Skip to content
Snippets Groups Projects
Select Git revision
  • a1e9ca6967d68209c70e616a224efa89a6b86ca6
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

main.c

Blame
  • main.c 15.25 KiB
    /*
     * kernel/power/main.c - PM subsystem core functionality.
     *
     * Copyright (c) 2003 Patrick Mochel
     * Copyright (c) 2003 Open Source Development Lab
     *
     * This file is released under the GPLv2
     *
     */
    
    #include <linux/export.h>
    #include <linux/kobject.h>
    #include <linux/string.h>
    #include <linux/pm-trace.h>
    #include <linux/workqueue.h>
    #include <linux/debugfs.h>
    #include <linux/seq_file.h>
    
    #include "power.h"
    
    DEFINE_MUTEX(pm_mutex);
    
    #ifdef CONFIG_PM_SLEEP
    
    /* Routines for PM-transition notifications */
    
    static BLOCKING_NOTIFIER_HEAD(pm_chain_head);
    
    int register_pm_notifier(struct notifier_block *nb)
    {
    	return blocking_notifier_chain_register(&pm_chain_head, nb);
    }
    EXPORT_SYMBOL_GPL(register_pm_notifier);
    
    int unregister_pm_notifier(struct notifier_block *nb)
    {
    	return blocking_notifier_chain_unregister(&pm_chain_head, nb);
    }
    EXPORT_SYMBOL_GPL(unregister_pm_notifier);
    
    int pm_notifier_call_chain(unsigned long val)
    {
    	int ret = blocking_notifier_call_chain(&pm_chain_head, val, NULL);
    
    	return notifier_to_errno(ret);
    }
    
    /* If set, devices may be suspended and resumed asynchronously. */
    int pm_async_enabled = 1;
    
    static ssize_t pm_async_show(struct kobject *kobj, struct kobj_attribute *attr,
    			     char *buf)
    {
    	return sprintf(buf, "%d\n", pm_async_enabled);
    }
    
    static ssize_t pm_async_store(struct kobject *kobj, struct kobj_attribute *attr,
    			      const char *buf, size_t n)
    {
    	unsigned long val;
    
    	if (kstrtoul(buf, 10, &val))
    		return -EINVAL;
    
    	if (val > 1)
    		return -EINVAL;
    
    	pm_async_enabled = val;
    	return n;
    }
    
    power_attr(pm_async);
    
    #ifdef CONFIG_PM_DEBUG
    int pm_test_level = TEST_NONE;
    
    static const char * const pm_tests[__TEST_AFTER_LAST] = {
    	[TEST_NONE] = "none",
    	[TEST_CORE] = "core",
    	[TEST_CPUS] = "processors",
    	[TEST_PLATFORM] = "platform",
    	[TEST_DEVICES] = "devices",
    	[TEST_FREEZER] = "freezer",
    };
    
    static ssize_t pm_test_show(struct kobject *kobj, struct kobj_attribute *attr,
    				char *buf)
    {
    	char *s = buf;
    	int level;
    
    	for (level = TEST_FIRST; level <= TEST_MAX; level++)
    		if (pm_tests[level]) {
    			if (level == pm_test_level)
    				s += sprintf(s, "[%s] ", pm_tests[level]);
    			else
    				s += sprintf(s, "%s ", pm_tests[level]);
    		}
    
    	if (s != buf)
    		/* convert the last space to a newline */
    		*(s-1) = '\n';
    
    	return (s - buf);
    }
    
    static ssize_t pm_test_store(struct kobject *kobj, struct kobj_attribute *attr,
    				const char *buf, size_t n)
    {
    	const char * const *s;
    	int level;
    	char *p;
    	int len;
    	int error = -EINVAL;
    
    	p = memchr(buf, '\n', n);
    	len = p ? p - buf : n;
    
    	lock_system_sleep();
    
    	level = TEST_FIRST;
    	for (s = &pm_tests[level]; level <= TEST_MAX; s++, level++)
    		if (*s && len == strlen(*s) && !strncmp(buf, *s, len)) {
    			pm_test_level = level;
    			error = 0;
    			break;
    		}
    
    	unlock_system_sleep();
    
    	return error ? error : n;
    }
    
    power_attr(pm_test);
    #endif /* CONFIG_PM_DEBUG */
    
    #ifdef CONFIG_DEBUG_FS
    static char *suspend_step_name(enum suspend_stat_step step)
    {
    	switch (step) {
    	case SUSPEND_FREEZE:
    		return "freeze";
    	case SUSPEND_PREPARE:
    		return "prepare";
    	case SUSPEND_SUSPEND:
    		return "suspend";
    	case SUSPEND_SUSPEND_NOIRQ:
    		return "suspend_noirq";
    	case SUSPEND_RESUME_NOIRQ:
    		return "resume_noirq";
    	case SUSPEND_RESUME:
    		return "resume";
    	default:
    		return "";
    	}
    }
    
    static int suspend_stats_show(struct seq_file *s, void *unused)
    {
    	int i, index, last_dev, last_errno, last_step;
    
    	last_dev = suspend_stats.last_failed_dev + REC_FAILED_NUM - 1;
    	last_dev %= REC_FAILED_NUM;
    	last_errno = suspend_stats.last_failed_errno + REC_FAILED_NUM - 1;
    	last_errno %= REC_FAILED_NUM;
    	last_step = suspend_stats.last_failed_step + REC_FAILED_NUM - 1;
    	last_step %= REC_FAILED_NUM;
    	seq_printf(s, "%s: %d\n%s: %d\n%s: %d\n%s: %d\n%s: %d\n"
    			"%s: %d\n%s: %d\n%s: %d\n%s: %d\n%s: %d\n",
    			"success", suspend_stats.success,
    			"fail", suspend_stats.fail,
    			"failed_freeze", suspend_stats.failed_freeze,
    			"failed_prepare", suspend_stats.failed_prepare,
    			"failed_suspend", suspend_stats.failed_suspend,
    			"failed_suspend_late",
    				suspend_stats.failed_suspend_late,
    			"failed_suspend_noirq",
    				suspend_stats.failed_suspend_noirq,
    			"failed_resume", suspend_stats.failed_resume,
    			"failed_resume_early",
    				suspend_stats.failed_resume_early,
    			"failed_resume_noirq",
    				suspend_stats.failed_resume_noirq);
    	seq_printf(s,	"failures:\n  last_failed_dev:\t%-s\n",
    			suspend_stats.failed_devs[last_dev]);
    	for (i = 1; i < REC_FAILED_NUM; i++) {
    		index = last_dev + REC_FAILED_NUM - i;
    		index %= REC_FAILED_NUM;
    		seq_printf(s, "\t\t\t%-s\n",
    			suspend_stats.failed_devs[index]);
    	}
    	seq_printf(s,	"  last_failed_errno:\t%-d\n",
    			suspend_stats.errno[last_errno]);
    	for (i = 1; i < REC_FAILED_NUM; i++) {
    		index = last_errno + REC_FAILED_NUM - i;
    		index %= REC_FAILED_NUM;
    		seq_printf(s, "\t\t\t%-d\n",
    			suspend_stats.errno[index]);
    	}
    	seq_printf(s,	"  last_failed_step:\t%-s\n",
    			suspend_step_name(
    				suspend_stats.failed_steps[last_step]));
    	for (i = 1; i < REC_FAILED_NUM; i++) {
    		index = last_step + REC_FAILED_NUM - i;
    		index %= REC_FAILED_NUM;
    		seq_printf(s, "\t\t\t%-s\n",
    			suspend_step_name(
    				suspend_stats.failed_steps[index]));
    	}
    
    	return 0;
    }
    
    static int suspend_stats_open(struct inode *inode, struct file *file)
    {
    	return single_open(file, suspend_stats_show, NULL);
    }
    
    static const struct file_operations suspend_stats_operations = {
    	.open           = suspend_stats_open,
    	.read           = seq_read,
    	.llseek         = seq_lseek,
    	.release        = single_release,
    };
    
    static int __init pm_debugfs_init(void)
    {
    	debugfs_create_file("suspend_stats", S_IFREG | S_IRUGO,
    			NULL, NULL, &suspend_stats_operations);
    	return 0;
    }
    
    late_initcall(pm_debugfs_init);
    #endif /* CONFIG_DEBUG_FS */
    
    #endif /* CONFIG_PM_SLEEP */
    
    #ifdef CONFIG_PM_SLEEP_DEBUG
    /*
     * pm_print_times: print time taken by devices to suspend and resume.
     *
     * show() returns whether printing of suspend and resume times is enabled.
     * store() accepts 0 or 1.  0 disables printing and 1 enables it.
     */
    bool pm_print_times_enabled;
    
    static ssize_t pm_print_times_show(struct kobject *kobj,
    				   struct kobj_attribute *attr, char *buf)
    {
    	return sprintf(buf, "%d\n", pm_print_times_enabled);
    }
    
    static ssize_t pm_print_times_store(struct kobject *kobj,
    				    struct kobj_attribute *attr,
    				    const char *buf, size_t n)
    {
    	unsigned long val;
    
    	if (kstrtoul(buf, 10, &val))
    		return -EINVAL;
    
    	if (val > 1)
    		return -EINVAL;
    
    	pm_print_times_enabled = !!val;
    	return n;
    }
    
    power_attr(pm_print_times);
    
    static inline void pm_print_times_init(void)
    {
    	pm_print_times_enabled = !!initcall_debug;
    }
    
    static ssize_t pm_wakeup_irq_show(struct kobject *kobj,
    					struct kobj_attribute *attr,
    					char *buf)
    {
    	return pm_wakeup_irq ? sprintf(buf, "%u\n", pm_wakeup_irq) : -ENODATA;
    }
    
    power_attr_ro(pm_wakeup_irq);
    
    #else /* !CONFIG_PM_SLEEP_DEBUG */
    static inline void pm_print_times_init(void) {}
    #endif /* CONFIG_PM_SLEEP_DEBUG */
    
    struct kobject *power_kobj;
    
    /**
     * state - control system sleep states.
     *
     * show() returns available sleep state labels, which may be "mem", "standby",
     * "freeze" and "disk" (hibernation).  See Documentation/power/states.txt for a
     * description of what they mean.
     *
     * store() accepts one of those strings, translates it into the proper
     * enumerated value, and initiates a suspend transition.
     */
    static ssize_t state_show(struct kobject *kobj, struct kobj_attribute *attr,
    			  char *buf)
    {
    	char *s = buf;
    #ifdef CONFIG_SUSPEND
    	suspend_state_t i;
    
    	for (i = PM_SUSPEND_MIN; i < PM_SUSPEND_MAX; i++)
    		if (pm_states[i])
    			s += sprintf(s,"%s ", pm_states[i]);
    
    #endif
    	if (hibernation_available())
    		s += sprintf(s, "disk ");
    	if (s != buf)
    		/* convert the last space to a newline */
    		*(s-1) = '\n';
    	return (s - buf);
    }
    
    static suspend_state_t decode_state(const char *buf, size_t n)
    {
    #ifdef CONFIG_SUSPEND
    	suspend_state_t state;
    #endif
    	char *p;
    	int len;
    
    	p = memchr(buf, '\n', n);
    	len = p ? p - buf : n;
    
    	/* Check hibernation first. */
    	if (len == 4 && !strncmp(buf, "disk", len))
    		return PM_SUSPEND_MAX;
    
    #ifdef CONFIG_SUSPEND
    	for (state = PM_SUSPEND_MIN; state < PM_SUSPEND_MAX; state++) {
    		const char *label = pm_states[state];
    
    		if (label && len == strlen(label) && !strncmp(buf, label, len))
    			return state;
    	}
    #endif
    
    	return PM_SUSPEND_ON;
    }
    
    static ssize_t state_store(struct kobject *kobj, struct kobj_attribute *attr,
    			   const char *buf, size_t n)
    {
    	suspend_state_t state;
    	int error;
    
    	error = pm_autosleep_lock();
    	if (error)
    		return error;
    
    	if (pm_autosleep_state() > PM_SUSPEND_ON) {
    		error = -EBUSY;
    		goto out;
    	}
    
    	state = decode_state(buf, n);
    	if (state < PM_SUSPEND_MAX)
    		error = pm_suspend(state);
    	else if (state == PM_SUSPEND_MAX)
    		error = hibernate();
    	else
    		error = -EINVAL;
    
     out:
    	pm_autosleep_unlock();
    	return error ? error : n;
    }
    
    power_attr(state);
    
    #ifdef CONFIG_PM_SLEEP
    /*
     * The 'wakeup_count' attribute, along with the functions defined in
     * drivers/base/power/wakeup.c, provides a means by which wakeup events can be
     * handled in a non-racy way.
     *
     * If a wakeup event occurs when the system is in a sleep state, it simply is
     * woken up.  In turn, if an event that would wake the system up from a sleep
     * state occurs when it is undergoing a transition to that sleep state, the
     * transition should be aborted.  Moreover, if such an event occurs when the
     * system is in the working state, an attempt to start a transition to the
     * given sleep state should fail during certain period after the detection of
     * the event.  Using the 'state' attribute alone is not sufficient to satisfy
     * these requirements, because a wakeup event may occur exactly when 'state'
     * is being written to and may be delivered to user space right before it is
     * frozen, so the event will remain only partially processed until the system is
     * woken up by another event.  In particular, it won't cause the transition to
     * a sleep state to be aborted.
     *
     * This difficulty may be overcome if user space uses 'wakeup_count' before
     * writing to 'state'.  It first should read from 'wakeup_count' and store
     * the read value.  Then, after carrying out its own preparations for the system
     * transition to a sleep state, it should write the stored value to
     * 'wakeup_count'.  If that fails, at least one wakeup event has occurred since
     * 'wakeup_count' was read and 'state' should not be written to.  Otherwise, it
     * is allowed to write to 'state', but the transition will be aborted if there
     * are any wakeup events detected after 'wakeup_count' was written to.
     */
    
    static ssize_t wakeup_count_show(struct kobject *kobj,
    				struct kobj_attribute *attr,
    				char *buf)
    {
    	unsigned int val;
    
    	return pm_get_wakeup_count(&val, true) ?
    		sprintf(buf, "%u\n", val) : -EINTR;
    }
    
    static ssize_t wakeup_count_store(struct kobject *kobj,
    				struct kobj_attribute *attr,
    				const char *buf, size_t n)
    {
    	unsigned int val;
    	int error;
    
    	error = pm_autosleep_lock();
    	if (error)
    		return error;
    
    	if (pm_autosleep_state() > PM_SUSPEND_ON) {
    		error = -EBUSY;
    		goto out;
    	}
    
    	error = -EINVAL;
    	if (sscanf(buf, "%u", &val) == 1) {
    		if (pm_save_wakeup_count(val))
    			error = n;
    		else
    			pm_print_active_wakeup_sources();
    	}
    
     out:
    	pm_autosleep_unlock();
    	return error;
    }
    
    power_attr(wakeup_count);
    
    #ifdef CONFIG_PM_AUTOSLEEP
    static ssize_t autosleep_show(struct kobject *kobj,
    			      struct kobj_attribute *attr,
    			      char *buf)
    {
    	suspend_state_t state = pm_autosleep_state();
    
    	if (state == PM_SUSPEND_ON)
    		return sprintf(buf, "off\n");
    
    #ifdef CONFIG_SUSPEND
    	if (state < PM_SUSPEND_MAX)
    		return sprintf(buf, "%s\n", pm_states[state] ?
    					pm_states[state] : "error");
    #endif
    #ifdef CONFIG_HIBERNATION
    	return sprintf(buf, "disk\n");
    #else
    	return sprintf(buf, "error");
    #endif
    }
    
    static ssize_t autosleep_store(struct kobject *kobj,
    			       struct kobj_attribute *attr,
    			       const char *buf, size_t n)
    {
    	suspend_state_t state = decode_state(buf, n);
    	int error;
    
    	if (state == PM_SUSPEND_ON
    	    && strcmp(buf, "off") && strcmp(buf, "off\n"))
    		return -EINVAL;
    
    	error = pm_autosleep_set_state(state);
    	return error ? error : n;
    }
    
    power_attr(autosleep);
    #endif /* CONFIG_PM_AUTOSLEEP */
    
    #ifdef CONFIG_PM_WAKELOCKS
    static ssize_t wake_lock_show(struct kobject *kobj,
    			      struct kobj_attribute *attr,
    			      char *buf)
    {
    	return pm_show_wakelocks(buf, true);
    }
    
    static ssize_t wake_lock_store(struct kobject *kobj,
    			       struct kobj_attribute *attr,
    			       const char *buf, size_t n)
    {
    	int error = pm_wake_lock(buf);
    	return error ? error : n;
    }
    
    power_attr(wake_lock);
    
    static ssize_t wake_unlock_show(struct kobject *kobj,
    				struct kobj_attribute *attr,
    				char *buf)
    {
    	return pm_show_wakelocks(buf, false);
    }
    
    static ssize_t wake_unlock_store(struct kobject *kobj,
    				 struct kobj_attribute *attr,
    				 const char *buf, size_t n)
    {
    	int error = pm_wake_unlock(buf);
    	return error ? error : n;
    }
    
    power_attr(wake_unlock);
    
    #endif /* CONFIG_PM_WAKELOCKS */
    #endif /* CONFIG_PM_SLEEP */
    
    #ifdef CONFIG_PM_TRACE
    int pm_trace_enabled;
    
    static ssize_t pm_trace_show(struct kobject *kobj, struct kobj_attribute *attr,
    			     char *buf)
    {
    	return sprintf(buf, "%d\n", pm_trace_enabled);
    }
    
    static ssize_t
    pm_trace_store(struct kobject *kobj, struct kobj_attribute *attr,
    	       const char *buf, size_t n)
    {
    	int val;
    
    	if (sscanf(buf, "%d", &val) == 1) {
    		pm_trace_enabled = !!val;
    		if (pm_trace_enabled) {
    			pr_warn("PM: Enabling pm_trace changes system date and time during resume.\n"
    				"PM: Correct system time has to be restored manually after resume.\n");
    		}
    		return n;
    	}
    	return -EINVAL;
    }
    
    power_attr(pm_trace);
    
    static ssize_t pm_trace_dev_match_show(struct kobject *kobj,
    				       struct kobj_attribute *attr,
    				       char *buf)
    {
    	return show_trace_dev_match(buf, PAGE_SIZE);
    }
    
    power_attr_ro(pm_trace_dev_match);
    
    #endif /* CONFIG_PM_TRACE */
    
    #ifdef CONFIG_FREEZER
    static ssize_t pm_freeze_timeout_show(struct kobject *kobj,
    				      struct kobj_attribute *attr, char *buf)
    {
    	return sprintf(buf, "%u\n", freeze_timeout_msecs);
    }
    
    static ssize_t pm_freeze_timeout_store(struct kobject *kobj,
    				       struct kobj_attribute *attr,
    				       const char *buf, size_t n)
    {
    	unsigned long val;
    
    	if (kstrtoul(buf, 10, &val))
    		return -EINVAL;
    
    	freeze_timeout_msecs = val;
    	return n;
    }
    
    power_attr(pm_freeze_timeout);
    
    #endif	/* CONFIG_FREEZER*/
    
    static struct attribute * g[] = {
    	&state_attr.attr,
    #ifdef CONFIG_PM_TRACE
    	&pm_trace_attr.attr,
    	&pm_trace_dev_match_attr.attr,
    #endif
    #ifdef CONFIG_PM_SLEEP
    	&pm_async_attr.attr,
    	&wakeup_count_attr.attr,
    #ifdef CONFIG_PM_AUTOSLEEP
    	&autosleep_attr.attr,
    #endif
    #ifdef CONFIG_PM_WAKELOCKS
    	&wake_lock_attr.attr,
    	&wake_unlock_attr.attr,
    #endif
    #ifdef CONFIG_PM_DEBUG
    	&pm_test_attr.attr,
    #endif
    #ifdef CONFIG_PM_SLEEP_DEBUG
    	&pm_print_times_attr.attr,
    	&pm_wakeup_irq_attr.attr,
    #endif
    #endif
    #ifdef CONFIG_FREEZER
    	&pm_freeze_timeout_attr.attr,
    #endif
    	NULL,
    };
    
    static struct attribute_group attr_group = {
    	.attrs = g,
    };
    
    struct workqueue_struct *pm_wq;
    EXPORT_SYMBOL_GPL(pm_wq);
    
    static int __init pm_start_workqueue(void)
    {
    	pm_wq = alloc_workqueue("pm", WQ_FREEZABLE, 0);
    
    	return pm_wq ? 0 : -ENOMEM;
    }
    
    static int __init pm_init(void)
    {
    	int error = pm_start_workqueue();
    	if (error)
    		return error;
    	hibernate_image_size_init();
    	hibernate_reserved_size_init();
    	power_kobj = kobject_create_and_add("power", NULL);
    	if (!power_kobj)
    		return -ENOMEM;
    	error = sysfs_create_group(power_kobj, &attr_group);
    	if (error)
    		return error;
    	pm_print_times_init();
    	return pm_autosleep_init();
    }
    
    core_initcall(pm_init);