Skip to content
Snippets Groups Projects
Select Git revision
  • a00cda3f0a57e3b39d8dc512e45586241dc304bb
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

gup.c

Blame
  • gup.c 82.84 KiB
    // SPDX-License-Identifier: GPL-2.0-only
    #include <linux/kernel.h>
    #include <linux/errno.h>
    #include <linux/err.h>
    #include <linux/spinlock.h>
    
    #include <linux/mm.h>
    #include <linux/memremap.h>
    #include <linux/pagemap.h>
    #include <linux/rmap.h>
    #include <linux/swap.h>
    #include <linux/swapops.h>
    
    #include <linux/sched/signal.h>
    #include <linux/rwsem.h>
    #include <linux/hugetlb.h>
    #include <linux/migrate.h>
    #include <linux/mm_inline.h>
    #include <linux/sched/mm.h>
    
    #include <asm/mmu_context.h>
    #include <asm/tlbflush.h>
    
    #include "internal.h"
    
    struct follow_page_context {
    	struct dev_pagemap *pgmap;
    	unsigned int page_mask;
    };
    
    static void hpage_pincount_add(struct page *page, int refs)
    {
    	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
    	VM_BUG_ON_PAGE(page != compound_head(page), page);
    
    	atomic_add(refs, compound_pincount_ptr(page));
    }
    
    static void hpage_pincount_sub(struct page *page, int refs)
    {
    	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
    	VM_BUG_ON_PAGE(page != compound_head(page), page);
    
    	atomic_sub(refs, compound_pincount_ptr(page));
    }
    
    /*
     * Return the compound head page with ref appropriately incremented,
     * or NULL if that failed.
     */
    static inline struct page *try_get_compound_head(struct page *page, int refs)
    {
    	struct page *head = compound_head(page);
    
    	if (WARN_ON_ONCE(page_ref_count(head) < 0))
    		return NULL;
    	if (unlikely(!page_cache_add_speculative(head, refs)))
    		return NULL;
    	return head;
    }
    
    /*
     * try_grab_compound_head() - attempt to elevate a page's refcount, by a
     * flags-dependent amount.
     *
     * "grab" names in this file mean, "look at flags to decide whether to use
     * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
     *
     * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
     * same time. (That's true throughout the get_user_pages*() and
     * pin_user_pages*() APIs.) Cases:
     *
     *    FOLL_GET: page's refcount will be incremented by 1.
     *    FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
     *
     * Return: head page (with refcount appropriately incremented) for success, or
     * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
     * considered failure, and furthermore, a likely bug in the caller, so a warning
     * is also emitted.
     */
    static __maybe_unused struct page *try_grab_compound_head(struct page *page,
    							  int refs,
    							  unsigned int flags)
    {
    	if (flags & FOLL_GET)
    		return try_get_compound_head(page, refs);
    	else if (flags & FOLL_PIN) {
    		int orig_refs = refs;
    
    		/*
    		 * Can't do FOLL_LONGTERM + FOLL_PIN with CMA in the gup fast
    		 * path, so fail and let the caller fall back to the slow path.
    		 */
    		if (unlikely(flags & FOLL_LONGTERM) &&
    				is_migrate_cma_page(page))
    			return NULL;
    
    		/*
    		 * When pinning a compound page of order > 1 (which is what
    		 * hpage_pincount_available() checks for), use an exact count to
    		 * track it, via hpage_pincount_add/_sub().
    		 *
    		 * However, be sure to *also* increment the normal page refcount
    		 * field at least once, so that the page really is pinned.
    		 */
    		if (!hpage_pincount_available(page))
    			refs *= GUP_PIN_COUNTING_BIAS;
    
    		page = try_get_compound_head(page, refs);
    		if (!page)
    			return NULL;
    
    		if (hpage_pincount_available(page))
    			hpage_pincount_add(page, refs);
    
    		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
    				    orig_refs);
    
    		return page;
    	}
    
    	WARN_ON_ONCE(1);
    	return NULL;
    }
    
    static void put_compound_head(struct page *page, int refs, unsigned int flags)
    {
    	if (flags & FOLL_PIN) {
    		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
    				    refs);
    
    		if (hpage_pincount_available(page))
    			hpage_pincount_sub(page, refs);
    		else
    			refs *= GUP_PIN_COUNTING_BIAS;
    	}
    
    	VM_BUG_ON_PAGE(page_ref_count(page) < refs, page);
    	/*
    	 * Calling put_page() for each ref is unnecessarily slow. Only the last
    	 * ref needs a put_page().
    	 */
    	if (refs > 1)
    		page_ref_sub(page, refs - 1);
    	put_page(page);
    }
    
    /**
     * try_grab_page() - elevate a page's refcount by a flag-dependent amount
     *
     * This might not do anything at all, depending on the flags argument.
     *
     * "grab" names in this file mean, "look at flags to decide whether to use
     * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
     *
     * @page:    pointer to page to be grabbed
     * @flags:   gup flags: these are the FOLL_* flag values.
     *
     * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
     * time. Cases:
     *
     *    FOLL_GET: page's refcount will be incremented by 1.
     *    FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
     *
     * Return: true for success, or if no action was required (if neither FOLL_PIN
     * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
     * FOLL_PIN was set, but the page could not be grabbed.
     */
    bool __must_check try_grab_page(struct page *page, unsigned int flags)
    {
    	WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
    
    	if (flags & FOLL_GET)
    		return try_get_page(page);
    	else if (flags & FOLL_PIN) {
    		int refs = 1;
    
    		page = compound_head(page);
    
    		if (WARN_ON_ONCE(page_ref_count(page) <= 0))
    			return false;
    
    		if (hpage_pincount_available(page))
    			hpage_pincount_add(page, 1);
    		else
    			refs = GUP_PIN_COUNTING_BIAS;
    
    		/*
    		 * Similar to try_grab_compound_head(): even if using the
    		 * hpage_pincount_add/_sub() routines, be sure to
    		 * *also* increment the normal page refcount field at least
    		 * once, so that the page really is pinned.
    		 */
    		page_ref_add(page, refs);
    
    		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1);
    	}
    
    	return true;
    }
    
    /**
     * unpin_user_page() - release a dma-pinned page
     * @page:            pointer to page to be released
     *
     * Pages that were pinned via pin_user_pages*() must be released via either
     * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
     * that such pages can be separately tracked and uniquely handled. In
     * particular, interactions with RDMA and filesystems need special handling.
     */
    void unpin_user_page(struct page *page)
    {
    	put_compound_head(compound_head(page), 1, FOLL_PIN);
    }
    EXPORT_SYMBOL(unpin_user_page);
    
    /**
     * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
     * @pages:  array of pages to be maybe marked dirty, and definitely released.
     * @npages: number of pages in the @pages array.
     * @make_dirty: whether to mark the pages dirty
     *
     * "gup-pinned page" refers to a page that has had one of the get_user_pages()
     * variants called on that page.
     *
     * For each page in the @pages array, make that page (or its head page, if a
     * compound page) dirty, if @make_dirty is true, and if the page was previously
     * listed as clean. In any case, releases all pages using unpin_user_page(),
     * possibly via unpin_user_pages(), for the non-dirty case.
     *
     * Please see the unpin_user_page() documentation for details.
     *
     * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
     * required, then the caller should a) verify that this is really correct,
     * because _lock() is usually required, and b) hand code it:
     * set_page_dirty_lock(), unpin_user_page().
     *
     */
    void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
    				 bool make_dirty)
    {
    	unsigned long index;
    
    	/*
    	 * TODO: this can be optimized for huge pages: if a series of pages is
    	 * physically contiguous and part of the same compound page, then a
    	 * single operation to the head page should suffice.
    	 */
    
    	if (!make_dirty) {
    		unpin_user_pages(pages, npages);
    		return;
    	}
    
    	for (index = 0; index < npages; index++) {
    		struct page *page = compound_head(pages[index]);
    		/*
    		 * Checking PageDirty at this point may race with
    		 * clear_page_dirty_for_io(), but that's OK. Two key
    		 * cases:
    		 *
    		 * 1) This code sees the page as already dirty, so it
    		 * skips the call to set_page_dirty(). That could happen
    		 * because clear_page_dirty_for_io() called
    		 * page_mkclean(), followed by set_page_dirty().
    		 * However, now the page is going to get written back,
    		 * which meets the original intention of setting it
    		 * dirty, so all is well: clear_page_dirty_for_io() goes
    		 * on to call TestClearPageDirty(), and write the page
    		 * back.
    		 *
    		 * 2) This code sees the page as clean, so it calls
    		 * set_page_dirty(). The page stays dirty, despite being
    		 * written back, so it gets written back again in the
    		 * next writeback cycle. This is harmless.
    		 */
    		if (!PageDirty(page))
    			set_page_dirty_lock(page);
    		unpin_user_page(page);
    	}
    }
    EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
    
    /**
     * unpin_user_pages() - release an array of gup-pinned pages.
     * @pages:  array of pages to be marked dirty and released.
     * @npages: number of pages in the @pages array.
     *
     * For each page in the @pages array, release the page using unpin_user_page().
     *
     * Please see the unpin_user_page() documentation for details.
     */
    void unpin_user_pages(struct page **pages, unsigned long npages)
    {
    	unsigned long index;
    
    	/*
    	 * If this WARN_ON() fires, then the system *might* be leaking pages (by
    	 * leaving them pinned), but probably not. More likely, gup/pup returned
    	 * a hard -ERRNO error to the caller, who erroneously passed it here.
    	 */
    	if (WARN_ON(IS_ERR_VALUE(npages)))
    		return;
    	/*
    	 * TODO: this can be optimized for huge pages: if a series of pages is
    	 * physically contiguous and part of the same compound page, then a
    	 * single operation to the head page should suffice.
    	 */
    	for (index = 0; index < npages; index++)
    		unpin_user_page(pages[index]);
    }
    EXPORT_SYMBOL(unpin_user_pages);
    
    #ifdef CONFIG_MMU
    static struct page *no_page_table(struct vm_area_struct *vma,
    		unsigned int flags)
    {
    	/*
    	 * When core dumping an enormous anonymous area that nobody
    	 * has touched so far, we don't want to allocate unnecessary pages or
    	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
    	 * then get_dump_page() will return NULL to leave a hole in the dump.
    	 * But we can only make this optimization where a hole would surely
    	 * be zero-filled if handle_mm_fault() actually did handle it.
    	 */
    	if ((flags & FOLL_DUMP) &&
    			(vma_is_anonymous(vma) || !vma->vm_ops->fault))
    		return ERR_PTR(-EFAULT);
    	return NULL;
    }
    
    static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
    		pte_t *pte, unsigned int flags)
    {
    	/* No page to get reference */
    	if (flags & FOLL_GET)
    		return -EFAULT;
    
    	if (flags & FOLL_TOUCH) {
    		pte_t entry = *pte;
    
    		if (flags & FOLL_WRITE)
    			entry = pte_mkdirty(entry);
    		entry = pte_mkyoung(entry);
    
    		if (!pte_same(*pte, entry)) {
    			set_pte_at(vma->vm_mm, address, pte, entry);
    			update_mmu_cache(vma, address, pte);
    		}
    	}
    
    	/* Proper page table entry exists, but no corresponding struct page */
    	return -EEXIST;
    }
    
    /*
     * FOLL_FORCE can write to even unwritable pte's, but only
     * after we've gone through a COW cycle and they are dirty.
     */
    static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
    {
    	return pte_write(pte) ||
    		((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
    }
    
    static struct page *follow_page_pte(struct vm_area_struct *vma,
    		unsigned long address, pmd_t *pmd, unsigned int flags,
    		struct dev_pagemap **pgmap)
    {
    	struct mm_struct *mm = vma->vm_mm;
    	struct page *page;
    	spinlock_t *ptl;
    	pte_t *ptep, pte;
    	int ret;
    
    	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
    	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
    			 (FOLL_PIN | FOLL_GET)))
    		return ERR_PTR(-EINVAL);
    retry:
    	if (unlikely(pmd_bad(*pmd)))
    		return no_page_table(vma, flags);
    
    	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
    	pte = *ptep;
    	if (!pte_present(pte)) {
    		swp_entry_t entry;
    		/*
    		 * KSM's break_ksm() relies upon recognizing a ksm page
    		 * even while it is being migrated, so for that case we
    		 * need migration_entry_wait().
    		 */
    		if (likely(!(flags & FOLL_MIGRATION)))
    			goto no_page;
    		if (pte_none(pte))
    			goto no_page;
    		entry = pte_to_swp_entry(pte);
    		if (!is_migration_entry(entry))
    			goto no_page;
    		pte_unmap_unlock(ptep, ptl);
    		migration_entry_wait(mm, pmd, address);
    		goto retry;
    	}
    	if ((flags & FOLL_NUMA) && pte_protnone(pte))
    		goto no_page;
    	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
    		pte_unmap_unlock(ptep, ptl);
    		return NULL;
    	}
    
    	page = vm_normal_page(vma, address, pte);
    	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
    		/*
    		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
    		 * case since they are only valid while holding the pgmap
    		 * reference.
    		 */
    		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
    		if (*pgmap)
    			page = pte_page(pte);
    		else
    			goto no_page;
    	} else if (unlikely(!page)) {
    		if (flags & FOLL_DUMP) {
    			/* Avoid special (like zero) pages in core dumps */
    			page = ERR_PTR(-EFAULT);
    			goto out;
    		}
    
    		if (is_zero_pfn(pte_pfn(pte))) {
    			page = pte_page(pte);
    		} else {
    			ret = follow_pfn_pte(vma, address, ptep, flags);
    			page = ERR_PTR(ret);
    			goto out;
    		}
    	}
    
    	if (flags & FOLL_SPLIT && PageTransCompound(page)) {
    		get_page(page);
    		pte_unmap_unlock(ptep, ptl);
    		lock_page(page);
    		ret = split_huge_page(page);
    		unlock_page(page);
    		put_page(page);
    		if (ret)
    			return ERR_PTR(ret);
    		goto retry;
    	}
    
    	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
    	if (unlikely(!try_grab_page(page, flags))) {
    		page = ERR_PTR(-ENOMEM);
    		goto out;
    	}
    	/*
    	 * We need to make the page accessible if and only if we are going
    	 * to access its content (the FOLL_PIN case).  Please see
    	 * Documentation/core-api/pin_user_pages.rst for details.
    	 */
    	if (flags & FOLL_PIN) {
    		ret = arch_make_page_accessible(page);
    		if (ret) {
    			unpin_user_page(page);
    			page = ERR_PTR(ret);
    			goto out;
    		}
    	}
    	if (flags & FOLL_TOUCH) {
    		if ((flags & FOLL_WRITE) &&
    		    !pte_dirty(pte) && !PageDirty(page))
    			set_page_dirty(page);
    		/*
    		 * pte_mkyoung() would be more correct here, but atomic care
    		 * is needed to avoid losing the dirty bit: it is easier to use
    		 * mark_page_accessed().
    		 */
    		mark_page_accessed(page);
    	}
    	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
    		/* Do not mlock pte-mapped THP */
    		if (PageTransCompound(page))
    			goto out;
    
    		/*
    		 * The preliminary mapping check is mainly to avoid the
    		 * pointless overhead of lock_page on the ZERO_PAGE
    		 * which might bounce very badly if there is contention.
    		 *
    		 * If the page is already locked, we don't need to
    		 * handle it now - vmscan will handle it later if and
    		 * when it attempts to reclaim the page.
    		 */
    		if (page->mapping && trylock_page(page)) {
    			lru_add_drain();  /* push cached pages to LRU */
    			/*
    			 * Because we lock page here, and migration is
    			 * blocked by the pte's page reference, and we
    			 * know the page is still mapped, we don't even
    			 * need to check for file-cache page truncation.
    			 */
    			mlock_vma_page(page);
    			unlock_page(page);
    		}
    	}
    out:
    	pte_unmap_unlock(ptep, ptl);
    	return page;
    no_page:
    	pte_unmap_unlock(ptep, ptl);
    	if (!pte_none(pte))
    		return NULL;
    	return no_page_table(vma, flags);
    }
    
    static struct page *follow_pmd_mask(struct vm_area_struct *vma,
    				    unsigned long address, pud_t *pudp,
    				    unsigned int flags,
    				    struct follow_page_context *ctx)
    {
    	pmd_t *pmd, pmdval;
    	spinlock_t *ptl;
    	struct page *page;
    	struct mm_struct *mm = vma->vm_mm;
    
    	pmd = pmd_offset(pudp, address);
    	/*
    	 * The READ_ONCE() will stabilize the pmdval in a register or
    	 * on the stack so that it will stop changing under the code.
    	 */
    	pmdval = READ_ONCE(*pmd);
    	if (pmd_none(pmdval))
    		return no_page_table(vma, flags);
    	if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
    		page = follow_huge_pmd(mm, address, pmd, flags);
    		if (page)
    			return page;
    		return no_page_table(vma, flags);
    	}
    	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
    		page = follow_huge_pd(vma, address,
    				      __hugepd(pmd_val(pmdval)), flags,
    				      PMD_SHIFT);
    		if (page)
    			return page;
    		return no_page_table(vma, flags);
    	}
    retry:
    	if (!pmd_present(pmdval)) {
    		if (likely(!(flags & FOLL_MIGRATION)))
    			return no_page_table(vma, flags);
    		VM_BUG_ON(thp_migration_supported() &&
    				  !is_pmd_migration_entry(pmdval));
    		if (is_pmd_migration_entry(pmdval))
    			pmd_migration_entry_wait(mm, pmd);
    		pmdval = READ_ONCE(*pmd);
    		/*
    		 * MADV_DONTNEED may convert the pmd to null because
    		 * mmap_lock is held in read mode
    		 */
    		if (pmd_none(pmdval))
    			return no_page_table(vma, flags);
    		goto retry;
    	}
    	if (pmd_devmap(pmdval)) {
    		ptl = pmd_lock(mm, pmd);
    		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
    		spin_unlock(ptl);
    		if (page)
    			return page;
    	}
    	if (likely(!pmd_trans_huge(pmdval)))
    		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
    
    	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
    		return no_page_table(vma, flags);
    
    retry_locked:
    	ptl = pmd_lock(mm, pmd);
    	if (unlikely(pmd_none(*pmd))) {
    		spin_unlock(ptl);
    		return no_page_table(vma, flags);
    	}
    	if (unlikely(!pmd_present(*pmd))) {
    		spin_unlock(ptl);
    		if (likely(!(flags & FOLL_MIGRATION)))
    			return no_page_table(vma, flags);
    		pmd_migration_entry_wait(mm, pmd);
    		goto retry_locked;
    	}
    	if (unlikely(!pmd_trans_huge(*pmd))) {
    		spin_unlock(ptl);
    		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
    	}
    	if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) {
    		int ret;
    		page = pmd_page(*pmd);
    		if (is_huge_zero_page(page)) {
    			spin_unlock(ptl);
    			ret = 0;
    			split_huge_pmd(vma, pmd, address);
    			if (pmd_trans_unstable(pmd))
    				ret = -EBUSY;
    		} else if (flags & FOLL_SPLIT) {
    			if (unlikely(!try_get_page(page))) {
    				spin_unlock(ptl);
    				return ERR_PTR(-ENOMEM);
    			}
    			spin_unlock(ptl);
    			lock_page(page);
    			ret = split_huge_page(page);
    			unlock_page(page);
    			put_page(page);
    			if (pmd_none(*pmd))
    				return no_page_table(vma, flags);
    		} else {  /* flags & FOLL_SPLIT_PMD */
    			spin_unlock(ptl);
    			split_huge_pmd(vma, pmd, address);
    			ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
    		}
    
    		return ret ? ERR_PTR(ret) :
    			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
    	}
    	page = follow_trans_huge_pmd(vma, address, pmd, flags);
    	spin_unlock(ptl);
    	ctx->page_mask = HPAGE_PMD_NR - 1;
    	return page;
    }
    
    static struct page *follow_pud_mask(struct vm_area_struct *vma,
    				    unsigned long address, p4d_t *p4dp,
    				    unsigned int flags,
    				    struct follow_page_context *ctx)
    {
    	pud_t *pud;
    	spinlock_t *ptl;
    	struct page *page;
    	struct mm_struct *mm = vma->vm_mm;
    
    	pud = pud_offset(p4dp, address);
    	if (pud_none(*pud))
    		return no_page_table(vma, flags);
    	if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
    		page = follow_huge_pud(mm, address, pud, flags);
    		if (page)
    			return page;
    		return no_page_table(vma, flags);
    	}
    	if (is_hugepd(__hugepd(pud_val(*pud)))) {
    		page = follow_huge_pd(vma, address,
    				      __hugepd(pud_val(*pud)), flags,
    				      PUD_SHIFT);
    		if (page)
    			return page;
    		return no_page_table(vma, flags);
    	}
    	if (pud_devmap(*pud)) {
    		ptl = pud_lock(mm, pud);
    		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
    		spin_unlock(ptl);
    		if (page)
    			return page;
    	}
    	if (unlikely(pud_bad(*pud)))
    		return no_page_table(vma, flags);
    
    	return follow_pmd_mask(vma, address, pud, flags, ctx);
    }
    
    static struct page *follow_p4d_mask(struct vm_area_struct *vma,
    				    unsigned long address, pgd_t *pgdp,
    				    unsigned int flags,
    				    struct follow_page_context *ctx)
    {
    	p4d_t *p4d;
    	struct page *page;
    
    	p4d = p4d_offset(pgdp, address);
    	if (p4d_none(*p4d))
    		return no_page_table(vma, flags);
    	BUILD_BUG_ON(p4d_huge(*p4d));
    	if (unlikely(p4d_bad(*p4d)))
    		return no_page_table(vma, flags);
    
    	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
    		page = follow_huge_pd(vma, address,
    				      __hugepd(p4d_val(*p4d)), flags,
    				      P4D_SHIFT);
    		if (page)
    			return page;
    		return no_page_table(vma, flags);
    	}
    	return follow_pud_mask(vma, address, p4d, flags, ctx);
    }
    
    /**
     * follow_page_mask - look up a page descriptor from a user-virtual address
     * @vma: vm_area_struct mapping @address
     * @address: virtual address to look up
     * @flags: flags modifying lookup behaviour
     * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
     *       pointer to output page_mask
     *
     * @flags can have FOLL_ flags set, defined in <linux/mm.h>
     *
     * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
     * the device's dev_pagemap metadata to avoid repeating expensive lookups.
     *
     * On output, the @ctx->page_mask is set according to the size of the page.
     *
     * Return: the mapped (struct page *), %NULL if no mapping exists, or
     * an error pointer if there is a mapping to something not represented
     * by a page descriptor (see also vm_normal_page()).
     */
    static struct page *follow_page_mask(struct vm_area_struct *vma,
    			      unsigned long address, unsigned int flags,
    			      struct follow_page_context *ctx)
    {
    	pgd_t *pgd;
    	struct page *page;
    	struct mm_struct *mm = vma->vm_mm;
    
    	ctx->page_mask = 0;
    
    	/* make this handle hugepd */
    	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
    	if (!IS_ERR(page)) {
    		WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
    		return page;
    	}
    
    	pgd = pgd_offset(mm, address);
    
    	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
    		return no_page_table(vma, flags);
    
    	if (pgd_huge(*pgd)) {
    		page = follow_huge_pgd(mm, address, pgd, flags);
    		if (page)
    			return page;
    		return no_page_table(vma, flags);
    	}
    	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
    		page = follow_huge_pd(vma, address,
    				      __hugepd(pgd_val(*pgd)), flags,
    				      PGDIR_SHIFT);
    		if (page)
    			return page;
    		return no_page_table(vma, flags);
    	}
    
    	return follow_p4d_mask(vma, address, pgd, flags, ctx);
    }
    
    struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
    			 unsigned int foll_flags)
    {
    	struct follow_page_context ctx = { NULL };
    	struct page *page;
    
    	page = follow_page_mask(vma, address, foll_flags, &ctx);
    	if (ctx.pgmap)
    		put_dev_pagemap(ctx.pgmap);
    	return page;
    }
    
    static int get_gate_page(struct mm_struct *mm, unsigned long address,
    		unsigned int gup_flags, struct vm_area_struct **vma,
    		struct page **page)
    {
    	pgd_t *pgd;
    	p4d_t *p4d;
    	pud_t *pud;
    	pmd_t *pmd;
    	pte_t *pte;
    	int ret = -EFAULT;
    
    	/* user gate pages are read-only */
    	if (gup_flags & FOLL_WRITE)
    		return -EFAULT;
    	if (address > TASK_SIZE)
    		pgd = pgd_offset_k(address);
    	else
    		pgd = pgd_offset_gate(mm, address);
    	if (pgd_none(*pgd))
    		return -EFAULT;
    	p4d = p4d_offset(pgd, address);
    	if (p4d_none(*p4d))
    		return -EFAULT;
    	pud = pud_offset(p4d, address);
    	if (pud_none(*pud))
    		return -EFAULT;
    	pmd = pmd_offset(pud, address);
    	if (!pmd_present(*pmd))
    		return -EFAULT;
    	VM_BUG_ON(pmd_trans_huge(*pmd));
    	pte = pte_offset_map(pmd, address);
    	if (pte_none(*pte))
    		goto unmap;
    	*vma = get_gate_vma(mm);
    	if (!page)
    		goto out;
    	*page = vm_normal_page(*vma, address, *pte);
    	if (!*page) {
    		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
    			goto unmap;
    		*page = pte_page(*pte);
    	}
    	if (unlikely(!try_grab_page(*page, gup_flags))) {
    		ret = -ENOMEM;
    		goto unmap;
    	}
    out:
    	ret = 0;
    unmap:
    	pte_unmap(pte);
    	return ret;
    }
    
    /*
     * mmap_lock must be held on entry.  If @locked != NULL and *@flags
     * does not include FOLL_NOWAIT, the mmap_lock may be released.  If it
     * is, *@locked will be set to 0 and -EBUSY returned.
     */
    static int faultin_page(struct vm_area_struct *vma,
    		unsigned long address, unsigned int *flags, int *locked)
    {
    	unsigned int fault_flags = 0;
    	vm_fault_t ret;
    
    	/* mlock all present pages, but do not fault in new pages */
    	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
    		return -ENOENT;
    	if (*flags & FOLL_WRITE)
    		fault_flags |= FAULT_FLAG_WRITE;
    	if (*flags & FOLL_REMOTE)
    		fault_flags |= FAULT_FLAG_REMOTE;
    	if (locked)
    		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
    	if (*flags & FOLL_NOWAIT)
    		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
    	if (*flags & FOLL_TRIED) {
    		/*
    		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
    		 * can co-exist
    		 */
    		fault_flags |= FAULT_FLAG_TRIED;
    	}
    
    	ret = handle_mm_fault(vma, address, fault_flags, NULL);
    	if (ret & VM_FAULT_ERROR) {
    		int err = vm_fault_to_errno(ret, *flags);
    
    		if (err)
    			return err;
    		BUG();
    	}
    
    	if (ret & VM_FAULT_RETRY) {
    		if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
    			*locked = 0;
    		return -EBUSY;
    	}
    
    	/*
    	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
    	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
    	 * can thus safely do subsequent page lookups as if they were reads.
    	 * But only do so when looping for pte_write is futile: in some cases
    	 * userspace may also be wanting to write to the gotten user page,
    	 * which a read fault here might prevent (a readonly page might get
    	 * reCOWed by userspace write).
    	 */
    	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
    		*flags |= FOLL_COW;
    	return 0;
    }
    
    static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
    {
    	vm_flags_t vm_flags = vma->vm_flags;
    	int write = (gup_flags & FOLL_WRITE);
    	int foreign = (gup_flags & FOLL_REMOTE);
    
    	if (vm_flags & (VM_IO | VM_PFNMAP))
    		return -EFAULT;
    
    	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
    		return -EFAULT;
    
    	if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
    		return -EOPNOTSUPP;
    
    	if (write) {
    		if (!(vm_flags & VM_WRITE)) {
    			if (!(gup_flags & FOLL_FORCE))
    				return -EFAULT;
    			/*
    			 * We used to let the write,force case do COW in a
    			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
    			 * set a breakpoint in a read-only mapping of an
    			 * executable, without corrupting the file (yet only
    			 * when that file had been opened for writing!).
    			 * Anon pages in shared mappings are surprising: now
    			 * just reject it.
    			 */
    			if (!is_cow_mapping(vm_flags))
    				return -EFAULT;
    		}
    	} else if (!(vm_flags & VM_READ)) {
    		if (!(gup_flags & FOLL_FORCE))
    			return -EFAULT;
    		/*
    		 * Is there actually any vma we can reach here which does not
    		 * have VM_MAYREAD set?
    		 */
    		if (!(vm_flags & VM_MAYREAD))
    			return -EFAULT;
    	}
    	/*
    	 * gups are always data accesses, not instruction
    	 * fetches, so execute=false here
    	 */
    	if (!arch_vma_access_permitted(vma, write, false, foreign))
    		return -EFAULT;
    	return 0;
    }
    
    /**
     * __get_user_pages() - pin user pages in memory
     * @mm:		mm_struct of target mm
     * @start:	starting user address
     * @nr_pages:	number of pages from start to pin
     * @gup_flags:	flags modifying pin behaviour
     * @pages:	array that receives pointers to the pages pinned.
     *		Should be at least nr_pages long. Or NULL, if caller
     *		only intends to ensure the pages are faulted in.
     * @vmas:	array of pointers to vmas corresponding to each page.
     *		Or NULL if the caller does not require them.
     * @locked:     whether we're still with the mmap_lock held
     *
     * Returns either number of pages pinned (which may be less than the
     * number requested), or an error. Details about the return value:
     *
     * -- If nr_pages is 0, returns 0.
     * -- If nr_pages is >0, but no pages were pinned, returns -errno.
     * -- If nr_pages is >0, and some pages were pinned, returns the number of
     *    pages pinned. Again, this may be less than nr_pages.
     * -- 0 return value is possible when the fault would need to be retried.
     *
     * The caller is responsible for releasing returned @pages, via put_page().
     *
     * @vmas are valid only as long as mmap_lock is held.
     *
     * Must be called with mmap_lock held.  It may be released.  See below.
     *
     * __get_user_pages walks a process's page tables and takes a reference to
     * each struct page that each user address corresponds to at a given
     * instant. That is, it takes the page that would be accessed if a user
     * thread accesses the given user virtual address at that instant.
     *
     * This does not guarantee that the page exists in the user mappings when
     * __get_user_pages returns, and there may even be a completely different
     * page there in some cases (eg. if mmapped pagecache has been invalidated
     * and subsequently re faulted). However it does guarantee that the page
     * won't be freed completely. And mostly callers simply care that the page
     * contains data that was valid *at some point in time*. Typically, an IO
     * or similar operation cannot guarantee anything stronger anyway because
     * locks can't be held over the syscall boundary.
     *
     * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
     * the page is written to, set_page_dirty (or set_page_dirty_lock, as
     * appropriate) must be called after the page is finished with, and
     * before put_page is called.
     *
     * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
     * released by an up_read().  That can happen if @gup_flags does not
     * have FOLL_NOWAIT.
     *
     * A caller using such a combination of @locked and @gup_flags
     * must therefore hold the mmap_lock for reading only, and recognize
     * when it's been released.  Otherwise, it must be held for either
     * reading or writing and will not be released.
     *
     * In most cases, get_user_pages or get_user_pages_fast should be used
     * instead of __get_user_pages. __get_user_pages should be used only if
     * you need some special @gup_flags.
     */
    static long __get_user_pages(struct mm_struct *mm,
    		unsigned long start, unsigned long nr_pages,
    		unsigned int gup_flags, struct page **pages,
    		struct vm_area_struct **vmas, int *locked)
    {
    	long ret = 0, i = 0;
    	struct vm_area_struct *vma = NULL;
    	struct follow_page_context ctx = { NULL };
    
    	if (!nr_pages)
    		return 0;
    
    	start = untagged_addr(start);
    
    	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
    
    	/*
    	 * If FOLL_FORCE is set then do not force a full fault as the hinting
    	 * fault information is unrelated to the reference behaviour of a task
    	 * using the address space
    	 */
    	if (!(gup_flags & FOLL_FORCE))
    		gup_flags |= FOLL_NUMA;
    
    	do {
    		struct page *page;
    		unsigned int foll_flags = gup_flags;
    		unsigned int page_increm;
    
    		/* first iteration or cross vma bound */
    		if (!vma || start >= vma->vm_end) {
    			vma = find_extend_vma(mm, start);
    			if (!vma && in_gate_area(mm, start)) {
    				ret = get_gate_page(mm, start & PAGE_MASK,
    						gup_flags, &vma,
    						pages ? &pages[i] : NULL);
    				if (ret)
    					goto out;
    				ctx.page_mask = 0;
    				goto next_page;
    			}
    
    			if (!vma) {
    				ret = -EFAULT;
    				goto out;
    			}
    			ret = check_vma_flags(vma, gup_flags);
    			if (ret)
    				goto out;
    
    			if (is_vm_hugetlb_page(vma)) {
    				i = follow_hugetlb_page(mm, vma, pages, vmas,
    						&start, &nr_pages, i,
    						gup_flags, locked);
    				if (locked && *locked == 0) {
    					/*
    					 * We've got a VM_FAULT_RETRY
    					 * and we've lost mmap_lock.
    					 * We must stop here.
    					 */
    					BUG_ON(gup_flags & FOLL_NOWAIT);
    					BUG_ON(ret != 0);
    					goto out;
    				}
    				continue;
    			}
    		}
    retry:
    		/*
    		 * If we have a pending SIGKILL, don't keep faulting pages and
    		 * potentially allocating memory.
    		 */
    		if (fatal_signal_pending(current)) {
    			ret = -EINTR;
    			goto out;
    		}
    		cond_resched();
    
    		page = follow_page_mask(vma, start, foll_flags, &ctx);
    		if (!page) {
    			ret = faultin_page(vma, start, &foll_flags, locked);
    			switch (ret) {
    			case 0:
    				goto retry;
    			case -EBUSY:
    				ret = 0;
    				fallthrough;
    			case -EFAULT:
    			case -ENOMEM:
    			case -EHWPOISON:
    				goto out;
    			case -ENOENT:
    				goto next_page;
    			}
    			BUG();
    		} else if (PTR_ERR(page) == -EEXIST) {
    			/*
    			 * Proper page table entry exists, but no corresponding
    			 * struct page.
    			 */
    			goto next_page;
    		} else if (IS_ERR(page)) {
    			ret = PTR_ERR(page);
    			goto out;
    		}
    		if (pages) {
    			pages[i] = page;
    			flush_anon_page(vma, page, start);
    			flush_dcache_page(page);
    			ctx.page_mask = 0;
    		}
    next_page:
    		if (vmas) {
    			vmas[i] = vma;
    			ctx.page_mask = 0;
    		}
    		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
    		if (page_increm > nr_pages)
    			page_increm = nr_pages;
    		i += page_increm;
    		start += page_increm * PAGE_SIZE;
    		nr_pages -= page_increm;
    	} while (nr_pages);
    out:
    	if (ctx.pgmap)
    		put_dev_pagemap(ctx.pgmap);
    	return i ? i : ret;
    }
    
    static bool vma_permits_fault(struct vm_area_struct *vma,
    			      unsigned int fault_flags)
    {
    	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
    	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
    	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
    
    	if (!(vm_flags & vma->vm_flags))
    		return false;
    
    	/*
    	 * The architecture might have a hardware protection
    	 * mechanism other than read/write that can deny access.
    	 *
    	 * gup always represents data access, not instruction
    	 * fetches, so execute=false here:
    	 */
    	if (!arch_vma_access_permitted(vma, write, false, foreign))
    		return false;
    
    	return true;
    }
    
    /**
     * fixup_user_fault() - manually resolve a user page fault
     * @mm:		mm_struct of target mm
     * @address:	user address
     * @fault_flags:flags to pass down to handle_mm_fault()
     * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
     *		does not allow retry. If NULL, the caller must guarantee
     *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
     *
     * This is meant to be called in the specific scenario where for locking reasons
     * we try to access user memory in atomic context (within a pagefault_disable()
     * section), this returns -EFAULT, and we want to resolve the user fault before
     * trying again.
     *
     * Typically this is meant to be used by the futex code.
     *
     * The main difference with get_user_pages() is that this function will
     * unconditionally call handle_mm_fault() which will in turn perform all the
     * necessary SW fixup of the dirty and young bits in the PTE, while
     * get_user_pages() only guarantees to update these in the struct page.
     *
     * This is important for some architectures where those bits also gate the
     * access permission to the page because they are maintained in software.  On
     * such architectures, gup() will not be enough to make a subsequent access
     * succeed.
     *
     * This function will not return with an unlocked mmap_lock. So it has not the
     * same semantics wrt the @mm->mmap_lock as does filemap_fault().
     */
    int fixup_user_fault(struct mm_struct *mm,
    		     unsigned long address, unsigned int fault_flags,
    		     bool *unlocked)
    {
    	struct vm_area_struct *vma;
    	vm_fault_t ret, major = 0;
    
    	address = untagged_addr(address);
    
    	if (unlocked)
    		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
    
    retry:
    	vma = find_extend_vma(mm, address);
    	if (!vma || address < vma->vm_start)
    		return -EFAULT;
    
    	if (!vma_permits_fault(vma, fault_flags))
    		return -EFAULT;
    
    	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
    	    fatal_signal_pending(current))
    		return -EINTR;
    
    	ret = handle_mm_fault(vma, address, fault_flags, NULL);
    	major |= ret & VM_FAULT_MAJOR;
    	if (ret & VM_FAULT_ERROR) {
    		int err = vm_fault_to_errno(ret, 0);
    
    		if (err)
    			return err;
    		BUG();
    	}
    
    	if (ret & VM_FAULT_RETRY) {
    		mmap_read_lock(mm);
    		*unlocked = true;
    		fault_flags |= FAULT_FLAG_TRIED;
    		goto retry;
    	}
    
    	return 0;
    }
    EXPORT_SYMBOL_GPL(fixup_user_fault);
    
    /*
     * Please note that this function, unlike __get_user_pages will not
     * return 0 for nr_pages > 0 without FOLL_NOWAIT
     */
    static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
    						unsigned long start,
    						unsigned long nr_pages,
    						struct page **pages,
    						struct vm_area_struct **vmas,
    						int *locked,
    						unsigned int flags)
    {
    	long ret, pages_done;
    	bool lock_dropped;
    
    	if (locked) {
    		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
    		BUG_ON(vmas);
    		/* check caller initialized locked */
    		BUG_ON(*locked != 1);
    	}
    
    	if (flags & FOLL_PIN)
    		atomic_set(&mm->has_pinned, 1);
    
    	/*
    	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
    	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
    	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
    	 * for FOLL_GET, not for the newer FOLL_PIN.
    	 *
    	 * FOLL_PIN always expects pages to be non-null, but no need to assert
    	 * that here, as any failures will be obvious enough.
    	 */
    	if (pages && !(flags & FOLL_PIN))
    		flags |= FOLL_GET;
    
    	pages_done = 0;
    	lock_dropped = false;
    	for (;;) {
    		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
    				       vmas, locked);
    		if (!locked)
    			/* VM_FAULT_RETRY couldn't trigger, bypass */
    			return ret;
    
    		/* VM_FAULT_RETRY cannot return errors */
    		if (!*locked) {
    			BUG_ON(ret < 0);
    			BUG_ON(ret >= nr_pages);
    		}
    
    		if (ret > 0) {
    			nr_pages -= ret;
    			pages_done += ret;
    			if (!nr_pages)
    				break;
    		}
    		if (*locked) {
    			/*
    			 * VM_FAULT_RETRY didn't trigger or it was a
    			 * FOLL_NOWAIT.
    			 */
    			if (!pages_done)
    				pages_done = ret;
    			break;
    		}
    		/*
    		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
    		 * For the prefault case (!pages) we only update counts.
    		 */
    		if (likely(pages))
    			pages += ret;
    		start += ret << PAGE_SHIFT;
    		lock_dropped = true;
    
    retry:
    		/*
    		 * Repeat on the address that fired VM_FAULT_RETRY
    		 * with both FAULT_FLAG_ALLOW_RETRY and
    		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
    		 * by fatal signals, so we need to check it before we
    		 * start trying again otherwise it can loop forever.
    		 */
    
    		if (fatal_signal_pending(current)) {
    			if (!pages_done)
    				pages_done = -EINTR;
    			break;
    		}
    
    		ret = mmap_read_lock_killable(mm);
    		if (ret) {
    			BUG_ON(ret > 0);
    			if (!pages_done)
    				pages_done = ret;
    			break;
    		}
    
    		*locked = 1;
    		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
    				       pages, NULL, locked);
    		if (!*locked) {
    			/* Continue to retry until we succeeded */
    			BUG_ON(ret != 0);
    			goto retry;
    		}
    		if (ret != 1) {
    			BUG_ON(ret > 1);
    			if (!pages_done)
    				pages_done = ret;
    			break;
    		}
    		nr_pages--;
    		pages_done++;
    		if (!nr_pages)
    			break;
    		if (likely(pages))
    			pages++;
    		start += PAGE_SIZE;
    	}
    	if (lock_dropped && *locked) {
    		/*
    		 * We must let the caller know we temporarily dropped the lock
    		 * and so the critical section protected by it was lost.
    		 */
    		mmap_read_unlock(mm);
    		*locked = 0;
    	}
    	return pages_done;
    }
    
    /**
     * populate_vma_page_range() -  populate a range of pages in the vma.
     * @vma:   target vma
     * @start: start address
     * @end:   end address
     * @locked: whether the mmap_lock is still held
     *
     * This takes care of mlocking the pages too if VM_LOCKED is set.
     *
     * Return either number of pages pinned in the vma, or a negative error
     * code on error.
     *
     * vma->vm_mm->mmap_lock must be held.
     *
     * If @locked is NULL, it may be held for read or write and will
     * be unperturbed.
     *
     * If @locked is non-NULL, it must held for read only and may be
     * released.  If it's released, *@locked will be set to 0.
     */
    long populate_vma_page_range(struct vm_area_struct *vma,
    		unsigned long start, unsigned long end, int *locked)
    {
    	struct mm_struct *mm = vma->vm_mm;
    	unsigned long nr_pages = (end - start) / PAGE_SIZE;
    	int gup_flags;
    
    	VM_BUG_ON(start & ~PAGE_MASK);
    	VM_BUG_ON(end   & ~PAGE_MASK);
    	VM_BUG_ON_VMA(start < vma->vm_start, vma);
    	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
    	mmap_assert_locked(mm);
    
    	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
    	if (vma->vm_flags & VM_LOCKONFAULT)
    		gup_flags &= ~FOLL_POPULATE;
    	/*
    	 * We want to touch writable mappings with a write fault in order
    	 * to break COW, except for shared mappings because these don't COW
    	 * and we would not want to dirty them for nothing.
    	 */
    	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
    		gup_flags |= FOLL_WRITE;
    
    	/*
    	 * We want mlock to succeed for regions that have any permissions
    	 * other than PROT_NONE.
    	 */
    	if (vma_is_accessible(vma))
    		gup_flags |= FOLL_FORCE;
    
    	/*
    	 * We made sure addr is within a VMA, so the following will
    	 * not result in a stack expansion that recurses back here.
    	 */
    	return __get_user_pages(mm, start, nr_pages, gup_flags,
    				NULL, NULL, locked);
    }
    
    /*
     * __mm_populate - populate and/or mlock pages within a range of address space.
     *
     * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
     * flags. VMAs must be already marked with the desired vm_flags, and
     * mmap_lock must not be held.
     */
    int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
    {
    	struct mm_struct *mm = current->mm;
    	unsigned long end, nstart, nend;
    	struct vm_area_struct *vma = NULL;
    	int locked = 0;
    	long ret = 0;
    
    	end = start + len;
    
    	for (nstart = start; nstart < end; nstart = nend) {
    		/*
    		 * We want to fault in pages for [nstart; end) address range.
    		 * Find first corresponding VMA.
    		 */
    		if (!locked) {
    			locked = 1;
    			mmap_read_lock(mm);
    			vma = find_vma(mm, nstart);
    		} else if (nstart >= vma->vm_end)
    			vma = vma->vm_next;
    		if (!vma || vma->vm_start >= end)
    			break;
    		/*
    		 * Set [nstart; nend) to intersection of desired address
    		 * range with the first VMA. Also, skip undesirable VMA types.
    		 */
    		nend = min(end, vma->vm_end);
    		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
    			continue;
    		if (nstart < vma->vm_start)
    			nstart = vma->vm_start;
    		/*
    		 * Now fault in a range of pages. populate_vma_page_range()
    		 * double checks the vma flags, so that it won't mlock pages
    		 * if the vma was already munlocked.
    		 */
    		ret = populate_vma_page_range(vma, nstart, nend, &locked);
    		if (ret < 0) {
    			if (ignore_errors) {
    				ret = 0;
    				continue;	/* continue at next VMA */
    			}
    			break;
    		}
    		nend = nstart + ret * PAGE_SIZE;
    		ret = 0;
    	}
    	if (locked)
    		mmap_read_unlock(mm);
    	return ret;	/* 0 or negative error code */
    }
    #else /* CONFIG_MMU */
    static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
    		unsigned long nr_pages, struct page **pages,
    		struct vm_area_struct **vmas, int *locked,
    		unsigned int foll_flags)
    {
    	struct vm_area_struct *vma;
    	unsigned long vm_flags;
    	int i;
    
    	/* calculate required read or write permissions.
    	 * If FOLL_FORCE is set, we only require the "MAY" flags.
    	 */
    	vm_flags  = (foll_flags & FOLL_WRITE) ?
    			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
    	vm_flags &= (foll_flags & FOLL_FORCE) ?
    			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
    
    	for (i = 0; i < nr_pages; i++) {
    		vma = find_vma(mm, start);
    		if (!vma)
    			goto finish_or_fault;
    
    		/* protect what we can, including chardevs */
    		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
    		    !(vm_flags & vma->vm_flags))
    			goto finish_or_fault;
    
    		if (pages) {
    			pages[i] = virt_to_page(start);
    			if (pages[i])
    				get_page(pages[i]);
    		}
    		if (vmas)
    			vmas[i] = vma;
    		start = (start + PAGE_SIZE) & PAGE_MASK;
    	}
    
    	return i;
    
    finish_or_fault:
    	return i ? : -EFAULT;
    }
    #endif /* !CONFIG_MMU */
    
    /**
     * get_dump_page() - pin user page in memory while writing it to core dump
     * @addr: user address
     *
     * Returns struct page pointer of user page pinned for dump,
     * to be freed afterwards by put_page().
     *
     * Returns NULL on any kind of failure - a hole must then be inserted into
     * the corefile, to preserve alignment with its headers; and also returns
     * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
     * allowing a hole to be left in the corefile to save diskspace.
     *
     * Called without mmap_lock (takes and releases the mmap_lock by itself).
     */
    #ifdef CONFIG_ELF_CORE
    struct page *get_dump_page(unsigned long addr)
    {
    	struct mm_struct *mm = current->mm;
    	struct page *page;
    	int locked = 1;
    	int ret;
    
    	if (mmap_read_lock_killable(mm))
    		return NULL;
    	ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
    				      FOLL_FORCE | FOLL_DUMP | FOLL_GET);
    	if (locked)
    		mmap_read_unlock(mm);
    	return (ret == 1) ? page : NULL;
    }
    #endif /* CONFIG_ELF_CORE */
    
    #ifdef CONFIG_CMA
    static long check_and_migrate_cma_pages(struct mm_struct *mm,
    					unsigned long start,
    					unsigned long nr_pages,
    					struct page **pages,
    					struct vm_area_struct **vmas,
    					unsigned int gup_flags)
    {
    	unsigned long i;
    	unsigned long step;
    	bool drain_allow = true;
    	bool migrate_allow = true;
    	LIST_HEAD(cma_page_list);
    	long ret = nr_pages;
    	struct migration_target_control mtc = {
    		.nid = NUMA_NO_NODE,
    		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_NOWARN,
    	};
    
    check_again:
    	for (i = 0; i < nr_pages;) {
    
    		struct page *head = compound_head(pages[i]);
    
    		/*
    		 * gup may start from a tail page. Advance step by the left
    		 * part.
    		 */
    		step = compound_nr(head) - (pages[i] - head);
    		/*
    		 * If we get a page from the CMA zone, since we are going to
    		 * be pinning these entries, we might as well move them out
    		 * of the CMA zone if possible.
    		 */
    		if (is_migrate_cma_page(head)) {
    			if (PageHuge(head))
    				isolate_huge_page(head, &cma_page_list);
    			else {
    				if (!PageLRU(head) && drain_allow) {
    					lru_add_drain_all();
    					drain_allow = false;
    				}
    
    				if (!isolate_lru_page(head)) {
    					list_add_tail(&head->lru, &cma_page_list);
    					mod_node_page_state(page_pgdat(head),
    							    NR_ISOLATED_ANON +
    							    page_is_file_lru(head),
    							    thp_nr_pages(head));
    				}
    			}
    		}
    
    		i += step;
    	}
    
    	if (!list_empty(&cma_page_list)) {
    		/*
    		 * drop the above get_user_pages reference.
    		 */
    		if (gup_flags & FOLL_PIN)
    			unpin_user_pages(pages, nr_pages);
    		else
    			for (i = 0; i < nr_pages; i++)
    				put_page(pages[i]);
    
    		if (migrate_pages(&cma_page_list, alloc_migration_target, NULL,
    			(unsigned long)&mtc, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
    			/*
    			 * some of the pages failed migration. Do get_user_pages
    			 * without migration.
    			 */
    			migrate_allow = false;
    
    			if (!list_empty(&cma_page_list))
    				putback_movable_pages(&cma_page_list);
    		}
    		/*
    		 * We did migrate all the pages, Try to get the page references
    		 * again migrating any new CMA pages which we failed to isolate
    		 * earlier.
    		 */
    		ret = __get_user_pages_locked(mm, start, nr_pages,
    						   pages, vmas, NULL,
    						   gup_flags);
    
    		if ((ret > 0) && migrate_allow) {
    			nr_pages = ret;
    			drain_allow = true;
    			goto check_again;
    		}
    	}
    
    	return ret;
    }
    #else
    static long check_and_migrate_cma_pages(struct mm_struct *mm,
    					unsigned long start,
    					unsigned long nr_pages,
    					struct page **pages,
    					struct vm_area_struct **vmas,
    					unsigned int gup_flags)
    {
    	return nr_pages;
    }
    #endif /* CONFIG_CMA */
    
    /*
     * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
     * allows us to process the FOLL_LONGTERM flag.
     */
    static long __gup_longterm_locked(struct mm_struct *mm,
    				  unsigned long start,
    				  unsigned long nr_pages,
    				  struct page **pages,
    				  struct vm_area_struct **vmas,
    				  unsigned int gup_flags)
    {
    	unsigned long flags = 0;
    	long rc;
    
    	if (gup_flags & FOLL_LONGTERM)
    		flags = memalloc_nocma_save();
    
    	rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas, NULL,
    				     gup_flags);
    
    	if (gup_flags & FOLL_LONGTERM) {
    		if (rc > 0)
    			rc = check_and_migrate_cma_pages(mm, start, rc, pages,
    							 vmas, gup_flags);
    		memalloc_nocma_restore(flags);
    	}
    	return rc;
    }
    
    static bool is_valid_gup_flags(unsigned int gup_flags)
    {
    	/*
    	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
    	 * never directly by the caller, so enforce that with an assertion:
    	 */
    	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
    		return false;
    	/*
    	 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
    	 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
    	 * FOLL_PIN.
    	 */
    	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
    		return false;
    
    	return true;
    }
    
    #ifdef CONFIG_MMU
    static long __get_user_pages_remote(struct mm_struct *mm,
    				    unsigned long start, unsigned long nr_pages,
    				    unsigned int gup_flags, struct page **pages,
    				    struct vm_area_struct **vmas, int *locked)
    {
    	/*
    	 * Parts of FOLL_LONGTERM behavior are incompatible with
    	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
    	 * vmas. However, this only comes up if locked is set, and there are
    	 * callers that do request FOLL_LONGTERM, but do not set locked. So,
    	 * allow what we can.
    	 */
    	if (gup_flags & FOLL_LONGTERM) {
    		if (WARN_ON_ONCE(locked))
    			return -EINVAL;
    		/*
    		 * This will check the vmas (even if our vmas arg is NULL)
    		 * and return -ENOTSUPP if DAX isn't allowed in this case:
    		 */
    		return __gup_longterm_locked(mm, start, nr_pages, pages,
    					     vmas, gup_flags | FOLL_TOUCH |
    					     FOLL_REMOTE);
    	}
    
    	return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
    				       locked,
    				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
    }
    
    /**
     * get_user_pages_remote() - pin user pages in memory
     * @mm:		mm_struct of target mm
     * @start:	starting user address
     * @nr_pages:	number of pages from start to pin
     * @gup_flags:	flags modifying lookup behaviour
     * @pages:	array that receives pointers to the pages pinned.
     *		Should be at least nr_pages long. Or NULL, if caller
     *		only intends to ensure the pages are faulted in.
     * @vmas:	array of pointers to vmas corresponding to each page.
     *		Or NULL if the caller does not require them.
     * @locked:	pointer to lock flag indicating whether lock is held and
     *		subsequently whether VM_FAULT_RETRY functionality can be
     *		utilised. Lock must initially be held.
     *
     * Returns either number of pages pinned (which may be less than the
     * number requested), or an error. Details about the return value:
     *
     * -- If nr_pages is 0, returns 0.
     * -- If nr_pages is >0, but no pages were pinned, returns -errno.
     * -- If nr_pages is >0, and some pages were pinned, returns the number of
     *    pages pinned. Again, this may be less than nr_pages.
     *
     * The caller is responsible for releasing returned @pages, via put_page().
     *
     * @vmas are valid only as long as mmap_lock is held.
     *
     * Must be called with mmap_lock held for read or write.
     *
     * get_user_pages_remote walks a process's page tables and takes a reference
     * to each struct page that each user address corresponds to at a given
     * instant. That is, it takes the page that would be accessed if a user
     * thread accesses the given user virtual address at that instant.
     *
     * This does not guarantee that the page exists in the user mappings when
     * get_user_pages_remote returns, and there may even be a completely different
     * page there in some cases (eg. if mmapped pagecache has been invalidated
     * and subsequently re faulted). However it does guarantee that the page
     * won't be freed completely. And mostly callers simply care that the page
     * contains data that was valid *at some point in time*. Typically, an IO
     * or similar operation cannot guarantee anything stronger anyway because
     * locks can't be held over the syscall boundary.
     *
     * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
     * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
     * be called after the page is finished with, and before put_page is called.
     *
     * get_user_pages_remote is typically used for fewer-copy IO operations,
     * to get a handle on the memory by some means other than accesses
     * via the user virtual addresses. The pages may be submitted for
     * DMA to devices or accessed via their kernel linear mapping (via the
     * kmap APIs). Care should be taken to use the correct cache flushing APIs.
     *
     * See also get_user_pages_fast, for performance critical applications.
     *
     * get_user_pages_remote should be phased out in favor of
     * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
     * should use get_user_pages_remote because it cannot pass
     * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
     */
    long get_user_pages_remote(struct mm_struct *mm,
    		unsigned long start, unsigned long nr_pages,
    		unsigned int gup_flags, struct page **pages,
    		struct vm_area_struct **vmas, int *locked)
    {
    	if (!is_valid_gup_flags(gup_flags))
    		return -EINVAL;
    
    	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
    				       pages, vmas, locked);
    }
    EXPORT_SYMBOL(get_user_pages_remote);
    
    #else /* CONFIG_MMU */
    long get_user_pages_remote(struct mm_struct *mm,
    			   unsigned long start, unsigned long nr_pages,
    			   unsigned int gup_flags, struct page **pages,
    			   struct vm_area_struct **vmas, int *locked)
    {
    	return 0;
    }
    
    static long __get_user_pages_remote(struct mm_struct *mm,
    				    unsigned long start, unsigned long nr_pages,
    				    unsigned int gup_flags, struct page **pages,
    				    struct vm_area_struct **vmas, int *locked)
    {
    	return 0;
    }
    #endif /* !CONFIG_MMU */
    
    /**
     * get_user_pages() - pin user pages in memory
     * @start:      starting user address
     * @nr_pages:   number of pages from start to pin
     * @gup_flags:  flags modifying lookup behaviour
     * @pages:      array that receives pointers to the pages pinned.
     *              Should be at least nr_pages long. Or NULL, if caller
     *              only intends to ensure the pages are faulted in.
     * @vmas:       array of pointers to vmas corresponding to each page.
     *              Or NULL if the caller does not require them.
     *
     * This is the same as get_user_pages_remote(), just with a less-flexible
     * calling convention where we assume that the mm being operated on belongs to
     * the current task, and doesn't allow passing of a locked parameter.  We also
     * obviously don't pass FOLL_REMOTE in here.
     */
    long get_user_pages(unsigned long start, unsigned long nr_pages,
    		unsigned int gup_flags, struct page **pages,
    		struct vm_area_struct **vmas)
    {
    	if (!is_valid_gup_flags(gup_flags))
    		return -EINVAL;
    
    	return __gup_longterm_locked(current->mm, start, nr_pages,
    				     pages, vmas, gup_flags | FOLL_TOUCH);
    }
    EXPORT_SYMBOL(get_user_pages);
    
    /**
     * get_user_pages_locked() - variant of get_user_pages()
     *
     * @start:      starting user address
     * @nr_pages:   number of pages from start to pin
     * @gup_flags:  flags modifying lookup behaviour
     * @pages:      array that receives pointers to the pages pinned.
     *              Should be at least nr_pages long. Or NULL, if caller
     *              only intends to ensure the pages are faulted in.
     * @locked:     pointer to lock flag indicating whether lock is held and
     *              subsequently whether VM_FAULT_RETRY functionality can be
     *              utilised. Lock must initially be held.
     *
     * It is suitable to replace the form:
     *
     *      mmap_read_lock(mm);
     *      do_something()
     *      get_user_pages(mm, ..., pages, NULL);
     *      mmap_read_unlock(mm);
     *
     *  to:
     *
     *      int locked = 1;
     *      mmap_read_lock(mm);
     *      do_something()
     *      get_user_pages_locked(mm, ..., pages, &locked);
     *      if (locked)
     *          mmap_read_unlock(mm);
     *
     * We can leverage the VM_FAULT_RETRY functionality in the page fault
     * paths better by using either get_user_pages_locked() or
     * get_user_pages_unlocked().
     *
     */
    long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
    			   unsigned int gup_flags, struct page **pages,
    			   int *locked)
    {
    	/*
    	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
    	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
    	 * vmas.  As there are no users of this flag in this call we simply
    	 * disallow this option for now.
    	 */
    	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
    		return -EINVAL;
    	/*
    	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
    	 * never directly by the caller, so enforce that:
    	 */
    	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
    		return -EINVAL;
    
    	return __get_user_pages_locked(current->mm, start, nr_pages,
    				       pages, NULL, locked,
    				       gup_flags | FOLL_TOUCH);
    }
    EXPORT_SYMBOL(get_user_pages_locked);
    
    /*
     * get_user_pages_unlocked() is suitable to replace the form:
     *
     *      mmap_read_lock(mm);
     *      get_user_pages(mm, ..., pages, NULL);
     *      mmap_read_unlock(mm);
     *
     *  with:
     *
     *      get_user_pages_unlocked(mm, ..., pages);
     *
     * It is functionally equivalent to get_user_pages_fast so
     * get_user_pages_fast should be used instead if specific gup_flags
     * (e.g. FOLL_FORCE) are not required.
     */
    long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
    			     struct page **pages, unsigned int gup_flags)
    {
    	struct mm_struct *mm = current->mm;
    	int locked = 1;
    	long ret;
    
    	/*
    	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
    	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
    	 * vmas.  As there are no users of this flag in this call we simply
    	 * disallow this option for now.
    	 */
    	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
    		return -EINVAL;
    
    	mmap_read_lock(mm);
    	ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
    				      &locked, gup_flags | FOLL_TOUCH);
    	if (locked)
    		mmap_read_unlock(mm);
    	return ret;
    }
    EXPORT_SYMBOL(get_user_pages_unlocked);
    
    /*
     * Fast GUP
     *
     * get_user_pages_fast attempts to pin user pages by walking the page
     * tables directly and avoids taking locks. Thus the walker needs to be
     * protected from page table pages being freed from under it, and should
     * block any THP splits.
     *
     * One way to achieve this is to have the walker disable interrupts, and
     * rely on IPIs from the TLB flushing code blocking before the page table
     * pages are freed. This is unsuitable for architectures that do not need
     * to broadcast an IPI when invalidating TLBs.
     *
     * Another way to achieve this is to batch up page table containing pages
     * belonging to more than one mm_user, then rcu_sched a callback to free those
     * pages. Disabling interrupts will allow the fast_gup walker to both block
     * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
     * (which is a relatively rare event). The code below adopts this strategy.
     *
     * Before activating this code, please be aware that the following assumptions
     * are currently made:
     *
     *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
     *  free pages containing page tables or TLB flushing requires IPI broadcast.
     *
     *  *) ptes can be read atomically by the architecture.
     *
     *  *) access_ok is sufficient to validate userspace address ranges.
     *
     * The last two assumptions can be relaxed by the addition of helper functions.
     *
     * This code is based heavily on the PowerPC implementation by Nick Piggin.
     */
    #ifdef CONFIG_HAVE_FAST_GUP
    #ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
    
    /*
     * WARNING: only to be used in the get_user_pages_fast() implementation.
     *
     * With get_user_pages_fast(), we walk down the pagetables without taking any
     * locks.  For this we would like to load the pointers atomically, but sometimes
     * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE).  What
     * we do have is the guarantee that a PTE will only either go from not present
     * to present, or present to not present or both -- it will not switch to a
     * completely different present page without a TLB flush in between; something
     * that we are blocking by holding interrupts off.
     *
     * Setting ptes from not present to present goes:
     *
     *   ptep->pte_high = h;
     *   smp_wmb();
     *   ptep->pte_low = l;
     *
     * And present to not present goes:
     *
     *   ptep->pte_low = 0;
     *   smp_wmb();
     *   ptep->pte_high = 0;
     *
     * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
     * We load pte_high *after* loading pte_low, which ensures we don't see an older
     * value of pte_high.  *Then* we recheck pte_low, which ensures that we haven't
     * picked up a changed pte high. We might have gotten rubbish values from
     * pte_low and pte_high, but we are guaranteed that pte_low will not have the
     * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
     * operates on present ptes we're safe.
     */
    static inline pte_t gup_get_pte(pte_t *ptep)
    {
    	pte_t pte;
    
    	do {
    		pte.pte_low = ptep->pte_low;
    		smp_rmb();
    		pte.pte_high = ptep->pte_high;
    		smp_rmb();
    	} while (unlikely(pte.pte_low != ptep->pte_low));
    
    	return pte;
    }
    #else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
    /*
     * We require that the PTE can be read atomically.
     */
    static inline pte_t gup_get_pte(pte_t *ptep)
    {
    	return ptep_get(ptep);
    }
    #endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
    
    static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
    					    unsigned int flags,
    					    struct page **pages)
    {
    	while ((*nr) - nr_start) {
    		struct page *page = pages[--(*nr)];
    
    		ClearPageReferenced(page);
    		if (flags & FOLL_PIN)
    			unpin_user_page(page);
    		else
    			put_page(page);
    	}
    }
    
    #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
    static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
    			 unsigned int flags, struct page **pages, int *nr)
    {
    	struct dev_pagemap *pgmap = NULL;
    	int nr_start = *nr, ret = 0;
    	pte_t *ptep, *ptem;
    
    	ptem = ptep = pte_offset_map(&pmd, addr);
    	do {
    		pte_t pte = gup_get_pte(ptep);
    		struct page *head, *page;
    
    		/*
    		 * Similar to the PMD case below, NUMA hinting must take slow
    		 * path using the pte_protnone check.
    		 */
    		if (pte_protnone(pte))
    			goto pte_unmap;
    
    		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
    			goto pte_unmap;
    
    		if (pte_devmap(pte)) {
    			if (unlikely(flags & FOLL_LONGTERM))
    				goto pte_unmap;
    
    			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
    			if (unlikely(!pgmap)) {
    				undo_dev_pagemap(nr, nr_start, flags, pages);
    				goto pte_unmap;
    			}
    		} else if (pte_special(pte))
    			goto pte_unmap;
    
    		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
    		page = pte_page(pte);
    
    		head = try_grab_compound_head(page, 1, flags);
    		if (!head)
    			goto pte_unmap;
    
    		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
    			put_compound_head(head, 1, flags);
    			goto pte_unmap;
    		}
    
    		VM_BUG_ON_PAGE(compound_head(page) != head, page);
    
    		/*
    		 * We need to make the page accessible if and only if we are
    		 * going to access its content (the FOLL_PIN case).  Please
    		 * see Documentation/core-api/pin_user_pages.rst for
    		 * details.
    		 */
    		if (flags & FOLL_PIN) {
    			ret = arch_make_page_accessible(page);
    			if (ret) {
    				unpin_user_page(page);
    				goto pte_unmap;
    			}
    		}
    		SetPageReferenced(page);
    		pages[*nr] = page;
    		(*nr)++;
    
    	} while (ptep++, addr += PAGE_SIZE, addr != end);
    
    	ret = 1;
    
    pte_unmap:
    	if (pgmap)
    		put_dev_pagemap(pgmap);
    	pte_unmap(ptem);
    	return ret;
    }
    #else
    
    /*
     * If we can't determine whether or not a pte is special, then fail immediately
     * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
     * to be special.
     *
     * For a futex to be placed on a THP tail page, get_futex_key requires a
     * get_user_pages_fast_only implementation that can pin pages. Thus it's still
     * useful to have gup_huge_pmd even if we can't operate on ptes.
     */
    static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
    			 unsigned int flags, struct page **pages, int *nr)
    {
    	return 0;
    }
    #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
    
    #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
    static int __gup_device_huge(unsigned long pfn, unsigned long addr,
    			     unsigned long end, unsigned int flags,
    			     struct page **pages, int *nr)
    {
    	int nr_start = *nr;
    	struct dev_pagemap *pgmap = NULL;
    
    	do {
    		struct page *page = pfn_to_page(pfn);
    
    		pgmap = get_dev_pagemap(pfn, pgmap);
    		if (unlikely(!pgmap)) {
    			undo_dev_pagemap(nr, nr_start, flags, pages);
    			return 0;
    		}
    		SetPageReferenced(page);
    		pages[*nr] = page;
    		if (unlikely(!try_grab_page(page, flags))) {
    			undo_dev_pagemap(nr, nr_start, flags, pages);
    			return 0;
    		}
    		(*nr)++;
    		pfn++;
    	} while (addr += PAGE_SIZE, addr != end);
    
    	if (pgmap)
    		put_dev_pagemap(pgmap);
    	return 1;
    }
    
    static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
    				 unsigned long end, unsigned int flags,
    				 struct page **pages, int *nr)
    {
    	unsigned long fault_pfn;
    	int nr_start = *nr;
    
    	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
    	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
    		return 0;
    
    	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
    		undo_dev_pagemap(nr, nr_start, flags, pages);
    		return 0;
    	}
    	return 1;
    }
    
    static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
    				 unsigned long end, unsigned int flags,
    				 struct page **pages, int *nr)
    {
    	unsigned long fault_pfn;
    	int nr_start = *nr;
    
    	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
    	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
    		return 0;
    
    	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
    		undo_dev_pagemap(nr, nr_start, flags, pages);
    		return 0;
    	}
    	return 1;
    }
    #else
    static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
    				 unsigned long end, unsigned int flags,
    				 struct page **pages, int *nr)
    {
    	BUILD_BUG();
    	return 0;
    }
    
    static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
    				 unsigned long end, unsigned int flags,
    				 struct page **pages, int *nr)
    {
    	BUILD_BUG();
    	return 0;
    }
    #endif
    
    static int record_subpages(struct page *page, unsigned long addr,
    			   unsigned long end, struct page **pages)
    {
    	int nr;
    
    	for (nr = 0; addr != end; addr += PAGE_SIZE)
    		pages[nr++] = page++;
    
    	return nr;
    }
    
    #ifdef CONFIG_ARCH_HAS_HUGEPD
    static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
    				      unsigned long sz)
    {
    	unsigned long __boundary = (addr + sz) & ~(sz-1);
    	return (__boundary - 1 < end - 1) ? __boundary : end;
    }
    
    static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
    		       unsigned long end, unsigned int flags,
    		       struct page **pages, int *nr)
    {
    	unsigned long pte_end;
    	struct page *head, *page;
    	pte_t pte;
    	int refs;
    
    	pte_end = (addr + sz) & ~(sz-1);
    	if (pte_end < end)
    		end = pte_end;
    
    	pte = huge_ptep_get(ptep);
    
    	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
    		return 0;
    
    	/* hugepages are never "special" */
    	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
    
    	head = pte_page(pte);
    	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
    	refs = record_subpages(page, addr, end, pages + *nr);
    
    	head = try_grab_compound_head(head, refs, flags);
    	if (!head)
    		return 0;
    
    	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
    		put_compound_head(head, refs, flags);
    		return 0;
    	}
    
    	*nr += refs;
    	SetPageReferenced(head);
    	return 1;
    }
    
    static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
    		unsigned int pdshift, unsigned long end, unsigned int flags,
    		struct page **pages, int *nr)
    {
    	pte_t *ptep;
    	unsigned long sz = 1UL << hugepd_shift(hugepd);
    	unsigned long next;
    
    	ptep = hugepte_offset(hugepd, addr, pdshift);
    	do {
    		next = hugepte_addr_end(addr, end, sz);
    		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
    			return 0;
    	} while (ptep++, addr = next, addr != end);
    
    	return 1;
    }
    #else
    static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
    		unsigned int pdshift, unsigned long end, unsigned int flags,
    		struct page **pages, int *nr)
    {
    	return 0;
    }
    #endif /* CONFIG_ARCH_HAS_HUGEPD */
    
    static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
    			unsigned long end, unsigned int flags,
    			struct page **pages, int *nr)
    {
    	struct page *head, *page;
    	int refs;
    
    	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
    		return 0;
    
    	if (pmd_devmap(orig)) {
    		if (unlikely(flags & FOLL_LONGTERM))
    			return 0;
    		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
    					     pages, nr);
    	}
    
    	page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
    	refs = record_subpages(page, addr, end, pages + *nr);
    
    	head = try_grab_compound_head(pmd_page(orig), refs, flags);
    	if (!head)
    		return 0;
    
    	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
    		put_compound_head(head, refs, flags);
    		return 0;
    	}
    
    	*nr += refs;
    	SetPageReferenced(head);
    	return 1;
    }
    
    static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
    			unsigned long end, unsigned int flags,
    			struct page **pages, int *nr)
    {
    	struct page *head, *page;
    	int refs;
    
    	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
    		return 0;
    
    	if (pud_devmap(orig)) {
    		if (unlikely(flags & FOLL_LONGTERM))
    			return 0;
    		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
    					     pages, nr);
    	}
    
    	page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
    	refs = record_subpages(page, addr, end, pages + *nr);
    
    	head = try_grab_compound_head(pud_page(orig), refs, flags);
    	if (!head)
    		return 0;
    
    	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
    		put_compound_head(head, refs, flags);
    		return 0;
    	}
    
    	*nr += refs;
    	SetPageReferenced(head);
    	return 1;
    }
    
    static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
    			unsigned long end, unsigned int flags,
    			struct page **pages, int *nr)
    {
    	int refs;
    	struct page *head, *page;
    
    	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
    		return 0;
    
    	BUILD_BUG_ON(pgd_devmap(orig));
    
    	page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
    	refs = record_subpages(page, addr, end, pages + *nr);
    
    	head = try_grab_compound_head(pgd_page(orig), refs, flags);
    	if (!head)
    		return 0;
    
    	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
    		put_compound_head(head, refs, flags);
    		return 0;
    	}
    
    	*nr += refs;
    	SetPageReferenced(head);
    	return 1;
    }
    
    static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
    		unsigned int flags, struct page **pages, int *nr)
    {
    	unsigned long next;
    	pmd_t *pmdp;
    
    	pmdp = pmd_offset_lockless(pudp, pud, addr);
    	do {
    		pmd_t pmd = READ_ONCE(*pmdp);
    
    		next = pmd_addr_end(addr, end);
    		if (!pmd_present(pmd))
    			return 0;
    
    		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
    			     pmd_devmap(pmd))) {
    			/*
    			 * NUMA hinting faults need to be handled in the GUP
    			 * slowpath for accounting purposes and so that they
    			 * can be serialised against THP migration.
    			 */
    			if (pmd_protnone(pmd))
    				return 0;
    
    			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
    				pages, nr))
    				return 0;
    
    		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
    			/*
    			 * architecture have different format for hugetlbfs
    			 * pmd format and THP pmd format
    			 */
    			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
    					 PMD_SHIFT, next, flags, pages, nr))
    				return 0;
    		} else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
    			return 0;
    	} while (pmdp++, addr = next, addr != end);
    
    	return 1;
    }
    
    static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
    			 unsigned int flags, struct page **pages, int *nr)
    {
    	unsigned long next;
    	pud_t *pudp;
    
    	pudp = pud_offset_lockless(p4dp, p4d, addr);
    	do {
    		pud_t pud = READ_ONCE(*pudp);
    
    		next = pud_addr_end(addr, end);
    		if (unlikely(!pud_present(pud)))
    			return 0;
    		if (unlikely(pud_huge(pud))) {
    			if (!gup_huge_pud(pud, pudp, addr, next, flags,
    					  pages, nr))
    				return 0;
    		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
    			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
    					 PUD_SHIFT, next, flags, pages, nr))
    				return 0;
    		} else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
    			return 0;
    	} while (pudp++, addr = next, addr != end);
    
    	return 1;
    }
    
    static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
    			 unsigned int flags, struct page **pages, int *nr)
    {
    	unsigned long next;
    	p4d_t *p4dp;
    
    	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
    	do {
    		p4d_t p4d = READ_ONCE(*p4dp);
    
    		next = p4d_addr_end(addr, end);
    		if (p4d_none(p4d))
    			return 0;
    		BUILD_BUG_ON(p4d_huge(p4d));
    		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
    			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
    					 P4D_SHIFT, next, flags, pages, nr))
    				return 0;
    		} else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
    			return 0;
    	} while (p4dp++, addr = next, addr != end);
    
    	return 1;
    }
    
    static void gup_pgd_range(unsigned long addr, unsigned long end,
    		unsigned int flags, struct page **pages, int *nr)
    {
    	unsigned long next;
    	pgd_t *pgdp;
    
    	pgdp = pgd_offset(current->mm, addr);
    	do {
    		pgd_t pgd = READ_ONCE(*pgdp);
    
    		next = pgd_addr_end(addr, end);
    		if (pgd_none(pgd))
    			return;
    		if (unlikely(pgd_huge(pgd))) {
    			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
    					  pages, nr))
    				return;
    		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
    			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
    					 PGDIR_SHIFT, next, flags, pages, nr))
    				return;
    		} else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
    			return;
    	} while (pgdp++, addr = next, addr != end);
    }
    #else
    static inline void gup_pgd_range(unsigned long addr, unsigned long end,
    		unsigned int flags, struct page **pages, int *nr)
    {
    }
    #endif /* CONFIG_HAVE_FAST_GUP */
    
    #ifndef gup_fast_permitted
    /*
     * Check if it's allowed to use get_user_pages_fast_only() for the range, or
     * we need to fall back to the slow version:
     */
    static bool gup_fast_permitted(unsigned long start, unsigned long end)
    {
    	return true;
    }
    #endif
    
    static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
    				   unsigned int gup_flags, struct page **pages)
    {
    	int ret;
    
    	/*
    	 * FIXME: FOLL_LONGTERM does not work with
    	 * get_user_pages_unlocked() (see comments in that function)
    	 */
    	if (gup_flags & FOLL_LONGTERM) {
    		mmap_read_lock(current->mm);
    		ret = __gup_longterm_locked(current->mm,
    					    start, nr_pages,
    					    pages, NULL, gup_flags);
    		mmap_read_unlock(current->mm);
    	} else {
    		ret = get_user_pages_unlocked(start, nr_pages,
    					      pages, gup_flags);
    	}
    
    	return ret;
    }
    
    static unsigned long lockless_pages_from_mm(unsigned long start,
    					    unsigned long end,
    					    unsigned int gup_flags,
    					    struct page **pages)
    {
    	unsigned long flags;
    	int nr_pinned = 0;
    	unsigned seq;
    
    	if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
    	    !gup_fast_permitted(start, end))
    		return 0;
    
    	if (gup_flags & FOLL_PIN) {
    		seq = raw_read_seqcount(&current->mm->write_protect_seq);
    		if (seq & 1)
    			return 0;
    	}
    
    	/*
    	 * Disable interrupts. The nested form is used, in order to allow full,
    	 * general purpose use of this routine.
    	 *
    	 * With interrupts disabled, we block page table pages from being freed
    	 * from under us. See struct mmu_table_batch comments in
    	 * include/asm-generic/tlb.h for more details.
    	 *
    	 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
    	 * that come from THPs splitting.
    	 */
    	local_irq_save(flags);
    	gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
    	local_irq_restore(flags);
    
    	/*
    	 * When pinning pages for DMA there could be a concurrent write protect
    	 * from fork() via copy_page_range(), in this case always fail fast GUP.
    	 */
    	if (gup_flags & FOLL_PIN) {
    		if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
    			unpin_user_pages(pages, nr_pinned);
    			return 0;
    		}
    	}
    	return nr_pinned;
    }
    
    static int internal_get_user_pages_fast(unsigned long start,
    					unsigned long nr_pages,
    					unsigned int gup_flags,
    					struct page **pages)
    {
    	unsigned long len, end;
    	unsigned long nr_pinned;
    	int ret;
    
    	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
    				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
    				       FOLL_FAST_ONLY)))
    		return -EINVAL;
    
    	if (gup_flags & FOLL_PIN)
    		atomic_set(&current->mm->has_pinned, 1);
    
    	if (!(gup_flags & FOLL_FAST_ONLY))
    		might_lock_read(&current->mm->mmap_lock);
    
    	start = untagged_addr(start) & PAGE_MASK;
    	len = nr_pages << PAGE_SHIFT;
    	if (check_add_overflow(start, len, &end))
    		return 0;
    	if (unlikely(!access_ok((void __user *)start, len)))
    		return -EFAULT;
    
    	nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
    	if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
    		return nr_pinned;
    
    	/* Slow path: try to get the remaining pages with get_user_pages */
    	start += nr_pinned << PAGE_SHIFT;
    	pages += nr_pinned;
    	ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags,
    				      pages);
    	if (ret < 0) {
    		/*
    		 * The caller has to unpin the pages we already pinned so
    		 * returning -errno is not an option
    		 */
    		if (nr_pinned)
    			return nr_pinned;
    		return ret;
    	}
    	return ret + nr_pinned;
    }
    
    /**
     * get_user_pages_fast_only() - pin user pages in memory
     * @start:      starting user address
     * @nr_pages:   number of pages from start to pin
     * @gup_flags:  flags modifying pin behaviour
     * @pages:      array that receives pointers to the pages pinned.
     *              Should be at least nr_pages long.
     *
     * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
     * the regular GUP.
     * Note a difference with get_user_pages_fast: this always returns the
     * number of pages pinned, 0 if no pages were pinned.
     *
     * If the architecture does not support this function, simply return with no
     * pages pinned.
     *
     * Careful, careful! COW breaking can go either way, so a non-write
     * access can get ambiguous page results. If you call this function without
     * 'write' set, you'd better be sure that you're ok with that ambiguity.
     */
    int get_user_pages_fast_only(unsigned long start, int nr_pages,
    			     unsigned int gup_flags, struct page **pages)
    {
    	int nr_pinned;
    	/*
    	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
    	 * because gup fast is always a "pin with a +1 page refcount" request.
    	 *
    	 * FOLL_FAST_ONLY is required in order to match the API description of
    	 * this routine: no fall back to regular ("slow") GUP.
    	 */
    	gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
    
    	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
    						 pages);
    
    	/*
    	 * As specified in the API description above, this routine is not
    	 * allowed to return negative values. However, the common core
    	 * routine internal_get_user_pages_fast() *can* return -errno.
    	 * Therefore, correct for that here:
    	 */
    	if (nr_pinned < 0)
    		nr_pinned = 0;
    
    	return nr_pinned;
    }
    EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
    
    /**
     * get_user_pages_fast() - pin user pages in memory
     * @start:      starting user address
     * @nr_pages:   number of pages from start to pin
     * @gup_flags:  flags modifying pin behaviour
     * @pages:      array that receives pointers to the pages pinned.
     *              Should be at least nr_pages long.
     *
     * Attempt to pin user pages in memory without taking mm->mmap_lock.
     * If not successful, it will fall back to taking the lock and
     * calling get_user_pages().
     *
     * Returns number of pages pinned. This may be fewer than the number requested.
     * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
     * -errno.
     */
    int get_user_pages_fast(unsigned long start, int nr_pages,
    			unsigned int gup_flags, struct page **pages)
    {
    	if (!is_valid_gup_flags(gup_flags))
    		return -EINVAL;
    
    	/*
    	 * The caller may or may not have explicitly set FOLL_GET; either way is
    	 * OK. However, internally (within mm/gup.c), gup fast variants must set
    	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
    	 * request.
    	 */
    	gup_flags |= FOLL_GET;
    	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
    }
    EXPORT_SYMBOL_GPL(get_user_pages_fast);
    
    /**
     * pin_user_pages_fast() - pin user pages in memory without taking locks
     *
     * @start:      starting user address
     * @nr_pages:   number of pages from start to pin
     * @gup_flags:  flags modifying pin behaviour
     * @pages:      array that receives pointers to the pages pinned.
     *              Should be at least nr_pages long.
     *
     * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
     * get_user_pages_fast() for documentation on the function arguments, because
     * the arguments here are identical.
     *
     * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
     * see Documentation/core-api/pin_user_pages.rst for further details.
     */
    int pin_user_pages_fast(unsigned long start, int nr_pages,
    			unsigned int gup_flags, struct page **pages)
    {
    	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
    	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
    		return -EINVAL;
    
    	gup_flags |= FOLL_PIN;
    	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
    }
    EXPORT_SYMBOL_GPL(pin_user_pages_fast);
    
    /*
     * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
     * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
     *
     * The API rules are the same, too: no negative values may be returned.
     */
    int pin_user_pages_fast_only(unsigned long start, int nr_pages,
    			     unsigned int gup_flags, struct page **pages)
    {
    	int nr_pinned;
    
    	/*
    	 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
    	 * rules require returning 0, rather than -errno:
    	 */
    	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
    		return 0;
    	/*
    	 * FOLL_FAST_ONLY is required in order to match the API description of
    	 * this routine: no fall back to regular ("slow") GUP.
    	 */
    	gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
    	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
    						 pages);
    	/*
    	 * This routine is not allowed to return negative values. However,
    	 * internal_get_user_pages_fast() *can* return -errno. Therefore,
    	 * correct for that here:
    	 */
    	if (nr_pinned < 0)
    		nr_pinned = 0;
    
    	return nr_pinned;
    }
    EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
    
    /**
     * pin_user_pages_remote() - pin pages of a remote process
     *
     * @mm:		mm_struct of target mm
     * @start:	starting user address
     * @nr_pages:	number of pages from start to pin
     * @gup_flags:	flags modifying lookup behaviour
     * @pages:	array that receives pointers to the pages pinned.
     *		Should be at least nr_pages long. Or NULL, if caller
     *		only intends to ensure the pages are faulted in.
     * @vmas:	array of pointers to vmas corresponding to each page.
     *		Or NULL if the caller does not require them.
     * @locked:	pointer to lock flag indicating whether lock is held and
     *		subsequently whether VM_FAULT_RETRY functionality can be
     *		utilised. Lock must initially be held.
     *
     * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
     * get_user_pages_remote() for documentation on the function arguments, because
     * the arguments here are identical.
     *
     * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
     * see Documentation/core-api/pin_user_pages.rst for details.
     */
    long pin_user_pages_remote(struct mm_struct *mm,
    			   unsigned long start, unsigned long nr_pages,
    			   unsigned int gup_flags, struct page **pages,
    			   struct vm_area_struct **vmas, int *locked)
    {
    	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
    	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
    		return -EINVAL;
    
    	gup_flags |= FOLL_PIN;
    	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
    				       pages, vmas, locked);
    }
    EXPORT_SYMBOL(pin_user_pages_remote);
    
    /**
     * pin_user_pages() - pin user pages in memory for use by other devices
     *
     * @start:	starting user address
     * @nr_pages:	number of pages from start to pin
     * @gup_flags:	flags modifying lookup behaviour
     * @pages:	array that receives pointers to the pages pinned.
     *		Should be at least nr_pages long. Or NULL, if caller
     *		only intends to ensure the pages are faulted in.
     * @vmas:	array of pointers to vmas corresponding to each page.
     *		Or NULL if the caller does not require them.
     *
     * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
     * FOLL_PIN is set.
     *
     * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
     * see Documentation/core-api/pin_user_pages.rst for details.
     */
    long pin_user_pages(unsigned long start, unsigned long nr_pages,
    		    unsigned int gup_flags, struct page **pages,
    		    struct vm_area_struct **vmas)
    {
    	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
    	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
    		return -EINVAL;
    
    	gup_flags |= FOLL_PIN;
    	return __gup_longterm_locked(current->mm, start, nr_pages,
    				     pages, vmas, gup_flags);
    }
    EXPORT_SYMBOL(pin_user_pages);
    
    /*
     * pin_user_pages_unlocked() is the FOLL_PIN variant of
     * get_user_pages_unlocked(). Behavior is the same, except that this one sets
     * FOLL_PIN and rejects FOLL_GET.
     */
    long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
    			     struct page **pages, unsigned int gup_flags)
    {
    	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
    	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
    		return -EINVAL;
    
    	gup_flags |= FOLL_PIN;
    	return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
    }
    EXPORT_SYMBOL(pin_user_pages_unlocked);
    
    /*
     * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked().
     * Behavior is the same, except that this one sets FOLL_PIN and rejects
     * FOLL_GET.
     */
    long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
    			   unsigned int gup_flags, struct page **pages,
    			   int *locked)
    {
    	/*
    	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
    	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
    	 * vmas.  As there are no users of this flag in this call we simply
    	 * disallow this option for now.
    	 */
    	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
    		return -EINVAL;
    
    	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
    	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
    		return -EINVAL;
    
    	gup_flags |= FOLL_PIN;
    	return __get_user_pages_locked(current->mm, start, nr_pages,
    				       pages, NULL, locked,
    				       gup_flags | FOLL_TOUCH);
    }
    EXPORT_SYMBOL(pin_user_pages_locked);