Skip to content
Snippets Groups Projects
Select Git revision
  • 9f7e3387939b036faacf4e7f32de7bb92a6635d6
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

internal.h

Blame
  • internal.h 15.29 KiB
    /* internal.h: mm/ internal definitions
     *
     * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
     * Written by David Howells (dhowells@redhat.com)
     *
     * This program is free software; you can redistribute it and/or
     * modify it under the terms of the GNU General Public License
     * as published by the Free Software Foundation; either version
     * 2 of the License, or (at your option) any later version.
     */
    #ifndef __MM_INTERNAL_H
    #define __MM_INTERNAL_H
    
    #include <linux/fs.h>
    #include <linux/mm.h>
    #include <linux/pagemap.h>
    #include <linux/tracepoint-defs.h>
    
    /*
     * The set of flags that only affect watermark checking and reclaim
     * behaviour. This is used by the MM to obey the caller constraints
     * about IO, FS and watermark checking while ignoring placement
     * hints such as HIGHMEM usage.
     */
    #define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\
    			__GFP_NOWARN|__GFP_REPEAT|__GFP_NOFAIL|\
    			__GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\
    			__GFP_ATOMIC)
    
    /* The GFP flags allowed during early boot */
    #define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS))
    
    /* Control allocation cpuset and node placement constraints */
    #define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE)
    
    /* Do not use these with a slab allocator */
    #define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK)
    
    int do_swap_page(struct fault_env *fe, pte_t orig_pte);
    
    void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
    		unsigned long floor, unsigned long ceiling);
    
    void unmap_page_range(struct mmu_gather *tlb,
    			     struct vm_area_struct *vma,
    			     unsigned long addr, unsigned long end,
    			     struct zap_details *details);
    
    extern int __do_page_cache_readahead(struct address_space *mapping,
    		struct file *filp, pgoff_t offset, unsigned long nr_to_read,
    		unsigned long lookahead_size);
    
    /*
     * Submit IO for the read-ahead request in file_ra_state.
     */
    static inline unsigned long ra_submit(struct file_ra_state *ra,
    		struct address_space *mapping, struct file *filp)
    {
    	return __do_page_cache_readahead(mapping, filp,
    					ra->start, ra->size, ra->async_size);
    }
    
    /*
     * Turn a non-refcounted page (->_refcount == 0) into refcounted with
     * a count of one.
     */
    static inline void set_page_refcounted(struct page *page)
    {
    	VM_BUG_ON_PAGE(PageTail(page), page);
    	VM_BUG_ON_PAGE(page_ref_count(page), page);
    	set_page_count(page, 1);
    }
    
    extern unsigned long highest_memmap_pfn;
    
    /*
     * in mm/vmscan.c:
     */
    extern int isolate_lru_page(struct page *page);
    extern void putback_lru_page(struct page *page);
    extern bool pgdat_reclaimable(struct pglist_data *pgdat);
    
    /*
     * in mm/rmap.c:
     */
    extern pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address);
    
    /*
     * in mm/page_alloc.c
     */
    
    /*
     * Structure for holding the mostly immutable allocation parameters passed
     * between functions involved in allocations, including the alloc_pages*
     * family of functions.
     *
     * nodemask, migratetype and high_zoneidx are initialized only once in
     * __alloc_pages_nodemask() and then never change.
     *
     * zonelist, preferred_zone and classzone_idx are set first in
     * __alloc_pages_nodemask() for the fast path, and might be later changed
     * in __alloc_pages_slowpath(). All other functions pass the whole strucure
     * by a const pointer.
     */
    struct alloc_context {
    	struct zonelist *zonelist;
    	nodemask_t *nodemask;
    	struct zoneref *preferred_zoneref;
    	int migratetype;
    	enum zone_type high_zoneidx;
    	bool spread_dirty_pages;
    };
    
    #define ac_classzone_idx(ac) zonelist_zone_idx(ac->preferred_zoneref)
    
    /*
     * Locate the struct page for both the matching buddy in our
     * pair (buddy1) and the combined O(n+1) page they form (page).
     *
     * 1) Any buddy B1 will have an order O twin B2 which satisfies
     * the following equation:
     *     B2 = B1 ^ (1 << O)
     * For example, if the starting buddy (buddy2) is #8 its order
     * 1 buddy is #10:
     *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
     *
     * 2) Any buddy B will have an order O+1 parent P which
     * satisfies the following equation:
     *     P = B & ~(1 << O)
     *
     * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
     */
    static inline unsigned long
    __find_buddy_index(unsigned long page_idx, unsigned int order)
    {
    	return page_idx ^ (1 << order);
    }
    
    extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
    				unsigned long end_pfn, struct zone *zone);
    
    static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn,
    				unsigned long end_pfn, struct zone *zone)
    {
    	if (zone->contiguous)
    		return pfn_to_page(start_pfn);
    
    	return __pageblock_pfn_to_page(start_pfn, end_pfn, zone);
    }
    
    extern int __isolate_free_page(struct page *page, unsigned int order);
    extern void __free_pages_bootmem(struct page *page, unsigned long pfn,
    					unsigned int order);
    extern void prep_compound_page(struct page *page, unsigned int order);
    extern void post_alloc_hook(struct page *page, unsigned int order,
    					gfp_t gfp_flags);
    extern int user_min_free_kbytes;
    
    #if defined CONFIG_COMPACTION || defined CONFIG_CMA
    
    /*
     * in mm/compaction.c
     */
    /*
     * compact_control is used to track pages being migrated and the free pages
     * they are being migrated to during memory compaction. The free_pfn starts
     * at the end of a zone and migrate_pfn begins at the start. Movable pages
     * are moved to the end of a zone during a compaction run and the run
     * completes when free_pfn <= migrate_pfn
     */
    struct compact_control {
    	struct list_head freepages;	/* List of free pages to migrate to */
    	struct list_head migratepages;	/* List of pages being migrated */
    	unsigned long nr_freepages;	/* Number of isolated free pages */
    	unsigned long nr_migratepages;	/* Number of pages to migrate */
    	unsigned long free_pfn;		/* isolate_freepages search base */
    	unsigned long migrate_pfn;	/* isolate_migratepages search base */
    	unsigned long last_migrated_pfn;/* Not yet flushed page being freed */
    	enum migrate_mode mode;		/* Async or sync migration mode */
    	bool ignore_skip_hint;		/* Scan blocks even if marked skip */
    	bool ignore_block_suitable;	/* Scan blocks considered unsuitable */
    	bool direct_compaction;		/* False from kcompactd or /proc/... */
    	bool whole_zone;		/* Whole zone should/has been scanned */
    	int order;			/* order a direct compactor needs */
    	const gfp_t gfp_mask;		/* gfp mask of a direct compactor */
    	const unsigned int alloc_flags;	/* alloc flags of a direct compactor */
    	const int classzone_idx;	/* zone index of a direct compactor */
    	struct zone *zone;
    	bool contended;			/* Signal lock or sched contention */
    };
    
    unsigned long
    isolate_freepages_range(struct compact_control *cc,
    			unsigned long start_pfn, unsigned long end_pfn);
    unsigned long
    isolate_migratepages_range(struct compact_control *cc,
    			   unsigned long low_pfn, unsigned long end_pfn);
    int find_suitable_fallback(struct free_area *area, unsigned int order,
    			int migratetype, bool only_stealable, bool *can_steal);
    
    #endif
    
    /*
     * This function returns the order of a free page in the buddy system. In
     * general, page_zone(page)->lock must be held by the caller to prevent the
     * page from being allocated in parallel and returning garbage as the order.
     * If a caller does not hold page_zone(page)->lock, it must guarantee that the
     * page cannot be allocated or merged in parallel. Alternatively, it must
     * handle invalid values gracefully, and use page_order_unsafe() below.
     */
    static inline unsigned int page_order(struct page *page)
    {
    	/* PageBuddy() must be checked by the caller */
    	return page_private(page);
    }
    
    /*
     * Like page_order(), but for callers who cannot afford to hold the zone lock.
     * PageBuddy() should be checked first by the caller to minimize race window,
     * and invalid values must be handled gracefully.
     *
     * READ_ONCE is used so that if the caller assigns the result into a local
     * variable and e.g. tests it for valid range before using, the compiler cannot
     * decide to remove the variable and inline the page_private(page) multiple
     * times, potentially observing different values in the tests and the actual
     * use of the result.
     */
    #define page_order_unsafe(page)		READ_ONCE(page_private(page))
    
    static inline bool is_cow_mapping(vm_flags_t flags)
    {
    	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
    }
    
    /*
     * These three helpers classifies VMAs for virtual memory accounting.
     */
    
    /*
     * Executable code area - executable, not writable, not stack
     */
    static inline bool is_exec_mapping(vm_flags_t flags)
    {
    	return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC;
    }
    
    /*
     * Stack area - atomatically grows in one direction
     *
     * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous:
     * do_mmap() forbids all other combinations.
     */
    static inline bool is_stack_mapping(vm_flags_t flags)
    {
    	return (flags & VM_STACK) == VM_STACK;
    }
    
    /*
     * Data area - private, writable, not stack
     */
    static inline bool is_data_mapping(vm_flags_t flags)
    {
    	return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE;
    }
    
    /* mm/util.c */
    void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
    		struct vm_area_struct *prev, struct rb_node *rb_parent);
    
    #ifdef CONFIG_MMU
    extern long populate_vma_page_range(struct vm_area_struct *vma,
    		unsigned long start, unsigned long end, int *nonblocking);
    extern void munlock_vma_pages_range(struct vm_area_struct *vma,
    			unsigned long start, unsigned long end);
    static inline void munlock_vma_pages_all(struct vm_area_struct *vma)
    {
    	munlock_vma_pages_range(vma, vma->vm_start, vma->vm_end);
    }
    
    /*
     * must be called with vma's mmap_sem held for read or write, and page locked.
     */
    extern void mlock_vma_page(struct page *page);
    extern unsigned int munlock_vma_page(struct page *page);
    
    /*
     * Clear the page's PageMlocked().  This can be useful in a situation where
     * we want to unconditionally remove a page from the pagecache -- e.g.,
     * on truncation or freeing.
     *
     * It is legal to call this function for any page, mlocked or not.
     * If called for a page that is still mapped by mlocked vmas, all we do
     * is revert to lazy LRU behaviour -- semantics are not broken.
     */
    extern void clear_page_mlock(struct page *page);
    
    /*
     * mlock_migrate_page - called only from migrate_misplaced_transhuge_page()
     * (because that does not go through the full procedure of migration ptes):
     * to migrate the Mlocked page flag; update statistics.
     */
    static inline void mlock_migrate_page(struct page *newpage, struct page *page)
    {
    	if (TestClearPageMlocked(page)) {
    		int nr_pages = hpage_nr_pages(page);
    
    		/* Holding pmd lock, no change in irq context: __mod is safe */
    		__mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
    		SetPageMlocked(newpage);
    		__mod_zone_page_state(page_zone(newpage), NR_MLOCK, nr_pages);
    	}
    }
    
    extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
    
    /*
     * At what user virtual address is page expected in @vma?
     */
    static inline unsigned long
    __vma_address(struct page *page, struct vm_area_struct *vma)
    {
    	pgoff_t pgoff = page_to_pgoff(page);
    	return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
    }
    
    static inline unsigned long
    vma_address(struct page *page, struct vm_area_struct *vma)
    {
    	unsigned long address = __vma_address(page, vma);
    
    	/* page should be within @vma mapping range */
    	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
    
    	return address;
    }
    
    #else /* !CONFIG_MMU */
    static inline void clear_page_mlock(struct page *page) { }
    static inline void mlock_vma_page(struct page *page) { }
    static inline void mlock_migrate_page(struct page *new, struct page *old) { }
    
    #endif /* !CONFIG_MMU */
    
    /*
     * Return the mem_map entry representing the 'offset' subpage within
     * the maximally aligned gigantic page 'base'.  Handle any discontiguity
     * in the mem_map at MAX_ORDER_NR_PAGES boundaries.
     */
    static inline struct page *mem_map_offset(struct page *base, int offset)
    {
    	if (unlikely(offset >= MAX_ORDER_NR_PAGES))
    		return nth_page(base, offset);
    	return base + offset;
    }
    
    /*
     * Iterator over all subpages within the maximally aligned gigantic
     * page 'base'.  Handle any discontiguity in the mem_map.
     */
    static inline struct page *mem_map_next(struct page *iter,
    						struct page *base, int offset)
    {
    	if (unlikely((offset & (MAX_ORDER_NR_PAGES - 1)) == 0)) {
    		unsigned long pfn = page_to_pfn(base) + offset;
    		if (!pfn_valid(pfn))
    			return NULL;
    		return pfn_to_page(pfn);
    	}
    	return iter + 1;
    }
    
    /*
     * FLATMEM and DISCONTIGMEM configurations use alloc_bootmem_node,
     * so all functions starting at paging_init should be marked __init
     * in those cases. SPARSEMEM, however, allows for memory hotplug,
     * and alloc_bootmem_node is not used.
     */
    #ifdef CONFIG_SPARSEMEM
    #define __paginginit __meminit
    #else
    #define __paginginit __init
    #endif
    
    /* Memory initialisation debug and verification */
    enum mminit_level {
    	MMINIT_WARNING,
    	MMINIT_VERIFY,
    	MMINIT_TRACE
    };
    
    #ifdef CONFIG_DEBUG_MEMORY_INIT
    
    extern int mminit_loglevel;
    
    #define mminit_dprintk(level, prefix, fmt, arg...) \
    do { \
    	if (level < mminit_loglevel) { \
    		if (level <= MMINIT_WARNING) \
    			pr_warn("mminit::" prefix " " fmt, ##arg);	\
    		else \
    			printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \
    	} \
    } while (0)
    
    extern void mminit_verify_pageflags_layout(void);
    extern void mminit_verify_zonelist(void);
    #else
    
    static inline void mminit_dprintk(enum mminit_level level,
    				const char *prefix, const char *fmt, ...)
    {
    }
    
    static inline void mminit_verify_pageflags_layout(void)
    {
    }
    
    static inline void mminit_verify_zonelist(void)
    {
    }
    #endif /* CONFIG_DEBUG_MEMORY_INIT */
    
    /* mminit_validate_memmodel_limits is independent of CONFIG_DEBUG_MEMORY_INIT */
    #if defined(CONFIG_SPARSEMEM)
    extern void mminit_validate_memmodel_limits(unsigned long *start_pfn,
    				unsigned long *end_pfn);
    #else
    static inline void mminit_validate_memmodel_limits(unsigned long *start_pfn,
    				unsigned long *end_pfn)
    {
    }
    #endif /* CONFIG_SPARSEMEM */
    
    #define NODE_RECLAIM_NOSCAN	-2
    #define NODE_RECLAIM_FULL	-1
    #define NODE_RECLAIM_SOME	0
    #define NODE_RECLAIM_SUCCESS	1
    
    extern int hwpoison_filter(struct page *p);
    
    extern u32 hwpoison_filter_dev_major;
    extern u32 hwpoison_filter_dev_minor;
    extern u64 hwpoison_filter_flags_mask;
    extern u64 hwpoison_filter_flags_value;
    extern u64 hwpoison_filter_memcg;
    extern u32 hwpoison_filter_enable;
    
    extern unsigned long  __must_check vm_mmap_pgoff(struct file *, unsigned long,
            unsigned long, unsigned long,
            unsigned long, unsigned long);
    
    extern void set_pageblock_order(void);
    unsigned long reclaim_clean_pages_from_list(struct zone *zone,
    					    struct list_head *page_list);
    /* The ALLOC_WMARK bits are used as an index to zone->watermark */
    #define ALLOC_WMARK_MIN		WMARK_MIN
    #define ALLOC_WMARK_LOW		WMARK_LOW
    #define ALLOC_WMARK_HIGH	WMARK_HIGH
    #define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
    
    /* Mask to get the watermark bits */
    #define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
    
    #define ALLOC_HARDER		0x10 /* try to alloc harder */
    #define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
    #define ALLOC_CPUSET		0x40 /* check for correct cpuset */
    #define ALLOC_CMA		0x80 /* allow allocations from CMA areas */
    
    enum ttu_flags;
    struct tlbflush_unmap_batch;
    
    #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
    void try_to_unmap_flush(void);
    void try_to_unmap_flush_dirty(void);
    #else
    static inline void try_to_unmap_flush(void)
    {
    }
    static inline void try_to_unmap_flush_dirty(void)
    {
    }
    
    #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
    
    extern const struct trace_print_flags pageflag_names[];
    extern const struct trace_print_flags vmaflag_names[];
    extern const struct trace_print_flags gfpflag_names[];
    
    #endif	/* __MM_INTERNAL_H */