Skip to content
Snippets Groups Projects
Select Git revision
  • a04840c6841bb266c38f51adc87325308ab8d575
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

migrate.c

Blame
  • migrate.c 81.51 KiB
    // SPDX-License-Identifier: GPL-2.0
    /*
     * Memory Migration functionality - linux/mm/migrate.c
     *
     * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
     *
     * Page migration was first developed in the context of the memory hotplug
     * project. The main authors of the migration code are:
     *
     * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
     * Hirokazu Takahashi <taka@valinux.co.jp>
     * Dave Hansen <haveblue@us.ibm.com>
     * Christoph Lameter
     */
    
    #include <linux/migrate.h>
    #include <linux/export.h>
    #include <linux/swap.h>
    #include <linux/swapops.h>
    #include <linux/pagemap.h>
    #include <linux/buffer_head.h>
    #include <linux/mm_inline.h>
    #include <linux/nsproxy.h>
    #include <linux/pagevec.h>
    #include <linux/ksm.h>
    #include <linux/rmap.h>
    #include <linux/topology.h>
    #include <linux/cpu.h>
    #include <linux/cpuset.h>
    #include <linux/writeback.h>
    #include <linux/mempolicy.h>
    #include <linux/vmalloc.h>
    #include <linux/security.h>
    #include <linux/backing-dev.h>
    #include <linux/compaction.h>
    #include <linux/syscalls.h>
    #include <linux/compat.h>
    #include <linux/hugetlb.h>
    #include <linux/hugetlb_cgroup.h>
    #include <linux/gfp.h>
    #include <linux/pagewalk.h>
    #include <linux/pfn_t.h>
    #include <linux/memremap.h>
    #include <linux/userfaultfd_k.h>
    #include <linux/balloon_compaction.h>
    #include <linux/mmu_notifier.h>
    #include <linux/page_idle.h>
    #include <linux/page_owner.h>
    #include <linux/sched/mm.h>
    #include <linux/ptrace.h>
    #include <linux/oom.h>
    
    #include <asm/tlbflush.h>
    
    #define CREATE_TRACE_POINTS
    #include <trace/events/migrate.h>
    
    #include "internal.h"
    
    int isolate_movable_page(struct page *page, isolate_mode_t mode)
    {
    	struct address_space *mapping;
    
    	/*
    	 * Avoid burning cycles with pages that are yet under __free_pages(),
    	 * or just got freed under us.
    	 *
    	 * In case we 'win' a race for a movable page being freed under us and
    	 * raise its refcount preventing __free_pages() from doing its job
    	 * the put_page() at the end of this block will take care of
    	 * release this page, thus avoiding a nasty leakage.
    	 */
    	if (unlikely(!get_page_unless_zero(page)))
    		goto out;
    
    	/*
    	 * Check PageMovable before holding a PG_lock because page's owner
    	 * assumes anybody doesn't touch PG_lock of newly allocated page
    	 * so unconditionally grabbing the lock ruins page's owner side.
    	 */
    	if (unlikely(!__PageMovable(page)))
    		goto out_putpage;
    	/*
    	 * As movable pages are not isolated from LRU lists, concurrent
    	 * compaction threads can race against page migration functions
    	 * as well as race against the releasing a page.
    	 *
    	 * In order to avoid having an already isolated movable page
    	 * being (wrongly) re-isolated while it is under migration,
    	 * or to avoid attempting to isolate pages being released,
    	 * lets be sure we have the page lock
    	 * before proceeding with the movable page isolation steps.
    	 */
    	if (unlikely(!trylock_page(page)))
    		goto out_putpage;
    
    	if (!PageMovable(page) || PageIsolated(page))
    		goto out_no_isolated;
    
    	mapping = page_mapping(page);
    	VM_BUG_ON_PAGE(!mapping, page);
    
    	if (!mapping->a_ops->isolate_page(page, mode))
    		goto out_no_isolated;
    
    	/* Driver shouldn't use PG_isolated bit of page->flags */
    	WARN_ON_ONCE(PageIsolated(page));
    	__SetPageIsolated(page);
    	unlock_page(page);
    
    	return 0;
    
    out_no_isolated:
    	unlock_page(page);
    out_putpage:
    	put_page(page);
    out:
    	return -EBUSY;
    }
    
    static void putback_movable_page(struct page *page)
    {
    	struct address_space *mapping;
    
    	mapping = page_mapping(page);
    	mapping->a_ops->putback_page(page);
    	__ClearPageIsolated(page);
    }
    
    /*
     * Put previously isolated pages back onto the appropriate lists
     * from where they were once taken off for compaction/migration.
     *
     * This function shall be used whenever the isolated pageset has been
     * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
     * and isolate_huge_page().
     */
    void putback_movable_pages(struct list_head *l)
    {
    	struct page *page;
    	struct page *page2;
    
    	list_for_each_entry_safe(page, page2, l, lru) {
    		if (unlikely(PageHuge(page))) {
    			putback_active_hugepage(page);
    			continue;
    		}
    		list_del(&page->lru);
    		/*
    		 * We isolated non-lru movable page so here we can use
    		 * __PageMovable because LRU page's mapping cannot have
    		 * PAGE_MAPPING_MOVABLE.
    		 */
    		if (unlikely(__PageMovable(page))) {
    			VM_BUG_ON_PAGE(!PageIsolated(page), page);
    			lock_page(page);
    			if (PageMovable(page))
    				putback_movable_page(page);
    			else
    				__ClearPageIsolated(page);
    			unlock_page(page);
    			put_page(page);
    		} else {
    			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
    					page_is_file_lru(page), -thp_nr_pages(page));
    			putback_lru_page(page);
    		}
    	}
    }
    
    /*
     * Restore a potential migration pte to a working pte entry
     */
    static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
    				 unsigned long addr, void *old)
    {
    	struct page_vma_mapped_walk pvmw = {
    		.page = old,
    		.vma = vma,
    		.address = addr,
    		.flags = PVMW_SYNC | PVMW_MIGRATION,
    	};
    	struct page *new;
    	pte_t pte;
    	swp_entry_t entry;
    
    	VM_BUG_ON_PAGE(PageTail(page), page);
    	while (page_vma_mapped_walk(&pvmw)) {
    		if (PageKsm(page))
    			new = page;
    		else
    			new = page - pvmw.page->index +
    				linear_page_index(vma, pvmw.address);
    
    #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
    		/* PMD-mapped THP migration entry */
    		if (!pvmw.pte) {
    			VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
    			remove_migration_pmd(&pvmw, new);
    			continue;
    		}
    #endif
    
    		get_page(new);
    		pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
    		if (pte_swp_soft_dirty(*pvmw.pte))
    			pte = pte_mksoft_dirty(pte);
    
    		/*
    		 * Recheck VMA as permissions can change since migration started
    		 */
    		entry = pte_to_swp_entry(*pvmw.pte);
    		if (is_write_migration_entry(entry))
    			pte = maybe_mkwrite(pte, vma);
    		else if (pte_swp_uffd_wp(*pvmw.pte))
    			pte = pte_mkuffd_wp(pte);
    
    		if (unlikely(is_device_private_page(new))) {
    			entry = make_device_private_entry(new, pte_write(pte));
    			pte = swp_entry_to_pte(entry);
    			if (pte_swp_soft_dirty(*pvmw.pte))
    				pte = pte_swp_mksoft_dirty(pte);
    			if (pte_swp_uffd_wp(*pvmw.pte))
    				pte = pte_swp_mkuffd_wp(pte);
    		}
    
    #ifdef CONFIG_HUGETLB_PAGE
    		if (PageHuge(new)) {
    			pte = pte_mkhuge(pte);
    			pte = arch_make_huge_pte(pte, vma, new, 0);
    			set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
    			if (PageAnon(new))
    				hugepage_add_anon_rmap(new, vma, pvmw.address);
    			else
    				page_dup_rmap(new, true);
    		} else
    #endif
    		{
    			set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
    
    			if (PageAnon(new))
    				page_add_anon_rmap(new, vma, pvmw.address, false);
    			else
    				page_add_file_rmap(new, false);
    		}
    		if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
    			mlock_vma_page(new);
    
    		if (PageTransHuge(page) && PageMlocked(page))
    			clear_page_mlock(page);
    
    		/* No need to invalidate - it was non-present before */
    		update_mmu_cache(vma, pvmw.address, pvmw.pte);
    	}
    
    	return true;
    }
    
    /*
     * Get rid of all migration entries and replace them by
     * references to the indicated page.
     */
    void remove_migration_ptes(struct page *old, struct page *new, bool locked)
    {
    	struct rmap_walk_control rwc = {
    		.rmap_one = remove_migration_pte,
    		.arg = old,
    	};
    
    	if (locked)
    		rmap_walk_locked(new, &rwc);
    	else
    		rmap_walk(new, &rwc);
    }
    
    /*
     * Something used the pte of a page under migration. We need to
     * get to the page and wait until migration is finished.
     * When we return from this function the fault will be retried.
     */
    void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
    				spinlock_t *ptl)
    {
    	pte_t pte;
    	swp_entry_t entry;
    	struct page *page;
    
    	spin_lock(ptl);
    	pte = *ptep;
    	if (!is_swap_pte(pte))
    		goto out;
    
    	entry = pte_to_swp_entry(pte);
    	if (!is_migration_entry(entry))
    		goto out;
    
    	page = migration_entry_to_page(entry);
    
    	/*
    	 * Once page cache replacement of page migration started, page_count
    	 * is zero; but we must not call put_and_wait_on_page_locked() without
    	 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
    	 */
    	if (!get_page_unless_zero(page))
    		goto out;
    	pte_unmap_unlock(ptep, ptl);
    	put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
    	return;
    out:
    	pte_unmap_unlock(ptep, ptl);
    }
    
    void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
    				unsigned long address)
    {
    	spinlock_t *ptl = pte_lockptr(mm, pmd);
    	pte_t *ptep = pte_offset_map(pmd, address);
    	__migration_entry_wait(mm, ptep, ptl);
    }
    
    void migration_entry_wait_huge(struct vm_area_struct *vma,
    		struct mm_struct *mm, pte_t *pte)
    {
    	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
    	__migration_entry_wait(mm, pte, ptl);
    }
    
    #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
    void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
    {
    	spinlock_t *ptl;
    	struct page *page;
    
    	ptl = pmd_lock(mm, pmd);
    	if (!is_pmd_migration_entry(*pmd))
    		goto unlock;
    	page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
    	if (!get_page_unless_zero(page))
    		goto unlock;
    	spin_unlock(ptl);
    	put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
    	return;
    unlock:
    	spin_unlock(ptl);
    }
    #endif
    
    static int expected_page_refs(struct address_space *mapping, struct page *page)
    {
    	int expected_count = 1;
    
    	/*
    	 * Device private pages have an extra refcount as they are
    	 * ZONE_DEVICE pages.
    	 */
    	expected_count += is_device_private_page(page);
    	if (mapping)
    		expected_count += thp_nr_pages(page) + page_has_private(page);
    
    	return expected_count;
    }
    
    /*
     * Replace the page in the mapping.
     *
     * The number of remaining references must be:
     * 1 for anonymous pages without a mapping
     * 2 for pages with a mapping
     * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
     */
    int migrate_page_move_mapping(struct address_space *mapping,
    		struct page *newpage, struct page *page, int extra_count)
    {
    	XA_STATE(xas, &mapping->i_pages, page_index(page));
    	struct zone *oldzone, *newzone;
    	int dirty;
    	int expected_count = expected_page_refs(mapping, page) + extra_count;
    	int nr = thp_nr_pages(page);
    
    	if (!mapping) {
    		/* Anonymous page without mapping */
    		if (page_count(page) != expected_count)
    			return -EAGAIN;
    
    		/* No turning back from here */
    		newpage->index = page->index;
    		newpage->mapping = page->mapping;
    		if (PageSwapBacked(page))
    			__SetPageSwapBacked(newpage);
    
    		return MIGRATEPAGE_SUCCESS;
    	}
    
    	oldzone = page_zone(page);
    	newzone = page_zone(newpage);
    
    	xas_lock_irq(&xas);
    	if (page_count(page) != expected_count || xas_load(&xas) != page) {
    		xas_unlock_irq(&xas);
    		return -EAGAIN;
    	}
    
    	if (!page_ref_freeze(page, expected_count)) {
    		xas_unlock_irq(&xas);
    		return -EAGAIN;
    	}
    
    	/*
    	 * Now we know that no one else is looking at the page:
    	 * no turning back from here.
    	 */
    	newpage->index = page->index;
    	newpage->mapping = page->mapping;
    	page_ref_add(newpage, nr); /* add cache reference */
    	if (PageSwapBacked(page)) {
    		__SetPageSwapBacked(newpage);
    		if (PageSwapCache(page)) {
    			SetPageSwapCache(newpage);
    			set_page_private(newpage, page_private(page));
    		}
    	} else {
    		VM_BUG_ON_PAGE(PageSwapCache(page), page);
    	}
    
    	/* Move dirty while page refs frozen and newpage not yet exposed */
    	dirty = PageDirty(page);
    	if (dirty) {
    		ClearPageDirty(page);
    		SetPageDirty(newpage);
    	}
    
    	xas_store(&xas, newpage);
    	if (PageTransHuge(page)) {
    		int i;
    
    		for (i = 1; i < nr; i++) {
    			xas_next(&xas);
    			xas_store(&xas, newpage);
    		}
    	}
    
    	/*
    	 * Drop cache reference from old page by unfreezing
    	 * to one less reference.
    	 * We know this isn't the last reference.
    	 */
    	page_ref_unfreeze(page, expected_count - nr);
    
    	xas_unlock(&xas);
    	/* Leave irq disabled to prevent preemption while updating stats */
    
    	/*
    	 * If moved to a different zone then also account
    	 * the page for that zone. Other VM counters will be
    	 * taken care of when we establish references to the
    	 * new page and drop references to the old page.
    	 *
    	 * Note that anonymous pages are accounted for
    	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
    	 * are mapped to swap space.
    	 */
    	if (newzone != oldzone) {
    		struct lruvec *old_lruvec, *new_lruvec;
    		struct mem_cgroup *memcg;
    
    		memcg = page_memcg(page);
    		old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
    		new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
    
    		__mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
    		__mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
    		if (PageSwapBacked(page) && !PageSwapCache(page)) {
    			__mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
    			__mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
    		}
    #ifdef CONFIG_SWAP
    		if (PageSwapCache(page)) {
    			__mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
    			__mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
    		}
    #endif
    		if (dirty && mapping_can_writeback(mapping)) {
    			__mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
    			__mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
    			__mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
    			__mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
    		}
    	}
    	local_irq_enable();
    
    	return MIGRATEPAGE_SUCCESS;
    }
    EXPORT_SYMBOL(migrate_page_move_mapping);
    
    /*
     * The expected number of remaining references is the same as that
     * of migrate_page_move_mapping().
     */
    int migrate_huge_page_move_mapping(struct address_space *mapping,
    				   struct page *newpage, struct page *page)
    {
    	XA_STATE(xas, &mapping->i_pages, page_index(page));
    	int expected_count;
    
    	xas_lock_irq(&xas);
    	expected_count = 2 + page_has_private(page);
    	if (page_count(page) != expected_count || xas_load(&xas) != page) {
    		xas_unlock_irq(&xas);
    		return -EAGAIN;
    	}
    
    	if (!page_ref_freeze(page, expected_count)) {
    		xas_unlock_irq(&xas);
    		return -EAGAIN;
    	}
    
    	newpage->index = page->index;
    	newpage->mapping = page->mapping;
    
    	get_page(newpage);
    
    	xas_store(&xas, newpage);
    
    	page_ref_unfreeze(page, expected_count - 1);
    
    	xas_unlock_irq(&xas);
    
    	return MIGRATEPAGE_SUCCESS;
    }
    
    /*
     * Gigantic pages are so large that we do not guarantee that page++ pointer
     * arithmetic will work across the entire page.  We need something more
     * specialized.
     */
    static void __copy_gigantic_page(struct page *dst, struct page *src,
    				int nr_pages)
    {
    	int i;
    	struct page *dst_base = dst;
    	struct page *src_base = src;
    
    	for (i = 0; i < nr_pages; ) {
    		cond_resched();
    		copy_highpage(dst, src);
    
    		i++;
    		dst = mem_map_next(dst, dst_base, i);
    		src = mem_map_next(src, src_base, i);
    	}
    }
    
    static void copy_huge_page(struct page *dst, struct page *src)
    {
    	int i;
    	int nr_pages;
    
    	if (PageHuge(src)) {
    		/* hugetlbfs page */
    		struct hstate *h = page_hstate(src);
    		nr_pages = pages_per_huge_page(h);
    
    		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
    			__copy_gigantic_page(dst, src, nr_pages);
    			return;
    		}
    	} else {
    		/* thp page */
    		BUG_ON(!PageTransHuge(src));
    		nr_pages = thp_nr_pages(src);
    	}
    
    	for (i = 0; i < nr_pages; i++) {
    		cond_resched();
    		copy_highpage(dst + i, src + i);
    	}
    }
    
    /*
     * Copy the page to its new location
     */
    void migrate_page_states(struct page *newpage, struct page *page)
    {
    	int cpupid;
    
    	if (PageError(page))
    		SetPageError(newpage);
    	if (PageReferenced(page))
    		SetPageReferenced(newpage);
    	if (PageUptodate(page))
    		SetPageUptodate(newpage);
    	if (TestClearPageActive(page)) {
    		VM_BUG_ON_PAGE(PageUnevictable(page), page);
    		SetPageActive(newpage);
    	} else if (TestClearPageUnevictable(page))
    		SetPageUnevictable(newpage);
    	if (PageWorkingset(page))
    		SetPageWorkingset(newpage);
    	if (PageChecked(page))
    		SetPageChecked(newpage);
    	if (PageMappedToDisk(page))
    		SetPageMappedToDisk(newpage);
    
    	/* Move dirty on pages not done by migrate_page_move_mapping() */
    	if (PageDirty(page))
    		SetPageDirty(newpage);
    
    	if (page_is_young(page))
    		set_page_young(newpage);
    	if (page_is_idle(page))
    		set_page_idle(newpage);
    
    	/*
    	 * Copy NUMA information to the new page, to prevent over-eager
    	 * future migrations of this same page.
    	 */
    	cpupid = page_cpupid_xchg_last(page, -1);
    	page_cpupid_xchg_last(newpage, cpupid);
    
    	ksm_migrate_page(newpage, page);
    	/*
    	 * Please do not reorder this without considering how mm/ksm.c's
    	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
    	 */
    	if (PageSwapCache(page))
    		ClearPageSwapCache(page);
    	ClearPagePrivate(page);
    	set_page_private(page, 0);
    
    	/*
    	 * If any waiters have accumulated on the new page then
    	 * wake them up.
    	 */
    	if (PageWriteback(newpage))
    		end_page_writeback(newpage);
    
    	/*
    	 * PG_readahead shares the same bit with PG_reclaim.  The above
    	 * end_page_writeback() may clear PG_readahead mistakenly, so set the
    	 * bit after that.
    	 */
    	if (PageReadahead(page))
    		SetPageReadahead(newpage);
    
    	copy_page_owner(page, newpage);
    
    	if (!PageHuge(page))
    		mem_cgroup_migrate(page, newpage);
    }
    EXPORT_SYMBOL(migrate_page_states);
    
    void migrate_page_copy(struct page *newpage, struct page *page)
    {
    	if (PageHuge(page) || PageTransHuge(page))
    		copy_huge_page(newpage, page);
    	else
    		copy_highpage(newpage, page);
    
    	migrate_page_states(newpage, page);
    }
    EXPORT_SYMBOL(migrate_page_copy);
    
    /************************************************************
     *                    Migration functions
     ***********************************************************/
    
    /*
     * Common logic to directly migrate a single LRU page suitable for
     * pages that do not use PagePrivate/PagePrivate2.
     *
     * Pages are locked upon entry and exit.
     */
    int migrate_page(struct address_space *mapping,
    		struct page *newpage, struct page *page,
    		enum migrate_mode mode)
    {
    	int rc;
    
    	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
    
    	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
    
    	if (rc != MIGRATEPAGE_SUCCESS)
    		return rc;
    
    	if (mode != MIGRATE_SYNC_NO_COPY)
    		migrate_page_copy(newpage, page);
    	else
    		migrate_page_states(newpage, page);
    	return MIGRATEPAGE_SUCCESS;
    }
    EXPORT_SYMBOL(migrate_page);
    
    #ifdef CONFIG_BLOCK
    /* Returns true if all buffers are successfully locked */
    static bool buffer_migrate_lock_buffers(struct buffer_head *head,
    							enum migrate_mode mode)
    {
    	struct buffer_head *bh = head;
    
    	/* Simple case, sync compaction */
    	if (mode != MIGRATE_ASYNC) {
    		do {
    			lock_buffer(bh);
    			bh = bh->b_this_page;
    
    		} while (bh != head);
    
    		return true;
    	}
    
    	/* async case, we cannot block on lock_buffer so use trylock_buffer */
    	do {
    		if (!trylock_buffer(bh)) {
    			/*
    			 * We failed to lock the buffer and cannot stall in
    			 * async migration. Release the taken locks
    			 */
    			struct buffer_head *failed_bh = bh;
    			bh = head;
    			while (bh != failed_bh) {
    				unlock_buffer(bh);
    				bh = bh->b_this_page;
    			}
    			return false;
    		}
    
    		bh = bh->b_this_page;
    	} while (bh != head);
    	return true;
    }
    
    static int __buffer_migrate_page(struct address_space *mapping,
    		struct page *newpage, struct page *page, enum migrate_mode mode,
    		bool check_refs)
    {
    	struct buffer_head *bh, *head;
    	int rc;
    	int expected_count;
    
    	if (!page_has_buffers(page))
    		return migrate_page(mapping, newpage, page, mode);
    
    	/* Check whether page does not have extra refs before we do more work */
    	expected_count = expected_page_refs(mapping, page);
    	if (page_count(page) != expected_count)
    		return -EAGAIN;
    
    	head = page_buffers(page);
    	if (!buffer_migrate_lock_buffers(head, mode))
    		return -EAGAIN;
    
    	if (check_refs) {
    		bool busy;
    		bool invalidated = false;
    
    recheck_buffers:
    		busy = false;
    		spin_lock(&mapping->private_lock);
    		bh = head;
    		do {
    			if (atomic_read(&bh->b_count)) {
    				busy = true;
    				break;
    			}
    			bh = bh->b_this_page;
    		} while (bh != head);
    		if (busy) {
    			if (invalidated) {
    				rc = -EAGAIN;
    				goto unlock_buffers;
    			}
    			spin_unlock(&mapping->private_lock);
    			invalidate_bh_lrus();
    			invalidated = true;
    			goto recheck_buffers;
    		}
    	}
    
    	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
    	if (rc != MIGRATEPAGE_SUCCESS)
    		goto unlock_buffers;
    
    	attach_page_private(newpage, detach_page_private(page));
    
    	bh = head;
    	do {
    		set_bh_page(bh, newpage, bh_offset(bh));
    		bh = bh->b_this_page;
    
    	} while (bh != head);
    
    	if (mode != MIGRATE_SYNC_NO_COPY)
    		migrate_page_copy(newpage, page);
    	else
    		migrate_page_states(newpage, page);
    
    	rc = MIGRATEPAGE_SUCCESS;
    unlock_buffers:
    	if (check_refs)
    		spin_unlock(&mapping->private_lock);
    	bh = head;
    	do {
    		unlock_buffer(bh);
    		bh = bh->b_this_page;
    
    	} while (bh != head);
    
    	return rc;
    }
    
    /*
     * Migration function for pages with buffers. This function can only be used
     * if the underlying filesystem guarantees that no other references to "page"
     * exist. For example attached buffer heads are accessed only under page lock.
     */
    int buffer_migrate_page(struct address_space *mapping,
    		struct page *newpage, struct page *page, enum migrate_mode mode)
    {
    	return __buffer_migrate_page(mapping, newpage, page, mode, false);
    }
    EXPORT_SYMBOL(buffer_migrate_page);
    
    /*
     * Same as above except that this variant is more careful and checks that there
     * are also no buffer head references. This function is the right one for
     * mappings where buffer heads are directly looked up and referenced (such as
     * block device mappings).
     */
    int buffer_migrate_page_norefs(struct address_space *mapping,
    		struct page *newpage, struct page *page, enum migrate_mode mode)
    {
    	return __buffer_migrate_page(mapping, newpage, page, mode, true);
    }
    #endif
    
    /*
     * Writeback a page to clean the dirty state
     */
    static int writeout(struct address_space *mapping, struct page *page)
    {
    	struct writeback_control wbc = {
    		.sync_mode = WB_SYNC_NONE,
    		.nr_to_write = 1,
    		.range_start = 0,
    		.range_end = LLONG_MAX,
    		.for_reclaim = 1
    	};
    	int rc;
    
    	if (!mapping->a_ops->writepage)
    		/* No write method for the address space */
    		return -EINVAL;
    
    	if (!clear_page_dirty_for_io(page))
    		/* Someone else already triggered a write */
    		return -EAGAIN;
    
    	/*
    	 * A dirty page may imply that the underlying filesystem has
    	 * the page on some queue. So the page must be clean for
    	 * migration. Writeout may mean we loose the lock and the
    	 * page state is no longer what we checked for earlier.
    	 * At this point we know that the migration attempt cannot
    	 * be successful.
    	 */
    	remove_migration_ptes(page, page, false);
    
    	rc = mapping->a_ops->writepage(page, &wbc);
    
    	if (rc != AOP_WRITEPAGE_ACTIVATE)
    		/* unlocked. Relock */
    		lock_page(page);
    
    	return (rc < 0) ? -EIO : -EAGAIN;
    }
    
    /*
     * Default handling if a filesystem does not provide a migration function.
     */
    static int fallback_migrate_page(struct address_space *mapping,
    	struct page *newpage, struct page *page, enum migrate_mode mode)
    {
    	if (PageDirty(page)) {
    		/* Only writeback pages in full synchronous migration */
    		switch (mode) {
    		case MIGRATE_SYNC:
    		case MIGRATE_SYNC_NO_COPY:
    			break;
    		default:
    			return -EBUSY;
    		}
    		return writeout(mapping, page);
    	}
    
    	/*
    	 * Buffers may be managed in a filesystem specific way.
    	 * We must have no buffers or drop them.
    	 */
    	if (page_has_private(page) &&
    	    !try_to_release_page(page, GFP_KERNEL))
    		return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
    
    	return migrate_page(mapping, newpage, page, mode);
    }
    
    /*
     * Move a page to a newly allocated page
     * The page is locked and all ptes have been successfully removed.
     *
     * The new page will have replaced the old page if this function
     * is successful.
     *
     * Return value:
     *   < 0 - error code
     *  MIGRATEPAGE_SUCCESS - success
     */
    static int move_to_new_page(struct page *newpage, struct page *page,
    				enum migrate_mode mode)
    {
    	struct address_space *mapping;
    	int rc = -EAGAIN;
    	bool is_lru = !__PageMovable(page);
    
    	VM_BUG_ON_PAGE(!PageLocked(page), page);
    	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
    
    	mapping = page_mapping(page);
    
    	if (likely(is_lru)) {
    		if (!mapping)
    			rc = migrate_page(mapping, newpage, page, mode);
    		else if (mapping->a_ops->migratepage)
    			/*
    			 * Most pages have a mapping and most filesystems
    			 * provide a migratepage callback. Anonymous pages
    			 * are part of swap space which also has its own
    			 * migratepage callback. This is the most common path
    			 * for page migration.
    			 */
    			rc = mapping->a_ops->migratepage(mapping, newpage,
    							page, mode);
    		else
    			rc = fallback_migrate_page(mapping, newpage,
    							page, mode);
    	} else {
    		/*
    		 * In case of non-lru page, it could be released after
    		 * isolation step. In that case, we shouldn't try migration.
    		 */
    		VM_BUG_ON_PAGE(!PageIsolated(page), page);
    		if (!PageMovable(page)) {
    			rc = MIGRATEPAGE_SUCCESS;
    			__ClearPageIsolated(page);
    			goto out;
    		}
    
    		rc = mapping->a_ops->migratepage(mapping, newpage,
    						page, mode);
    		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
    			!PageIsolated(page));
    	}
    
    	/*
    	 * When successful, old pagecache page->mapping must be cleared before
    	 * page is freed; but stats require that PageAnon be left as PageAnon.
    	 */
    	if (rc == MIGRATEPAGE_SUCCESS) {
    		if (__PageMovable(page)) {
    			VM_BUG_ON_PAGE(!PageIsolated(page), page);
    
    			/*
    			 * We clear PG_movable under page_lock so any compactor
    			 * cannot try to migrate this page.
    			 */
    			__ClearPageIsolated(page);
    		}
    
    		/*
    		 * Anonymous and movable page->mapping will be cleared by
    		 * free_pages_prepare so don't reset it here for keeping
    		 * the type to work PageAnon, for example.
    		 */
    		if (!PageMappingFlags(page))
    			page->mapping = NULL;
    
    		if (likely(!is_zone_device_page(newpage)))
    			flush_dcache_page(newpage);
    
    	}
    out:
    	return rc;
    }
    
    static int __unmap_and_move(struct page *page, struct page *newpage,
    				int force, enum migrate_mode mode)
    {
    	int rc = -EAGAIN;
    	int page_was_mapped = 0;
    	struct anon_vma *anon_vma = NULL;
    	bool is_lru = !__PageMovable(page);
    
    	if (!trylock_page(page)) {
    		if (!force || mode == MIGRATE_ASYNC)
    			goto out;
    
    		/*
    		 * It's not safe for direct compaction to call lock_page.
    		 * For example, during page readahead pages are added locked
    		 * to the LRU. Later, when the IO completes the pages are
    		 * marked uptodate and unlocked. However, the queueing
    		 * could be merging multiple pages for one bio (e.g.
    		 * mpage_readahead). If an allocation happens for the
    		 * second or third page, the process can end up locking
    		 * the same page twice and deadlocking. Rather than
    		 * trying to be clever about what pages can be locked,
    		 * avoid the use of lock_page for direct compaction
    		 * altogether.
    		 */
    		if (current->flags & PF_MEMALLOC)
    			goto out;
    
    		lock_page(page);
    	}
    
    	if (PageWriteback(page)) {
    		/*
    		 * Only in the case of a full synchronous migration is it
    		 * necessary to wait for PageWriteback. In the async case,
    		 * the retry loop is too short and in the sync-light case,
    		 * the overhead of stalling is too much
    		 */
    		switch (mode) {
    		case MIGRATE_SYNC:
    		case MIGRATE_SYNC_NO_COPY:
    			break;
    		default:
    			rc = -EBUSY;
    			goto out_unlock;
    		}
    		if (!force)
    			goto out_unlock;
    		wait_on_page_writeback(page);
    	}
    
    	/*
    	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
    	 * we cannot notice that anon_vma is freed while we migrates a page.
    	 * This get_anon_vma() delays freeing anon_vma pointer until the end
    	 * of migration. File cache pages are no problem because of page_lock()
    	 * File Caches may use write_page() or lock_page() in migration, then,
    	 * just care Anon page here.
    	 *
    	 * Only page_get_anon_vma() understands the subtleties of
    	 * getting a hold on an anon_vma from outside one of its mms.
    	 * But if we cannot get anon_vma, then we won't need it anyway,
    	 * because that implies that the anon page is no longer mapped
    	 * (and cannot be remapped so long as we hold the page lock).
    	 */
    	if (PageAnon(page) && !PageKsm(page))
    		anon_vma = page_get_anon_vma(page);
    
    	/*
    	 * Block others from accessing the new page when we get around to
    	 * establishing additional references. We are usually the only one
    	 * holding a reference to newpage at this point. We used to have a BUG
    	 * here if trylock_page(newpage) fails, but would like to allow for
    	 * cases where there might be a race with the previous use of newpage.
    	 * This is much like races on refcount of oldpage: just don't BUG().
    	 */
    	if (unlikely(!trylock_page(newpage)))
    		goto out_unlock;
    
    	if (unlikely(!is_lru)) {
    		rc = move_to_new_page(newpage, page, mode);
    		goto out_unlock_both;
    	}
    
    	/*
    	 * Corner case handling:
    	 * 1. When a new swap-cache page is read into, it is added to the LRU
    	 * and treated as swapcache but it has no rmap yet.
    	 * Calling try_to_unmap() against a page->mapping==NULL page will
    	 * trigger a BUG.  So handle it here.
    	 * 2. An orphaned page (see truncate_cleanup_page) might have
    	 * fs-private metadata. The page can be picked up due to memory
    	 * offlining.  Everywhere else except page reclaim, the page is
    	 * invisible to the vm, so the page can not be migrated.  So try to
    	 * free the metadata, so the page can be freed.
    	 */
    	if (!page->mapping) {
    		VM_BUG_ON_PAGE(PageAnon(page), page);
    		if (page_has_private(page)) {
    			try_to_free_buffers(page);
    			goto out_unlock_both;
    		}
    	} else if (page_mapped(page)) {
    		/* Establish migration ptes */
    		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
    				page);
    		try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK);
    		page_was_mapped = 1;
    	}
    
    	if (!page_mapped(page))
    		rc = move_to_new_page(newpage, page, mode);
    
    	if (page_was_mapped)
    		remove_migration_ptes(page,
    			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
    
    out_unlock_both:
    	unlock_page(newpage);
    out_unlock:
    	/* Drop an anon_vma reference if we took one */
    	if (anon_vma)
    		put_anon_vma(anon_vma);
    	unlock_page(page);
    out:
    	/*
    	 * If migration is successful, decrease refcount of the newpage
    	 * which will not free the page because new page owner increased
    	 * refcounter. As well, if it is LRU page, add the page to LRU
    	 * list in here. Use the old state of the isolated source page to
    	 * determine if we migrated a LRU page. newpage was already unlocked
    	 * and possibly modified by its owner - don't rely on the page
    	 * state.
    	 */
    	if (rc == MIGRATEPAGE_SUCCESS) {
    		if (unlikely(!is_lru))
    			put_page(newpage);
    		else
    			putback_lru_page(newpage);
    	}
    
    	return rc;
    }
    
    /*
     * Obtain the lock on page, remove all ptes and migrate the page
     * to the newly allocated page in newpage.
     */
    static int unmap_and_move(new_page_t get_new_page,
    				   free_page_t put_new_page,
    				   unsigned long private, struct page *page,
    				   int force, enum migrate_mode mode,
    				   enum migrate_reason reason,
    				   struct list_head *ret)
    {
    	int rc = MIGRATEPAGE_SUCCESS;
    	struct page *newpage = NULL;
    
    	if (!thp_migration_supported() && PageTransHuge(page))
    		return -ENOSYS;
    
    	if (page_count(page) == 1) {
    		/* page was freed from under us. So we are done. */
    		ClearPageActive(page);
    		ClearPageUnevictable(page);
    		if (unlikely(__PageMovable(page))) {
    			lock_page(page);
    			if (!PageMovable(page))
    				__ClearPageIsolated(page);
    			unlock_page(page);
    		}
    		goto out;
    	}
    
    	newpage = get_new_page(page, private);
    	if (!newpage)
    		return -ENOMEM;
    
    	rc = __unmap_and_move(page, newpage, force, mode);
    	if (rc == MIGRATEPAGE_SUCCESS)
    		set_page_owner_migrate_reason(newpage, reason);
    
    out:
    	if (rc != -EAGAIN) {
    		/*
    		 * A page that has been migrated has all references
    		 * removed and will be freed. A page that has not been
    		 * migrated will have kept its references and be restored.
    		 */
    		list_del(&page->lru);
    	}
    
    	/*
    	 * If migration is successful, releases reference grabbed during
    	 * isolation. Otherwise, restore the page to right list unless
    	 * we want to retry.
    	 */
    	if (rc == MIGRATEPAGE_SUCCESS) {
    		/*
    		 * Compaction can migrate also non-LRU pages which are
    		 * not accounted to NR_ISOLATED_*. They can be recognized
    		 * as __PageMovable
    		 */
    		if (likely(!__PageMovable(page)))
    			mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
    					page_is_file_lru(page), -thp_nr_pages(page));
    
    		if (reason != MR_MEMORY_FAILURE)
    			/*
    			 * We release the page in page_handle_poison.
    			 */
    			put_page(page);
    	} else {
    		if (rc != -EAGAIN)
    			list_add_tail(&page->lru, ret);
    
    		if (put_new_page)
    			put_new_page(newpage, private);
    		else
    			put_page(newpage);
    	}
    
    	return rc;
    }
    
    /*
     * Counterpart of unmap_and_move_page() for hugepage migration.
     *
     * This function doesn't wait the completion of hugepage I/O
     * because there is no race between I/O and migration for hugepage.
     * Note that currently hugepage I/O occurs only in direct I/O
     * where no lock is held and PG_writeback is irrelevant,
     * and writeback status of all subpages are counted in the reference
     * count of the head page (i.e. if all subpages of a 2MB hugepage are
     * under direct I/O, the reference of the head page is 512 and a bit more.)
     * This means that when we try to migrate hugepage whose subpages are
     * doing direct I/O, some references remain after try_to_unmap() and
     * hugepage migration fails without data corruption.
     *
     * There is also no race when direct I/O is issued on the page under migration,
     * because then pte is replaced with migration swap entry and direct I/O code
     * will wait in the page fault for migration to complete.
     */
    static int unmap_and_move_huge_page(new_page_t get_new_page,
    				free_page_t put_new_page, unsigned long private,
    				struct page *hpage, int force,
    				enum migrate_mode mode, int reason,
    				struct list_head *ret)
    {
    	int rc = -EAGAIN;
    	int page_was_mapped = 0;
    	struct page *new_hpage;
    	struct anon_vma *anon_vma = NULL;
    	struct address_space *mapping = NULL;
    
    	/*
    	 * Migratability of hugepages depends on architectures and their size.
    	 * This check is necessary because some callers of hugepage migration
    	 * like soft offline and memory hotremove don't walk through page
    	 * tables or check whether the hugepage is pmd-based or not before
    	 * kicking migration.
    	 */
    	if (!hugepage_migration_supported(page_hstate(hpage))) {
    		list_move_tail(&hpage->lru, ret);
    		return -ENOSYS;
    	}
    
    	if (page_count(hpage) == 1) {
    		/* page was freed from under us. So we are done. */
    		putback_active_hugepage(hpage);
    		return MIGRATEPAGE_SUCCESS;
    	}
    
    	new_hpage = get_new_page(hpage, private);
    	if (!new_hpage)
    		return -ENOMEM;
    
    	if (!trylock_page(hpage)) {
    		if (!force)
    			goto out;
    		switch (mode) {
    		case MIGRATE_SYNC:
    		case MIGRATE_SYNC_NO_COPY:
    			break;
    		default:
    			goto out;
    		}
    		lock_page(hpage);
    	}
    
    	/*
    	 * Check for pages which are in the process of being freed.  Without
    	 * page_mapping() set, hugetlbfs specific move page routine will not
    	 * be called and we could leak usage counts for subpools.
    	 */
    	if (page_private(hpage) && !page_mapping(hpage)) {
    		rc = -EBUSY;
    		goto out_unlock;
    	}
    
    	if (PageAnon(hpage))
    		anon_vma = page_get_anon_vma(hpage);
    
    	if (unlikely(!trylock_page(new_hpage)))
    		goto put_anon;
    
    	if (page_mapped(hpage)) {
    		bool mapping_locked = false;
    		enum ttu_flags ttu = TTU_MIGRATION|TTU_IGNORE_MLOCK;
    
    		if (!PageAnon(hpage)) {
    			/*
    			 * In shared mappings, try_to_unmap could potentially
    			 * call huge_pmd_unshare.  Because of this, take
    			 * semaphore in write mode here and set TTU_RMAP_LOCKED
    			 * to let lower levels know we have taken the lock.
    			 */
    			mapping = hugetlb_page_mapping_lock_write(hpage);
    			if (unlikely(!mapping))
    				goto unlock_put_anon;
    
    			mapping_locked = true;
    			ttu |= TTU_RMAP_LOCKED;
    		}
    
    		try_to_unmap(hpage, ttu);
    		page_was_mapped = 1;
    
    		if (mapping_locked)
    			i_mmap_unlock_write(mapping);
    	}
    
    	if (!page_mapped(hpage))
    		rc = move_to_new_page(new_hpage, hpage, mode);
    
    	if (page_was_mapped)
    		remove_migration_ptes(hpage,
    			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
    
    unlock_put_anon:
    	unlock_page(new_hpage);
    
    put_anon:
    	if (anon_vma)
    		put_anon_vma(anon_vma);
    
    	if (rc == MIGRATEPAGE_SUCCESS) {
    		move_hugetlb_state(hpage, new_hpage, reason);
    		put_new_page = NULL;
    	}
    
    out_unlock:
    	unlock_page(hpage);
    out:
    	if (rc == MIGRATEPAGE_SUCCESS)
    		putback_active_hugepage(hpage);
    	else if (rc != -EAGAIN)
    		list_move_tail(&hpage->lru, ret);
    
    	/*
    	 * If migration was not successful and there's a freeing callback, use
    	 * it.  Otherwise, put_page() will drop the reference grabbed during
    	 * isolation.
    	 */
    	if (put_new_page)
    		put_new_page(new_hpage, private);
    	else
    		putback_active_hugepage(new_hpage);
    
    	return rc;
    }
    
    static inline int try_split_thp(struct page *page, struct page **page2,
    				struct list_head *from)
    {
    	int rc = 0;
    
    	lock_page(page);
    	rc = split_huge_page_to_list(page, from);
    	unlock_page(page);
    	if (!rc)
    		list_safe_reset_next(page, *page2, lru);
    
    	return rc;
    }
    
    /*
     * migrate_pages - migrate the pages specified in a list, to the free pages
     *		   supplied as the target for the page migration
     *
     * @from:		The list of pages to be migrated.
     * @get_new_page:	The function used to allocate free pages to be used
     *			as the target of the page migration.
     * @put_new_page:	The function used to free target pages if migration
     *			fails, or NULL if no special handling is necessary.
     * @private:		Private data to be passed on to get_new_page()
     * @mode:		The migration mode that specifies the constraints for
     *			page migration, if any.
     * @reason:		The reason for page migration.
     *
     * The function returns after 10 attempts or if no pages are movable any more
     * because the list has become empty or no retryable pages exist any more.
     * It is caller's responsibility to call putback_movable_pages() to return pages
     * to the LRU or free list only if ret != 0.
     *
     * Returns the number of pages that were not migrated, or an error code.
     */
    int migrate_pages(struct list_head *from, new_page_t get_new_page,
    		free_page_t put_new_page, unsigned long private,
    		enum migrate_mode mode, int reason)
    {
    	int retry = 1;
    	int thp_retry = 1;
    	int nr_failed = 0;
    	int nr_succeeded = 0;
    	int nr_thp_succeeded = 0;
    	int nr_thp_failed = 0;
    	int nr_thp_split = 0;
    	int pass = 0;
    	bool is_thp = false;
    	struct page *page;
    	struct page *page2;
    	int swapwrite = current->flags & PF_SWAPWRITE;
    	int rc, nr_subpages;
    	LIST_HEAD(ret_pages);
    
    	if (!swapwrite)
    		current->flags |= PF_SWAPWRITE;
    
    	for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
    		retry = 0;
    		thp_retry = 0;
    
    		list_for_each_entry_safe(page, page2, from, lru) {
    retry:
    			/*
    			 * THP statistics is based on the source huge page.
    			 * Capture required information that might get lost
    			 * during migration.
    			 */
    			is_thp = PageTransHuge(page) && !PageHuge(page);
    			nr_subpages = thp_nr_pages(page);
    			cond_resched();
    
    			if (PageHuge(page))
    				rc = unmap_and_move_huge_page(get_new_page,
    						put_new_page, private, page,
    						pass > 2, mode, reason,
    						&ret_pages);
    			else
    				rc = unmap_and_move(get_new_page, put_new_page,
    						private, page, pass > 2, mode,
    						reason, &ret_pages);
    			/*
    			 * The rules are:
    			 *	Success: non hugetlb page will be freed, hugetlb
    			 *		 page will be put back
    			 *	-EAGAIN: stay on the from list
    			 *	-ENOMEM: stay on the from list
    			 *	Other errno: put on ret_pages list then splice to
    			 *		     from list
    			 */
    			switch(rc) {
    			/*
    			 * THP migration might be unsupported or the
    			 * allocation could've failed so we should
    			 * retry on the same page with the THP split
    			 * to base pages.
    			 *
    			 * Head page is retried immediately and tail
    			 * pages are added to the tail of the list so
    			 * we encounter them after the rest of the list
    			 * is processed.
    			 */
    			case -ENOSYS:
    				/* THP migration is unsupported */
    				if (is_thp) {
    					if (!try_split_thp(page, &page2, from)) {
    						nr_thp_split++;
    						goto retry;
    					}
    
    					nr_thp_failed++;
    					nr_failed += nr_subpages;
    					break;
    				}
    
    				/* Hugetlb migration is unsupported */
    				nr_failed++;
    				break;
    			case -ENOMEM:
    				/*
    				 * When memory is low, don't bother to try to migrate
    				 * other pages, just exit.
    				 */
    				if (is_thp) {
    					if (!try_split_thp(page, &page2, from)) {
    						nr_thp_split++;
    						goto retry;
    					}
    
    					nr_thp_failed++;
    					nr_failed += nr_subpages;
    					goto out;
    				}
    				nr_failed++;
    				goto out;
    			case -EAGAIN:
    				if (is_thp) {
    					thp_retry++;
    					break;
    				}
    				retry++;
    				break;
    			case MIGRATEPAGE_SUCCESS:
    				if (is_thp) {
    					nr_thp_succeeded++;
    					nr_succeeded += nr_subpages;
    					break;
    				}
    				nr_succeeded++;
    				break;
    			default:
    				/*
    				 * Permanent failure (-EBUSY, etc.):
    				 * unlike -EAGAIN case, the failed page is
    				 * removed from migration page list and not
    				 * retried in the next outer loop.
    				 */
    				if (is_thp) {
    					nr_thp_failed++;
    					nr_failed += nr_subpages;
    					break;
    				}
    				nr_failed++;
    				break;
    			}
    		}
    	}
    	nr_failed += retry + thp_retry;
    	nr_thp_failed += thp_retry;
    	rc = nr_failed;
    out:
    	/*
    	 * Put the permanent failure page back to migration list, they
    	 * will be put back to the right list by the caller.
    	 */
    	list_splice(&ret_pages, from);
    
    	count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
    	count_vm_events(PGMIGRATE_FAIL, nr_failed);
    	count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
    	count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
    	count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
    	trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
    			       nr_thp_failed, nr_thp_split, mode, reason);
    
    	if (!swapwrite)
    		current->flags &= ~PF_SWAPWRITE;
    
    	return rc;
    }
    
    struct page *alloc_migration_target(struct page *page, unsigned long private)
    {
    	struct migration_target_control *mtc;
    	gfp_t gfp_mask;
    	unsigned int order = 0;
    	struct page *new_page = NULL;
    	int nid;
    	int zidx;
    
    	mtc = (struct migration_target_control *)private;
    	gfp_mask = mtc->gfp_mask;
    	nid = mtc->nid;
    	if (nid == NUMA_NO_NODE)
    		nid = page_to_nid(page);
    
    	if (PageHuge(page)) {
    		struct hstate *h = page_hstate(compound_head(page));
    
    		gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
    		return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
    	}
    
    	if (PageTransHuge(page)) {
    		/*
    		 * clear __GFP_RECLAIM to make the migration callback
    		 * consistent with regular THP allocations.
    		 */
    		gfp_mask &= ~__GFP_RECLAIM;
    		gfp_mask |= GFP_TRANSHUGE;
    		order = HPAGE_PMD_ORDER;
    	}
    	zidx = zone_idx(page_zone(page));
    	if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
    		gfp_mask |= __GFP_HIGHMEM;
    
    	new_page = __alloc_pages(gfp_mask, order, nid, mtc->nmask);
    
    	if (new_page && PageTransHuge(new_page))
    		prep_transhuge_page(new_page);
    
    	return new_page;
    }
    
    #ifdef CONFIG_NUMA
    
    static int store_status(int __user *status, int start, int value, int nr)
    {
    	while (nr-- > 0) {
    		if (put_user(value, status + start))
    			return -EFAULT;
    		start++;
    	}
    
    	return 0;
    }
    
    static int do_move_pages_to_node(struct mm_struct *mm,
    		struct list_head *pagelist, int node)
    {
    	int err;
    	struct migration_target_control mtc = {
    		.nid = node,
    		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
    	};
    
    	err = migrate_pages(pagelist, alloc_migration_target, NULL,
    			(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
    	if (err)
    		putback_movable_pages(pagelist);
    	return err;
    }
    
    /*
     * Resolves the given address to a struct page, isolates it from the LRU and
     * puts it to the given pagelist.
     * Returns:
     *     errno - if the page cannot be found/isolated
     *     0 - when it doesn't have to be migrated because it is already on the
     *         target node
     *     1 - when it has been queued
     */
    static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
    		int node, struct list_head *pagelist, bool migrate_all)
    {
    	struct vm_area_struct *vma;
    	struct page *page;
    	unsigned int follflags;
    	int err;
    
    	mmap_read_lock(mm);
    	err = -EFAULT;
    	vma = find_vma(mm, addr);
    	if (!vma || addr < vma->vm_start || !vma_migratable(vma))
    		goto out;
    
    	/* FOLL_DUMP to ignore special (like zero) pages */
    	follflags = FOLL_GET | FOLL_DUMP;
    	page = follow_page(vma, addr, follflags);
    
    	err = PTR_ERR(page);
    	if (IS_ERR(page))
    		goto out;
    
    	err = -ENOENT;
    	if (!page)
    		goto out;
    
    	err = 0;
    	if (page_to_nid(page) == node)
    		goto out_putpage;
    
    	err = -EACCES;
    	if (page_mapcount(page) > 1 && !migrate_all)
    		goto out_putpage;
    
    	if (PageHuge(page)) {
    		if (PageHead(page)) {
    			isolate_huge_page(page, pagelist);
    			err = 1;
    		}
    	} else {
    		struct page *head;
    
    		head = compound_head(page);
    		err = isolate_lru_page(head);
    		if (err)
    			goto out_putpage;
    
    		err = 1;
    		list_add_tail(&head->lru, pagelist);
    		mod_node_page_state(page_pgdat(head),
    			NR_ISOLATED_ANON + page_is_file_lru(head),
    			thp_nr_pages(head));
    	}
    out_putpage:
    	/*
    	 * Either remove the duplicate refcount from
    	 * isolate_lru_page() or drop the page ref if it was
    	 * not isolated.
    	 */
    	put_page(page);
    out:
    	mmap_read_unlock(mm);
    	return err;
    }
    
    static int move_pages_and_store_status(struct mm_struct *mm, int node,
    		struct list_head *pagelist, int __user *status,
    		int start, int i, unsigned long nr_pages)
    {
    	int err;
    
    	if (list_empty(pagelist))
    		return 0;
    
    	err = do_move_pages_to_node(mm, pagelist, node);
    	if (err) {
    		/*
    		 * Positive err means the number of failed
    		 * pages to migrate.  Since we are going to
    		 * abort and return the number of non-migrated
    		 * pages, so need to include the rest of the
    		 * nr_pages that have not been attempted as
    		 * well.
    		 */
    		if (err > 0)
    			err += nr_pages - i - 1;
    		return err;
    	}
    	return store_status(status, start, node, i - start);
    }
    
    /*
     * Migrate an array of page address onto an array of nodes and fill
     * the corresponding array of status.
     */
    static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
    			 unsigned long nr_pages,
    			 const void __user * __user *pages,
    			 const int __user *nodes,
    			 int __user *status, int flags)
    {
    	int current_node = NUMA_NO_NODE;
    	LIST_HEAD(pagelist);
    	int start, i;
    	int err = 0, err1;
    
    	lru_cache_disable();
    
    	for (i = start = 0; i < nr_pages; i++) {
    		const void __user *p;
    		unsigned long addr;
    		int node;
    
    		err = -EFAULT;
    		if (get_user(p, pages + i))
    			goto out_flush;
    		if (get_user(node, nodes + i))
    			goto out_flush;
    		addr = (unsigned long)untagged_addr(p);
    
    		err = -ENODEV;
    		if (node < 0 || node >= MAX_NUMNODES)
    			goto out_flush;
    		if (!node_state(node, N_MEMORY))
    			goto out_flush;
    
    		err = -EACCES;
    		if (!node_isset(node, task_nodes))
    			goto out_flush;
    
    		if (current_node == NUMA_NO_NODE) {
    			current_node = node;
    			start = i;
    		} else if (node != current_node) {
    			err = move_pages_and_store_status(mm, current_node,
    					&pagelist, status, start, i, nr_pages);
    			if (err)
    				goto out;
    			start = i;
    			current_node = node;
    		}
    
    		/*
    		 * Errors in the page lookup or isolation are not fatal and we simply
    		 * report them via status
    		 */
    		err = add_page_for_migration(mm, addr, current_node,
    				&pagelist, flags & MPOL_MF_MOVE_ALL);
    
    		if (err > 0) {
    			/* The page is successfully queued for migration */
    			continue;
    		}
    
    		/*
    		 * If the page is already on the target node (!err), store the
    		 * node, otherwise, store the err.
    		 */
    		err = store_status(status, i, err ? : current_node, 1);
    		if (err)
    			goto out_flush;
    
    		err = move_pages_and_store_status(mm, current_node, &pagelist,
    				status, start, i, nr_pages);
    		if (err)
    			goto out;
    		current_node = NUMA_NO_NODE;
    	}
    out_flush:
    	/* Make sure we do not overwrite the existing error */
    	err1 = move_pages_and_store_status(mm, current_node, &pagelist,
    				status, start, i, nr_pages);
    	if (err >= 0)
    		err = err1;
    out:
    	lru_cache_enable();
    	return err;
    }
    
    /*
     * Determine the nodes of an array of pages and store it in an array of status.
     */
    static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
    				const void __user **pages, int *status)
    {
    	unsigned long i;
    
    	mmap_read_lock(mm);
    
    	for (i = 0; i < nr_pages; i++) {
    		unsigned long addr = (unsigned long)(*pages);
    		struct vm_area_struct *vma;
    		struct page *page;
    		int err = -EFAULT;
    
    		vma = find_vma(mm, addr);
    		if (!vma || addr < vma->vm_start)
    			goto set_status;
    
    		/* FOLL_DUMP to ignore special (like zero) pages */
    		page = follow_page(vma, addr, FOLL_DUMP);
    
    		err = PTR_ERR(page);
    		if (IS_ERR(page))
    			goto set_status;
    
    		err = page ? page_to_nid(page) : -ENOENT;
    set_status:
    		*status = err;
    
    		pages++;
    		status++;
    	}
    
    	mmap_read_unlock(mm);
    }
    
    /*
     * Determine the nodes of a user array of pages and store it in
     * a user array of status.
     */
    static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
    			 const void __user * __user *pages,
    			 int __user *status)
    {
    #define DO_PAGES_STAT_CHUNK_NR 16
    	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
    	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
    
    	while (nr_pages) {
    		unsigned long chunk_nr;
    
    		chunk_nr = nr_pages;
    		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
    			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
    
    		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
    			break;
    
    		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
    
    		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
    			break;
    
    		pages += chunk_nr;
    		status += chunk_nr;
    		nr_pages -= chunk_nr;
    	}
    	return nr_pages ? -EFAULT : 0;
    }
    
    static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
    {
    	struct task_struct *task;
    	struct mm_struct *mm;
    
    	/*
    	 * There is no need to check if current process has the right to modify
    	 * the specified process when they are same.
    	 */
    	if (!pid) {
    		mmget(current->mm);
    		*mem_nodes = cpuset_mems_allowed(current);
    		return current->mm;
    	}
    
    	/* Find the mm_struct */
    	rcu_read_lock();
    	task = find_task_by_vpid(pid);
    	if (!task) {
    		rcu_read_unlock();
    		return ERR_PTR(-ESRCH);
    	}
    	get_task_struct(task);
    
    	/*
    	 * Check if this process has the right to modify the specified
    	 * process. Use the regular "ptrace_may_access()" checks.
    	 */
    	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
    		rcu_read_unlock();
    		mm = ERR_PTR(-EPERM);
    		goto out;
    	}
    	rcu_read_unlock();
    
    	mm = ERR_PTR(security_task_movememory(task));
    	if (IS_ERR(mm))
    		goto out;
    	*mem_nodes = cpuset_mems_allowed(task);
    	mm = get_task_mm(task);
    out:
    	put_task_struct(task);
    	if (!mm)
    		mm = ERR_PTR(-EINVAL);
    	return mm;
    }
    
    /*
     * Move a list of pages in the address space of the currently executing
     * process.
     */
    static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
    			     const void __user * __user *pages,
    			     const int __user *nodes,
    			     int __user *status, int flags)
    {
    	struct mm_struct *mm;
    	int err;
    	nodemask_t task_nodes;
    
    	/* Check flags */
    	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
    		return -EINVAL;
    
    	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
    		return -EPERM;
    
    	mm = find_mm_struct(pid, &task_nodes);
    	if (IS_ERR(mm))
    		return PTR_ERR(mm);
    
    	if (nodes)
    		err = do_pages_move(mm, task_nodes, nr_pages, pages,
    				    nodes, status, flags);
    	else
    		err = do_pages_stat(mm, nr_pages, pages, status);
    
    	mmput(mm);
    	return err;
    }
    
    SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
    		const void __user * __user *, pages,
    		const int __user *, nodes,
    		int __user *, status, int, flags)
    {
    	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
    }
    
    #ifdef CONFIG_COMPAT
    COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
    		       compat_uptr_t __user *, pages32,
    		       const int __user *, nodes,
    		       int __user *, status,
    		       int, flags)
    {
    	const void __user * __user *pages;
    	int i;
    
    	pages = compat_alloc_user_space(nr_pages * sizeof(void *));
    	for (i = 0; i < nr_pages; i++) {
    		compat_uptr_t p;
    
    		if (get_user(p, pages32 + i) ||
    			put_user(compat_ptr(p), pages + i))
    			return -EFAULT;
    	}
    	return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
    }
    #endif /* CONFIG_COMPAT */
    
    #ifdef CONFIG_NUMA_BALANCING
    /*
     * Returns true if this is a safe migration target node for misplaced NUMA
     * pages. Currently it only checks the watermarks which crude
     */
    static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
    				   unsigned long nr_migrate_pages)
    {
    	int z;
    
    	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
    		struct zone *zone = pgdat->node_zones + z;
    
    		if (!populated_zone(zone))
    			continue;
    
    		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
    		if (!zone_watermark_ok(zone, 0,
    				       high_wmark_pages(zone) +
    				       nr_migrate_pages,
    				       ZONE_MOVABLE, 0))
    			continue;
    		return true;
    	}
    	return false;
    }
    
    static struct page *alloc_misplaced_dst_page(struct page *page,
    					   unsigned long data)
    {
    	int nid = (int) data;
    	struct page *newpage;
    
    	newpage = __alloc_pages_node(nid,
    					 (GFP_HIGHUSER_MOVABLE |
    					  __GFP_THISNODE | __GFP_NOMEMALLOC |
    					  __GFP_NORETRY | __GFP_NOWARN) &
    					 ~__GFP_RECLAIM, 0);
    
    	return newpage;
    }
    
    static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
    {
    	int page_lru;
    
    	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
    
    	/* Avoid migrating to a node that is nearly full */
    	if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
    		return 0;
    
    	if (isolate_lru_page(page))
    		return 0;
    
    	/*
    	 * migrate_misplaced_transhuge_page() skips page migration's usual
    	 * check on page_count(), so we must do it here, now that the page
    	 * has been isolated: a GUP pin, or any other pin, prevents migration.
    	 * The expected page count is 3: 1 for page's mapcount and 1 for the
    	 * caller's pin and 1 for the reference taken by isolate_lru_page().
    	 */
    	if (PageTransHuge(page) && page_count(page) != 3) {
    		putback_lru_page(page);
    		return 0;
    	}
    
    	page_lru = page_is_file_lru(page);
    	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
    				thp_nr_pages(page));
    
    	/*
    	 * Isolating the page has taken another reference, so the
    	 * caller's reference can be safely dropped without the page
    	 * disappearing underneath us during migration.
    	 */
    	put_page(page);
    	return 1;
    }
    
    bool pmd_trans_migrating(pmd_t pmd)
    {
    	struct page *page = pmd_page(pmd);
    	return PageLocked(page);
    }
    
    static inline bool is_shared_exec_page(struct vm_area_struct *vma,
    				       struct page *page)
    {
    	if (page_mapcount(page) != 1 &&
    	    (page_is_file_lru(page) || vma_is_shmem(vma)) &&
    	    (vma->vm_flags & VM_EXEC))
    		return true;
    
    	return false;
    }
    
    /*
     * Attempt to migrate a misplaced page to the specified destination
     * node. Caller is expected to have an elevated reference count on
     * the page that will be dropped by this function before returning.
     */
    int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
    			   int node)
    {
    	pg_data_t *pgdat = NODE_DATA(node);
    	int isolated;
    	int nr_remaining;
    	LIST_HEAD(migratepages);
    
    	/*
    	 * Don't migrate file pages that are mapped in multiple processes
    	 * with execute permissions as they are probably shared libraries.
    	 */
    	if (is_shared_exec_page(vma, page))
    		goto out;
    
    	/*
    	 * Also do not migrate dirty pages as not all filesystems can move
    	 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
    	 */
    	if (page_is_file_lru(page) && PageDirty(page))
    		goto out;
    
    	isolated = numamigrate_isolate_page(pgdat, page);
    	if (!isolated)
    		goto out;
    
    	list_add(&page->lru, &migratepages);
    	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
    				     NULL, node, MIGRATE_ASYNC,
    				     MR_NUMA_MISPLACED);
    	if (nr_remaining) {
    		if (!list_empty(&migratepages)) {
    			list_del(&page->lru);
    			dec_node_page_state(page, NR_ISOLATED_ANON +
    					page_is_file_lru(page));
    			putback_lru_page(page);
    		}
    		isolated = 0;
    	} else
    		count_vm_numa_event(NUMA_PAGE_MIGRATE);
    	BUG_ON(!list_empty(&migratepages));
    	return isolated;
    
    out:
    	put_page(page);
    	return 0;
    }
    #endif /* CONFIG_NUMA_BALANCING */
    
    #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
    /*
     * Migrates a THP to a given target node. page must be locked and is unlocked
     * before returning.
     */
    int migrate_misplaced_transhuge_page(struct mm_struct *mm,
    				struct vm_area_struct *vma,
    				pmd_t *pmd, pmd_t entry,
    				unsigned long address,
    				struct page *page, int node)
    {
    	spinlock_t *ptl;
    	pg_data_t *pgdat = NODE_DATA(node);
    	int isolated = 0;
    	struct page *new_page = NULL;
    	int page_lru = page_is_file_lru(page);
    	unsigned long start = address & HPAGE_PMD_MASK;
    
    	if (is_shared_exec_page(vma, page))
    		goto out;
    
    	new_page = alloc_pages_node(node,
    		(GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
    		HPAGE_PMD_ORDER);
    	if (!new_page)
    		goto out_fail;
    	prep_transhuge_page(new_page);
    
    	isolated = numamigrate_isolate_page(pgdat, page);
    	if (!isolated) {
    		put_page(new_page);
    		goto out_fail;
    	}
    
    	/* Prepare a page as a migration target */
    	__SetPageLocked(new_page);
    	if (PageSwapBacked(page))
    		__SetPageSwapBacked(new_page);
    
    	/* anon mapping, we can simply copy page->mapping to the new page: */
    	new_page->mapping = page->mapping;
    	new_page->index = page->index;
    	/* flush the cache before copying using the kernel virtual address */
    	flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
    	migrate_page_copy(new_page, page);
    	WARN_ON(PageLRU(new_page));
    
    	/* Recheck the target PMD */
    	ptl = pmd_lock(mm, pmd);
    	if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
    		spin_unlock(ptl);
    
    		/* Reverse changes made by migrate_page_copy() */
    		if (TestClearPageActive(new_page))
    			SetPageActive(page);
    		if (TestClearPageUnevictable(new_page))
    			SetPageUnevictable(page);
    
    		unlock_page(new_page);
    		put_page(new_page);		/* Free it */
    
    		/* Retake the callers reference and putback on LRU */
    		get_page(page);
    		putback_lru_page(page);
    		mod_node_page_state(page_pgdat(page),
    			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
    
    		goto out_unlock;
    	}
    
    	entry = mk_huge_pmd(new_page, vma->vm_page_prot);
    	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
    
    	/*
    	 * Overwrite the old entry under pagetable lock and establish
    	 * the new PTE. Any parallel GUP will either observe the old
    	 * page blocking on the page lock, block on the page table
    	 * lock or observe the new page. The SetPageUptodate on the
    	 * new page and page_add_new_anon_rmap guarantee the copy is
    	 * visible before the pagetable update.
    	 */
    	page_add_anon_rmap(new_page, vma, start, true);
    	/*
    	 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
    	 * has already been flushed globally.  So no TLB can be currently
    	 * caching this non present pmd mapping.  There's no need to clear the
    	 * pmd before doing set_pmd_at(), nor to flush the TLB after
    	 * set_pmd_at().  Clearing the pmd here would introduce a race
    	 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
    	 * mmap_lock for reading.  If the pmd is set to NULL at any given time,
    	 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
    	 * pmd.
    	 */
    	set_pmd_at(mm, start, pmd, entry);
    	update_mmu_cache_pmd(vma, address, &entry);
    
    	page_ref_unfreeze(page, 2);
    	mlock_migrate_page(new_page, page);
    	page_remove_rmap(page, true);
    	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
    
    	spin_unlock(ptl);
    
    	/* Take an "isolate" reference and put new page on the LRU. */
    	get_page(new_page);
    	putback_lru_page(new_page);
    
    	unlock_page(new_page);
    	unlock_page(page);
    	put_page(page);			/* Drop the rmap reference */
    	put_page(page);			/* Drop the LRU isolation reference */
    
    	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
    	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
    
    	mod_node_page_state(page_pgdat(page),
    			NR_ISOLATED_ANON + page_lru,
    			-HPAGE_PMD_NR);
    	return isolated;
    
    out_fail:
    	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
    	ptl = pmd_lock(mm, pmd);
    	if (pmd_same(*pmd, entry)) {
    		entry = pmd_modify(entry, vma->vm_page_prot);
    		set_pmd_at(mm, start, pmd, entry);
    		update_mmu_cache_pmd(vma, address, &entry);
    	}
    	spin_unlock(ptl);
    
    out_unlock:
    	unlock_page(page);
    out:
    	put_page(page);
    	return 0;
    }
    #endif /* CONFIG_NUMA_BALANCING */
    
    #endif /* CONFIG_NUMA */
    
    #ifdef CONFIG_DEVICE_PRIVATE
    static int migrate_vma_collect_hole(unsigned long start,
    				    unsigned long end,
    				    __always_unused int depth,
    				    struct mm_walk *walk)
    {
    	struct migrate_vma *migrate = walk->private;
    	unsigned long addr;
    
    	/* Only allow populating anonymous memory. */
    	if (!vma_is_anonymous(walk->vma)) {
    		for (addr = start; addr < end; addr += PAGE_SIZE) {
    			migrate->src[migrate->npages] = 0;
    			migrate->dst[migrate->npages] = 0;
    			migrate->npages++;
    		}
    		return 0;
    	}
    
    	for (addr = start; addr < end; addr += PAGE_SIZE) {
    		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
    		migrate->dst[migrate->npages] = 0;
    		migrate->npages++;
    		migrate->cpages++;
    	}
    
    	return 0;
    }
    
    static int migrate_vma_collect_skip(unsigned long start,
    				    unsigned long end,
    				    struct mm_walk *walk)
    {
    	struct migrate_vma *migrate = walk->private;
    	unsigned long addr;
    
    	for (addr = start; addr < end; addr += PAGE_SIZE) {
    		migrate->dst[migrate->npages] = 0;
    		migrate->src[migrate->npages++] = 0;
    	}
    
    	return 0;
    }
    
    static int migrate_vma_collect_pmd(pmd_t *pmdp,
    				   unsigned long start,
    				   unsigned long end,
    				   struct mm_walk *walk)
    {
    	struct migrate_vma *migrate = walk->private;
    	struct vm_area_struct *vma = walk->vma;
    	struct mm_struct *mm = vma->vm_mm;
    	unsigned long addr = start, unmapped = 0;
    	spinlock_t *ptl;
    	pte_t *ptep;
    
    again:
    	if (pmd_none(*pmdp))
    		return migrate_vma_collect_hole(start, end, -1, walk);
    
    	if (pmd_trans_huge(*pmdp)) {
    		struct page *page;
    
    		ptl = pmd_lock(mm, pmdp);
    		if (unlikely(!pmd_trans_huge(*pmdp))) {
    			spin_unlock(ptl);
    			goto again;
    		}
    
    		page = pmd_page(*pmdp);
    		if (is_huge_zero_page(page)) {
    			spin_unlock(ptl);
    			split_huge_pmd(vma, pmdp, addr);
    			if (pmd_trans_unstable(pmdp))
    				return migrate_vma_collect_skip(start, end,
    								walk);
    		} else {
    			int ret;
    
    			get_page(page);
    			spin_unlock(ptl);
    			if (unlikely(!trylock_page(page)))
    				return migrate_vma_collect_skip(start, end,
    								walk);
    			ret = split_huge_page(page);
    			unlock_page(page);
    			put_page(page);
    			if (ret)
    				return migrate_vma_collect_skip(start, end,
    								walk);
    			if (pmd_none(*pmdp))
    				return migrate_vma_collect_hole(start, end, -1,
    								walk);
    		}
    	}
    
    	if (unlikely(pmd_bad(*pmdp)))
    		return migrate_vma_collect_skip(start, end, walk);
    
    	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
    	arch_enter_lazy_mmu_mode();
    
    	for (; addr < end; addr += PAGE_SIZE, ptep++) {
    		unsigned long mpfn = 0, pfn;
    		struct page *page;
    		swp_entry_t entry;
    		pte_t pte;
    
    		pte = *ptep;
    
    		if (pte_none(pte)) {
    			if (vma_is_anonymous(vma)) {
    				mpfn = MIGRATE_PFN_MIGRATE;
    				migrate->cpages++;
    			}
    			goto next;
    		}
    
    		if (!pte_present(pte)) {
    			/*
    			 * Only care about unaddressable device page special
    			 * page table entry. Other special swap entries are not
    			 * migratable, and we ignore regular swapped page.
    			 */
    			entry = pte_to_swp_entry(pte);
    			if (!is_device_private_entry(entry))
    				goto next;
    
    			page = device_private_entry_to_page(entry);
    			if (!(migrate->flags &
    				MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
    			    page->pgmap->owner != migrate->pgmap_owner)
    				goto next;
    
    			mpfn = migrate_pfn(page_to_pfn(page)) |
    					MIGRATE_PFN_MIGRATE;
    			if (is_write_device_private_entry(entry))
    				mpfn |= MIGRATE_PFN_WRITE;
    		} else {
    			if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
    				goto next;
    			pfn = pte_pfn(pte);
    			if (is_zero_pfn(pfn)) {
    				mpfn = MIGRATE_PFN_MIGRATE;
    				migrate->cpages++;
    				goto next;
    			}
    			page = vm_normal_page(migrate->vma, addr, pte);
    			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
    			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
    		}
    
    		/* FIXME support THP */
    		if (!page || !page->mapping || PageTransCompound(page)) {
    			mpfn = 0;
    			goto next;
    		}
    
    		/*
    		 * By getting a reference on the page we pin it and that blocks
    		 * any kind of migration. Side effect is that it "freezes" the
    		 * pte.
    		 *
    		 * We drop this reference after isolating the page from the lru
    		 * for non device page (device page are not on the lru and thus
    		 * can't be dropped from it).
    		 */
    		get_page(page);
    		migrate->cpages++;
    
    		/*
    		 * Optimize for the common case where page is only mapped once
    		 * in one process. If we can lock the page, then we can safely
    		 * set up a special migration page table entry now.
    		 */
    		if (trylock_page(page)) {
    			pte_t swp_pte;
    
    			mpfn |= MIGRATE_PFN_LOCKED;
    			ptep_get_and_clear(mm, addr, ptep);
    
    			/* Setup special migration page table entry */
    			entry = make_migration_entry(page, mpfn &
    						     MIGRATE_PFN_WRITE);
    			swp_pte = swp_entry_to_pte(entry);
    			if (pte_present(pte)) {
    				if (pte_soft_dirty(pte))
    					swp_pte = pte_swp_mksoft_dirty(swp_pte);
    				if (pte_uffd_wp(pte))
    					swp_pte = pte_swp_mkuffd_wp(swp_pte);
    			} else {
    				if (pte_swp_soft_dirty(pte))
    					swp_pte = pte_swp_mksoft_dirty(swp_pte);
    				if (pte_swp_uffd_wp(pte))
    					swp_pte = pte_swp_mkuffd_wp(swp_pte);
    			}
    			set_pte_at(mm, addr, ptep, swp_pte);
    
    			/*
    			 * This is like regular unmap: we remove the rmap and
    			 * drop page refcount. Page won't be freed, as we took
    			 * a reference just above.
    			 */
    			page_remove_rmap(page, false);
    			put_page(page);
    
    			if (pte_present(pte))
    				unmapped++;
    		}
    
    next:
    		migrate->dst[migrate->npages] = 0;
    		migrate->src[migrate->npages++] = mpfn;
    	}
    	arch_leave_lazy_mmu_mode();
    	pte_unmap_unlock(ptep - 1, ptl);
    
    	/* Only flush the TLB if we actually modified any entries */
    	if (unmapped)
    		flush_tlb_range(walk->vma, start, end);
    
    	return 0;
    }
    
    static const struct mm_walk_ops migrate_vma_walk_ops = {
    	.pmd_entry		= migrate_vma_collect_pmd,
    	.pte_hole		= migrate_vma_collect_hole,
    };
    
    /*
     * migrate_vma_collect() - collect pages over a range of virtual addresses
     * @migrate: migrate struct containing all migration information
     *
     * This will walk the CPU page table. For each virtual address backed by a
     * valid page, it updates the src array and takes a reference on the page, in
     * order to pin the page until we lock it and unmap it.
     */
    static void migrate_vma_collect(struct migrate_vma *migrate)
    {
    	struct mmu_notifier_range range;
    
    	/*
    	 * Note that the pgmap_owner is passed to the mmu notifier callback so
    	 * that the registered device driver can skip invalidating device
    	 * private page mappings that won't be migrated.
    	 */
    	mmu_notifier_range_init_migrate(&range, 0, migrate->vma,
    		migrate->vma->vm_mm, migrate->start, migrate->end,
    		migrate->pgmap_owner);
    	mmu_notifier_invalidate_range_start(&range);
    
    	walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
    			&migrate_vma_walk_ops, migrate);
    
    	mmu_notifier_invalidate_range_end(&range);
    	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
    }
    
    /*
     * migrate_vma_check_page() - check if page is pinned or not
     * @page: struct page to check
     *
     * Pinned pages cannot be migrated. This is the same test as in
     * migrate_page_move_mapping(), except that here we allow migration of a
     * ZONE_DEVICE page.
     */
    static bool migrate_vma_check_page(struct page *page)
    {
    	/*
    	 * One extra ref because caller holds an extra reference, either from
    	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
    	 * a device page.
    	 */
    	int extra = 1;
    
    	/*
    	 * FIXME support THP (transparent huge page), it is bit more complex to
    	 * check them than regular pages, because they can be mapped with a pmd
    	 * or with a pte (split pte mapping).
    	 */
    	if (PageCompound(page))
    		return false;
    
    	/* Page from ZONE_DEVICE have one extra reference */
    	if (is_zone_device_page(page)) {
    		/*
    		 * Private page can never be pin as they have no valid pte and
    		 * GUP will fail for those. Yet if there is a pending migration
    		 * a thread might try to wait on the pte migration entry and
    		 * will bump the page reference count. Sadly there is no way to
    		 * differentiate a regular pin from migration wait. Hence to
    		 * avoid 2 racing thread trying to migrate back to CPU to enter
    		 * infinite loop (one stopping migration because the other is
    		 * waiting on pte migration entry). We always return true here.
    		 *
    		 * FIXME proper solution is to rework migration_entry_wait() so
    		 * it does not need to take a reference on page.
    		 */
    		return is_device_private_page(page);
    	}
    
    	/* For file back page */
    	if (page_mapping(page))
    		extra += 1 + page_has_private(page);
    
    	if ((page_count(page) - extra) > page_mapcount(page))
    		return false;
    
    	return true;
    }
    
    /*
     * migrate_vma_prepare() - lock pages and isolate them from the lru
     * @migrate: migrate struct containing all migration information
     *
     * This locks pages that have been collected by migrate_vma_collect(). Once each
     * page is locked it is isolated from the lru (for non-device pages). Finally,
     * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
     * migrated by concurrent kernel threads.
     */
    static void migrate_vma_prepare(struct migrate_vma *migrate)
    {
    	const unsigned long npages = migrate->npages;
    	const unsigned long start = migrate->start;
    	unsigned long addr, i, restore = 0;
    	bool allow_drain = true;
    
    	lru_add_drain();
    
    	for (i = 0; (i < npages) && migrate->cpages; i++) {
    		struct page *page = migrate_pfn_to_page(migrate->src[i]);
    		bool remap = true;
    
    		if (!page)
    			continue;
    
    		if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
    			/*
    			 * Because we are migrating several pages there can be
    			 * a deadlock between 2 concurrent migration where each
    			 * are waiting on each other page lock.
    			 *
    			 * Make migrate_vma() a best effort thing and backoff
    			 * for any page we can not lock right away.
    			 */
    			if (!trylock_page(page)) {
    				migrate->src[i] = 0;
    				migrate->cpages--;
    				put_page(page);
    				continue;
    			}
    			remap = false;
    			migrate->src[i] |= MIGRATE_PFN_LOCKED;
    		}
    
    		/* ZONE_DEVICE pages are not on LRU */
    		if (!is_zone_device_page(page)) {
    			if (!PageLRU(page) && allow_drain) {
    				/* Drain CPU's pagevec */
    				lru_add_drain_all();
    				allow_drain = false;
    			}
    
    			if (isolate_lru_page(page)) {
    				if (remap) {
    					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
    					migrate->cpages--;
    					restore++;
    				} else {
    					migrate->src[i] = 0;
    					unlock_page(page);
    					migrate->cpages--;
    					put_page(page);
    				}
    				continue;
    			}
    
    			/* Drop the reference we took in collect */
    			put_page(page);
    		}
    
    		if (!migrate_vma_check_page(page)) {
    			if (remap) {
    				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
    				migrate->cpages--;
    				restore++;
    
    				if (!is_zone_device_page(page)) {
    					get_page(page);
    					putback_lru_page(page);
    				}
    			} else {
    				migrate->src[i] = 0;
    				unlock_page(page);
    				migrate->cpages--;
    
    				if (!is_zone_device_page(page))
    					putback_lru_page(page);
    				else
    					put_page(page);
    			}
    		}
    	}
    
    	for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
    		struct page *page = migrate_pfn_to_page(migrate->src[i]);
    
    		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
    			continue;
    
    		remove_migration_pte(page, migrate->vma, addr, page);
    
    		migrate->src[i] = 0;
    		unlock_page(page);
    		put_page(page);
    		restore--;
    	}
    }
    
    /*
     * migrate_vma_unmap() - replace page mapping with special migration pte entry
     * @migrate: migrate struct containing all migration information
     *
     * Replace page mapping (CPU page table pte) with a special migration pte entry
     * and check again if it has been pinned. Pinned pages are restored because we
     * cannot migrate them.
     *
     * This is the last step before we call the device driver callback to allocate
     * destination memory and copy contents of original page over to new page.
     */
    static void migrate_vma_unmap(struct migrate_vma *migrate)
    {
    	int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK;
    	const unsigned long npages = migrate->npages;
    	const unsigned long start = migrate->start;
    	unsigned long addr, i, restore = 0;
    
    	for (i = 0; i < npages; i++) {
    		struct page *page = migrate_pfn_to_page(migrate->src[i]);
    
    		if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
    			continue;
    
    		if (page_mapped(page)) {
    			try_to_unmap(page, flags);
    			if (page_mapped(page))
    				goto restore;
    		}
    
    		if (migrate_vma_check_page(page))
    			continue;
    
    restore:
    		migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
    		migrate->cpages--;
    		restore++;
    	}
    
    	for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
    		struct page *page = migrate_pfn_to_page(migrate->src[i]);
    
    		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
    			continue;
    
    		remove_migration_ptes(page, page, false);
    
    		migrate->src[i] = 0;
    		unlock_page(page);
    		restore--;
    
    		if (is_zone_device_page(page))
    			put_page(page);
    		else
    			putback_lru_page(page);
    	}
    }
    
    /**
     * migrate_vma_setup() - prepare to migrate a range of memory
     * @args: contains the vma, start, and pfns arrays for the migration
     *
     * Returns: negative errno on failures, 0 when 0 or more pages were migrated
     * without an error.
     *
     * Prepare to migrate a range of memory virtual address range by collecting all
     * the pages backing each virtual address in the range, saving them inside the
     * src array.  Then lock those pages and unmap them. Once the pages are locked
     * and unmapped, check whether each page is pinned or not.  Pages that aren't
     * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
     * corresponding src array entry.  Then restores any pages that are pinned, by
     * remapping and unlocking those pages.
     *
     * The caller should then allocate destination memory and copy source memory to
     * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
     * flag set).  Once these are allocated and copied, the caller must update each
     * corresponding entry in the dst array with the pfn value of the destination
     * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
     * (destination pages must have their struct pages locked, via lock_page()).
     *
     * Note that the caller does not have to migrate all the pages that are marked
     * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
     * device memory to system memory.  If the caller cannot migrate a device page
     * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
     * consequences for the userspace process, so it must be avoided if at all
     * possible.
     *
     * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
     * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
     * allowing the caller to allocate device memory for those unback virtual
     * address.  For this the caller simply has to allocate device memory and
     * properly set the destination entry like for regular migration.  Note that
     * this can still fails and thus inside the device driver must check if the
     * migration was successful for those entries after calling migrate_vma_pages()
     * just like for regular migration.
     *
     * After that, the callers must call migrate_vma_pages() to go over each entry
     * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
     * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
     * then migrate_vma_pages() to migrate struct page information from the source
     * struct page to the destination struct page.  If it fails to migrate the
     * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
     * src array.
     *
     * At this point all successfully migrated pages have an entry in the src
     * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
     * array entry with MIGRATE_PFN_VALID flag set.
     *
     * Once migrate_vma_pages() returns the caller may inspect which pages were
     * successfully migrated, and which were not.  Successfully migrated pages will
     * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
     *
     * It is safe to update device page table after migrate_vma_pages() because
     * both destination and source page are still locked, and the mmap_lock is held
     * in read mode (hence no one can unmap the range being migrated).
     *
     * Once the caller is done cleaning up things and updating its page table (if it
     * chose to do so, this is not an obligation) it finally calls
     * migrate_vma_finalize() to update the CPU page table to point to new pages
     * for successfully migrated pages or otherwise restore the CPU page table to
     * point to the original source pages.
     */
    int migrate_vma_setup(struct migrate_vma *args)
    {
    	long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
    
    	args->start &= PAGE_MASK;
    	args->end &= PAGE_MASK;
    	if (!args->vma || is_vm_hugetlb_page(args->vma) ||
    	    (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
    		return -EINVAL;
    	if (nr_pages <= 0)
    		return -EINVAL;
    	if (args->start < args->vma->vm_start ||
    	    args->start >= args->vma->vm_end)
    		return -EINVAL;
    	if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
    		return -EINVAL;
    	if (!args->src || !args->dst)
    		return -EINVAL;
    
    	memset(args->src, 0, sizeof(*args->src) * nr_pages);
    	args->cpages = 0;
    	args->npages = 0;
    
    	migrate_vma_collect(args);
    
    	if (args->cpages)
    		migrate_vma_prepare(args);
    	if (args->cpages)
    		migrate_vma_unmap(args);
    
    	/*
    	 * At this point pages are locked and unmapped, and thus they have
    	 * stable content and can safely be copied to destination memory that
    	 * is allocated by the drivers.
    	 */
    	return 0;
    
    }
    EXPORT_SYMBOL(migrate_vma_setup);
    
    /*
     * This code closely matches the code in:
     *   __handle_mm_fault()
     *     handle_pte_fault()
     *       do_anonymous_page()
     * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
     * private page.
     */
    static void migrate_vma_insert_page(struct migrate_vma *migrate,
    				    unsigned long addr,
    				    struct page *page,
    				    unsigned long *src)
    {
    	struct vm_area_struct *vma = migrate->vma;
    	struct mm_struct *mm = vma->vm_mm;
    	bool flush = false;
    	spinlock_t *ptl;
    	pte_t entry;
    	pgd_t *pgdp;
    	p4d_t *p4dp;
    	pud_t *pudp;
    	pmd_t *pmdp;
    	pte_t *ptep;
    
    	/* Only allow populating anonymous memory */
    	if (!vma_is_anonymous(vma))
    		goto abort;
    
    	pgdp = pgd_offset(mm, addr);
    	p4dp = p4d_alloc(mm, pgdp, addr);
    	if (!p4dp)
    		goto abort;
    	pudp = pud_alloc(mm, p4dp, addr);
    	if (!pudp)
    		goto abort;
    	pmdp = pmd_alloc(mm, pudp, addr);
    	if (!pmdp)
    		goto abort;
    
    	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
    		goto abort;
    
    	/*
    	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
    	 * pte_offset_map() on pmds where a huge pmd might be created
    	 * from a different thread.
    	 *
    	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
    	 * parallel threads are excluded by other means.
    	 *
    	 * Here we only have mmap_read_lock(mm).
    	 */
    	if (pte_alloc(mm, pmdp))
    		goto abort;
    
    	/* See the comment in pte_alloc_one_map() */
    	if (unlikely(pmd_trans_unstable(pmdp)))
    		goto abort;
    
    	if (unlikely(anon_vma_prepare(vma)))
    		goto abort;
    	if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
    		goto abort;
    
    	/*
    	 * The memory barrier inside __SetPageUptodate makes sure that
    	 * preceding stores to the page contents become visible before
    	 * the set_pte_at() write.
    	 */
    	__SetPageUptodate(page);
    
    	if (is_zone_device_page(page)) {
    		if (is_device_private_page(page)) {
    			swp_entry_t swp_entry;
    
    			swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
    			entry = swp_entry_to_pte(swp_entry);
    		}
    	} else {
    		entry = mk_pte(page, vma->vm_page_prot);
    		if (vma->vm_flags & VM_WRITE)
    			entry = pte_mkwrite(pte_mkdirty(entry));
    	}
    
    	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
    
    	if (check_stable_address_space(mm))
    		goto unlock_abort;
    
    	if (pte_present(*ptep)) {
    		unsigned long pfn = pte_pfn(*ptep);
    
    		if (!is_zero_pfn(pfn))
    			goto unlock_abort;
    		flush = true;
    	} else if (!pte_none(*ptep))
    		goto unlock_abort;
    
    	/*
    	 * Check for userfaultfd but do not deliver the fault. Instead,
    	 * just back off.
    	 */
    	if (userfaultfd_missing(vma))
    		goto unlock_abort;
    
    	inc_mm_counter(mm, MM_ANONPAGES);
    	page_add_new_anon_rmap(page, vma, addr, false);
    	if (!is_zone_device_page(page))
    		lru_cache_add_inactive_or_unevictable(page, vma);
    	get_page(page);
    
    	if (flush) {
    		flush_cache_page(vma, addr, pte_pfn(*ptep));
    		ptep_clear_flush_notify(vma, addr, ptep);
    		set_pte_at_notify(mm, addr, ptep, entry);
    		update_mmu_cache(vma, addr, ptep);
    	} else {
    		/* No need to invalidate - it was non-present before */
    		set_pte_at(mm, addr, ptep, entry);
    		update_mmu_cache(vma, addr, ptep);
    	}
    
    	pte_unmap_unlock(ptep, ptl);
    	*src = MIGRATE_PFN_MIGRATE;
    	return;
    
    unlock_abort:
    	pte_unmap_unlock(ptep, ptl);
    abort:
    	*src &= ~MIGRATE_PFN_MIGRATE;
    }
    
    /**
     * migrate_vma_pages() - migrate meta-data from src page to dst page
     * @migrate: migrate struct containing all migration information
     *
     * This migrates struct page meta-data from source struct page to destination
     * struct page. This effectively finishes the migration from source page to the
     * destination page.
     */
    void migrate_vma_pages(struct migrate_vma *migrate)
    {
    	const unsigned long npages = migrate->npages;
    	const unsigned long start = migrate->start;
    	struct mmu_notifier_range range;
    	unsigned long addr, i;
    	bool notified = false;
    
    	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
    		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
    		struct page *page = migrate_pfn_to_page(migrate->src[i]);
    		struct address_space *mapping;
    		int r;
    
    		if (!newpage) {
    			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
    			continue;
    		}
    
    		if (!page) {
    			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
    				continue;
    			if (!notified) {
    				notified = true;
    
    				mmu_notifier_range_init_migrate(&range, 0,
    					migrate->vma, migrate->vma->vm_mm,
    					addr, migrate->end,
    					migrate->pgmap_owner);
    				mmu_notifier_invalidate_range_start(&range);
    			}
    			migrate_vma_insert_page(migrate, addr, newpage,
    						&migrate->src[i]);
    			continue;
    		}
    
    		mapping = page_mapping(page);
    
    		if (is_zone_device_page(newpage)) {
    			if (is_device_private_page(newpage)) {
    				/*
    				 * For now only support private anonymous when
    				 * migrating to un-addressable device memory.
    				 */
    				if (mapping) {
    					migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
    					continue;
    				}
    			} else {
    				/*
    				 * Other types of ZONE_DEVICE page are not
    				 * supported.
    				 */
    				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
    				continue;
    			}
    		}
    
    		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
    		if (r != MIGRATEPAGE_SUCCESS)
    			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
    	}
    
    	/*
    	 * No need to double call mmu_notifier->invalidate_range() callback as
    	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
    	 * did already call it.
    	 */
    	if (notified)
    		mmu_notifier_invalidate_range_only_end(&range);
    }
    EXPORT_SYMBOL(migrate_vma_pages);
    
    /**
     * migrate_vma_finalize() - restore CPU page table entry
     * @migrate: migrate struct containing all migration information
     *
     * This replaces the special migration pte entry with either a mapping to the
     * new page if migration was successful for that page, or to the original page
     * otherwise.
     *
     * This also unlocks the pages and puts them back on the lru, or drops the extra
     * refcount, for device pages.
     */
    void migrate_vma_finalize(struct migrate_vma *migrate)
    {
    	const unsigned long npages = migrate->npages;
    	unsigned long i;
    
    	for (i = 0; i < npages; i++) {
    		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
    		struct page *page = migrate_pfn_to_page(migrate->src[i]);
    
    		if (!page) {
    			if (newpage) {
    				unlock_page(newpage);
    				put_page(newpage);
    			}
    			continue;
    		}
    
    		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
    			if (newpage) {
    				unlock_page(newpage);
    				put_page(newpage);
    			}
    			newpage = page;
    		}
    
    		remove_migration_ptes(page, newpage, false);
    		unlock_page(page);
    
    		if (is_zone_device_page(page))
    			put_page(page);
    		else
    			putback_lru_page(page);
    
    		if (newpage != page) {
    			unlock_page(newpage);
    			if (is_zone_device_page(newpage))
    				put_page(newpage);
    			else
    				putback_lru_page(newpage);
    		}
    	}
    }
    EXPORT_SYMBOL(migrate_vma_finalize);
    #endif /* CONFIG_DEVICE_PRIVATE */