8 *) dest + insn_offset_displacement(&insn);
    		*(s32 *) disp = (s32) newdisp;
    	}
    #endif
    	return length;
    }
    
    static int arch_copy_kprobe(struct kprobe *p)
    {
    	int ret;
    
    	/* Copy an instruction with recovering if other optprobe modifies it.*/
    	ret = __copy_instruction(p->ainsn.insn, p->addr);
    	if (!ret)
    		return -EINVAL;
    
    	/*
    	 * __copy_instruction can modify the displacement of the instruction,
    	 * but it doesn't affect boostable check.
    	 */
    	if (can_boost(p->ainsn.insn))
    		p->ainsn.boostable = 0;
    	else
    		p->ainsn.boostable = -1;
    
    	/* Check whether the instruction modifies Interrupt Flag or not */
    	p->ainsn.if_modifier = is_IF_modifier(p->ainsn.insn);
    
    	/* Also, displacement change doesn't affect the first byte */
    	p->opcode = p->ainsn.insn[0];
    
    	return 0;
    }
    
    int arch_prepare_kprobe(struct kprobe *p)
    {
    	if (alternatives_text_reserved(p->addr, p->addr))
    		return -EINVAL;
    
    	if (!can_probe((unsigned long)p->addr))
    		return -EILSEQ;
    	/* insn: must be on special executable page on x86. */
    	p->ainsn.insn = get_insn_slot();
    	if (!p->ainsn.insn)
    		return -ENOMEM;
    
    	return arch_copy_kprobe(p);
    }
    
    void arch_arm_kprobe(struct kprobe *p)
    {
    	text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1);
    }
    
    void arch_disarm_kprobe(struct kprobe *p)
    {
    	text_poke(p->addr, &p->opcode, 1);
    }
    
    void arch_remove_kprobe(struct kprobe *p)
    {
    	if (p->ainsn.insn) {
    		free_insn_slot(p->ainsn.insn, (p->ainsn.boostable == 1));
    		p->ainsn.insn = NULL;
    	}
    }
    
    static nokprobe_inline void
    save_previous_kprobe(struct kprobe_ctlblk *kcb)
    {
    	kcb->prev_kprobe.kp = kprobe_running();
    	kcb->prev_kprobe.status = kcb->kprobe_status;
    	kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
    	kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
    }
    
    static nokprobe_inline void
    restore_previous_kprobe(struct kprobe_ctlblk *kcb)
    {
    	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
    	kcb->kprobe_status = kcb->prev_kprobe.status;
    	kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
    	kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
    }
    
    static nokprobe_inline void
    set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
    		   struct kprobe_ctlblk *kcb)
    {
    	__this_cpu_write(current_kprobe, p);
    	kcb->kprobe_saved_flags = kcb->kprobe_old_flags
    		= (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
    	if (p->ainsn.if_modifier)
    		kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF;
    }
    
    static nokprobe_inline void clear_btf(void)
    {
    	if (test_thread_flag(TIF_BLOCKSTEP)) {
    		unsigned long debugctl = get_debugctlmsr();
    
    		debugctl &= ~DEBUGCTLMSR_BTF;
    		update_debugctlmsr(debugctl);
    	}
    }
    
    static nokprobe_inline void restore_btf(void)
    {
    	if (test_thread_flag(TIF_BLOCKSTEP)) {
    		unsigned long debugctl = get_debugctlmsr();
    
    		debugctl |= DEBUGCTLMSR_BTF;
    		update_debugctlmsr(debugctl);
    	}
    }
    
    void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
    {
    	unsigned long *sara = stack_addr(regs);
    
    	ri->ret_addr = (kprobe_opcode_t *) *sara;
    
    	/* Replace the return addr with trampoline addr */
    	*sara = (unsigned long) &kretprobe_trampoline;
    }
    NOKPROBE_SYMBOL(arch_prepare_kretprobe);
    
    static void setup_singlestep(struct kprobe *p, struct pt_regs *regs,
    			     struct kprobe_ctlblk *kcb, int reenter)
    {
    	if (setup_detour_execution(p, regs, reenter))
    		return;
    
    #if !defined(CONFIG_PREEMPT)
    	if (p->ainsn.boostable == 1 && !p->post_handler) {
    		/* Boost up -- we can execute copied instructions directly */
    		if (!reenter)
    			reset_current_kprobe();
    		/*
    		 * Reentering boosted probe doesn't reset current_kprobe,
    		 * nor set current_kprobe, because it doesn't use single
    		 * stepping.
    		 */
    		regs->ip = (unsigned long)p->ainsn.insn;
    		preempt_enable_no_resched();
    		return;
    	}
    #endif
    	if (reenter) {
    		save_previous_kprobe(kcb);
    		set_current_kprobe(p, regs, kcb);
    		kcb->kprobe_status = KPROBE_REENTER;
    	} else
    		kcb->kprobe_status = KPROBE_HIT_SS;
    	/* Prepare real single stepping */
    	clear_btf();
    	regs->flags |= X86_EFLAGS_TF;
    	regs->flags &= ~X86_EFLAGS_IF;
    	/* single step inline if the instruction is an int3 */
    	if (p->opcode == BREAKPOINT_INSTRUCTION)
    		regs->ip = (unsigned long)p->addr;
    	else
    		regs->ip = (unsigned long)p->ainsn.insn;
    }
    NOKPROBE_SYMBOL(setup_singlestep);
    
    /*
     * We have reentered the kprobe_handler(), since another probe was hit while
     * within the handler. We save the original kprobes variables and just single
     * step on the instruction of the new probe without calling any user handlers.
     */
    static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
    			  struct kprobe_ctlblk *kcb)
    {
    	switch (kcb->kprobe_status) {
    	case KPROBE_HIT_SSDONE:
    	case KPROBE_HIT_ACTIVE:
    	case KPROBE_HIT_SS:
    		kprobes_inc_nmissed_count(p);
    		setup_singlestep(p, regs, kcb, 1);
    		break;
    	case KPROBE_REENTER:
    		/* A probe has been hit in the codepath leading up to, or just
    		 * after, single-stepping of a probed instruction. This entire
    		 * codepath should strictly reside in .kprobes.text section.
    		 * Raise a BUG or we'll continue in an endless reentering loop
    		 * and eventually a stack overflow.
    		 */
    		printk(KERN_WARNING "Unrecoverable kprobe detected at %p.\n",
    		       p->addr);
    		dump_kprobe(p);
    		BUG();
    	default:
    		/* impossible cases */
    		WARN_ON(1);
    		return 0;
    	}
    
    	return 1;
    }
    NOKPROBE_SYMBOL(reenter_kprobe);
    
    /*
     * Interrupts are disabled on entry as trap3 is an interrupt gate and they
     * remain disabled throughout this function.
     */
    int kprobe_int3_handler(struct pt_regs *regs)
    {
    	kprobe_opcode_t *addr;
    	struct kprobe *p;
    	struct kprobe_ctlblk *kcb;
    
    	if (user_mode(regs))
    		return 0;
    
    	addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
    	/*
    	 * We don't want to be preempted for the entire
    	 * duration of kprobe processing. We conditionally
    	 * re-enable preemption at the end of this function,
    	 * and also in reenter_kprobe() and setup_singlestep().
    	 */
    	preempt_disable();
    
    	kcb = get_kprobe_ctlblk();
    	p = get_kprobe(addr);
    
    	if (p) {
    		if (kprobe_running()) {
    			if (reenter_kprobe(p, regs, kcb))
    				return 1;
    		} else {
    			set_current_kprobe(p, regs, kcb);
    			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
    
    			/*
    			 * If we have no pre-handler or it returned 0, we
    			 * continue with normal processing.  If we have a
    			 * pre-handler and it returned non-zero, it prepped
    			 * for calling the break_handler below on re-entry
    			 * for jprobe processing, so get out doing nothing
    			 * more here.
    			 */
    			if (!p->pre_handler || !p->pre_handler(p, regs))
    				setup_singlestep(p, regs, kcb, 0);
    			return 1;
    		}
    	} else if (*addr != BREAKPOINT_INSTRUCTION) {
    		/*
    		 * The breakpoint instruction was removed right
    		 * after we hit it.  Another cpu has removed
    		 * either a probepoint or a debugger breakpoint
    		 * at this address.  In either case, no further
    		 * handling of this interrupt is appropriate.
    		 * Back up over the (now missing) int3 and run
    		 * the original instruction.
    		 */
    		regs->ip = (unsigned long)addr;
    		preempt_enable_no_resched();
    		return 1;
    	} else if (kprobe_running()) {
    		p = __this_cpu_read(current_kprobe);
    		if (p->break_handler && p->break_handler(p, regs)) {
    			if (!skip_singlestep(p, regs, kcb))
    				setup_singlestep(p, regs, kcb, 0);
    			return 1;
    		}
    	} /* else: not a kprobe fault; let the kernel handle it */
    
    	preempt_enable_no_resched();
    	return 0;
    }
    NOKPROBE_SYMBOL(kprobe_int3_handler);
    
    /*
     * When a retprobed function returns, this code saves registers and
     * calls trampoline_handler() runs, which calls the kretprobe's handler.
     */
    asm(
    	".global kretprobe_trampoline\n"
    	".type kretprobe_trampoline, @function\n"
    	"kretprobe_trampoline:\n"
    #ifdef CONFIG_X86_64
    	/* We don't bother saving the ss register */
    	"	pushq %rsp\n"
    	"	pushfq\n"
    	SAVE_REGS_STRING
    	"	movq %rsp, %rdi\n"
    	"	call trampoline_handler\n"
    	/* Replace saved sp with true return address. */
    	"	movq %rax, 152(%rsp)\n"
    	RESTORE_REGS_STRING
    	"	popfq\n"
    #else
    	"	pushf\n"
    	SAVE_REGS_STRING
    	"	movl %esp, %eax\n"
    	"	call trampoline_handler\n"
    	/* Move flags to cs */
    	"	movl 56(%esp), %edx\n"
    	"	movl %edx, 52(%esp)\n"
    	/* Replace saved flags with true return address. */
    	"	movl %eax, 56(%esp)\n"
    	RESTORE_REGS_STRING
    	"	popf\n"
    #endif
    	"	ret\n"
    	".size kretprobe_trampoline, .-kretprobe_trampoline\n"
    );
    NOKPROBE_SYMBOL(kretprobe_trampoline);
    STACK_FRAME_NON_STANDARD(kretprobe_trampoline);
    
    /*
     * Called from kretprobe_trampoline
     */
    __visible __used void *trampoline_handler(struct pt_regs *regs)
    {
    	struct kretprobe_instance *ri = NULL;
    	struct hlist_head *head, empty_rp;
    	struct hlist_node *tmp;
    	unsigned long flags, orig_ret_address = 0;
    	unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
    	kprobe_opcode_t *correct_ret_addr = NULL;
    
    	INIT_HLIST_HEAD(&empty_rp);
    	kretprobe_hash_lock(current, &head, &flags);
    	/* fixup registers */
    #ifdef CONFIG_X86_64
    	regs->cs = __KERNEL_CS;
    #else
    	regs->cs = __KERNEL_CS | get_kernel_rpl();
    	regs->gs = 0;
    #endif
    	regs->ip = trampoline_address;
    	regs->orig_ax = ~0UL;
    
    	/*
    	 * It is possible to have multiple instances associated with a given
    	 * task either because multiple functions in the call path have
    	 * return probes installed on them, and/or more than one
    	 * return probe was registered for a target function.
    	 *
    	 * We can handle this because:
    	 *     - instances are always pushed into the head of the list
    	 *     - when multiple return probes are registered for the same
    	 *	 function, the (chronologically) first instance's ret_addr
    	 *	 will be the real return address, and all the rest will
    	 *	 point to kretprobe_trampoline.
    	 */
    	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
    		if (ri->task != current)
    			/* another task is sharing our hash bucket */
    			continue;
    
    		orig_ret_address = (unsigned long)ri->ret_addr;
    
    		if (orig_ret_address != trampoline_address)
    			/*
    			 * This is the real return address. Any other
    			 * instances associated with this task are for
    			 * other calls deeper on the call stack
    			 */
    			break;
    	}
    
    	kretprobe_assert(ri, orig_ret_address, trampoline_address);
    
    	correct_ret_addr = ri->ret_addr;
    	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
    		if (ri->task != current)
    			/* another task is sharing our hash bucket */
    			continue;
    
    		orig_ret_address = (unsigned long)ri->ret_addr;
    		if (ri->rp && ri->rp->handler) {
    			__this_cpu_write(current_kprobe, &ri->rp->kp);
    			get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
    			ri->ret_addr = correct_ret_addr;
    			ri->rp->handler(ri, regs);
    			__this_cpu_write(current_kprobe, NULL);
    		}
    
    		recycle_rp_inst(ri, &empty_rp);
    
    		if (orig_ret_address != trampoline_address)
    			/*
    			 * This is the real return address. Any other
    			 * instances associated with this task are for
    			 * other calls deeper on the call stack
    			 */
    			break;
    	}
    
    	kretprobe_hash_unlock(current, &flags);
    
    	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
    		hlist_del(&ri->hlist);
    		kfree(ri);
    	}
    	return (void *)orig_ret_address;
    }
    NOKPROBE_SYMBOL(trampoline_handler);
    
    /*
     * Called after single-stepping.  p->addr is the address of the
     * instruction whose first byte has been replaced by the "int 3"
     * instruction.  To avoid the SMP problems that can occur when we
     * temporarily put back the original opcode to single-step, we
     * single-stepped a copy of the instruction.  The address of this
     * copy is p->ainsn.insn.
     *
     * This function prepares to return from the post-single-step
     * interrupt.  We have to fix up the stack as follows:
     *
     * 0) Except in the case of absolute or indirect jump or call instructions,
     * the new ip is relative to the copied instruction.  We need to make
     * it relative to the original instruction.
     *
     * 1) If the single-stepped instruction was pushfl, then the TF and IF
     * flags are set in the just-pushed flags, and may need to be cleared.
     *
     * 2) If the single-stepped instruction was a call, the return address
     * that is atop the stack is the address following the copied instruction.
     * We need to make it the address following the original instruction.
     *
     * If this is the first time we've single-stepped the instruction at
     * this probepoint, and the instruction is boostable, boost it: add a
     * jump instruction after the copied instruction, that jumps to the next
     * instruction after the probepoint.
     */
    static void resume_execution(struct kprobe *p, struct pt_regs *regs,
    			     struct kprobe_ctlblk *kcb)
    {
    	unsigned long *tos = stack_addr(regs);
    	unsigned long copy_ip = (unsigned long)p->ainsn.insn;
    	unsigned long orig_ip = (unsigned long)p->addr;
    	kprobe_opcode_t *insn = p->ainsn.insn;
    
    	/* Skip prefixes */
    	insn = skip_prefixes(insn);
    
    	regs->flags &= ~X86_EFLAGS_TF;
    	switch (*insn) {
    	case 0x9c:	/* pushfl */
    		*tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF);
    		*tos |= kcb->kprobe_old_flags;
    		break;
    	case 0xc2:	/* iret/ret/lret */
    	case 0xc3:
    	case 0xca:
    	case 0xcb:
    	case 0xcf:
    	case 0xea:	/* jmp absolute -- ip is correct */
    		/* ip is already adjusted, no more changes required */
    		p->ainsn.boostable = 1;
    		goto no_change;
    	case 0xe8:	/* call relative - Fix return addr */
    		*tos = orig_ip + (*tos - copy_ip);
    		break;
    #ifdef CONFIG_X86_32
    	case 0x9a:	/* call absolute -- same as call absolute, indirect */
    		*tos = orig_ip + (*tos - copy_ip);
    		goto no_change;
    #endif
    	case 0xff:
    		if ((insn[1] & 0x30) == 0x10) {
    			/*
    			 * call absolute, indirect
    			 * Fix return addr; ip is correct.
    			 * But this is not boostable
    			 */
    			*tos = orig_ip + (*tos - copy_ip);
    			goto no_change;
    		} else if (((insn[1] & 0x31) == 0x20) ||
    			   ((insn[1] & 0x31) == 0x21)) {
    			/*
    			 * jmp near and far, absolute indirect
    			 * ip is correct. And this is boostable
    			 */
    			p->ainsn.boostable = 1;
    			goto no_change;
    		}
    	default:
    		break;
    	}
    
    	if (p->ainsn.boostable == 0) {
    		if ((regs->ip > copy_ip) &&
    		    (regs->ip - copy_ip) + 5 < MAX_INSN_SIZE) {
    			/*
    			 * These instructions can be executed directly if it
    			 * jumps back to correct address.
    			 */
    			synthesize_reljump((void *)regs->ip,
    				(void *)orig_ip + (regs->ip - copy_ip));
    			p->ainsn.boostable = 1;
    		} else {
    			p->ainsn.boostable = -1;
    		}
    	}
    
    	regs->ip += orig_ip - copy_ip;
    
    no_change:
    	restore_btf();
    }
    NOKPROBE_SYMBOL(resume_execution);
    
    /*
     * Interrupts are disabled on entry as trap1 is an interrupt gate and they
     * remain disabled throughout this function.
     */
    int kprobe_debug_handler(struct pt_regs *regs)
    {
    	struct kprobe *cur = kprobe_running();
    	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
    
    	if (!cur)
    		return 0;
    
    	resume_execution(cur, regs, kcb);
    	regs->flags |= kcb->kprobe_saved_flags;
    
    	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
    		kcb->kprobe_status = KPROBE_HIT_SSDONE;
    		cur->post_handler(cur, regs, 0);
    	}
    
    	/* Restore back the original saved kprobes variables and continue. */
    	if (kcb->kprobe_status == KPROBE_REENTER) {
    		restore_previous_kprobe(kcb);
    		goto out;
    	}
    	reset_current_kprobe();
    out:
    	preempt_enable_no_resched();
    
    	/*
    	 * if somebody else is singlestepping across a probe point, flags
    	 * will have TF set, in which case, continue the remaining processing
    	 * of do_debug, as if this is not a probe hit.
    	 */
    	if (regs->flags & X86_EFLAGS_TF)
    		return 0;
    
    	return 1;
    }
    NOKPROBE_SYMBOL(kprobe_debug_handler);
    
    int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
    {
    	struct kprobe *cur = kprobe_running();
    	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
    
    	if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) {
    		/* This must happen on single-stepping */
    		WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS &&
    			kcb->kprobe_status != KPROBE_REENTER);
    		/*
    		 * We are here because the instruction being single
    		 * stepped caused a page fault. We reset the current
    		 * kprobe and the ip points back to the probe address
    		 * and allow the page fault handler to continue as a
    		 * normal page fault.
    		 */
    		regs->ip = (unsigned long)cur->addr;
    		/*
    		 * Trap flag (TF) has been set here because this fault
    		 * happened where the single stepping will be done.
    		 * So clear it by resetting the current kprobe:
    		 */
    		regs->flags &= ~X86_EFLAGS_TF;
    
    		/*
    		 * If the TF flag was set before the kprobe hit,
    		 * don't touch it:
    		 */
    		regs->flags |= kcb->kprobe_old_flags;
    
    		if (kcb->kprobe_status == KPROBE_REENTER)
    			restore_previous_kprobe(kcb);
    		else
    			reset_current_kprobe();
    		preempt_enable_no_resched();
    	} else if (kcb->kprobe_status == KPROBE_HIT_ACTIVE ||
    		   kcb->kprobe_status == KPROBE_HIT_SSDONE) {
    		/*
    		 * We increment the nmissed count for accounting,
    		 * we can also use npre/npostfault count for accounting
    		 * these specific fault cases.
    		 */
    		kprobes_inc_nmissed_count(cur);
    
    		/*
    		 * We come here because instructions in the pre/post
    		 * handler caused the page_fault, this could happen
    		 * if handler tries to access user space by
    		 * copy_from_user(), get_user() etc. Let the
    		 * user-specified handler try to fix it first.
    		 */
    		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
    			return 1;
    
    		/*
    		 * In case the user-specified fault handler returned
    		 * zero, try to fix up.
    		 */
    		if (fixup_exception(regs, trapnr))
    			return 1;
    
    		/*
    		 * fixup routine could not handle it,
    		 * Let do_page_fault() fix it.
    		 */
    	}
    
    	return 0;
    }
    NOKPROBE_SYMBOL(kprobe_fault_handler);
    
    /*
     * Wrapper routine for handling exceptions.
     */
    int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val,
    			     void *data)
    {
    	struct die_args *args = data;
    	int ret = NOTIFY_DONE;
    
    	if (args->regs && user_mode(args->regs))
    		return ret;
    
    	if (val == DIE_GPF) {
    		/*
    		 * To be potentially processing a kprobe fault and to
    		 * trust the result from kprobe_running(), we have
    		 * be non-preemptible.
    		 */
    		if (!preemptible() && kprobe_running() &&
    		    kprobe_fault_handler(args->regs, args->trapnr))
    			ret = NOTIFY_STOP;
    	}
    	return ret;
    }
    NOKPROBE_SYMBOL(kprobe_exceptions_notify);
    
    int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
    {
    	struct jprobe *jp = container_of(p, struct jprobe, kp);
    	unsigned long addr;
    	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
    
    	kcb->jprobe_saved_regs = *regs;
    	kcb->jprobe_saved_sp = stack_addr(regs);
    	addr = (unsigned long)(kcb->jprobe_saved_sp);
    
    	/*
    	 * As Linus pointed out, gcc assumes that the callee
    	 * owns the argument space and could overwrite it, e.g.
    	 * tailcall optimization. So, to be absolutely safe
    	 * we also save and restore enough stack bytes to cover
    	 * the argument area.
    	 * Use __memcpy() to avoid KASAN stack out-of-bounds reports as we copy
    	 * raw stack chunk with redzones:
    	 */
    	__memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr, MIN_STACK_SIZE(addr));
    	regs->flags &= ~X86_EFLAGS_IF;
    	trace_hardirqs_off();
    	regs->ip = (unsigned long)(jp->entry);
    
    	/*
    	 * jprobes use jprobe_return() which skips the normal return
    	 * path of the function, and this messes up the accounting of the
    	 * function graph tracer to get messed up.
    	 *
    	 * Pause function graph tracing while performing the jprobe function.
    	 */
    	pause_graph_tracing();
    	return 1;
    }
    NOKPROBE_SYMBOL(setjmp_pre_handler);
    
    void jprobe_return(void)
    {
    	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
    
    	/* Unpoison stack redzones in the frames we are going to jump over. */
    	kasan_unpoison_stack_above_sp_to(kcb->jprobe_saved_sp);
    
    	asm volatile (
    #ifdef CONFIG_X86_64
    			"       xchg   %%rbx,%%rsp	\n"
    #else
    			"       xchgl   %%ebx,%%esp	\n"
    #endif
    			"       int3			\n"
    			"       .globl jprobe_return_end\n"
    			"       jprobe_return_end:	\n"
    			"       nop			\n"::"b"
    			(kcb->jprobe_saved_sp):"memory");
    }
    NOKPROBE_SYMBOL(jprobe_return);
    NOKPROBE_SYMBOL(jprobe_return_end);
    
    int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
    {
    	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
    	u8 *addr = (u8 *) (regs->ip - 1);
    	struct jprobe *jp = container_of(p, struct jprobe, kp);
    	void *saved_sp = kcb->jprobe_saved_sp;
    
    	if ((addr > (u8 *) jprobe_return) &&
    	    (addr < (u8 *) jprobe_return_end)) {
    		if (stack_addr(regs) != saved_sp) {
    			struct pt_regs *saved_regs = &kcb->jprobe_saved_regs;
    			printk(KERN_ERR
    			       "current sp %p does not match saved sp %p\n",
    			       stack_addr(regs), saved_sp);
    			printk(KERN_ERR "Saved registers for jprobe %p\n", jp);
    			show_regs(saved_regs);
    			printk(KERN_ERR "Current registers\n");
    			show_regs(regs);
    			BUG();
    		}
    		/* It's OK to start function graph tracing again */
    		unpause_graph_tracing();
    		*regs = kcb->jprobe_saved_regs;
    		__memcpy(saved_sp, kcb->jprobes_stack, MIN_STACK_SIZE(saved_sp));
    		preempt_enable_no_resched();
    		return 1;
    	}
    	return 0;
    }
    NOKPROBE_SYMBOL(longjmp_break_handler);
    
    bool arch_within_kprobe_blacklist(unsigned long addr)
    {
    	return  (addr >= (unsigned long)__kprobes_text_start &&
    		 addr < (unsigned long)__kprobes_text_end) ||
    		(addr >= (unsigned long)__entry_text_start &&
    		 addr < (unsigned long)__entry_text_end);
    }
    
    int __init arch_init_kprobes(void)
    {
    	return 0;
    }
    
    int arch_trampoline_kprobe(struct kprobe *p)
    {
    	return 0;
    }