Skip to content
Snippets Groups Projects
Select Git revision
  • a046e9c88b0f46677923864295eac7c92cd962cb
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

async-thread.c

Blame
  • amdgpu_vm.c 74.16 KiB
    /*
     * Copyright 2008 Advanced Micro Devices, Inc.
     * Copyright 2008 Red Hat Inc.
     * Copyright 2009 Jerome Glisse.
     *
     * Permission is hereby granted, free of charge, to any person obtaining a
     * copy of this software and associated documentation files (the "Software"),
     * to deal in the Software without restriction, including without limitation
     * the rights to use, copy, modify, merge, publish, distribute, sublicense,
     * and/or sell copies of the Software, and to permit persons to whom the
     * Software is furnished to do so, subject to the following conditions:
     *
     * The above copyright notice and this permission notice shall be included in
     * all copies or substantial portions of the Software.
     *
     * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
     * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
     * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
     * OTHER DEALINGS IN THE SOFTWARE.
     *
     * Authors: Dave Airlie
     *          Alex Deucher
     *          Jerome Glisse
     */
    #include <linux/dma-fence-array.h>
    #include <linux/interval_tree_generic.h>
    #include <linux/idr.h>
    #include <drm/drmP.h>
    #include <drm/amdgpu_drm.h>
    #include "amdgpu.h"
    #include "amdgpu_trace.h"
    
    /*
     * PASID manager
     *
     * PASIDs are global address space identifiers that can be shared
     * between the GPU, an IOMMU and the driver. VMs on different devices
     * may use the same PASID if they share the same address
     * space. Therefore PASIDs are allocated using a global IDA. VMs are
     * looked up from the PASID per amdgpu_device.
     */
    static DEFINE_IDA(amdgpu_vm_pasid_ida);
    
    /**
     * amdgpu_vm_alloc_pasid - Allocate a PASID
     * @bits: Maximum width of the PASID in bits, must be at least 1
     *
     * Allocates a PASID of the given width while keeping smaller PASIDs
     * available if possible.
     *
     * Returns a positive integer on success. Returns %-EINVAL if bits==0.
     * Returns %-ENOSPC if no PASID was available. Returns %-ENOMEM on
     * memory allocation failure.
     */
    int amdgpu_vm_alloc_pasid(unsigned int bits)
    {
    	int pasid = -EINVAL;
    
    	for (bits = min(bits, 31U); bits > 0; bits--) {
    		pasid = ida_simple_get(&amdgpu_vm_pasid_ida,
    				       1U << (bits - 1), 1U << bits,
    				       GFP_KERNEL);
    		if (pasid != -ENOSPC)
    			break;
    	}
    
    	return pasid;
    }
    
    /**
     * amdgpu_vm_free_pasid - Free a PASID
     * @pasid: PASID to free
     */
    void amdgpu_vm_free_pasid(unsigned int pasid)
    {
    	ida_simple_remove(&amdgpu_vm_pasid_ida, pasid);
    }
    
    /*
     * GPUVM
     * GPUVM is similar to the legacy gart on older asics, however
     * rather than there being a single global gart table
     * for the entire GPU, there are multiple VM page tables active
     * at any given time.  The VM page tables can contain a mix
     * vram pages and system memory pages and system memory pages
     * can be mapped as snooped (cached system pages) or unsnooped
     * (uncached system pages).
     * Each VM has an ID associated with it and there is a page table
     * associated with each VMID.  When execting a command buffer,
     * the kernel tells the the ring what VMID to use for that command
     * buffer.  VMIDs are allocated dynamically as commands are submitted.
     * The userspace drivers maintain their own address space and the kernel
     * sets up their pages tables accordingly when they submit their
     * command buffers and a VMID is assigned.
     * Cayman/Trinity support up to 8 active VMs at any given time;
     * SI supports 16.
     */
    
    #define START(node) ((node)->start)
    #define LAST(node) ((node)->last)
    
    INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
    		     START, LAST, static, amdgpu_vm_it)
    
    #undef START
    #undef LAST
    
    /* Local structure. Encapsulate some VM table update parameters to reduce
     * the number of function parameters
     */
    struct amdgpu_pte_update_params {
    	/* amdgpu device we do this update for */
    	struct amdgpu_device *adev;
    	/* optional amdgpu_vm we do this update for */
    	struct amdgpu_vm *vm;
    	/* address where to copy page table entries from */
    	uint64_t src;
    	/* indirect buffer to fill with commands */
    	struct amdgpu_ib *ib;
    	/* Function which actually does the update */
    	void (*func)(struct amdgpu_pte_update_params *params, uint64_t pe,
    		     uint64_t addr, unsigned count, uint32_t incr,
    		     uint64_t flags);
    	/* The next two are used during VM update by CPU
    	 *  DMA addresses to use for mapping
    	 *  Kernel pointer of PD/PT BO that needs to be updated
    	 */
    	dma_addr_t *pages_addr;
    	void *kptr;
    };
    
    /* Helper to disable partial resident texture feature from a fence callback */
    struct amdgpu_prt_cb {
    	struct amdgpu_device *adev;
    	struct dma_fence_cb cb;
    };
    
    /**
     * amdgpu_vm_num_entries - return the number of entries in a PD/PT
     *
     * @adev: amdgpu_device pointer
     *
     * Calculate the number of entries in a page directory or page table.
     */
    static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev,
    				      unsigned level)
    {
    	if (level == 0)
    		/* For the root directory */
    		return adev->vm_manager.max_pfn >>
    			(adev->vm_manager.block_size *
    			 adev->vm_manager.num_level);
    	else if (level == adev->vm_manager.num_level)
    		/* For the page tables on the leaves */
    		return AMDGPU_VM_PTE_COUNT(adev);
    	else
    		/* Everything in between */
    		return 1 << adev->vm_manager.block_size;
    }
    
    /**
     * amdgpu_vm_bo_size - returns the size of the BOs in bytes
     *
     * @adev: amdgpu_device pointer
     *
     * Calculate the size of the BO for a page directory or page table in bytes.
     */
    static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level)
    {
    	return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8);
    }
    
    /**
     * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
     *
     * @vm: vm providing the BOs
     * @validated: head of validation list
     * @entry: entry to add
     *
     * Add the page directory to the list of BOs to
     * validate for command submission.
     */
    void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
    			 struct list_head *validated,
    			 struct amdgpu_bo_list_entry *entry)
    {
    	entry->robj = vm->root.base.bo;
    	entry->priority = 0;
    	entry->tv.bo = &entry->robj->tbo;
    	entry->tv.shared = true;
    	entry->user_pages = NULL;
    	list_add(&entry->tv.head, validated);
    }
    
    /**
     * amdgpu_vm_validate_pt_bos - validate the page table BOs
     *
     * @adev: amdgpu device pointer
     * @vm: vm providing the BOs
     * @validate: callback to do the validation
     * @param: parameter for the validation callback
     *
     * Validate the page table BOs on command submission if neccessary.
     */
    int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
    			      int (*validate)(void *p, struct amdgpu_bo *bo),
    			      void *param)
    {
    	struct ttm_bo_global *glob = adev->mman.bdev.glob;
    	int r;
    
    	spin_lock(&vm->status_lock);
    	while (!list_empty(&vm->evicted)) {
    		struct amdgpu_vm_bo_base *bo_base;
    		struct amdgpu_bo *bo;
    
    		bo_base = list_first_entry(&vm->evicted,
    					   struct amdgpu_vm_bo_base,
    					   vm_status);
    		spin_unlock(&vm->status_lock);
    
    		bo = bo_base->bo;
    		BUG_ON(!bo);
    		if (bo->parent) {
    			r = validate(param, bo);
    			if (r)
    				return r;
    
    			spin_lock(&glob->lru_lock);
    			ttm_bo_move_to_lru_tail(&bo->tbo);
    			if (bo->shadow)
    				ttm_bo_move_to_lru_tail(&bo->shadow->tbo);
    			spin_unlock(&glob->lru_lock);
    		}
    
    		if (bo->tbo.type == ttm_bo_type_kernel &&
    		    vm->use_cpu_for_update) {
    			r = amdgpu_bo_kmap(bo, NULL);
    			if (r)
    				return r;
    		}
    
    		spin_lock(&vm->status_lock);
    		if (bo->tbo.type != ttm_bo_type_kernel)
    			list_move(&bo_base->vm_status, &vm->moved);
    		else
    			list_move(&bo_base->vm_status, &vm->relocated);
    	}
    	spin_unlock(&vm->status_lock);
    
    	return 0;
    }
    
    /**
     * amdgpu_vm_ready - check VM is ready for updates
     *
     * @vm: VM to check
     *
     * Check if all VM PDs/PTs are ready for updates
     */
    bool amdgpu_vm_ready(struct amdgpu_vm *vm)
    {
    	bool ready;
    
    	spin_lock(&vm->status_lock);
    	ready = list_empty(&vm->evicted);
    	spin_unlock(&vm->status_lock);
    
    	return ready;
    }
    
    /**
     * amdgpu_vm_alloc_levels - allocate the PD/PT levels
     *
     * @adev: amdgpu_device pointer
     * @vm: requested vm
     * @saddr: start of the address range
     * @eaddr: end of the address range
     *
     * Make sure the page directories and page tables are allocated
     */
    static int amdgpu_vm_alloc_levels(struct amdgpu_device *adev,
    				  struct amdgpu_vm *vm,
    				  struct amdgpu_vm_pt *parent,
    				  uint64_t saddr, uint64_t eaddr,
    				  unsigned level)
    {
    	unsigned shift = (adev->vm_manager.num_level - level) *
    		adev->vm_manager.block_size;
    	unsigned pt_idx, from, to;
    	int r;
    	u64 flags;
    	uint64_t init_value = 0;
    
    	if (!parent->entries) {
    		unsigned num_entries = amdgpu_vm_num_entries(adev, level);
    
    		parent->entries = kvmalloc_array(num_entries,
    						   sizeof(struct amdgpu_vm_pt),
    						   GFP_KERNEL | __GFP_ZERO);
    		if (!parent->entries)
    			return -ENOMEM;
    		memset(parent->entries, 0 , sizeof(struct amdgpu_vm_pt));
    	}
    
    	from = saddr >> shift;
    	to = eaddr >> shift;
    	if (from >= amdgpu_vm_num_entries(adev, level) ||
    	    to >= amdgpu_vm_num_entries(adev, level))
    		return -EINVAL;
    
    	if (to > parent->last_entry_used)
    		parent->last_entry_used = to;
    
    	++level;
    	saddr = saddr & ((1 << shift) - 1);
    	eaddr = eaddr & ((1 << shift) - 1);
    
    	flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
    			AMDGPU_GEM_CREATE_VRAM_CLEARED;
    	if (vm->use_cpu_for_update)
    		flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
    	else
    		flags |= (AMDGPU_GEM_CREATE_NO_CPU_ACCESS |
    				AMDGPU_GEM_CREATE_SHADOW);
    
    	if (vm->pte_support_ats) {
    		init_value = AMDGPU_PTE_SYSTEM;
    		if (level != adev->vm_manager.num_level - 1)
    			init_value |= AMDGPU_PDE_PTE;
    	}
    
    	/* walk over the address space and allocate the page tables */
    	for (pt_idx = from; pt_idx <= to; ++pt_idx) {
    		struct reservation_object *resv = vm->root.base.bo->tbo.resv;
    		struct amdgpu_vm_pt *entry = &parent->entries[pt_idx];
    		struct amdgpu_bo *pt;
    
    		if (!entry->base.bo) {
    			r = amdgpu_bo_create(adev,
    					     amdgpu_vm_bo_size(adev, level),
    					     AMDGPU_GPU_PAGE_SIZE, true,
    					     AMDGPU_GEM_DOMAIN_VRAM,
    					     flags,
    					     NULL, resv, init_value, &pt);
    			if (r)
    				return r;
    
    			if (vm->use_cpu_for_update) {
    				r = amdgpu_bo_kmap(pt, NULL);
    				if (r) {
    					amdgpu_bo_unref(&pt);
    					return r;
    				}
    			}
    
    			/* Keep a reference to the root directory to avoid
    			* freeing them up in the wrong order.
    			*/
    			pt->parent = amdgpu_bo_ref(parent->base.bo);
    
    			entry->base.vm = vm;
    			entry->base.bo = pt;
    			list_add_tail(&entry->base.bo_list, &pt->va);
    			spin_lock(&vm->status_lock);
    			list_add(&entry->base.vm_status, &vm->relocated);
    			spin_unlock(&vm->status_lock);
    			entry->addr = 0;
    		}
    
    		if (level < adev->vm_manager.num_level) {
    			uint64_t sub_saddr = (pt_idx == from) ? saddr : 0;
    			uint64_t sub_eaddr = (pt_idx == to) ? eaddr :
    				((1 << shift) - 1);
    			r = amdgpu_vm_alloc_levels(adev, vm, entry, sub_saddr,
    						   sub_eaddr, level);
    			if (r)
    				return r;
    		}
    	}
    
    	return 0;
    }
    
    /**
     * amdgpu_vm_alloc_pts - Allocate page tables.
     *
     * @adev: amdgpu_device pointer
     * @vm: VM to allocate page tables for
     * @saddr: Start address which needs to be allocated
     * @size: Size from start address we need.
     *
     * Make sure the page tables are allocated.
     */
    int amdgpu_vm_alloc_pts(struct amdgpu_device *adev,
    			struct amdgpu_vm *vm,
    			uint64_t saddr, uint64_t size)
    {
    	uint64_t last_pfn;
    	uint64_t eaddr;
    
    	/* validate the parameters */
    	if (saddr & AMDGPU_GPU_PAGE_MASK || size & AMDGPU_GPU_PAGE_MASK)
    		return -EINVAL;
    
    	eaddr = saddr + size - 1;
    	last_pfn = eaddr / AMDGPU_GPU_PAGE_SIZE;
    	if (last_pfn >= adev->vm_manager.max_pfn) {
    		dev_err(adev->dev, "va above limit (0x%08llX >= 0x%08llX)\n",
    			last_pfn, adev->vm_manager.max_pfn);
    		return -EINVAL;
    	}
    
    	saddr /= AMDGPU_GPU_PAGE_SIZE;
    	eaddr /= AMDGPU_GPU_PAGE_SIZE;
    
    	return amdgpu_vm_alloc_levels(adev, vm, &vm->root, saddr, eaddr, 0);
    }
    
    /**
     * amdgpu_vm_had_gpu_reset - check if reset occured since last use
     *
     * @adev: amdgpu_device pointer
     * @id: VMID structure
     *
     * Check if GPU reset occured since last use of the VMID.
     */
    static bool amdgpu_vm_had_gpu_reset(struct amdgpu_device *adev,
    				    struct amdgpu_vm_id *id)
    {
    	return id->current_gpu_reset_count !=
    		atomic_read(&adev->gpu_reset_counter);
    }
    
    static bool amdgpu_vm_reserved_vmid_ready(struct amdgpu_vm *vm, unsigned vmhub)
    {
    	return !!vm->reserved_vmid[vmhub];
    }
    
    /* idr_mgr->lock must be held */
    static int amdgpu_vm_grab_reserved_vmid_locked(struct amdgpu_vm *vm,
    					       struct amdgpu_ring *ring,
    					       struct amdgpu_sync *sync,
    					       struct dma_fence *fence,
    					       struct amdgpu_job *job)
    {
    	struct amdgpu_device *adev = ring->adev;
    	unsigned vmhub = ring->funcs->vmhub;
    	uint64_t fence_context = adev->fence_context + ring->idx;
    	struct amdgpu_vm_id *id = vm->reserved_vmid[vmhub];
    	struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
    	struct dma_fence *updates = sync->last_vm_update;
    	int r = 0;
    	struct dma_fence *flushed, *tmp;
    	bool needs_flush = vm->use_cpu_for_update;
    
    	flushed  = id->flushed_updates;
    	if ((amdgpu_vm_had_gpu_reset(adev, id)) ||
    	    (atomic64_read(&id->owner) != vm->client_id) ||
    	    (job->vm_pd_addr != id->pd_gpu_addr) ||
    	    (updates && (!flushed || updates->context != flushed->context ||
    			dma_fence_is_later(updates, flushed))) ||
    	    (!id->last_flush || (id->last_flush->context != fence_context &&
    				 !dma_fence_is_signaled(id->last_flush)))) {
    		needs_flush = true;
    		/* to prevent one context starved by another context */
    		id->pd_gpu_addr = 0;
    		tmp = amdgpu_sync_peek_fence(&id->active, ring);
    		if (tmp) {
    			r = amdgpu_sync_fence(adev, sync, tmp);
    			return r;
    		}
    	}
    
    	/* Good we can use this VMID. Remember this submission as
    	* user of the VMID.
    	*/
    	r = amdgpu_sync_fence(ring->adev, &id->active, fence);
    	if (r)
    		goto out;
    
    	if (updates && (!flushed || updates->context != flushed->context ||
    			dma_fence_is_later(updates, flushed))) {
    		dma_fence_put(id->flushed_updates);
    		id->flushed_updates = dma_fence_get(updates);
    	}
    	id->pd_gpu_addr = job->vm_pd_addr;
    	atomic64_set(&id->owner, vm->client_id);
    	job->vm_needs_flush = needs_flush;
    	if (needs_flush) {
    		dma_fence_put(id->last_flush);
    		id->last_flush = NULL;
    	}
    	job->vm_id = id - id_mgr->ids;
    	trace_amdgpu_vm_grab_id(vm, ring, job);
    out:
    	return r;
    }
    
    /**
     * amdgpu_vm_grab_id - allocate the next free VMID
     *
     * @vm: vm to allocate id for
     * @ring: ring we want to submit job to
     * @sync: sync object where we add dependencies
     * @fence: fence protecting ID from reuse
     *
     * Allocate an id for the vm, adding fences to the sync obj as necessary.
     */
    int amdgpu_vm_grab_id(struct amdgpu_vm *vm, struct amdgpu_ring *ring,
    		      struct amdgpu_sync *sync, struct dma_fence *fence,
    		      struct amdgpu_job *job)
    {
    	struct amdgpu_device *adev = ring->adev;
    	unsigned vmhub = ring->funcs->vmhub;
    	struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
    	uint64_t fence_context = adev->fence_context + ring->idx;
    	struct dma_fence *updates = sync->last_vm_update;
    	struct amdgpu_vm_id *id, *idle;
    	struct dma_fence **fences;
    	unsigned i;
    	int r = 0;
    
    	mutex_lock(&id_mgr->lock);
    	if (amdgpu_vm_reserved_vmid_ready(vm, vmhub)) {
    		r = amdgpu_vm_grab_reserved_vmid_locked(vm, ring, sync, fence, job);
    		mutex_unlock(&id_mgr->lock);
    		return r;
    	}
    	fences = kmalloc_array(sizeof(void *), id_mgr->num_ids, GFP_KERNEL);
    	if (!fences) {
    		mutex_unlock(&id_mgr->lock);
    		return -ENOMEM;
    	}
    	/* Check if we have an idle VMID */
    	i = 0;
    	list_for_each_entry(idle, &id_mgr->ids_lru, list) {
    		fences[i] = amdgpu_sync_peek_fence(&idle->active, ring);
    		if (!fences[i])
    			break;
    		++i;
    	}
    
    	/* If we can't find a idle VMID to use, wait till one becomes available */
    	if (&idle->list == &id_mgr->ids_lru) {
    		u64 fence_context = adev->vm_manager.fence_context + ring->idx;
    		unsigned seqno = ++adev->vm_manager.seqno[ring->idx];
    		struct dma_fence_array *array;
    		unsigned j;
    
    		for (j = 0; j < i; ++j)
    			dma_fence_get(fences[j]);
    
    		array = dma_fence_array_create(i, fences, fence_context,
    					   seqno, true);
    		if (!array) {
    			for (j = 0; j < i; ++j)
    				dma_fence_put(fences[j]);
    			kfree(fences);
    			r = -ENOMEM;
    			goto error;
    		}
    
    
    		r = amdgpu_sync_fence(ring->adev, sync, &array->base);
    		dma_fence_put(&array->base);
    		if (r)
    			goto error;
    
    		mutex_unlock(&id_mgr->lock);
    		return 0;
    
    	}
    	kfree(fences);
    
    	job->vm_needs_flush = vm->use_cpu_for_update;
    	/* Check if we can use a VMID already assigned to this VM */
    	list_for_each_entry_reverse(id, &id_mgr->ids_lru, list) {
    		struct dma_fence *flushed;
    		bool needs_flush = vm->use_cpu_for_update;
    
    		/* Check all the prerequisites to using this VMID */
    		if (amdgpu_vm_had_gpu_reset(adev, id))
    			continue;
    
    		if (atomic64_read(&id->owner) != vm->client_id)
    			continue;
    
    		if (job->vm_pd_addr != id->pd_gpu_addr)
    			continue;
    
    		if (!id->last_flush ||
    		    (id->last_flush->context != fence_context &&
    		     !dma_fence_is_signaled(id->last_flush)))
    			needs_flush = true;
    
    		flushed  = id->flushed_updates;
    		if (updates && (!flushed || dma_fence_is_later(updates, flushed)))
    			needs_flush = true;
    
    		/* Concurrent flushes are only possible starting with Vega10 */
    		if (adev->asic_type < CHIP_VEGA10 && needs_flush)
    			continue;
    
    		/* Good we can use this VMID. Remember this submission as
    		 * user of the VMID.
    		 */
    		r = amdgpu_sync_fence(ring->adev, &id->active, fence);
    		if (r)
    			goto error;
    
    		if (updates && (!flushed || dma_fence_is_later(updates, flushed))) {
    			dma_fence_put(id->flushed_updates);
    			id->flushed_updates = dma_fence_get(updates);
    		}
    
    		if (needs_flush)
    			goto needs_flush;
    		else
    			goto no_flush_needed;
    
    	};
    
    	/* Still no ID to use? Then use the idle one found earlier */
    	id = idle;
    
    	/* Remember this submission as user of the VMID */
    	r = amdgpu_sync_fence(ring->adev, &id->active, fence);
    	if (r)
    		goto error;
    
    	id->pd_gpu_addr = job->vm_pd_addr;
    	dma_fence_put(id->flushed_updates);
    	id->flushed_updates = dma_fence_get(updates);
    	atomic64_set(&id->owner, vm->client_id);
    
    needs_flush:
    	job->vm_needs_flush = true;
    	dma_fence_put(id->last_flush);
    	id->last_flush = NULL;
    
    no_flush_needed:
    	list_move_tail(&id->list, &id_mgr->ids_lru);
    
    	job->vm_id = id - id_mgr->ids;
    	trace_amdgpu_vm_grab_id(vm, ring, job);
    
    error:
    	mutex_unlock(&id_mgr->lock);
    	return r;
    }
    
    static void amdgpu_vm_free_reserved_vmid(struct amdgpu_device *adev,
    					  struct amdgpu_vm *vm,
    					  unsigned vmhub)
    {
    	struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
    
    	mutex_lock(&id_mgr->lock);
    	if (vm->reserved_vmid[vmhub]) {
    		list_add(&vm->reserved_vmid[vmhub]->list,
    			&id_mgr->ids_lru);
    		vm->reserved_vmid[vmhub] = NULL;
    		atomic_dec(&id_mgr->reserved_vmid_num);
    	}
    	mutex_unlock(&id_mgr->lock);
    }
    
    static int amdgpu_vm_alloc_reserved_vmid(struct amdgpu_device *adev,
    					 struct amdgpu_vm *vm,
    					 unsigned vmhub)
    {
    	struct amdgpu_vm_id_manager *id_mgr;
    	struct amdgpu_vm_id *idle;
    	int r = 0;
    
    	id_mgr = &adev->vm_manager.id_mgr[vmhub];
    	mutex_lock(&id_mgr->lock);
    	if (vm->reserved_vmid[vmhub])
    		goto unlock;
    	if (atomic_inc_return(&id_mgr->reserved_vmid_num) >
    	    AMDGPU_VM_MAX_RESERVED_VMID) {
    		DRM_ERROR("Over limitation of reserved vmid\n");
    		atomic_dec(&id_mgr->reserved_vmid_num);
    		r = -EINVAL;
    		goto unlock;
    	}
    	/* Select the first entry VMID */
    	idle = list_first_entry(&id_mgr->ids_lru, struct amdgpu_vm_id, list);
    	list_del_init(&idle->list);
    	vm->reserved_vmid[vmhub] = idle;
    	mutex_unlock(&id_mgr->lock);
    
    	return 0;
    unlock:
    	mutex_unlock(&id_mgr->lock);
    	return r;
    }
    
    /**
     * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug
     *
     * @adev: amdgpu_device pointer
     */
    void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev)
    {
    	const struct amdgpu_ip_block *ip_block;
    	bool has_compute_vm_bug;
    	struct amdgpu_ring *ring;
    	int i;
    
    	has_compute_vm_bug = false;
    
    	ip_block = amdgpu_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
    	if (ip_block) {
    		/* Compute has a VM bug for GFX version < 7.
    		   Compute has a VM bug for GFX 8 MEC firmware version < 673.*/
    		if (ip_block->version->major <= 7)
    			has_compute_vm_bug = true;
    		else if (ip_block->version->major == 8)
    			if (adev->gfx.mec_fw_version < 673)
    				has_compute_vm_bug = true;
    	}
    
    	for (i = 0; i < adev->num_rings; i++) {
    		ring = adev->rings[i];
    		if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
    			/* only compute rings */
    			ring->has_compute_vm_bug = has_compute_vm_bug;
    		else
    			ring->has_compute_vm_bug = false;
    	}
    }
    
    bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
    				  struct amdgpu_job *job)
    {
    	struct amdgpu_device *adev = ring->adev;
    	unsigned vmhub = ring->funcs->vmhub;
    	struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
    	struct amdgpu_vm_id *id;
    	bool gds_switch_needed;
    	bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug;
    
    	if (job->vm_id == 0)
    		return false;
    	id = &id_mgr->ids[job->vm_id];
    	gds_switch_needed = ring->funcs->emit_gds_switch && (
    		id->gds_base != job->gds_base ||
    		id->gds_size != job->gds_size ||
    		id->gws_base != job->gws_base ||
    		id->gws_size != job->gws_size ||
    		id->oa_base != job->oa_base ||
    		id->oa_size != job->oa_size);
    
    	if (amdgpu_vm_had_gpu_reset(adev, id))
    		return true;
    
    	return vm_flush_needed || gds_switch_needed;
    }
    
    static bool amdgpu_vm_is_large_bar(struct amdgpu_device *adev)
    {
    	return (adev->mc.real_vram_size == adev->mc.visible_vram_size);
    }
    
    /**
     * amdgpu_vm_flush - hardware flush the vm
     *
     * @ring: ring to use for flush
     * @vm_id: vmid number to use
     * @pd_addr: address of the page directory
     *
     * Emit a VM flush when it is necessary.
     */
    int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, bool need_pipe_sync)
    {
    	struct amdgpu_device *adev = ring->adev;
    	unsigned vmhub = ring->funcs->vmhub;
    	struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
    	struct amdgpu_vm_id *id = &id_mgr->ids[job->vm_id];
    	bool gds_switch_needed = ring->funcs->emit_gds_switch && (
    		id->gds_base != job->gds_base ||
    		id->gds_size != job->gds_size ||
    		id->gws_base != job->gws_base ||
    		id->gws_size != job->gws_size ||
    		id->oa_base != job->oa_base ||
    		id->oa_size != job->oa_size);
    	bool vm_flush_needed = job->vm_needs_flush;
    	unsigned patch_offset = 0;
    	int r;
    
    	if (amdgpu_vm_had_gpu_reset(adev, id)) {
    		gds_switch_needed = true;
    		vm_flush_needed = true;
    	}
    
    	if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync)
    		return 0;
    
    	if (ring->funcs->init_cond_exec)
    		patch_offset = amdgpu_ring_init_cond_exec(ring);
    
    	if (need_pipe_sync)
    		amdgpu_ring_emit_pipeline_sync(ring);
    
    	if (ring->funcs->emit_vm_flush && vm_flush_needed) {
    		struct dma_fence *fence;
    
    		trace_amdgpu_vm_flush(ring, job->vm_id, job->vm_pd_addr);
    		amdgpu_ring_emit_vm_flush(ring, job->vm_id, job->vm_pd_addr);
    
    		r = amdgpu_fence_emit(ring, &fence);
    		if (r)
    			return r;
    
    		mutex_lock(&id_mgr->lock);
    		dma_fence_put(id->last_flush);
    		id->last_flush = fence;
    		id->current_gpu_reset_count = atomic_read(&adev->gpu_reset_counter);
    		mutex_unlock(&id_mgr->lock);
    	}
    
    	if (ring->funcs->emit_gds_switch && gds_switch_needed) {
    		id->gds_base = job->gds_base;
    		id->gds_size = job->gds_size;
    		id->gws_base = job->gws_base;
    		id->gws_size = job->gws_size;
    		id->oa_base = job->oa_base;
    		id->oa_size = job->oa_size;
    		amdgpu_ring_emit_gds_switch(ring, job->vm_id, job->gds_base,
    					    job->gds_size, job->gws_base,
    					    job->gws_size, job->oa_base,
    					    job->oa_size);
    	}
    
    	if (ring->funcs->patch_cond_exec)
    		amdgpu_ring_patch_cond_exec(ring, patch_offset);
    
    	/* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
    	if (ring->funcs->emit_switch_buffer) {
    		amdgpu_ring_emit_switch_buffer(ring);
    		amdgpu_ring_emit_switch_buffer(ring);
    	}
    	return 0;
    }
    
    /**
     * amdgpu_vm_reset_id - reset VMID to zero
     *
     * @adev: amdgpu device structure
     * @vm_id: vmid number to use
     *
     * Reset saved GDW, GWS and OA to force switch on next flush.
     */
    void amdgpu_vm_reset_id(struct amdgpu_device *adev, unsigned vmhub,
    			unsigned vmid)
    {
    	struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
    	struct amdgpu_vm_id *id = &id_mgr->ids[vmid];
    
    	atomic64_set(&id->owner, 0);
    	id->gds_base = 0;
    	id->gds_size = 0;
    	id->gws_base = 0;
    	id->gws_size = 0;
    	id->oa_base = 0;
    	id->oa_size = 0;
    }
    
    /**
     * amdgpu_vm_reset_all_id - reset VMID to zero
     *
     * @adev: amdgpu device structure
     *
     * Reset VMID to force flush on next use
     */
    void amdgpu_vm_reset_all_ids(struct amdgpu_device *adev)
    {
    	unsigned i, j;
    
    	for (i = 0; i < AMDGPU_MAX_VMHUBS; ++i) {
    		struct amdgpu_vm_id_manager *id_mgr =
    			&adev->vm_manager.id_mgr[i];
    
    		for (j = 1; j < id_mgr->num_ids; ++j)
    			amdgpu_vm_reset_id(adev, i, j);
    	}
    }
    
    /**
     * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
     *
     * @vm: requested vm
     * @bo: requested buffer object
     *
     * Find @bo inside the requested vm.
     * Search inside the @bos vm list for the requested vm
     * Returns the found bo_va or NULL if none is found
     *
     * Object has to be reserved!
     */
    struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
    				       struct amdgpu_bo *bo)
    {
    	struct amdgpu_bo_va *bo_va;
    
    	list_for_each_entry(bo_va, &bo->va, base.bo_list) {
    		if (bo_va->base.vm == vm) {
    			return bo_va;
    		}
    	}
    	return NULL;
    }
    
    /**
     * amdgpu_vm_do_set_ptes - helper to call the right asic function
     *
     * @params: see amdgpu_pte_update_params definition
     * @pe: addr of the page entry
     * @addr: dst addr to write into pe
     * @count: number of page entries to update
     * @incr: increase next addr by incr bytes
     * @flags: hw access flags
     *
     * Traces the parameters and calls the right asic functions
     * to setup the page table using the DMA.
     */
    static void amdgpu_vm_do_set_ptes(struct amdgpu_pte_update_params *params,
    				  uint64_t pe, uint64_t addr,
    				  unsigned count, uint32_t incr,
    				  uint64_t flags)
    {
    	trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags);
    
    	if (count < 3) {
    		amdgpu_vm_write_pte(params->adev, params->ib, pe,
    				    addr | flags, count, incr);
    
    	} else {
    		amdgpu_vm_set_pte_pde(params->adev, params->ib, pe, addr,
    				      count, incr, flags);
    	}
    }
    
    /**
     * amdgpu_vm_do_copy_ptes - copy the PTEs from the GART
     *
     * @params: see amdgpu_pte_update_params definition
     * @pe: addr of the page entry
     * @addr: dst addr to write into pe
     * @count: number of page entries to update
     * @incr: increase next addr by incr bytes
     * @flags: hw access flags
     *
     * Traces the parameters and calls the DMA function to copy the PTEs.
     */
    static void amdgpu_vm_do_copy_ptes(struct amdgpu_pte_update_params *params,
    				   uint64_t pe, uint64_t addr,
    				   unsigned count, uint32_t incr,
    				   uint64_t flags)
    {
    	uint64_t src = (params->src + (addr >> 12) * 8);
    
    
    	trace_amdgpu_vm_copy_ptes(pe, src, count);
    
    	amdgpu_vm_copy_pte(params->adev, params->ib, pe, src, count);
    }
    
    /**
     * amdgpu_vm_map_gart - Resolve gart mapping of addr
     *
     * @pages_addr: optional DMA address to use for lookup
     * @addr: the unmapped addr
     *
     * Look up the physical address of the page that the pte resolves
     * to and return the pointer for the page table entry.
     */
    static uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
    {
    	uint64_t result;
    
    	/* page table offset */
    	result = pages_addr[addr >> PAGE_SHIFT];
    
    	/* in case cpu page size != gpu page size*/
    	result |= addr & (~PAGE_MASK);
    
    	result &= 0xFFFFFFFFFFFFF000ULL;
    
    	return result;
    }
    
    /**
     * amdgpu_vm_cpu_set_ptes - helper to update page tables via CPU
     *
     * @params: see amdgpu_pte_update_params definition
     * @pe: kmap addr of the page entry
     * @addr: dst addr to write into pe
     * @count: number of page entries to update
     * @incr: increase next addr by incr bytes
     * @flags: hw access flags
     *
     * Write count number of PT/PD entries directly.
     */
    static void amdgpu_vm_cpu_set_ptes(struct amdgpu_pte_update_params *params,
    				   uint64_t pe, uint64_t addr,
    				   unsigned count, uint32_t incr,
    				   uint64_t flags)
    {
    	unsigned int i;
    	uint64_t value;
    
    	trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags);
    
    	for (i = 0; i < count; i++) {
    		value = params->pages_addr ?
    			amdgpu_vm_map_gart(params->pages_addr, addr) :
    			addr;
    		amdgpu_gart_set_pte_pde(params->adev, (void *)(uintptr_t)pe,
    					i, value, flags);
    		addr += incr;
    	}
    }
    
    static int amdgpu_vm_wait_pd(struct amdgpu_device *adev, struct amdgpu_vm *vm,
    			     void *owner)
    {
    	struct amdgpu_sync sync;
    	int r;
    
    	amdgpu_sync_create(&sync);
    	amdgpu_sync_resv(adev, &sync, vm->root.base.bo->tbo.resv, owner);
    	r = amdgpu_sync_wait(&sync, true);
    	amdgpu_sync_free(&sync);
    
    	return r;
    }
    
    /*
     * amdgpu_vm_update_level - update a single level in the hierarchy
     *
     * @adev: amdgpu_device pointer
     * @vm: requested vm
     * @parent: parent directory
     *
     * Makes sure all entries in @parent are up to date.
     * Returns 0 for success, error for failure.
     */
    static int amdgpu_vm_update_level(struct amdgpu_device *adev,
    				  struct amdgpu_vm *vm,
    				  struct amdgpu_vm_pt *parent)
    {
    	struct amdgpu_bo *shadow;
    	struct amdgpu_ring *ring = NULL;
    	uint64_t pd_addr, shadow_addr = 0;
    	uint64_t last_pde = ~0, last_pt = ~0, last_shadow = ~0;
    	unsigned count = 0, pt_idx, ndw = 0;
    	struct amdgpu_job *job;
    	struct amdgpu_pte_update_params params;
    	struct dma_fence *fence = NULL;
    	uint32_t incr;
    
    	int r;
    
    	if (!parent->entries)
    		return 0;
    
    	memset(&params, 0, sizeof(params));
    	params.adev = adev;
    	shadow = parent->base.bo->shadow;
    
    	if (vm->use_cpu_for_update) {
    		pd_addr = (unsigned long)amdgpu_bo_kptr(parent->base.bo);
    		r = amdgpu_vm_wait_pd(adev, vm, AMDGPU_FENCE_OWNER_VM);
    		if (unlikely(r))
    			return r;
    
    		params.func = amdgpu_vm_cpu_set_ptes;
    	} else {
    		ring = container_of(vm->entity.sched, struct amdgpu_ring,
    				    sched);
    
    		/* padding, etc. */
    		ndw = 64;
    
    		/* assume the worst case */
    		ndw += parent->last_entry_used * 6;
    
    		pd_addr = amdgpu_bo_gpu_offset(parent->base.bo);
    
    		if (shadow) {
    			shadow_addr = amdgpu_bo_gpu_offset(shadow);
    			ndw *= 2;
    		} else {
    			shadow_addr = 0;
    		}
    
    		r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
    		if (r)
    			return r;
    
    		params.ib = &job->ibs[0];
    		params.func = amdgpu_vm_do_set_ptes;
    	}
    
    
    	/* walk over the address space and update the directory */
    	for (pt_idx = 0; pt_idx <= parent->last_entry_used; ++pt_idx) {
    		struct amdgpu_vm_pt *entry = &parent->entries[pt_idx];
    		struct amdgpu_bo *bo = entry->base.bo;
    		uint64_t pde, pt;
    
    		if (bo == NULL)
    			continue;
    
    		spin_lock(&vm->status_lock);
    		list_del_init(&entry->base.vm_status);
    		spin_unlock(&vm->status_lock);
    
    		pt = amdgpu_bo_gpu_offset(bo);
    		pt = amdgpu_gart_get_vm_pde(adev, pt);
    		/* Don't update huge pages here */
    		if ((parent->entries[pt_idx].addr & AMDGPU_PDE_PTE) ||
    		    parent->entries[pt_idx].addr == (pt | AMDGPU_PTE_VALID))
    			continue;
    
    		parent->entries[pt_idx].addr = pt | AMDGPU_PTE_VALID;
    
    		pde = pd_addr + pt_idx * 8;
    		incr = amdgpu_bo_size(bo);
    		if (((last_pde + 8 * count) != pde) ||
    		    ((last_pt + incr * count) != pt) ||
    		    (count == AMDGPU_VM_MAX_UPDATE_SIZE)) {
    
    			if (count) {
    				if (shadow)
    					params.func(&params,
    						    last_shadow,
    						    last_pt, count,
    						    incr,
    						    AMDGPU_PTE_VALID);
    
    				params.func(&params, last_pde,
    					    last_pt, count, incr,
    					    AMDGPU_PTE_VALID);
    			}
    
    			count = 1;
    			last_pde = pde;
    			last_shadow = shadow_addr + pt_idx * 8;
    			last_pt = pt;
    		} else {
    			++count;
    		}
    	}
    
    	if (count) {
    		if (vm->root.base.bo->shadow)
    			params.func(&params, last_shadow, last_pt,
    				    count, incr, AMDGPU_PTE_VALID);
    
    		params.func(&params, last_pde, last_pt,
    			    count, incr, AMDGPU_PTE_VALID);
    	}
    
    	if (!vm->use_cpu_for_update) {
    		if (params.ib->length_dw == 0) {
    			amdgpu_job_free(job);
    		} else {
    			amdgpu_ring_pad_ib(ring, params.ib);
    			amdgpu_sync_resv(adev, &job->sync,
    					 parent->base.bo->tbo.resv,
    					 AMDGPU_FENCE_OWNER_VM);
    			if (shadow)
    				amdgpu_sync_resv(adev, &job->sync,
    						 shadow->tbo.resv,
    						 AMDGPU_FENCE_OWNER_VM);
    
    			WARN_ON(params.ib->length_dw > ndw);
    			r = amdgpu_job_submit(job, ring, &vm->entity,
    					AMDGPU_FENCE_OWNER_VM, &fence);
    			if (r)
    				goto error_free;
    
    			amdgpu_bo_fence(parent->base.bo, fence, true);
    			dma_fence_put(vm->last_update);
    			vm->last_update = fence;
    		}
    	}
    
    	return 0;
    
    error_free:
    	amdgpu_job_free(job);
    	return r;
    }
    
    /*
     * amdgpu_vm_invalidate_level - mark all PD levels as invalid
     *
     * @parent: parent PD
     *
     * Mark all PD level as invalid after an error.
     */
    static void amdgpu_vm_invalidate_level(struct amdgpu_vm *vm,
    				       struct amdgpu_vm_pt *parent)
    {
    	unsigned pt_idx;
    
    	/*
    	 * Recurse into the subdirectories. This recursion is harmless because
    	 * we only have a maximum of 5 layers.
    	 */
    	for (pt_idx = 0; pt_idx <= parent->last_entry_used; ++pt_idx) {
    		struct amdgpu_vm_pt *entry = &parent->entries[pt_idx];
    
    		if (!entry->base.bo)
    			continue;
    
    		entry->addr = ~0ULL;
    		spin_lock(&vm->status_lock);
    		if (list_empty(&entry->base.vm_status))
    			list_add(&entry->base.vm_status, &vm->relocated);
    		spin_unlock(&vm->status_lock);
    		amdgpu_vm_invalidate_level(vm, entry);
    	}
    }
    
    /*
     * amdgpu_vm_update_directories - make sure that all directories are valid
     *
     * @adev: amdgpu_device pointer
     * @vm: requested vm
     *
     * Makes sure all directories are up to date.
     * Returns 0 for success, error for failure.
     */
    int amdgpu_vm_update_directories(struct amdgpu_device *adev,
    				 struct amdgpu_vm *vm)
    {
    	int r;
    
    	spin_lock(&vm->status_lock);
    	while (!list_empty(&vm->relocated)) {
    		struct amdgpu_vm_bo_base *bo_base;
    		struct amdgpu_bo *bo;
    
    		bo_base = list_first_entry(&vm->relocated,
    					   struct amdgpu_vm_bo_base,
    					   vm_status);
    		spin_unlock(&vm->status_lock);
    
    		bo = bo_base->bo->parent;
    		if (bo) {
    			struct amdgpu_vm_bo_base *parent;
    			struct amdgpu_vm_pt *pt;
    
    			parent = list_first_entry(&bo->va,
    						  struct amdgpu_vm_bo_base,
    						  bo_list);
    			pt = container_of(parent, struct amdgpu_vm_pt, base);
    
    			r = amdgpu_vm_update_level(adev, vm, pt);
    			if (r) {
    				amdgpu_vm_invalidate_level(vm, &vm->root);
    				return r;
    			}
    			spin_lock(&vm->status_lock);
    		} else {
    			spin_lock(&vm->status_lock);
    			list_del_init(&bo_base->vm_status);
    		}
    	}
    	spin_unlock(&vm->status_lock);
    
    	if (vm->use_cpu_for_update) {
    		/* Flush HDP */
    		mb();
    		amdgpu_gart_flush_gpu_tlb(adev, 0);
    	}
    
    	return r;
    }
    
    /**
     * amdgpu_vm_find_entry - find the entry for an address
     *
     * @p: see amdgpu_pte_update_params definition
     * @addr: virtual address in question
     * @entry: resulting entry or NULL
     * @parent: parent entry
     *
     * Find the vm_pt entry and it's parent for the given address.
     */
    void amdgpu_vm_get_entry(struct amdgpu_pte_update_params *p, uint64_t addr,
    			 struct amdgpu_vm_pt **entry,
    			 struct amdgpu_vm_pt **parent)
    {
    	unsigned idx, level = p->adev->vm_manager.num_level;
    
    	*parent = NULL;
    	*entry = &p->vm->root;
    	while ((*entry)->entries) {
    		idx = addr >> (p->adev->vm_manager.block_size * level--);
    		idx %= amdgpu_bo_size((*entry)->base.bo) / 8;
    		*parent = *entry;
    		*entry = &(*entry)->entries[idx];
    	}
    
    	if (level)
    		*entry = NULL;
    }
    
    /**
     * amdgpu_vm_handle_huge_pages - handle updating the PD with huge pages
     *
     * @p: see amdgpu_pte_update_params definition
     * @entry: vm_pt entry to check
     * @parent: parent entry
     * @nptes: number of PTEs updated with this operation
     * @dst: destination address where the PTEs should point to
     * @flags: access flags fro the PTEs
     *
     * Check if we can update the PD with a huge page.
     */
    static void amdgpu_vm_handle_huge_pages(struct amdgpu_pte_update_params *p,
    					struct amdgpu_vm_pt *entry,
    					struct amdgpu_vm_pt *parent,
    					unsigned nptes, uint64_t dst,
    					uint64_t flags)
    {
    	bool use_cpu_update = (p->func == amdgpu_vm_cpu_set_ptes);
    	uint64_t pd_addr, pde;
    
    	/* In the case of a mixed PT the PDE must point to it*/
    	if (p->adev->asic_type < CHIP_VEGA10 ||
    	    nptes != AMDGPU_VM_PTE_COUNT(p->adev) ||
    	    p->src ||
    	    !(flags & AMDGPU_PTE_VALID)) {
    
    		dst = amdgpu_bo_gpu_offset(entry->base.bo);
    		dst = amdgpu_gart_get_vm_pde(p->adev, dst);
    		flags = AMDGPU_PTE_VALID;
    	} else {
    		/* Set the huge page flag to stop scanning at this PDE */
    		flags |= AMDGPU_PDE_PTE;
    	}
    
    	if (entry->addr == (dst | flags))
    		return;
    
    	entry->addr = (dst | flags);
    
    	if (use_cpu_update) {
    		/* In case a huge page is replaced with a system
    		 * memory mapping, p->pages_addr != NULL and
    		 * amdgpu_vm_cpu_set_ptes would try to translate dst
    		 * through amdgpu_vm_map_gart. But dst is already a
    		 * GPU address (of the page table). Disable
    		 * amdgpu_vm_map_gart temporarily.
    		 */
    		dma_addr_t *tmp;
    
    		tmp = p->pages_addr;
    		p->pages_addr = NULL;
    
    		pd_addr = (unsigned long)amdgpu_bo_kptr(parent->base.bo);
    		pde = pd_addr + (entry - parent->entries) * 8;
    		amdgpu_vm_cpu_set_ptes(p, pde, dst, 1, 0, flags);
    
    		p->pages_addr = tmp;
    	} else {
    		if (parent->base.bo->shadow) {
    			pd_addr = amdgpu_bo_gpu_offset(parent->base.bo->shadow);
    			pde = pd_addr + (entry - parent->entries) * 8;
    			amdgpu_vm_do_set_ptes(p, pde, dst, 1, 0, flags);
    		}
    		pd_addr = amdgpu_bo_gpu_offset(parent->base.bo);
    		pde = pd_addr + (entry - parent->entries) * 8;
    		amdgpu_vm_do_set_ptes(p, pde, dst, 1, 0, flags);
    	}
    }
    
    /**
     * amdgpu_vm_update_ptes - make sure that page tables are valid
     *
     * @params: see amdgpu_pte_update_params definition
     * @vm: requested vm
     * @start: start of GPU address range
     * @end: end of GPU address range
     * @dst: destination address to map to, the next dst inside the function
     * @flags: mapping flags
     *
     * Update the page tables in the range @start - @end.
     * Returns 0 for success, -EINVAL for failure.
     */
    static int amdgpu_vm_update_ptes(struct amdgpu_pte_update_params *params,
    				  uint64_t start, uint64_t end,
    				  uint64_t dst, uint64_t flags)
    {
    	struct amdgpu_device *adev = params->adev;
    	const uint64_t mask = AMDGPU_VM_PTE_COUNT(adev) - 1;
    
    	uint64_t addr, pe_start;
    	struct amdgpu_bo *pt;
    	unsigned nptes;
    	bool use_cpu_update = (params->func == amdgpu_vm_cpu_set_ptes);
    
    	/* walk over the address space and update the page tables */
    	for (addr = start; addr < end; addr += nptes,
    	     dst += nptes * AMDGPU_GPU_PAGE_SIZE) {
    		struct amdgpu_vm_pt *entry, *parent;
    
    		amdgpu_vm_get_entry(params, addr, &entry, &parent);
    		if (!entry)
    			return -ENOENT;
    
    		if ((addr & ~mask) == (end & ~mask))
    			nptes = end - addr;
    		else
    			nptes = AMDGPU_VM_PTE_COUNT(adev) - (addr & mask);
    
    		amdgpu_vm_handle_huge_pages(params, entry, parent,
    					    nptes, dst, flags);
    		/* We don't need to update PTEs for huge pages */
    		if (entry->addr & AMDGPU_PDE_PTE)
    			continue;
    
    		pt = entry->base.bo;
    		if (use_cpu_update) {
    			pe_start = (unsigned long)amdgpu_bo_kptr(pt);
    		} else {
    			if (pt->shadow) {
    				pe_start = amdgpu_bo_gpu_offset(pt->shadow);
    				pe_start += (addr & mask) * 8;
    				params->func(params, pe_start, dst, nptes,
    					     AMDGPU_GPU_PAGE_SIZE, flags);
    			}
    			pe_start = amdgpu_bo_gpu_offset(pt);
    		}
    
    		pe_start += (addr & mask) * 8;
    		params->func(params, pe_start, dst, nptes,
    			     AMDGPU_GPU_PAGE_SIZE, flags);
    	}
    
    	return 0;
    }
    
    /*
     * amdgpu_vm_frag_ptes - add fragment information to PTEs
     *
     * @params: see amdgpu_pte_update_params definition
     * @vm: requested vm
     * @start: first PTE to handle
     * @end: last PTE to handle
     * @dst: addr those PTEs should point to
     * @flags: hw mapping flags
     * Returns 0 for success, -EINVAL for failure.
     */
    static int amdgpu_vm_frag_ptes(struct amdgpu_pte_update_params	*params,
    				uint64_t start, uint64_t end,
    				uint64_t dst, uint64_t flags)
    {
    	/**
    	 * The MC L1 TLB supports variable sized pages, based on a fragment
    	 * field in the PTE. When this field is set to a non-zero value, page
    	 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
    	 * flags are considered valid for all PTEs within the fragment range
    	 * and corresponding mappings are assumed to be physically contiguous.
    	 *
    	 * The L1 TLB can store a single PTE for the whole fragment,
    	 * significantly increasing the space available for translation
    	 * caching. This leads to large improvements in throughput when the
    	 * TLB is under pressure.
    	 *
    	 * The L2 TLB distributes small and large fragments into two
    	 * asymmetric partitions. The large fragment cache is significantly
    	 * larger. Thus, we try to use large fragments wherever possible.
    	 * Userspace can support this by aligning virtual base address and
    	 * allocation size to the fragment size.
    	 */
    	unsigned max_frag = params->adev->vm_manager.fragment_size;
    	int r;
    
    	/* system pages are non continuously */
    	if (params->src || !(flags & AMDGPU_PTE_VALID))
    		return amdgpu_vm_update_ptes(params, start, end, dst, flags);
    
    	while (start != end) {
    		uint64_t frag_flags, frag_end;
    		unsigned frag;
    
    		/* This intentionally wraps around if no bit is set */
    		frag = min((unsigned)ffs(start) - 1,
    			   (unsigned)fls64(end - start) - 1);
    		if (frag >= max_frag) {
    			frag_flags = AMDGPU_PTE_FRAG(max_frag);
    			frag_end = end & ~((1ULL << max_frag) - 1);
    		} else {
    			frag_flags = AMDGPU_PTE_FRAG(frag);
    			frag_end = start + (1 << frag);
    		}
    
    		r = amdgpu_vm_update_ptes(params, start, frag_end, dst,
    					  flags | frag_flags);
    		if (r)
    			return r;
    
    		dst += (frag_end - start) * AMDGPU_GPU_PAGE_SIZE;
    		start = frag_end;
    	}
    
    	return 0;
    }
    
    /**
     * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
     *
     * @adev: amdgpu_device pointer
     * @exclusive: fence we need to sync to
     * @pages_addr: DMA addresses to use for mapping
     * @vm: requested vm
     * @start: start of mapped range
     * @last: last mapped entry
     * @flags: flags for the entries
     * @addr: addr to set the area to
     * @fence: optional resulting fence
     *
     * Fill in the page table entries between @start and @last.
     * Returns 0 for success, -EINVAL for failure.
     */
    static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
    				       struct dma_fence *exclusive,
    				       dma_addr_t *pages_addr,
    				       struct amdgpu_vm *vm,
    				       uint64_t start, uint64_t last,
    				       uint64_t flags, uint64_t addr,
    				       struct dma_fence **fence)
    {
    	struct amdgpu_ring *ring;
    	void *owner = AMDGPU_FENCE_OWNER_VM;
    	unsigned nptes, ncmds, ndw;
    	struct amdgpu_job *job;
    	struct amdgpu_pte_update_params params;
    	struct dma_fence *f = NULL;
    	int r;
    
    	memset(&params, 0, sizeof(params));
    	params.adev = adev;
    	params.vm = vm;
    
    	/* sync to everything on unmapping */
    	if (!(flags & AMDGPU_PTE_VALID))
    		owner = AMDGPU_FENCE_OWNER_UNDEFINED;
    
    	if (vm->use_cpu_for_update) {
    		/* params.src is used as flag to indicate system Memory */
    		if (pages_addr)
    			params.src = ~0;
    
    		/* Wait for PT BOs to be free. PTs share the same resv. object
    		 * as the root PD BO
    		 */
    		r = amdgpu_vm_wait_pd(adev, vm, owner);
    		if (unlikely(r))
    			return r;
    
    		params.func = amdgpu_vm_cpu_set_ptes;
    		params.pages_addr = pages_addr;
    		return amdgpu_vm_frag_ptes(&params, start, last + 1,
    					   addr, flags);
    	}
    
    	ring = container_of(vm->entity.sched, struct amdgpu_ring, sched);
    
    	nptes = last - start + 1;
    
    	/*
    	 * reserve space for two commands every (1 << BLOCK_SIZE)
    	 *  entries or 2k dwords (whatever is smaller)
             *
             * The second command is for the shadow pagetables.
    	 */
    	ncmds = ((nptes >> min(adev->vm_manager.block_size, 11u)) + 1) * 2;
    
    	/* padding, etc. */
    	ndw = 64;
    
    	/* one PDE write for each huge page */
    	ndw += ((nptes >> adev->vm_manager.block_size) + 1) * 6;
    
    	if (pages_addr) {
    		/* copy commands needed */
    		ndw += ncmds * 7;
    
    		/* and also PTEs */
    		ndw += nptes * 2;
    
    		params.func = amdgpu_vm_do_copy_ptes;
    
    	} else {
    		/* set page commands needed */
    		ndw += ncmds * adev->vm_manager.vm_pte_funcs->set_pte_pde_num_dw;
    
    		/* extra commands for begin/end fragments */
    		ndw += 2 * adev->vm_manager.vm_pte_funcs->set_pte_pde_num_dw
    				* adev->vm_manager.fragment_size;
    
    		params.func = amdgpu_vm_do_set_ptes;
    	}
    
    	r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
    	if (r)
    		return r;
    
    	params.ib = &job->ibs[0];
    
    	if (pages_addr) {
    		uint64_t *pte;
    		unsigned i;
    
    		/* Put the PTEs at the end of the IB. */
    		i = ndw - nptes * 2;
    		pte= (uint64_t *)&(job->ibs->ptr[i]);
    		params.src = job->ibs->gpu_addr + i * 4;
    
    		for (i = 0; i < nptes; ++i) {
    			pte[i] = amdgpu_vm_map_gart(pages_addr, addr + i *
    						    AMDGPU_GPU_PAGE_SIZE);
    			pte[i] |= flags;
    		}
    		addr = 0;
    	}
    
    	r = amdgpu_sync_fence(adev, &job->sync, exclusive);
    	if (r)
    		goto error_free;
    
    	r = amdgpu_sync_resv(adev, &job->sync, vm->root.base.bo->tbo.resv,
    			     owner);
    	if (r)
    		goto error_free;
    
    	r = reservation_object_reserve_shared(vm->root.base.bo->tbo.resv);
    	if (r)
    		goto error_free;
    
    	r = amdgpu_vm_frag_ptes(&params, start, last + 1, addr, flags);
    	if (r)
    		goto error_free;
    
    	amdgpu_ring_pad_ib(ring, params.ib);
    	WARN_ON(params.ib->length_dw > ndw);
    	r = amdgpu_job_submit(job, ring, &vm->entity,
    			      AMDGPU_FENCE_OWNER_VM, &f);
    	if (r)
    		goto error_free;
    
    	amdgpu_bo_fence(vm->root.base.bo, f, true);
    	dma_fence_put(*fence);
    	*fence = f;
    	return 0;
    
    error_free:
    	amdgpu_job_free(job);
    	amdgpu_vm_invalidate_level(vm, &vm->root);
    	return r;
    }
    
    /**
     * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks
     *
     * @adev: amdgpu_device pointer
     * @exclusive: fence we need to sync to
     * @pages_addr: DMA addresses to use for mapping
     * @vm: requested vm
     * @mapping: mapped range and flags to use for the update
     * @flags: HW flags for the mapping
     * @nodes: array of drm_mm_nodes with the MC addresses
     * @fence: optional resulting fence
     *
     * Split the mapping into smaller chunks so that each update fits
     * into a SDMA IB.
     * Returns 0 for success, -EINVAL for failure.
     */
    static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev,
    				      struct dma_fence *exclusive,
    				      dma_addr_t *pages_addr,
    				      struct amdgpu_vm *vm,
    				      struct amdgpu_bo_va_mapping *mapping,
    				      uint64_t flags,
    				      struct drm_mm_node *nodes,
    				      struct dma_fence **fence)
    {
    	uint64_t pfn, start = mapping->start;
    	int r;
    
    	/* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
    	 * but in case of something, we filter the flags in first place
    	 */
    	if (!(mapping->flags & AMDGPU_PTE_READABLE))
    		flags &= ~AMDGPU_PTE_READABLE;
    	if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
    		flags &= ~AMDGPU_PTE_WRITEABLE;
    
    	flags &= ~AMDGPU_PTE_EXECUTABLE;
    	flags |= mapping->flags & AMDGPU_PTE_EXECUTABLE;
    
    	flags &= ~AMDGPU_PTE_MTYPE_MASK;
    	flags |= (mapping->flags & AMDGPU_PTE_MTYPE_MASK);
    
    	if ((mapping->flags & AMDGPU_PTE_PRT) &&
    	    (adev->asic_type >= CHIP_VEGA10)) {
    		flags |= AMDGPU_PTE_PRT;
    		flags &= ~AMDGPU_PTE_VALID;
    	}
    
    	trace_amdgpu_vm_bo_update(mapping);
    
    	pfn = mapping->offset >> PAGE_SHIFT;
    	if (nodes) {
    		while (pfn >= nodes->size) {
    			pfn -= nodes->size;
    			++nodes;
    		}
    	}
    
    	do {
    		uint64_t max_entries;
    		uint64_t addr, last;
    
    		if (nodes) {
    			addr = nodes->start << PAGE_SHIFT;
    			max_entries = (nodes->size - pfn) *
    				(PAGE_SIZE / AMDGPU_GPU_PAGE_SIZE);
    		} else {
    			addr = 0;
    			max_entries = S64_MAX;
    		}
    
    		if (pages_addr) {
    			max_entries = min(max_entries, 16ull * 1024ull);
    			addr = 0;
    		} else if (flags & AMDGPU_PTE_VALID) {
    			addr += adev->vm_manager.vram_base_offset;
    		}
    		addr += pfn << PAGE_SHIFT;
    
    		last = min((uint64_t)mapping->last, start + max_entries - 1);
    		r = amdgpu_vm_bo_update_mapping(adev, exclusive, pages_addr, vm,
    						start, last, flags, addr,
    						fence);
    		if (r)
    			return r;
    
    		pfn += last - start + 1;
    		if (nodes && nodes->size == pfn) {
    			pfn = 0;
    			++nodes;
    		}
    		start = last + 1;
    
    	} while (unlikely(start != mapping->last + 1));
    
    	return 0;
    }
    
    /**
     * amdgpu_vm_bo_update - update all BO mappings in the vm page table
     *
     * @adev: amdgpu_device pointer
     * @bo_va: requested BO and VM object
     * @clear: if true clear the entries
     *
     * Fill in the page table entries for @bo_va.
     * Returns 0 for success, -EINVAL for failure.
     */
    int amdgpu_vm_bo_update(struct amdgpu_device *adev,
    			struct amdgpu_bo_va *bo_va,
    			bool clear)
    {
    	struct amdgpu_bo *bo = bo_va->base.bo;
    	struct amdgpu_vm *vm = bo_va->base.vm;
    	struct amdgpu_bo_va_mapping *mapping;
    	dma_addr_t *pages_addr = NULL;
    	struct ttm_mem_reg *mem;
    	struct drm_mm_node *nodes;
    	struct dma_fence *exclusive, **last_update;
    	uint64_t flags;
    	int r;
    
    	if (clear || !bo_va->base.bo) {
    		mem = NULL;
    		nodes = NULL;
    		exclusive = NULL;
    	} else {
    		struct ttm_dma_tt *ttm;
    
    		mem = &bo_va->base.bo->tbo.mem;
    		nodes = mem->mm_node;
    		if (mem->mem_type == TTM_PL_TT) {
    			ttm = container_of(bo_va->base.bo->tbo.ttm,
    					   struct ttm_dma_tt, ttm);
    			pages_addr = ttm->dma_address;
    		}
    		exclusive = reservation_object_get_excl(bo->tbo.resv);
    	}
    
    	if (bo)
    		flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem);
    	else
    		flags = 0x0;
    
    	if (clear || (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv))
    		last_update = &vm->last_update;
    	else
    		last_update = &bo_va->last_pt_update;
    
    	if (!clear && bo_va->base.moved) {
    		bo_va->base.moved = false;
    		list_splice_init(&bo_va->valids, &bo_va->invalids);
    
    	} else if (bo_va->cleared != clear) {
    		list_splice_init(&bo_va->valids, &bo_va->invalids);
    	}
    
    	list_for_each_entry(mapping, &bo_va->invalids, list) {
    		r = amdgpu_vm_bo_split_mapping(adev, exclusive, pages_addr, vm,
    					       mapping, flags, nodes,
    					       last_update);
    		if (r)
    			return r;
    	}
    
    	if (vm->use_cpu_for_update) {
    		/* Flush HDP */
    		mb();
    		amdgpu_gart_flush_gpu_tlb(adev, 0);
    	}
    
    	spin_lock(&vm->status_lock);
    	list_del_init(&bo_va->base.vm_status);
    	spin_unlock(&vm->status_lock);
    
    	list_splice_init(&bo_va->invalids, &bo_va->valids);
    	bo_va->cleared = clear;
    
    	if (trace_amdgpu_vm_bo_mapping_enabled()) {
    		list_for_each_entry(mapping, &bo_va->valids, list)
    			trace_amdgpu_vm_bo_mapping(mapping);
    	}
    
    	return 0;
    }
    
    /**
     * amdgpu_vm_update_prt_state - update the global PRT state
     */
    static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
    {
    	unsigned long flags;
    	bool enable;
    
    	spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
    	enable = !!atomic_read(&adev->vm_manager.num_prt_users);
    	adev->gart.gart_funcs->set_prt(adev, enable);
    	spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
    }
    
    /**
     * amdgpu_vm_prt_get - add a PRT user
     */
    static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
    {
    	if (!adev->gart.gart_funcs->set_prt)
    		return;
    
    	if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
    		amdgpu_vm_update_prt_state(adev);
    }
    
    /**
     * amdgpu_vm_prt_put - drop a PRT user
     */
    static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
    {
    	if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
    		amdgpu_vm_update_prt_state(adev);
    }
    
    /**
     * amdgpu_vm_prt_cb - callback for updating the PRT status
     */
    static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
    {
    	struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
    
    	amdgpu_vm_prt_put(cb->adev);
    	kfree(cb);
    }
    
    /**
     * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
     */
    static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
    				 struct dma_fence *fence)
    {
    	struct amdgpu_prt_cb *cb;
    
    	if (!adev->gart.gart_funcs->set_prt)
    		return;
    
    	cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
    	if (!cb) {
    		/* Last resort when we are OOM */
    		if (fence)
    			dma_fence_wait(fence, false);
    
    		amdgpu_vm_prt_put(adev);
    	} else {
    		cb->adev = adev;
    		if (!fence || dma_fence_add_callback(fence, &cb->cb,
    						     amdgpu_vm_prt_cb))
    			amdgpu_vm_prt_cb(fence, &cb->cb);
    	}
    }
    
    /**
     * amdgpu_vm_free_mapping - free a mapping
     *
     * @adev: amdgpu_device pointer
     * @vm: requested vm
     * @mapping: mapping to be freed
     * @fence: fence of the unmap operation
     *
     * Free a mapping and make sure we decrease the PRT usage count if applicable.
     */
    static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
    				   struct amdgpu_vm *vm,
    				   struct amdgpu_bo_va_mapping *mapping,
    				   struct dma_fence *fence)
    {
    	if (mapping->flags & AMDGPU_PTE_PRT)
    		amdgpu_vm_add_prt_cb(adev, fence);
    	kfree(mapping);
    }
    
    /**
     * amdgpu_vm_prt_fini - finish all prt mappings
     *
     * @adev: amdgpu_device pointer
     * @vm: requested vm
     *
     * Register a cleanup callback to disable PRT support after VM dies.
     */
    static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
    {
    	struct reservation_object *resv = vm->root.base.bo->tbo.resv;
    	struct dma_fence *excl, **shared;
    	unsigned i, shared_count;
    	int r;
    
    	r = reservation_object_get_fences_rcu(resv, &excl,
    					      &shared_count, &shared);
    	if (r) {
    		/* Not enough memory to grab the fence list, as last resort
    		 * block for all the fences to complete.
    		 */
    		reservation_object_wait_timeout_rcu(resv, true, false,
    						    MAX_SCHEDULE_TIMEOUT);
    		return;
    	}
    
    	/* Add a callback for each fence in the reservation object */
    	amdgpu_vm_prt_get(adev);
    	amdgpu_vm_add_prt_cb(adev, excl);
    
    	for (i = 0; i < shared_count; ++i) {
    		amdgpu_vm_prt_get(adev);
    		amdgpu_vm_add_prt_cb(adev, shared[i]);
    	}
    
    	kfree(shared);
    }
    
    /**
     * amdgpu_vm_clear_freed - clear freed BOs in the PT
     *
     * @adev: amdgpu_device pointer
     * @vm: requested vm
     * @fence: optional resulting fence (unchanged if no work needed to be done
     * or if an error occurred)
     *
     * Make sure all freed BOs are cleared in the PT.
     * Returns 0 for success.
     *
     * PTs have to be reserved and mutex must be locked!
     */
    int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
    			  struct amdgpu_vm *vm,
    			  struct dma_fence **fence)
    {
    	struct amdgpu_bo_va_mapping *mapping;
    	struct dma_fence *f = NULL;
    	int r;
    	uint64_t init_pte_value = 0;
    
    	while (!list_empty(&vm->freed)) {
    		mapping = list_first_entry(&vm->freed,
    			struct amdgpu_bo_va_mapping, list);
    		list_del(&mapping->list);
    
    		if (vm->pte_support_ats)
    			init_pte_value = AMDGPU_PTE_SYSTEM;
    
    		r = amdgpu_vm_bo_update_mapping(adev, NULL, NULL, vm,
    						mapping->start, mapping->last,
    						init_pte_value, 0, &f);
    		amdgpu_vm_free_mapping(adev, vm, mapping, f);
    		if (r) {
    			dma_fence_put(f);
    			return r;
    		}
    	}
    
    	if (fence && f) {
    		dma_fence_put(*fence);
    		*fence = f;
    	} else {
    		dma_fence_put(f);
    	}
    
    	return 0;
    
    }
    
    /**
     * amdgpu_vm_handle_moved - handle moved BOs in the PT
     *
     * @adev: amdgpu_device pointer
     * @vm: requested vm
     * @sync: sync object to add fences to
     *
     * Make sure all BOs which are moved are updated in the PTs.
     * Returns 0 for success.
     *
     * PTs have to be reserved!
     */
    int amdgpu_vm_handle_moved(struct amdgpu_device *adev,
    			   struct amdgpu_vm *vm)
    {
    	bool clear;
    	int r = 0;
    
    	spin_lock(&vm->status_lock);
    	while (!list_empty(&vm->moved)) {
    		struct amdgpu_bo_va *bo_va;
    
    		bo_va = list_first_entry(&vm->moved,
    			struct amdgpu_bo_va, base.vm_status);
    		spin_unlock(&vm->status_lock);
    
    		/* Per VM BOs never need to bo cleared in the page tables */
    		clear = bo_va->base.bo->tbo.resv != vm->root.base.bo->tbo.resv;
    
    		r = amdgpu_vm_bo_update(adev, bo_va, clear);
    		if (r)
    			return r;
    
    		spin_lock(&vm->status_lock);
    	}
    	spin_unlock(&vm->status_lock);
    
    	return r;
    }
    
    /**
     * amdgpu_vm_bo_add - add a bo to a specific vm
     *
     * @adev: amdgpu_device pointer
     * @vm: requested vm
     * @bo: amdgpu buffer object
     *
     * Add @bo into the requested vm.
     * Add @bo to the list of bos associated with the vm
     * Returns newly added bo_va or NULL for failure
     *
     * Object has to be reserved!
     */
    struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
    				      struct amdgpu_vm *vm,
    				      struct amdgpu_bo *bo)
    {
    	struct amdgpu_bo_va *bo_va;
    
    	bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
    	if (bo_va == NULL) {
    		return NULL;
    	}
    	bo_va->base.vm = vm;
    	bo_va->base.bo = bo;
    	INIT_LIST_HEAD(&bo_va->base.bo_list);
    	INIT_LIST_HEAD(&bo_va->base.vm_status);
    
    	bo_va->ref_count = 1;
    	INIT_LIST_HEAD(&bo_va->valids);
    	INIT_LIST_HEAD(&bo_va->invalids);
    
    	if (bo)
    		list_add_tail(&bo_va->base.bo_list, &bo->va);
    
    	return bo_va;
    }
    
    
    /**
     * amdgpu_vm_bo_insert_mapping - insert a new mapping
     *
     * @adev: amdgpu_device pointer
     * @bo_va: bo_va to store the address
     * @mapping: the mapping to insert
     *
     * Insert a new mapping into all structures.
     */
    static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev,
    				    struct amdgpu_bo_va *bo_va,
    				    struct amdgpu_bo_va_mapping *mapping)
    {
    	struct amdgpu_vm *vm = bo_va->base.vm;
    	struct amdgpu_bo *bo = bo_va->base.bo;
    
    	mapping->bo_va = bo_va;
    	list_add(&mapping->list, &bo_va->invalids);
    	amdgpu_vm_it_insert(mapping, &vm->va);
    
    	if (mapping->flags & AMDGPU_PTE_PRT)
    		amdgpu_vm_prt_get(adev);
    
    	if (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv) {
    		spin_lock(&vm->status_lock);
    		if (list_empty(&bo_va->base.vm_status))
    			list_add(&bo_va->base.vm_status, &vm->moved);
    		spin_unlock(&vm->status_lock);
    	}
    	trace_amdgpu_vm_bo_map(bo_va, mapping);
    }
    
    /**
     * amdgpu_vm_bo_map - map bo inside a vm
     *
     * @adev: amdgpu_device pointer
     * @bo_va: bo_va to store the address
     * @saddr: where to map the BO
     * @offset: requested offset in the BO
     * @flags: attributes of pages (read/write/valid/etc.)
     *
     * Add a mapping of the BO at the specefied addr into the VM.
     * Returns 0 for success, error for failure.
     *
     * Object has to be reserved and unreserved outside!
     */
    int amdgpu_vm_bo_map(struct amdgpu_device *adev,
    		     struct amdgpu_bo_va *bo_va,
    		     uint64_t saddr, uint64_t offset,
    		     uint64_t size, uint64_t flags)
    {
    	struct amdgpu_bo_va_mapping *mapping, *tmp;
    	struct amdgpu_bo *bo = bo_va->base.bo;
    	struct amdgpu_vm *vm = bo_va->base.vm;
    	uint64_t eaddr;
    
    	/* validate the parameters */
    	if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
    	    size == 0 || size & AMDGPU_GPU_PAGE_MASK)
    		return -EINVAL;
    
    	/* make sure object fit at this offset */
    	eaddr = saddr + size - 1;
    	if (saddr >= eaddr ||
    	    (bo && offset + size > amdgpu_bo_size(bo)))
    		return -EINVAL;
    
    	saddr /= AMDGPU_GPU_PAGE_SIZE;
    	eaddr /= AMDGPU_GPU_PAGE_SIZE;
    
    	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
    	if (tmp) {
    		/* bo and tmp overlap, invalid addr */
    		dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
    			"0x%010Lx-0x%010Lx\n", bo, saddr, eaddr,
    			tmp->start, tmp->last + 1);
    		return -EINVAL;
    	}
    
    	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
    	if (!mapping)
    		return -ENOMEM;
    
    	mapping->start = saddr;
    	mapping->last = eaddr;
    	mapping->offset = offset;
    	mapping->flags = flags;
    
    	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
    
    	return 0;
    }
    
    /**
     * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
     *
     * @adev: amdgpu_device pointer
     * @bo_va: bo_va to store the address
     * @saddr: where to map the BO
     * @offset: requested offset in the BO
     * @flags: attributes of pages (read/write/valid/etc.)
     *
     * Add a mapping of the BO at the specefied addr into the VM. Replace existing
     * mappings as we do so.
     * Returns 0 for success, error for failure.
     *
     * Object has to be reserved and unreserved outside!
     */
    int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
    			     struct amdgpu_bo_va *bo_va,
    			     uint64_t saddr, uint64_t offset,
    			     uint64_t size, uint64_t flags)
    {
    	struct amdgpu_bo_va_mapping *mapping;
    	struct amdgpu_bo *bo = bo_va->base.bo;
    	uint64_t eaddr;
    	int r;
    
    	/* validate the parameters */
    	if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
    	    size == 0 || size & AMDGPU_GPU_PAGE_MASK)
    		return -EINVAL;
    
    	/* make sure object fit at this offset */
    	eaddr = saddr + size - 1;
    	if (saddr >= eaddr ||
    	    (bo && offset + size > amdgpu_bo_size(bo)))
    		return -EINVAL;
    
    	/* Allocate all the needed memory */
    	mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
    	if (!mapping)
    		return -ENOMEM;
    
    	r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size);
    	if (r) {
    		kfree(mapping);
    		return r;
    	}
    
    	saddr /= AMDGPU_GPU_PAGE_SIZE;
    	eaddr /= AMDGPU_GPU_PAGE_SIZE;
    
    	mapping->start = saddr;
    	mapping->last = eaddr;
    	mapping->offset = offset;
    	mapping->flags = flags;
    
    	amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
    
    	return 0;
    }
    
    /**
     * amdgpu_vm_bo_unmap - remove bo mapping from vm
     *
     * @adev: amdgpu_device pointer
     * @bo_va: bo_va to remove the address from
     * @saddr: where to the BO is mapped
     *
     * Remove a mapping of the BO at the specefied addr from the VM.
     * Returns 0 for success, error for failure.
     *
     * Object has to be reserved and unreserved outside!
     */
    int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
    		       struct amdgpu_bo_va *bo_va,
    		       uint64_t saddr)
    {
    	struct amdgpu_bo_va_mapping *mapping;
    	struct amdgpu_vm *vm = bo_va->base.vm;
    	bool valid = true;
    
    	saddr /= AMDGPU_GPU_PAGE_SIZE;
    
    	list_for_each_entry(mapping, &bo_va->valids, list) {
    		if (mapping->start == saddr)
    			break;
    	}
    
    	if (&mapping->list == &bo_va->valids) {
    		valid = false;
    
    		list_for_each_entry(mapping, &bo_va->invalids, list) {
    			if (mapping->start == saddr)
    				break;
    		}
    
    		if (&mapping->list == &bo_va->invalids)
    			return -ENOENT;
    	}
    
    	list_del(&mapping->list);
    	amdgpu_vm_it_remove(mapping, &vm->va);
    	mapping->bo_va = NULL;
    	trace_amdgpu_vm_bo_unmap(bo_va, mapping);
    
    	if (valid)
    		list_add(&mapping->list, &vm->freed);
    	else
    		amdgpu_vm_free_mapping(adev, vm, mapping,
    				       bo_va->last_pt_update);
    
    	return 0;
    }
    
    /**
     * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
     *
     * @adev: amdgpu_device pointer
     * @vm: VM structure to use
     * @saddr: start of the range
     * @size: size of the range
     *
     * Remove all mappings in a range, split them as appropriate.
     * Returns 0 for success, error for failure.
     */
    int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
    				struct amdgpu_vm *vm,
    				uint64_t saddr, uint64_t size)
    {
    	struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
    	LIST_HEAD(removed);
    	uint64_t eaddr;
    
    	eaddr = saddr + size - 1;
    	saddr /= AMDGPU_GPU_PAGE_SIZE;
    	eaddr /= AMDGPU_GPU_PAGE_SIZE;
    
    	/* Allocate all the needed memory */
    	before = kzalloc(sizeof(*before), GFP_KERNEL);
    	if (!before)
    		return -ENOMEM;
    	INIT_LIST_HEAD(&before->list);
    
    	after = kzalloc(sizeof(*after), GFP_KERNEL);
    	if (!after) {
    		kfree(before);
    		return -ENOMEM;
    	}
    	INIT_LIST_HEAD(&after->list);
    
    	/* Now gather all removed mappings */
    	tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
    	while (tmp) {
    		/* Remember mapping split at the start */
    		if (tmp->start < saddr) {
    			before->start = tmp->start;
    			before->last = saddr - 1;
    			before->offset = tmp->offset;
    			before->flags = tmp->flags;
    			list_add(&before->list, &tmp->list);
    		}
    
    		/* Remember mapping split at the end */
    		if (tmp->last > eaddr) {
    			after->start = eaddr + 1;
    			after->last = tmp->last;
    			after->offset = tmp->offset;
    			after->offset += after->start - tmp->start;
    			after->flags = tmp->flags;
    			list_add(&after->list, &tmp->list);
    		}
    
    		list_del(&tmp->list);
    		list_add(&tmp->list, &removed);
    
    		tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
    	}
    
    	/* And free them up */
    	list_for_each_entry_safe(tmp, next, &removed, list) {
    		amdgpu_vm_it_remove(tmp, &vm->va);
    		list_del(&tmp->list);
    
    		if (tmp->start < saddr)
    		    tmp->start = saddr;
    		if (tmp->last > eaddr)
    		    tmp->last = eaddr;
    
    		tmp->bo_va = NULL;
    		list_add(&tmp->list, &vm->freed);
    		trace_amdgpu_vm_bo_unmap(NULL, tmp);
    	}
    
    	/* Insert partial mapping before the range */
    	if (!list_empty(&before->list)) {
    		amdgpu_vm_it_insert(before, &vm->va);
    		if (before->flags & AMDGPU_PTE_PRT)
    			amdgpu_vm_prt_get(adev);
    	} else {
    		kfree(before);
    	}
    
    	/* Insert partial mapping after the range */
    	if (!list_empty(&after->list)) {
    		amdgpu_vm_it_insert(after, &vm->va);
    		if (after->flags & AMDGPU_PTE_PRT)
    			amdgpu_vm_prt_get(adev);
    	} else {
    		kfree(after);
    	}
    
    	return 0;
    }
    
    /**
     * amdgpu_vm_bo_lookup_mapping - find mapping by address
     *
     * @vm: the requested VM
     *
     * Find a mapping by it's address.
     */
    struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm,
    							 uint64_t addr)
    {
    	return amdgpu_vm_it_iter_first(&vm->va, addr, addr);
    }
    
    /**
     * amdgpu_vm_bo_rmv - remove a bo to a specific vm
     *
     * @adev: amdgpu_device pointer
     * @bo_va: requested bo_va
     *
     * Remove @bo_va->bo from the requested vm.
     *
     * Object have to be reserved!
     */
    void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
    		      struct amdgpu_bo_va *bo_va)
    {
    	struct amdgpu_bo_va_mapping *mapping, *next;
    	struct amdgpu_vm *vm = bo_va->base.vm;
    
    	list_del(&bo_va->base.bo_list);
    
    	spin_lock(&vm->status_lock);
    	list_del(&bo_va->base.vm_status);
    	spin_unlock(&vm->status_lock);
    
    	list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
    		list_del(&mapping->list);
    		amdgpu_vm_it_remove(mapping, &vm->va);
    		mapping->bo_va = NULL;
    		trace_amdgpu_vm_bo_unmap(bo_va, mapping);
    		list_add(&mapping->list, &vm->freed);
    	}
    	list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
    		list_del(&mapping->list);
    		amdgpu_vm_it_remove(mapping, &vm->va);
    		amdgpu_vm_free_mapping(adev, vm, mapping,
    				       bo_va->last_pt_update);
    	}
    
    	dma_fence_put(bo_va->last_pt_update);
    	kfree(bo_va);
    }
    
    /**
     * amdgpu_vm_bo_invalidate - mark the bo as invalid
     *
     * @adev: amdgpu_device pointer
     * @vm: requested vm
     * @bo: amdgpu buffer object
     *
     * Mark @bo as invalid.
     */
    void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
    			     struct amdgpu_bo *bo, bool evicted)
    {
    	struct amdgpu_vm_bo_base *bo_base;
    
    	list_for_each_entry(bo_base, &bo->va, bo_list) {
    		struct amdgpu_vm *vm = bo_base->vm;
    
    		bo_base->moved = true;
    		if (evicted && bo->tbo.resv == vm->root.base.bo->tbo.resv) {
    			spin_lock(&bo_base->vm->status_lock);
    			if (bo->tbo.type == ttm_bo_type_kernel)
    				list_move(&bo_base->vm_status, &vm->evicted);
    			else
    				list_move_tail(&bo_base->vm_status,
    					       &vm->evicted);
    			spin_unlock(&bo_base->vm->status_lock);
    			continue;
    		}
    
    		if (bo->tbo.type == ttm_bo_type_kernel) {
    			spin_lock(&bo_base->vm->status_lock);
    			if (list_empty(&bo_base->vm_status))
    				list_add(&bo_base->vm_status, &vm->relocated);
    			spin_unlock(&bo_base->vm->status_lock);
    			continue;
    		}
    
    		spin_lock(&bo_base->vm->status_lock);
    		if (list_empty(&bo_base->vm_status))
    			list_add(&bo_base->vm_status, &vm->moved);
    		spin_unlock(&bo_base->vm->status_lock);
    	}
    }
    
    static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
    {
    	/* Total bits covered by PD + PTs */
    	unsigned bits = ilog2(vm_size) + 18;
    
    	/* Make sure the PD is 4K in size up to 8GB address space.
    	   Above that split equal between PD and PTs */
    	if (vm_size <= 8)
    		return (bits - 9);
    	else
    		return ((bits + 3) / 2);
    }
    
    /**
     * amdgpu_vm_set_fragment_size - adjust fragment size in PTE
     *
     * @adev: amdgpu_device pointer
     * @fragment_size_default: the default fragment size if it's set auto
     */
    void amdgpu_vm_set_fragment_size(struct amdgpu_device *adev, uint32_t fragment_size_default)
    {
    	if (amdgpu_vm_fragment_size == -1)
    		adev->vm_manager.fragment_size = fragment_size_default;
    	else
    		adev->vm_manager.fragment_size = amdgpu_vm_fragment_size;
    }
    
    /**
     * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size
     *
     * @adev: amdgpu_device pointer
     * @vm_size: the default vm size if it's set auto
     */
    void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint64_t vm_size, uint32_t fragment_size_default)
    {
    	/* adjust vm size firstly */
    	if (amdgpu_vm_size == -1)
    		adev->vm_manager.vm_size = vm_size;
    	else
    		adev->vm_manager.vm_size = amdgpu_vm_size;
    
    	/* block size depends on vm size */
    	if (amdgpu_vm_block_size == -1)
    		adev->vm_manager.block_size =
    			amdgpu_vm_get_block_size(adev->vm_manager.vm_size);
    	else
    		adev->vm_manager.block_size = amdgpu_vm_block_size;
    
    	amdgpu_vm_set_fragment_size(adev, fragment_size_default);
    
    	DRM_INFO("vm size is %llu GB, block size is %u-bit, fragment size is %u-bit\n",
    		adev->vm_manager.vm_size, adev->vm_manager.block_size,
    		adev->vm_manager.fragment_size);
    }
    
    /**
     * amdgpu_vm_init - initialize a vm instance
     *
     * @adev: amdgpu_device pointer
     * @vm: requested vm
     * @vm_context: Indicates if it GFX or Compute context
     *
     * Init @vm fields.
     */
    int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm,
    		   int vm_context, unsigned int pasid)
    {
    	const unsigned align = min(AMDGPU_VM_PTB_ALIGN_SIZE,
    		AMDGPU_VM_PTE_COUNT(adev) * 8);
    	unsigned ring_instance;
    	struct amdgpu_ring *ring;
    	struct amd_sched_rq *rq;
    	int r, i;
    	u64 flags;
    	uint64_t init_pde_value = 0;
    
    	vm->va = RB_ROOT;
    	vm->client_id = atomic64_inc_return(&adev->vm_manager.client_counter);
    	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
    		vm->reserved_vmid[i] = NULL;
    	spin_lock_init(&vm->status_lock);
    	INIT_LIST_HEAD(&vm->evicted);
    	INIT_LIST_HEAD(&vm->relocated);
    	INIT_LIST_HEAD(&vm->moved);
    	INIT_LIST_HEAD(&vm->freed);
    
    	/* create scheduler entity for page table updates */
    
    	ring_instance = atomic_inc_return(&adev->vm_manager.vm_pte_next_ring);
    	ring_instance %= adev->vm_manager.vm_pte_num_rings;
    	ring = adev->vm_manager.vm_pte_rings[ring_instance];
    	rq = &ring->sched.sched_rq[AMD_SCHED_PRIORITY_KERNEL];
    	r = amd_sched_entity_init(&ring->sched, &vm->entity,
    				  rq, amdgpu_sched_jobs);
    	if (r)
    		return r;
    
    	vm->pte_support_ats = false;
    
    	if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) {
    		vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
    						AMDGPU_VM_USE_CPU_FOR_COMPUTE);
    
    		if (adev->asic_type == CHIP_RAVEN) {
    			vm->pte_support_ats = true;
    			init_pde_value = AMDGPU_PTE_SYSTEM | AMDGPU_PDE_PTE;
    		}
    	} else
    		vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
    						AMDGPU_VM_USE_CPU_FOR_GFX);
    	DRM_DEBUG_DRIVER("VM update mode is %s\n",
    			 vm->use_cpu_for_update ? "CPU" : "SDMA");
    	WARN_ONCE((vm->use_cpu_for_update & !amdgpu_vm_is_large_bar(adev)),
    		  "CPU update of VM recommended only for large BAR system\n");
    	vm->last_update = NULL;
    
    	flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
    			AMDGPU_GEM_CREATE_VRAM_CLEARED;
    	if (vm->use_cpu_for_update)
    		flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
    	else
    		flags |= (AMDGPU_GEM_CREATE_NO_CPU_ACCESS |
    				AMDGPU_GEM_CREATE_SHADOW);
    
    	r = amdgpu_bo_create(adev, amdgpu_vm_bo_size(adev, 0), align, true,
    			     AMDGPU_GEM_DOMAIN_VRAM,
    			     flags,
    			     NULL, NULL, init_pde_value, &vm->root.base.bo);
    	if (r)
    		goto error_free_sched_entity;
    
    	vm->root.base.vm = vm;
    	list_add_tail(&vm->root.base.bo_list, &vm->root.base.bo->va);
    	INIT_LIST_HEAD(&vm->root.base.vm_status);
    
    	if (vm->use_cpu_for_update) {
    		r = amdgpu_bo_reserve(vm->root.base.bo, false);
    		if (r)
    			goto error_free_root;
    
    		r = amdgpu_bo_kmap(vm->root.base.bo, NULL);
    		amdgpu_bo_unreserve(vm->root.base.bo);
    		if (r)
    			goto error_free_root;
    	}
    
    	if (pasid) {
    		unsigned long flags;
    
    		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
    		r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
    			      GFP_ATOMIC);
    		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
    		if (r < 0)
    			goto error_free_root;
    
    		vm->pasid = pasid;
    	}
    
    	INIT_KFIFO(vm->faults);
    
    	return 0;
    
    error_free_root:
    	amdgpu_bo_unref(&vm->root.base.bo->shadow);
    	amdgpu_bo_unref(&vm->root.base.bo);
    	vm->root.base.bo = NULL;
    
    error_free_sched_entity:
    	amd_sched_entity_fini(&ring->sched, &vm->entity);
    
    	return r;
    }
    
    /**
     * amdgpu_vm_free_levels - free PD/PT levels
     *
     * @level: PD/PT starting level to free
     *
     * Free the page directory or page table level and all sub levels.
     */
    static void amdgpu_vm_free_levels(struct amdgpu_vm_pt *level)
    {
    	unsigned i;
    
    	if (level->base.bo) {
    		list_del(&level->base.bo_list);
    		list_del(&level->base.vm_status);
    		amdgpu_bo_unref(&level->base.bo->shadow);
    		amdgpu_bo_unref(&level->base.bo);
    	}
    
    	if (level->entries)
    		for (i = 0; i <= level->last_entry_used; i++)
    			amdgpu_vm_free_levels(&level->entries[i]);
    
    	kvfree(level->entries);
    }
    
    /**
     * amdgpu_vm_fini - tear down a vm instance
     *
     * @adev: amdgpu_device pointer
     * @vm: requested vm
     *
     * Tear down @vm.
     * Unbind the VM and remove all bos from the vm bo list
     */
    void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
    {
    	struct amdgpu_bo_va_mapping *mapping, *tmp;
    	bool prt_fini_needed = !!adev->gart.gart_funcs->set_prt;
    	u64 fault;
    	int i;
    
    	/* Clear pending page faults from IH when the VM is destroyed */
    	while (kfifo_get(&vm->faults, &fault))
    		amdgpu_ih_clear_fault(adev, fault);
    
    	if (vm->pasid) {
    		unsigned long flags;
    
    		spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
    		idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
    		spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
    	}
    
    	amd_sched_entity_fini(vm->entity.sched, &vm->entity);
    
    	if (!RB_EMPTY_ROOT(&vm->va)) {
    		dev_err(adev->dev, "still active bo inside vm\n");
    	}
    	rbtree_postorder_for_each_entry_safe(mapping, tmp, &vm->va, rb) {
    		list_del(&mapping->list);
    		amdgpu_vm_it_remove(mapping, &vm->va);
    		kfree(mapping);
    	}
    	list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
    		if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
    			amdgpu_vm_prt_fini(adev, vm);
    			prt_fini_needed = false;
    		}
    
    		list_del(&mapping->list);
    		amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
    	}
    
    	amdgpu_vm_free_levels(&vm->root);
    	dma_fence_put(vm->last_update);
    	for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
    		amdgpu_vm_free_reserved_vmid(adev, vm, i);
    }
    
    /**
     * amdgpu_vm_manager_init - init the VM manager
     *
     * @adev: amdgpu_device pointer
     *
     * Initialize the VM manager structures
     */
    void amdgpu_vm_manager_init(struct amdgpu_device *adev)
    {
    	unsigned i, j;
    
    	for (i = 0; i < AMDGPU_MAX_VMHUBS; ++i) {
    		struct amdgpu_vm_id_manager *id_mgr =
    			&adev->vm_manager.id_mgr[i];
    
    		mutex_init(&id_mgr->lock);
    		INIT_LIST_HEAD(&id_mgr->ids_lru);
    		atomic_set(&id_mgr->reserved_vmid_num, 0);
    
    		/* skip over VMID 0, since it is the system VM */
    		for (j = 1; j < id_mgr->num_ids; ++j) {
    			amdgpu_vm_reset_id(adev, i, j);
    			amdgpu_sync_create(&id_mgr->ids[i].active);
    			list_add_tail(&id_mgr->ids[j].list, &id_mgr->ids_lru);
    		}
    	}
    
    	adev->vm_manager.fence_context =
    		dma_fence_context_alloc(AMDGPU_MAX_RINGS);
    	for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
    		adev->vm_manager.seqno[i] = 0;
    
    	atomic_set(&adev->vm_manager.vm_pte_next_ring, 0);
    	atomic64_set(&adev->vm_manager.client_counter, 0);
    	spin_lock_init(&adev->vm_manager.prt_lock);
    	atomic_set(&adev->vm_manager.num_prt_users, 0);
    
    	/* If not overridden by the user, by default, only in large BAR systems
    	 * Compute VM tables will be updated by CPU
    	 */
    #ifdef CONFIG_X86_64
    	if (amdgpu_vm_update_mode == -1) {
    		if (amdgpu_vm_is_large_bar(adev))
    			adev->vm_manager.vm_update_mode =
    				AMDGPU_VM_USE_CPU_FOR_COMPUTE;
    		else
    			adev->vm_manager.vm_update_mode = 0;
    	} else
    		adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode;
    #else
    	adev->vm_manager.vm_update_mode = 0;
    #endif
    
    	idr_init(&adev->vm_manager.pasid_idr);
    	spin_lock_init(&adev->vm_manager.pasid_lock);
    }
    
    /**
     * amdgpu_vm_manager_fini - cleanup VM manager
     *
     * @adev: amdgpu_device pointer
     *
     * Cleanup the VM manager and free resources.
     */
    void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
    {
    	unsigned i, j;
    
    	WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr));
    	idr_destroy(&adev->vm_manager.pasid_idr);
    
    	for (i = 0; i < AMDGPU_MAX_VMHUBS; ++i) {
    		struct amdgpu_vm_id_manager *id_mgr =
    			&adev->vm_manager.id_mgr[i];
    
    		mutex_destroy(&id_mgr->lock);
    		for (j = 0; j < AMDGPU_NUM_VM; ++j) {
    			struct amdgpu_vm_id *id = &id_mgr->ids[j];
    
    			amdgpu_sync_free(&id->active);
    			dma_fence_put(id->flushed_updates);
    			dma_fence_put(id->last_flush);
    		}
    	}
    }
    
    int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
    {
    	union drm_amdgpu_vm *args = data;
    	struct amdgpu_device *adev = dev->dev_private;
    	struct amdgpu_fpriv *fpriv = filp->driver_priv;
    	int r;
    
    	switch (args->in.op) {
    	case AMDGPU_VM_OP_RESERVE_VMID:
    		/* current, we only have requirement to reserve vmid from gfxhub */
    		r = amdgpu_vm_alloc_reserved_vmid(adev, &fpriv->vm,
    						  AMDGPU_GFXHUB);
    		if (r)
    			return r;
    		break;
    	case AMDGPU_VM_OP_UNRESERVE_VMID:
    		amdgpu_vm_free_reserved_vmid(adev, &fpriv->vm, AMDGPU_GFXHUB);
    		break;
    	default:
    		return -EINVAL;
    	}
    
    	return 0;
    }