Skip to content
Snippets Groups Projects
Select Git revision
  • a439fe51a1f8eb087c22dd24d69cebae4a3addac
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

cacheflush_32.h

Blame
  • testmgr.c 85.84 KiB
    /*
     * Algorithm testing framework and tests.
     *
     * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
     * Copyright (c) 2002 Jean-Francois Dive <jef@linuxbe.org>
     * Copyright (c) 2007 Nokia Siemens Networks
     * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au>
     *
     * Updated RFC4106 AES-GCM testing.
     *    Authors: Aidan O'Mahony (aidan.o.mahony@intel.com)
     *             Adrian Hoban <adrian.hoban@intel.com>
     *             Gabriele Paoloni <gabriele.paoloni@intel.com>
     *             Tadeusz Struk (tadeusz.struk@intel.com)
     *    Copyright (c) 2010, Intel Corporation.
     *
     * This program is free software; you can redistribute it and/or modify it
     * under the terms of the GNU General Public License as published by the Free
     * Software Foundation; either version 2 of the License, or (at your option)
     * any later version.
     *
     */
    
    #include <crypto/aead.h>
    #include <crypto/hash.h>
    #include <crypto/skcipher.h>
    #include <linux/err.h>
    #include <linux/fips.h>
    #include <linux/module.h>
    #include <linux/scatterlist.h>
    #include <linux/slab.h>
    #include <linux/string.h>
    #include <crypto/rng.h>
    #include <crypto/drbg.h>
    #include <crypto/akcipher.h>
    #include <crypto/kpp.h>
    #include <crypto/acompress.h>
    
    #include "internal.h"
    
    static bool notests;
    module_param(notests, bool, 0644);
    MODULE_PARM_DESC(notests, "disable crypto self-tests");
    
    #ifdef CONFIG_CRYPTO_MANAGER_DISABLE_TESTS
    
    /* a perfect nop */
    int alg_test(const char *driver, const char *alg, u32 type, u32 mask)
    {
    	return 0;
    }
    
    #else
    
    #include "testmgr.h"
    
    /*
     * Need slab memory for testing (size in number of pages).
     */
    #define XBUFSIZE	8
    
    /*
     * Indexes into the xbuf to simulate cross-page access.
     */
    #define IDX1		32
    #define IDX2		32400
    #define IDX3		1511
    #define IDX4		8193
    #define IDX5		22222
    #define IDX6		17101
    #define IDX7		27333
    #define IDX8		3000
    
    /*
    * Used by test_cipher()
    */
    #define ENCRYPT 1
    #define DECRYPT 0
    
    struct aead_test_suite {
    	struct {
    		const struct aead_testvec *vecs;
    		unsigned int count;
    	} enc, dec;
    };
    
    struct cipher_test_suite {
    	struct {
    		const struct cipher_testvec *vecs;
    		unsigned int count;
    	} enc, dec;
    };
    
    struct comp_test_suite {
    	struct {
    		const struct comp_testvec *vecs;
    		unsigned int count;
    	} comp, decomp;
    };
    
    struct hash_test_suite {
    	const struct hash_testvec *vecs;
    	unsigned int count;
    };
    
    struct cprng_test_suite {
    	const struct cprng_testvec *vecs;
    	unsigned int count;
    };
    
    struct drbg_test_suite {
    	const struct drbg_testvec *vecs;
    	unsigned int count;
    };
    
    struct akcipher_test_suite {
    	const struct akcipher_testvec *vecs;
    	unsigned int count;
    };
    
    struct kpp_test_suite {
    	const struct kpp_testvec *vecs;
    	unsigned int count;
    };
    
    struct alg_test_desc {
    	const char *alg;
    	int (*test)(const struct alg_test_desc *desc, const char *driver,
    		    u32 type, u32 mask);
    	int fips_allowed;	/* set if alg is allowed in fips mode */
    
    	union {
    		struct aead_test_suite aead;
    		struct cipher_test_suite cipher;
    		struct comp_test_suite comp;
    		struct hash_test_suite hash;
    		struct cprng_test_suite cprng;
    		struct drbg_test_suite drbg;
    		struct akcipher_test_suite akcipher;
    		struct kpp_test_suite kpp;
    	} suite;
    };
    
    static const unsigned int IDX[8] = {
    	IDX1, IDX2, IDX3, IDX4, IDX5, IDX6, IDX7, IDX8 };
    
    static void hexdump(unsigned char *buf, unsigned int len)
    {
    	print_hex_dump(KERN_CONT, "", DUMP_PREFIX_OFFSET,
    			16, 1,
    			buf, len, false);
    }
    
    static int testmgr_alloc_buf(char *buf[XBUFSIZE])
    {
    	int i;
    
    	for (i = 0; i < XBUFSIZE; i++) {
    		buf[i] = (void *)__get_free_page(GFP_KERNEL);
    		if (!buf[i])
    			goto err_free_buf;
    	}
    
    	return 0;
    
    err_free_buf:
    	while (i-- > 0)
    		free_page((unsigned long)buf[i]);
    
    	return -ENOMEM;
    }
    
    static void testmgr_free_buf(char *buf[XBUFSIZE])
    {
    	int i;
    
    	for (i = 0; i < XBUFSIZE; i++)
    		free_page((unsigned long)buf[i]);
    }
    
    static int ahash_guard_result(char *result, char c, int size)
    {
    	int i;
    
    	for (i = 0; i < size; i++) {
    		if (result[i] != c)
    			return -EINVAL;
    	}
    
    	return 0;
    }
    
    static int ahash_partial_update(struct ahash_request **preq,
    	struct crypto_ahash *tfm, const struct hash_testvec *template,
    	void *hash_buff, int k, int temp, struct scatterlist *sg,
    	const char *algo, char *result, struct crypto_wait *wait)
    {
    	char *state;
    	struct ahash_request *req;
    	int statesize, ret = -EINVAL;
    	static const unsigned char guard[] = { 0x00, 0xba, 0xad, 0x00 };
    	int digestsize = crypto_ahash_digestsize(tfm);
    
    	req = *preq;
    	statesize = crypto_ahash_statesize(
    			crypto_ahash_reqtfm(req));
    	state = kmalloc(statesize + sizeof(guard), GFP_KERNEL);
    	if (!state) {
    		pr_err("alg: hash: Failed to alloc state for %s\n", algo);
    		goto out_nostate;
    	}
    	memcpy(state + statesize, guard, sizeof(guard));
    	memset(result, 1, digestsize);
    	ret = crypto_ahash_export(req, state);
    	WARN_ON(memcmp(state + statesize, guard, sizeof(guard)));
    	if (ret) {
    		pr_err("alg: hash: Failed to export() for %s\n", algo);
    		goto out;
    	}
    	ret = ahash_guard_result(result, 1, digestsize);
    	if (ret) {
    		pr_err("alg: hash: Failed, export used req->result for %s\n",
    		       algo);
    		goto out;
    	}
    	ahash_request_free(req);
    	req = ahash_request_alloc(tfm, GFP_KERNEL);
    	if (!req) {
    		pr_err("alg: hash: Failed to alloc request for %s\n", algo);
    		goto out_noreq;
    	}
    	ahash_request_set_callback(req,
    		CRYPTO_TFM_REQ_MAY_BACKLOG,
    		crypto_req_done, wait);
    
    	memcpy(hash_buff, template->plaintext + temp,
    		template->tap[k]);
    	sg_init_one(&sg[0], hash_buff, template->tap[k]);
    	ahash_request_set_crypt(req, sg, result, template->tap[k]);
    	ret = crypto_ahash_import(req, state);
    	if (ret) {
    		pr_err("alg: hash: Failed to import() for %s\n", algo);
    		goto out;
    	}
    	ret = ahash_guard_result(result, 1, digestsize);
    	if (ret) {
    		pr_err("alg: hash: Failed, import used req->result for %s\n",
    		       algo);
    		goto out;
    	}
    	ret = crypto_wait_req(crypto_ahash_update(req), wait);
    	if (ret)
    		goto out;
    	*preq = req;
    	ret = 0;
    	goto out_noreq;
    out:
    	ahash_request_free(req);
    out_noreq:
    	kfree(state);
    out_nostate:
    	return ret;
    }
    
    static int __test_hash(struct crypto_ahash *tfm,
    		       const struct hash_testvec *template, unsigned int tcount,
    		       bool use_digest, const int align_offset)
    {
    	const char *algo = crypto_tfm_alg_driver_name(crypto_ahash_tfm(tfm));
    	size_t digest_size = crypto_ahash_digestsize(tfm);
    	unsigned int i, j, k, temp;
    	struct scatterlist sg[8];
    	char *result;
    	char *key;
    	struct ahash_request *req;
    	struct crypto_wait wait;
    	void *hash_buff;
    	char *xbuf[XBUFSIZE];
    	int ret = -ENOMEM;
    
    	result = kmalloc(digest_size, GFP_KERNEL);
    	if (!result)
    		return ret;
    	key = kmalloc(MAX_KEYLEN, GFP_KERNEL);
    	if (!key)
    		goto out_nobuf;
    	if (testmgr_alloc_buf(xbuf))
    		goto out_nobuf;
    
    	crypto_init_wait(&wait);
    
    	req = ahash_request_alloc(tfm, GFP_KERNEL);
    	if (!req) {
    		printk(KERN_ERR "alg: hash: Failed to allocate request for "
    		       "%s\n", algo);
    		goto out_noreq;
    	}
    	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
    				   crypto_req_done, &wait);
    
    	j = 0;
    	for (i = 0; i < tcount; i++) {
    		if (template[i].np)
    			continue;
    
    		ret = -EINVAL;
    		if (WARN_ON(align_offset + template[i].psize > PAGE_SIZE))
    			goto out;
    
    		j++;
    		memset(result, 0, digest_size);
    
    		hash_buff = xbuf[0];
    		hash_buff += align_offset;
    
    		memcpy(hash_buff, template[i].plaintext, template[i].psize);
    		sg_init_one(&sg[0], hash_buff, template[i].psize);
    
    		if (template[i].ksize) {
    			crypto_ahash_clear_flags(tfm, ~0);
    			if (template[i].ksize > MAX_KEYLEN) {
    				pr_err("alg: hash: setkey failed on test %d for %s: key size %d > %d\n",
    				       j, algo, template[i].ksize, MAX_KEYLEN);
    				ret = -EINVAL;
    				goto out;
    			}
    			memcpy(key, template[i].key, template[i].ksize);
    			ret = crypto_ahash_setkey(tfm, key, template[i].ksize);
    			if (ret) {
    				printk(KERN_ERR "alg: hash: setkey failed on "
    				       "test %d for %s: ret=%d\n", j, algo,
    				       -ret);
    				goto out;
    			}
    		}
    
    		ahash_request_set_crypt(req, sg, result, template[i].psize);
    		if (use_digest) {
    			ret = crypto_wait_req(crypto_ahash_digest(req), &wait);
    			if (ret) {
    				pr_err("alg: hash: digest failed on test %d "
    				       "for %s: ret=%d\n", j, algo, -ret);
    				goto out;
    			}
    		} else {
    			memset(result, 1, digest_size);
    			ret = crypto_wait_req(crypto_ahash_init(req), &wait);
    			if (ret) {
    				pr_err("alg: hash: init failed on test %d "
    				       "for %s: ret=%d\n", j, algo, -ret);
    				goto out;
    			}
    			ret = ahash_guard_result(result, 1, digest_size);
    			if (ret) {
    				pr_err("alg: hash: init failed on test %d "
    				       "for %s: used req->result\n", j, algo);
    				goto out;
    			}
    			ret = crypto_wait_req(crypto_ahash_update(req), &wait);
    			if (ret) {
    				pr_err("alg: hash: update failed on test %d "
    				       "for %s: ret=%d\n", j, algo, -ret);
    				goto out;
    			}
    			ret = ahash_guard_result(result, 1, digest_size);
    			if (ret) {
    				pr_err("alg: hash: update failed on test %d "
    				       "for %s: used req->result\n", j, algo);
    				goto out;
    			}
    			ret = crypto_wait_req(crypto_ahash_final(req), &wait);
    			if (ret) {
    				pr_err("alg: hash: final failed on test %d "
    				       "for %s: ret=%d\n", j, algo, -ret);
    				goto out;
    			}
    		}
    
    		if (memcmp(result, template[i].digest,
    			   crypto_ahash_digestsize(tfm))) {
    			printk(KERN_ERR "alg: hash: Test %d failed for %s\n",
    			       j, algo);
    			hexdump(result, crypto_ahash_digestsize(tfm));
    			ret = -EINVAL;
    			goto out;
    		}
    	}
    
    	j = 0;
    	for (i = 0; i < tcount; i++) {
    		/* alignment tests are only done with continuous buffers */
    		if (align_offset != 0)
    			break;
    
    		if (!template[i].np)
    			continue;
    
    		j++;
    		memset(result, 0, digest_size);
    
    		temp = 0;
    		sg_init_table(sg, template[i].np);
    		ret = -EINVAL;
    		for (k = 0; k < template[i].np; k++) {
    			if (WARN_ON(offset_in_page(IDX[k]) +
    				    template[i].tap[k] > PAGE_SIZE))
    				goto out;
    			sg_set_buf(&sg[k],
    				   memcpy(xbuf[IDX[k] >> PAGE_SHIFT] +
    					  offset_in_page(IDX[k]),
    					  template[i].plaintext + temp,
    					  template[i].tap[k]),
    				   template[i].tap[k]);
    			temp += template[i].tap[k];
    		}
    
    		if (template[i].ksize) {
    			if (template[i].ksize > MAX_KEYLEN) {
    				pr_err("alg: hash: setkey failed on test %d for %s: key size %d > %d\n",
    				       j, algo, template[i].ksize, MAX_KEYLEN);
    				ret = -EINVAL;
    				goto out;
    			}
    			crypto_ahash_clear_flags(tfm, ~0);
    			memcpy(key, template[i].key, template[i].ksize);
    			ret = crypto_ahash_setkey(tfm, key, template[i].ksize);
    
    			if (ret) {
    				printk(KERN_ERR "alg: hash: setkey "
    				       "failed on chunking test %d "
    				       "for %s: ret=%d\n", j, algo, -ret);
    				goto out;
    			}
    		}
    
    		ahash_request_set_crypt(req, sg, result, template[i].psize);
    		ret = crypto_wait_req(crypto_ahash_digest(req), &wait);
    		if (ret) {
    			pr_err("alg: hash: digest failed on chunking test %d for %s: ret=%d\n",
    			       j, algo, -ret);
    			goto out;
    		}
    
    		if (memcmp(result, template[i].digest,
    			   crypto_ahash_digestsize(tfm))) {
    			printk(KERN_ERR "alg: hash: Chunking test %d "
    			       "failed for %s\n", j, algo);
    			hexdump(result, crypto_ahash_digestsize(tfm));
    			ret = -EINVAL;
    			goto out;
    		}
    	}
    
    	/* partial update exercise */
    	j = 0;
    	for (i = 0; i < tcount; i++) {
    		/* alignment tests are only done with continuous buffers */
    		if (align_offset != 0)
    			break;
    
    		if (template[i].np < 2)
    			continue;
    
    		j++;
    		memset(result, 0, digest_size);
    
    		ret = -EINVAL;
    		hash_buff = xbuf[0];
    		memcpy(hash_buff, template[i].plaintext,
    			template[i].tap[0]);
    		sg_init_one(&sg[0], hash_buff, template[i].tap[0]);
    
    		if (template[i].ksize) {
    			crypto_ahash_clear_flags(tfm, ~0);
    			if (template[i].ksize > MAX_KEYLEN) {
    				pr_err("alg: hash: setkey failed on test %d for %s: key size %d > %d\n",
    					j, algo, template[i].ksize, MAX_KEYLEN);
    				ret = -EINVAL;
    				goto out;
    			}
    			memcpy(key, template[i].key, template[i].ksize);
    			ret = crypto_ahash_setkey(tfm, key, template[i].ksize);
    			if (ret) {
    				pr_err("alg: hash: setkey failed on test %d for %s: ret=%d\n",
    					j, algo, -ret);
    				goto out;
    			}
    		}
    
    		ahash_request_set_crypt(req, sg, result, template[i].tap[0]);
    		ret = crypto_wait_req(crypto_ahash_init(req), &wait);
    		if (ret) {
    			pr_err("alg: hash: init failed on test %d for %s: ret=%d\n",
    				j, algo, -ret);
    			goto out;
    		}
    		ret = crypto_wait_req(crypto_ahash_update(req), &wait);
    		if (ret) {
    			pr_err("alg: hash: update failed on test %d for %s: ret=%d\n",
    				j, algo, -ret);
    			goto out;
    		}
    
    		temp = template[i].tap[0];
    		for (k = 1; k < template[i].np; k++) {
    			ret = ahash_partial_update(&req, tfm, &template[i],
    				hash_buff, k, temp, &sg[0], algo, result,
    				&wait);
    			if (ret) {
    				pr_err("alg: hash: partial update failed on test %d for %s: ret=%d\n",
    					j, algo, -ret);
    				goto out_noreq;
    			}
    			temp += template[i].tap[k];
    		}
    		ret = crypto_wait_req(crypto_ahash_final(req), &wait);
    		if (ret) {
    			pr_err("alg: hash: final failed on test %d for %s: ret=%d\n",
    				j, algo, -ret);
    			goto out;
    		}
    		if (memcmp(result, template[i].digest,
    			   crypto_ahash_digestsize(tfm))) {
    			pr_err("alg: hash: Partial Test %d failed for %s\n",
    			       j, algo);
    			hexdump(result, crypto_ahash_digestsize(tfm));
    			ret = -EINVAL;
    			goto out;
    		}
    	}
    
    	ret = 0;
    
    out:
    	ahash_request_free(req);
    out_noreq:
    	testmgr_free_buf(xbuf);
    out_nobuf:
    	kfree(key);
    	kfree(result);
    	return ret;
    }
    
    static int test_hash(struct crypto_ahash *tfm,
    		     const struct hash_testvec *template,
    		     unsigned int tcount, bool use_digest)
    {
    	unsigned int alignmask;
    	int ret;
    
    	ret = __test_hash(tfm, template, tcount, use_digest, 0);
    	if (ret)
    		return ret;
    
    	/* test unaligned buffers, check with one byte offset */
    	ret = __test_hash(tfm, template, tcount, use_digest, 1);
    	if (ret)
    		return ret;
    
    	alignmask = crypto_tfm_alg_alignmask(&tfm->base);
    	if (alignmask) {
    		/* Check if alignment mask for tfm is correctly set. */
    		ret = __test_hash(tfm, template, tcount, use_digest,
    				  alignmask + 1);
    		if (ret)
    			return ret;
    	}
    
    	return 0;
    }
    
    static int __test_aead(struct crypto_aead *tfm, int enc,
    		       const struct aead_testvec *template, unsigned int tcount,
    		       const bool diff_dst, const int align_offset)
    {
    	const char *algo = crypto_tfm_alg_driver_name(crypto_aead_tfm(tfm));
    	unsigned int i, j, k, n, temp;
    	int ret = -ENOMEM;
    	char *q;
    	char *key;
    	struct aead_request *req;
    	struct scatterlist *sg;
    	struct scatterlist *sgout;
    	const char *e, *d;
    	struct crypto_wait wait;
    	unsigned int authsize, iv_len;
    	void *input;
    	void *output;
    	void *assoc;
    	char *iv;
    	char *xbuf[XBUFSIZE];
    	char *xoutbuf[XBUFSIZE];
    	char *axbuf[XBUFSIZE];
    
    	iv = kzalloc(MAX_IVLEN, GFP_KERNEL);
    	if (!iv)
    		return ret;
    	key = kmalloc(MAX_KEYLEN, GFP_KERNEL);
    	if (!key)
    		goto out_noxbuf;
    	if (testmgr_alloc_buf(xbuf))
    		goto out_noxbuf;
    	if (testmgr_alloc_buf(axbuf))
    		goto out_noaxbuf;
    	if (diff_dst && testmgr_alloc_buf(xoutbuf))
    		goto out_nooutbuf;
    
    	/* avoid "the frame size is larger than 1024 bytes" compiler warning */
    	sg = kmalloc(sizeof(*sg) * 8 * (diff_dst ? 4 : 2), GFP_KERNEL);
    	if (!sg)
    		goto out_nosg;
    	sgout = &sg[16];
    
    	if (diff_dst)
    		d = "-ddst";
    	else
    		d = "";
    
    	if (enc == ENCRYPT)
    		e = "encryption";
    	else
    		e = "decryption";
    
    	crypto_init_wait(&wait);
    
    	req = aead_request_alloc(tfm, GFP_KERNEL);
    	if (!req) {
    		pr_err("alg: aead%s: Failed to allocate request for %s\n",
    		       d, algo);
    		goto out;
    	}
    
    	aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
    				  crypto_req_done, &wait);
    
    	iv_len = crypto_aead_ivsize(tfm);
    
    	for (i = 0, j = 0; i < tcount; i++) {
    		if (template[i].np)
    			continue;
    
    		j++;
    
    		/* some templates have no input data but they will
    		 * touch input
    		 */
    		input = xbuf[0];
    		input += align_offset;
    		assoc = axbuf[0];
    
    		ret = -EINVAL;
    		if (WARN_ON(align_offset + template[i].ilen >
    			    PAGE_SIZE || template[i].alen > PAGE_SIZE))
    			goto out;
    
    		memcpy(input, template[i].input, template[i].ilen);
    		memcpy(assoc, template[i].assoc, template[i].alen);
    		if (template[i].iv)
    			memcpy(iv, template[i].iv, iv_len);
    		else
    			memset(iv, 0, iv_len);
    
    		crypto_aead_clear_flags(tfm, ~0);
    		if (template[i].wk)
    			crypto_aead_set_flags(tfm, CRYPTO_TFM_REQ_WEAK_KEY);
    
    		if (template[i].klen > MAX_KEYLEN) {
    			pr_err("alg: aead%s: setkey failed on test %d for %s: key size %d > %d\n",
    			       d, j, algo, template[i].klen,
    			       MAX_KEYLEN);
    			ret = -EINVAL;
    			goto out;
    		}
    		memcpy(key, template[i].key, template[i].klen);
    
    		ret = crypto_aead_setkey(tfm, key, template[i].klen);
    		if (template[i].fail == !ret) {
    			pr_err("alg: aead%s: setkey failed on test %d for %s: flags=%x\n",
    			       d, j, algo, crypto_aead_get_flags(tfm));
    			goto out;
    		} else if (ret)
    			continue;
    
    		authsize = abs(template[i].rlen - template[i].ilen);
    		ret = crypto_aead_setauthsize(tfm, authsize);
    		if (ret) {
    			pr_err("alg: aead%s: Failed to set authsize to %u on test %d for %s\n",
    			       d, authsize, j, algo);
    			goto out;
    		}
    
    		k = !!template[i].alen;
    		sg_init_table(sg, k + 1);
    		sg_set_buf(&sg[0], assoc, template[i].alen);
    		sg_set_buf(&sg[k], input,
    			   template[i].ilen + (enc ? authsize : 0));
    		output = input;
    
    		if (diff_dst) {
    			sg_init_table(sgout, k + 1);
    			sg_set_buf(&sgout[0], assoc, template[i].alen);
    
    			output = xoutbuf[0];
    			output += align_offset;
    			sg_set_buf(&sgout[k], output,
    				   template[i].rlen + (enc ? 0 : authsize));
    		}
    
    		aead_request_set_crypt(req, sg, (diff_dst) ? sgout : sg,
    				       template[i].ilen, iv);
    
    		aead_request_set_ad(req, template[i].alen);
    
    		ret = crypto_wait_req(enc ? crypto_aead_encrypt(req)
    				      : crypto_aead_decrypt(req), &wait);
    
    		switch (ret) {
    		case 0:
    			if (template[i].novrfy) {
    				/* verification was supposed to fail */
    				pr_err("alg: aead%s: %s failed on test %d for %s: ret was 0, expected -EBADMSG\n",
    				       d, e, j, algo);
    				/* so really, we got a bad message */
    				ret = -EBADMSG;
    				goto out;
    			}
    			break;
    		case -EBADMSG:
    			if (template[i].novrfy)
    				/* verification failure was expected */
    				continue;
    			/* fall through */
    		default:
    			pr_err("alg: aead%s: %s failed on test %d for %s: ret=%d\n",
    			       d, e, j, algo, -ret);
    			goto out;
    		}
    
    		q = output;
    		if (memcmp(q, template[i].result, template[i].rlen)) {
    			pr_err("alg: aead%s: Test %d failed on %s for %s\n",
    			       d, j, e, algo);
    			hexdump(q, template[i].rlen);
    			ret = -EINVAL;
    			goto out;
    		}
    	}
    
    	for (i = 0, j = 0; i < tcount; i++) {
    		/* alignment tests are only done with continuous buffers */
    		if (align_offset != 0)
    			break;
    
    		if (!template[i].np)
    			continue;
    
    		j++;
    
    		if (template[i].iv)
    			memcpy(iv, template[i].iv, iv_len);
    		else
    			memset(iv, 0, MAX_IVLEN);
    
    		crypto_aead_clear_flags(tfm, ~0);
    		if (template[i].wk)
    			crypto_aead_set_flags(tfm, CRYPTO_TFM_REQ_WEAK_KEY);
    		if (template[i].klen > MAX_KEYLEN) {
    			pr_err("alg: aead%s: setkey failed on test %d for %s: key size %d > %d\n",
    			       d, j, algo, template[i].klen, MAX_KEYLEN);
    			ret = -EINVAL;
    			goto out;
    		}
    		memcpy(key, template[i].key, template[i].klen);
    
    		ret = crypto_aead_setkey(tfm, key, template[i].klen);
    		if (template[i].fail == !ret) {
    			pr_err("alg: aead%s: setkey failed on chunk test %d for %s: flags=%x\n",
    			       d, j, algo, crypto_aead_get_flags(tfm));
    			goto out;
    		} else if (ret)
    			continue;
    
    		authsize = abs(template[i].rlen - template[i].ilen);
    
    		ret = -EINVAL;
    		sg_init_table(sg, template[i].anp + template[i].np);
    		if (diff_dst)
    			sg_init_table(sgout, template[i].anp + template[i].np);
    
    		ret = -EINVAL;
    		for (k = 0, temp = 0; k < template[i].anp; k++) {
    			if (WARN_ON(offset_in_page(IDX[k]) +
    				    template[i].atap[k] > PAGE_SIZE))
    				goto out;
    			sg_set_buf(&sg[k],
    				   memcpy(axbuf[IDX[k] >> PAGE_SHIFT] +
    					  offset_in_page(IDX[k]),
    					  template[i].assoc + temp,
    					  template[i].atap[k]),
    				   template[i].atap[k]);
    			if (diff_dst)
    				sg_set_buf(&sgout[k],
    					   axbuf[IDX[k] >> PAGE_SHIFT] +
    					   offset_in_page(IDX[k]),
    					   template[i].atap[k]);
    			temp += template[i].atap[k];
    		}
    
    		for (k = 0, temp = 0; k < template[i].np; k++) {
    			if (WARN_ON(offset_in_page(IDX[k]) +
    				    template[i].tap[k] > PAGE_SIZE))
    				goto out;
    
    			q = xbuf[IDX[k] >> PAGE_SHIFT] + offset_in_page(IDX[k]);
    			memcpy(q, template[i].input + temp, template[i].tap[k]);
    			sg_set_buf(&sg[template[i].anp + k],
    				   q, template[i].tap[k]);
    
    			if (diff_dst) {
    				q = xoutbuf[IDX[k] >> PAGE_SHIFT] +
    				    offset_in_page(IDX[k]);
    
    				memset(q, 0, template[i].tap[k]);
    
    				sg_set_buf(&sgout[template[i].anp + k],
    					   q, template[i].tap[k]);
    			}
    
    			n = template[i].tap[k];
    			if (k == template[i].np - 1 && enc)
    				n += authsize;
    			if (offset_in_page(q) + n < PAGE_SIZE)
    				q[n] = 0;
    
    			temp += template[i].tap[k];
    		}
    
    		ret = crypto_aead_setauthsize(tfm, authsize);
    		if (ret) {
    			pr_err("alg: aead%s: Failed to set authsize to %u on chunk test %d for %s\n",
    			       d, authsize, j, algo);
    			goto out;
    		}
    
    		if (enc) {
    			if (WARN_ON(sg[template[i].anp + k - 1].offset +
    				    sg[template[i].anp + k - 1].length +
    				    authsize > PAGE_SIZE)) {
    				ret = -EINVAL;
    				goto out;
    			}
    
    			if (diff_dst)
    				sgout[template[i].anp + k - 1].length +=
    					authsize;
    			sg[template[i].anp + k - 1].length += authsize;
    		}
    
    		aead_request_set_crypt(req, sg, (diff_dst) ? sgout : sg,
    				       template[i].ilen,
    				       iv);
    
    		aead_request_set_ad(req, template[i].alen);
    
    		ret = crypto_wait_req(enc ? crypto_aead_encrypt(req)
    				      : crypto_aead_decrypt(req), &wait);
    
    		switch (ret) {
    		case 0:
    			if (template[i].novrfy) {
    				/* verification was supposed to fail */
    				pr_err("alg: aead%s: %s failed on chunk test %d for %s: ret was 0, expected -EBADMSG\n",
    				       d, e, j, algo);
    				/* so really, we got a bad message */
    				ret = -EBADMSG;
    				goto out;
    			}
    			break;
    		case -EBADMSG:
    			if (template[i].novrfy)
    				/* verification failure was expected */
    				continue;
    			/* fall through */
    		default:
    			pr_err("alg: aead%s: %s failed on chunk test %d for %s: ret=%d\n",
    			       d, e, j, algo, -ret);
    			goto out;
    		}
    
    		ret = -EINVAL;
    		for (k = 0, temp = 0; k < template[i].np; k++) {
    			if (diff_dst)
    				q = xoutbuf[IDX[k] >> PAGE_SHIFT] +
    				    offset_in_page(IDX[k]);
    			else
    				q = xbuf[IDX[k] >> PAGE_SHIFT] +
    				    offset_in_page(IDX[k]);
    
    			n = template[i].tap[k];
    			if (k == template[i].np - 1)
    				n += enc ? authsize : -authsize;
    
    			if (memcmp(q, template[i].result + temp, n)) {
    				pr_err("alg: aead%s: Chunk test %d failed on %s at page %u for %s\n",
    				       d, j, e, k, algo);
    				hexdump(q, n);
    				goto out;
    			}
    
    			q += n;
    			if (k == template[i].np - 1 && !enc) {
    				if (!diff_dst &&
    					memcmp(q, template[i].input +
    					      temp + n, authsize))
    					n = authsize;
    				else
    					n = 0;
    			} else {
    				for (n = 0; offset_in_page(q + n) && q[n]; n++)
    					;
    			}
    			if (n) {
    				pr_err("alg: aead%s: Result buffer corruption in chunk test %d on %s at page %u for %s: %u bytes:\n",
    				       d, j, e, k, algo, n);
    				hexdump(q, n);
    				goto out;
    			}
    
    			temp += template[i].tap[k];
    		}
    	}
    
    	ret = 0;
    
    out:
    	aead_request_free(req);
    	kfree(sg);
    out_nosg:
    	if (diff_dst)
    		testmgr_free_buf(xoutbuf);
    out_nooutbuf:
    	testmgr_free_buf(axbuf);
    out_noaxbuf:
    	testmgr_free_buf(xbuf);
    out_noxbuf:
    	kfree(key);
    	kfree(iv);
    	return ret;
    }
    
    static int test_aead(struct crypto_aead *tfm, int enc,
    		     const struct aead_testvec *template, unsigned int tcount)
    {
    	unsigned int alignmask;
    	int ret;
    
    	/* test 'dst == src' case */
    	ret = __test_aead(tfm, enc, template, tcount, false, 0);
    	if (ret)
    		return ret;
    
    	/* test 'dst != src' case */
    	ret = __test_aead(tfm, enc, template, tcount, true, 0);
    	if (ret)
    		return ret;
    
    	/* test unaligned buffers, check with one byte offset */
    	ret = __test_aead(tfm, enc, template, tcount, true, 1);
    	if (ret)
    		return ret;
    
    	alignmask = crypto_tfm_alg_alignmask(&tfm->base);
    	if (alignmask) {
    		/* Check if alignment mask for tfm is correctly set. */
    		ret = __test_aead(tfm, enc, template, tcount, true,
    				  alignmask + 1);
    		if (ret)
    			return ret;
    	}
    
    	return 0;
    }
    
    static int test_cipher(struct crypto_cipher *tfm, int enc,
    		       const struct cipher_testvec *template,
    		       unsigned int tcount)
    {
    	const char *algo = crypto_tfm_alg_driver_name(crypto_cipher_tfm(tfm));
    	unsigned int i, j, k;
    	char *q;
    	const char *e;
    	void *data;
    	char *xbuf[XBUFSIZE];
    	int ret = -ENOMEM;
    
    	if (testmgr_alloc_buf(xbuf))
    		goto out_nobuf;
    
    	if (enc == ENCRYPT)
    	        e = "encryption";
    	else
    		e = "decryption";
    
    	j = 0;
    	for (i = 0; i < tcount; i++) {
    		if (template[i].np)
    			continue;
    
    		if (fips_enabled && template[i].fips_skip)
    			continue;
    
    		j++;
    
    		ret = -EINVAL;
    		if (WARN_ON(template[i].ilen > PAGE_SIZE))
    			goto out;
    
    		data = xbuf[0];
    		memcpy(data, template[i].input, template[i].ilen);
    
    		crypto_cipher_clear_flags(tfm, ~0);
    		if (template[i].wk)
    			crypto_cipher_set_flags(tfm, CRYPTO_TFM_REQ_WEAK_KEY);
    
    		ret = crypto_cipher_setkey(tfm, template[i].key,
    					   template[i].klen);
    		if (template[i].fail == !ret) {
    			printk(KERN_ERR "alg: cipher: setkey failed "
    			       "on test %d for %s: flags=%x\n", j,
    			       algo, crypto_cipher_get_flags(tfm));
    			goto out;
    		} else if (ret)
    			continue;
    
    		for (k = 0; k < template[i].ilen;
    		     k += crypto_cipher_blocksize(tfm)) {
    			if (enc)
    				crypto_cipher_encrypt_one(tfm, data + k,
    							  data + k);
    			else
    				crypto_cipher_decrypt_one(tfm, data + k,
    							  data + k);
    		}
    
    		q = data;
    		if (memcmp(q, template[i].result, template[i].rlen)) {
    			printk(KERN_ERR "alg: cipher: Test %d failed "
    			       "on %s for %s\n", j, e, algo);
    			hexdump(q, template[i].rlen);
    			ret = -EINVAL;
    			goto out;
    		}
    	}
    
    	ret = 0;
    
    out:
    	testmgr_free_buf(xbuf);
    out_nobuf:
    	return ret;
    }
    
    static int __test_skcipher(struct crypto_skcipher *tfm, int enc,
    			   const struct cipher_testvec *template,
    			   unsigned int tcount,
    			   const bool diff_dst, const int align_offset)
    {
    	const char *algo =
    		crypto_tfm_alg_driver_name(crypto_skcipher_tfm(tfm));
    	unsigned int i, j, k, n, temp;
    	char *q;
    	struct skcipher_request *req;
    	struct scatterlist sg[8];
    	struct scatterlist sgout[8];
    	const char *e, *d;
    	struct crypto_wait wait;
    	void *data;
    	char iv[MAX_IVLEN];
    	char *xbuf[XBUFSIZE];
    	char *xoutbuf[XBUFSIZE];
    	int ret = -ENOMEM;
    	unsigned int ivsize = crypto_skcipher_ivsize(tfm);
    
    	if (testmgr_alloc_buf(xbuf))
    		goto out_nobuf;
    
    	if (diff_dst && testmgr_alloc_buf(xoutbuf))
    		goto out_nooutbuf;
    
    	if (diff_dst)
    		d = "-ddst";
    	else
    		d = "";
    
    	if (enc == ENCRYPT)
    	        e = "encryption";
    	else
    		e = "decryption";
    
    	crypto_init_wait(&wait);
    
    	req = skcipher_request_alloc(tfm, GFP_KERNEL);
    	if (!req) {
    		pr_err("alg: skcipher%s: Failed to allocate request for %s\n",
    		       d, algo);
    		goto out;
    	}
    
    	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
    				      crypto_req_done, &wait);
    
    	j = 0;
    	for (i = 0; i < tcount; i++) {
    		if (template[i].np && !template[i].also_non_np)
    			continue;
    
    		if (fips_enabled && template[i].fips_skip)
    			continue;
    
    		if (template[i].iv)
    			memcpy(iv, template[i].iv, ivsize);
    		else
    			memset(iv, 0, MAX_IVLEN);
    
    		j++;
    		ret = -EINVAL;
    		if (WARN_ON(align_offset + template[i].ilen > PAGE_SIZE))
    			goto out;
    
    		data = xbuf[0];
    		data += align_offset;
    		memcpy(data, template[i].input, template[i].ilen);
    
    		crypto_skcipher_clear_flags(tfm, ~0);
    		if (template[i].wk)
    			crypto_skcipher_set_flags(tfm,
    						  CRYPTO_TFM_REQ_WEAK_KEY);
    
    		ret = crypto_skcipher_setkey(tfm, template[i].key,
    					     template[i].klen);
    		if (template[i].fail == !ret) {
    			pr_err("alg: skcipher%s: setkey failed on test %d for %s: flags=%x\n",
    			       d, j, algo, crypto_skcipher_get_flags(tfm));
    			goto out;
    		} else if (ret)
    			continue;
    
    		sg_init_one(&sg[0], data, template[i].ilen);
    		if (diff_dst) {
    			data = xoutbuf[0];
    			data += align_offset;
    			sg_init_one(&sgout[0], data, template[i].ilen);
    		}
    
    		skcipher_request_set_crypt(req, sg, (diff_dst) ? sgout : sg,
    					   template[i].ilen, iv);
    		ret = crypto_wait_req(enc ? crypto_skcipher_encrypt(req) :
    				      crypto_skcipher_decrypt(req), &wait);
    
    		if (ret) {
    			pr_err("alg: skcipher%s: %s failed on test %d for %s: ret=%d\n",
    			       d, e, j, algo, -ret);
    			goto out;
    		}
    
    		q = data;
    		if (memcmp(q, template[i].result, template[i].rlen)) {
    			pr_err("alg: skcipher%s: Test %d failed (invalid result) on %s for %s\n",
    			       d, j, e, algo);
    			hexdump(q, template[i].rlen);
    			ret = -EINVAL;
    			goto out;
    		}
    
    		if (template[i].iv_out &&
    		    memcmp(iv, template[i].iv_out,
    			   crypto_skcipher_ivsize(tfm))) {
    			pr_err("alg: skcipher%s: Test %d failed (invalid output IV) on %s for %s\n",
    			       d, j, e, algo);
    			hexdump(iv, crypto_skcipher_ivsize(tfm));
    			ret = -EINVAL;
    			goto out;
    		}
    	}
    
    	j = 0;
    	for (i = 0; i < tcount; i++) {
    		/* alignment tests are only done with continuous buffers */
    		if (align_offset != 0)
    			break;
    
    		if (!template[i].np)
    			continue;
    
    		if (fips_enabled && template[i].fips_skip)
    			continue;
    
    		if (template[i].iv)
    			memcpy(iv, template[i].iv, ivsize);
    		else
    			memset(iv, 0, MAX_IVLEN);
    
    		j++;
    		crypto_skcipher_clear_flags(tfm, ~0);
    		if (template[i].wk)
    			crypto_skcipher_set_flags(tfm,
    						  CRYPTO_TFM_REQ_WEAK_KEY);
    
    		ret = crypto_skcipher_setkey(tfm, template[i].key,
    					     template[i].klen);
    		if (template[i].fail == !ret) {
    			pr_err("alg: skcipher%s: setkey failed on chunk test %d for %s: flags=%x\n",
    			       d, j, algo, crypto_skcipher_get_flags(tfm));
    			goto out;
    		} else if (ret)
    			continue;
    
    		temp = 0;
    		ret = -EINVAL;
    		sg_init_table(sg, template[i].np);
    		if (diff_dst)
    			sg_init_table(sgout, template[i].np);
    		for (k = 0; k < template[i].np; k++) {
    			if (WARN_ON(offset_in_page(IDX[k]) +
    				    template[i].tap[k] > PAGE_SIZE))
    				goto out;
    
    			q = xbuf[IDX[k] >> PAGE_SHIFT] + offset_in_page(IDX[k]);
    
    			memcpy(q, template[i].input + temp, template[i].tap[k]);
    
    			if (offset_in_page(q) + template[i].tap[k] < PAGE_SIZE)
    				q[template[i].tap[k]] = 0;
    
    			sg_set_buf(&sg[k], q, template[i].tap[k]);
    			if (diff_dst) {
    				q = xoutbuf[IDX[k] >> PAGE_SHIFT] +
    				    offset_in_page(IDX[k]);
    
    				sg_set_buf(&sgout[k], q, template[i].tap[k]);
    
    				memset(q, 0, template[i].tap[k]);
    				if (offset_in_page(q) +
    				    template[i].tap[k] < PAGE_SIZE)
    					q[template[i].tap[k]] = 0;
    			}
    
    			temp += template[i].tap[k];
    		}
    
    		skcipher_request_set_crypt(req, sg, (diff_dst) ? sgout : sg,
    					   template[i].ilen, iv);
    
    		ret = crypto_wait_req(enc ? crypto_skcipher_encrypt(req) :
    				      crypto_skcipher_decrypt(req), &wait);
    
    		if (ret) {
    			pr_err("alg: skcipher%s: %s failed on chunk test %d for %s: ret=%d\n",
    			       d, e, j, algo, -ret);
    			goto out;
    		}
    
    		temp = 0;
    		ret = -EINVAL;
    		for (k = 0; k < template[i].np; k++) {
    			if (diff_dst)
    				q = xoutbuf[IDX[k] >> PAGE_SHIFT] +
    				    offset_in_page(IDX[k]);
    			else
    				q = xbuf[IDX[k] >> PAGE_SHIFT] +
    				    offset_in_page(IDX[k]);
    
    			if (memcmp(q, template[i].result + temp,
    				   template[i].tap[k])) {
    				pr_err("alg: skcipher%s: Chunk test %d failed on %s at page %u for %s\n",
    				       d, j, e, k, algo);
    				hexdump(q, template[i].tap[k]);
    				goto out;
    			}
    
    			q += template[i].tap[k];
    			for (n = 0; offset_in_page(q + n) && q[n]; n++)
    				;
    			if (n) {
    				pr_err("alg: skcipher%s: Result buffer corruption in chunk test %d on %s at page %u for %s: %u bytes:\n",
    				       d, j, e, k, algo, n);
    				hexdump(q, n);
    				goto out;
    			}
    			temp += template[i].tap[k];
    		}
    	}
    
    	ret = 0;
    
    out:
    	skcipher_request_free(req);
    	if (diff_dst)
    		testmgr_free_buf(xoutbuf);
    out_nooutbuf:
    	testmgr_free_buf(xbuf);
    out_nobuf:
    	return ret;
    }
    
    static int test_skcipher(struct crypto_skcipher *tfm, int enc,
    			 const struct cipher_testvec *template,
    			 unsigned int tcount)
    {
    	unsigned int alignmask;
    	int ret;
    
    	/* test 'dst == src' case */
    	ret = __test_skcipher(tfm, enc, template, tcount, false, 0);
    	if (ret)
    		return ret;
    
    	/* test 'dst != src' case */
    	ret = __test_skcipher(tfm, enc, template, tcount, true, 0);
    	if (ret)
    		return ret;
    
    	/* test unaligned buffers, check with one byte offset */
    	ret = __test_skcipher(tfm, enc, template, tcount, true, 1);
    	if (ret)
    		return ret;
    
    	alignmask = crypto_tfm_alg_alignmask(&tfm->base);
    	if (alignmask) {
    		/* Check if alignment mask for tfm is correctly set. */
    		ret = __test_skcipher(tfm, enc, template, tcount, true,
    				      alignmask + 1);
    		if (ret)
    			return ret;
    	}
    
    	return 0;
    }
    
    static int test_comp(struct crypto_comp *tfm,
    		     const struct comp_testvec *ctemplate,
    		     const struct comp_testvec *dtemplate,
    		     int ctcount, int dtcount)
    {
    	const char *algo = crypto_tfm_alg_driver_name(crypto_comp_tfm(tfm));
    	char *output, *decomp_output;
    	unsigned int i;
    	int ret;
    
    	output = kmalloc(COMP_BUF_SIZE, GFP_KERNEL);
    	if (!output)
    		return -ENOMEM;
    
    	decomp_output = kmalloc(COMP_BUF_SIZE, GFP_KERNEL);
    	if (!decomp_output) {
    		kfree(output);
    		return -ENOMEM;
    	}
    
    	for (i = 0; i < ctcount; i++) {
    		int ilen;
    		unsigned int dlen = COMP_BUF_SIZE;
    
    		memset(output, 0, sizeof(COMP_BUF_SIZE));
    		memset(decomp_output, 0, sizeof(COMP_BUF_SIZE));
    
    		ilen = ctemplate[i].inlen;
    		ret = crypto_comp_compress(tfm, ctemplate[i].input,
    					   ilen, output, &dlen);
    		if (ret) {
    			printk(KERN_ERR "alg: comp: compression failed "
    			       "on test %d for %s: ret=%d\n", i + 1, algo,
    			       -ret);
    			goto out;
    		}
    
    		ilen = dlen;
    		dlen = COMP_BUF_SIZE;
    		ret = crypto_comp_decompress(tfm, output,
    					     ilen, decomp_output, &dlen);
    		if (ret) {
    			pr_err("alg: comp: compression failed: decompress: on test %d for %s failed: ret=%d\n",
    			       i + 1, algo, -ret);
    			goto out;
    		}
    
    		if (dlen != ctemplate[i].inlen) {
    			printk(KERN_ERR "alg: comp: Compression test %d "
    			       "failed for %s: output len = %d\n", i + 1, algo,
    			       dlen);
    			ret = -EINVAL;
    			goto out;
    		}
    
    		if (memcmp(decomp_output, ctemplate[i].input,
    			   ctemplate[i].inlen)) {
    			pr_err("alg: comp: compression failed: output differs: on test %d for %s\n",
    			       i + 1, algo);
    			hexdump(decomp_output, dlen);
    			ret = -EINVAL;
    			goto out;
    		}
    	}
    
    	for (i = 0; i < dtcount; i++) {
    		int ilen;
    		unsigned int dlen = COMP_BUF_SIZE;
    
    		memset(decomp_output, 0, sizeof(COMP_BUF_SIZE));
    
    		ilen = dtemplate[i].inlen;
    		ret = crypto_comp_decompress(tfm, dtemplate[i].input,
    					     ilen, decomp_output, &dlen);
    		if (ret) {
    			printk(KERN_ERR "alg: comp: decompression failed "
    			       "on test %d for %s: ret=%d\n", i + 1, algo,
    			       -ret);
    			goto out;
    		}
    
    		if (dlen != dtemplate[i].outlen) {
    			printk(KERN_ERR "alg: comp: Decompression test %d "
    			       "failed for %s: output len = %d\n", i + 1, algo,
    			       dlen);
    			ret = -EINVAL;
    			goto out;
    		}
    
    		if (memcmp(decomp_output, dtemplate[i].output, dlen)) {
    			printk(KERN_ERR "alg: comp: Decompression test %d "
    			       "failed for %s\n", i + 1, algo);
    			hexdump(decomp_output, dlen);
    			ret = -EINVAL;
    			goto out;
    		}
    	}
    
    	ret = 0;
    
    out:
    	kfree(decomp_output);
    	kfree(output);
    	return ret;
    }
    
    static int test_acomp(struct crypto_acomp *tfm,
    			      const struct comp_testvec *ctemplate,
    		      const struct comp_testvec *dtemplate,
    		      int ctcount, int dtcount)
    {
    	const char *algo = crypto_tfm_alg_driver_name(crypto_acomp_tfm(tfm));
    	unsigned int i;
    	char *output, *decomp_out;
    	int ret;
    	struct scatterlist src, dst;
    	struct acomp_req *req;
    	struct crypto_wait wait;
    
    	output = kmalloc(COMP_BUF_SIZE, GFP_KERNEL);
    	if (!output)
    		return -ENOMEM;
    
    	decomp_out = kmalloc(COMP_BUF_SIZE, GFP_KERNEL);
    	if (!decomp_out) {
    		kfree(output);
    		return -ENOMEM;
    	}
    
    	for (i = 0; i < ctcount; i++) {
    		unsigned int dlen = COMP_BUF_SIZE;
    		int ilen = ctemplate[i].inlen;
    		void *input_vec;
    
    		input_vec = kmemdup(ctemplate[i].input, ilen, GFP_KERNEL);
    		if (!input_vec) {
    			ret = -ENOMEM;
    			goto out;
    		}
    
    		memset(output, 0, dlen);
    		crypto_init_wait(&wait);
    		sg_init_one(&src, input_vec, ilen);
    		sg_init_one(&dst, output, dlen);
    
    		req = acomp_request_alloc(tfm);
    		if (!req) {
    			pr_err("alg: acomp: request alloc failed for %s\n",
    			       algo);
    			kfree(input_vec);
    			ret = -ENOMEM;
    			goto out;
    		}
    
    		acomp_request_set_params(req, &src, &dst, ilen, dlen);
    		acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
    					   crypto_req_done, &wait);
    
    		ret = crypto_wait_req(crypto_acomp_compress(req), &wait);
    		if (ret) {
    			pr_err("alg: acomp: compression failed on test %d for %s: ret=%d\n",
    			       i + 1, algo, -ret);
    			kfree(input_vec);
    			acomp_request_free(req);
    			goto out;
    		}
    
    		ilen = req->dlen;
    		dlen = COMP_BUF_SIZE;
    		sg_init_one(&src, output, ilen);
    		sg_init_one(&dst, decomp_out, dlen);
    		crypto_init_wait(&wait);
    		acomp_request_set_params(req, &src, &dst, ilen, dlen);
    
    		ret = crypto_wait_req(crypto_acomp_decompress(req), &wait);
    		if (ret) {
    			pr_err("alg: acomp: compression failed on test %d for %s: ret=%d\n",
    			       i + 1, algo, -ret);
    			kfree(input_vec);
    			acomp_request_free(req);
    			goto out;
    		}
    
    		if (req->dlen != ctemplate[i].inlen) {
    			pr_err("alg: acomp: Compression test %d failed for %s: output len = %d\n",
    			       i + 1, algo, req->dlen);
    			ret = -EINVAL;
    			kfree(input_vec);
    			acomp_request_free(req);
    			goto out;
    		}
    
    		if (memcmp(input_vec, decomp_out, req->dlen)) {
    			pr_err("alg: acomp: Compression test %d failed for %s\n",
    			       i + 1, algo);
    			hexdump(output, req->dlen);
    			ret = -EINVAL;
    			kfree(input_vec);
    			acomp_request_free(req);
    			goto out;
    		}
    
    		kfree(input_vec);
    		acomp_request_free(req);
    	}
    
    	for (i = 0; i < dtcount; i++) {
    		unsigned int dlen = COMP_BUF_SIZE;
    		int ilen = dtemplate[i].inlen;
    		void *input_vec;
    
    		input_vec = kmemdup(dtemplate[i].input, ilen, GFP_KERNEL);
    		if (!input_vec) {
    			ret = -ENOMEM;
    			goto out;
    		}
    
    		memset(output, 0, dlen);
    		crypto_init_wait(&wait);
    		sg_init_one(&src, input_vec, ilen);
    		sg_init_one(&dst, output, dlen);
    
    		req = acomp_request_alloc(tfm);
    		if (!req) {
    			pr_err("alg: acomp: request alloc failed for %s\n",
    			       algo);
    			kfree(input_vec);
    			ret = -ENOMEM;
    			goto out;
    		}
    
    		acomp_request_set_params(req, &src, &dst, ilen, dlen);
    		acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
    					   crypto_req_done, &wait);
    
    		ret = crypto_wait_req(crypto_acomp_decompress(req), &wait);
    		if (ret) {
    			pr_err("alg: acomp: decompression failed on test %d for %s: ret=%d\n",
    			       i + 1, algo, -ret);
    			kfree(input_vec);
    			acomp_request_free(req);
    			goto out;
    		}
    
    		if (req->dlen != dtemplate[i].outlen) {
    			pr_err("alg: acomp: Decompression test %d failed for %s: output len = %d\n",
    			       i + 1, algo, req->dlen);
    			ret = -EINVAL;
    			kfree(input_vec);
    			acomp_request_free(req);
    			goto out;
    		}
    
    		if (memcmp(output, dtemplate[i].output, req->dlen)) {
    			pr_err("alg: acomp: Decompression test %d failed for %s\n",
    			       i + 1, algo);
    			hexdump(output, req->dlen);
    			ret = -EINVAL;
    			kfree(input_vec);
    			acomp_request_free(req);
    			goto out;
    		}
    
    		kfree(input_vec);
    		acomp_request_free(req);
    	}
    
    	ret = 0;
    
    out:
    	kfree(decomp_out);
    	kfree(output);
    	return ret;
    }
    
    static int test_cprng(struct crypto_rng *tfm,
    		      const struct cprng_testvec *template,
    		      unsigned int tcount)
    {
    	const char *algo = crypto_tfm_alg_driver_name(crypto_rng_tfm(tfm));
    	int err = 0, i, j, seedsize;
    	u8 *seed;
    	char result[32];
    
    	seedsize = crypto_rng_seedsize(tfm);
    
    	seed = kmalloc(seedsize, GFP_KERNEL);
    	if (!seed) {
    		printk(KERN_ERR "alg: cprng: Failed to allocate seed space "
    		       "for %s\n", algo);
    		return -ENOMEM;
    	}
    
    	for (i = 0; i < tcount; i++) {
    		memset(result, 0, 32);
    
    		memcpy(seed, template[i].v, template[i].vlen);
    		memcpy(seed + template[i].vlen, template[i].key,
    		       template[i].klen);
    		memcpy(seed + template[i].vlen + template[i].klen,
    		       template[i].dt, template[i].dtlen);
    
    		err = crypto_rng_reset(tfm, seed, seedsize);
    		if (err) {
    			printk(KERN_ERR "alg: cprng: Failed to reset rng "
    			       "for %s\n", algo);
    			goto out;
    		}
    
    		for (j = 0; j < template[i].loops; j++) {
    			err = crypto_rng_get_bytes(tfm, result,
    						   template[i].rlen);
    			if (err < 0) {
    				printk(KERN_ERR "alg: cprng: Failed to obtain "
    				       "the correct amount of random data for "
    				       "%s (requested %d)\n", algo,
    				       template[i].rlen);
    				goto out;
    			}
    		}
    
    		err = memcmp(result, template[i].result,
    			     template[i].rlen);
    		if (err) {
    			printk(KERN_ERR "alg: cprng: Test %d failed for %s\n",
    			       i, algo);
    			hexdump(result, template[i].rlen);
    			err = -EINVAL;
    			goto out;
    		}
    	}
    
    out:
    	kfree(seed);
    	return err;
    }
    
    static int alg_test_aead(const struct alg_test_desc *desc, const char *driver,
    			 u32 type, u32 mask)
    {
    	struct crypto_aead *tfm;
    	int err = 0;
    
    	tfm = crypto_alloc_aead(driver, type, mask);
    	if (IS_ERR(tfm)) {
    		printk(KERN_ERR "alg: aead: Failed to load transform for %s: "
    		       "%ld\n", driver, PTR_ERR(tfm));
    		return PTR_ERR(tfm);
    	}
    
    	if (desc->suite.aead.enc.vecs) {
    		err = test_aead(tfm, ENCRYPT, desc->suite.aead.enc.vecs,
    				desc->suite.aead.enc.count);
    		if (err)
    			goto out;
    	}
    
    	if (!err && desc->suite.aead.dec.vecs)
    		err = test_aead(tfm, DECRYPT, desc->suite.aead.dec.vecs,
    				desc->suite.aead.dec.count);
    
    out:
    	crypto_free_aead(tfm);
    	return err;
    }
    
    static int alg_test_cipher(const struct alg_test_desc *desc,
    			   const char *driver, u32 type, u32 mask)
    {
    	struct crypto_cipher *tfm;
    	int err = 0;
    
    	tfm = crypto_alloc_cipher(driver, type, mask);
    	if (IS_ERR(tfm)) {
    		printk(KERN_ERR "alg: cipher: Failed to load transform for "
    		       "%s: %ld\n", driver, PTR_ERR(tfm));
    		return PTR_ERR(tfm);
    	}
    
    	if (desc->suite.cipher.enc.vecs) {
    		err = test_cipher(tfm, ENCRYPT, desc->suite.cipher.enc.vecs,
    				  desc->suite.cipher.enc.count);
    		if (err)
    			goto out;
    	}
    
    	if (desc->suite.cipher.dec.vecs)
    		err = test_cipher(tfm, DECRYPT, desc->suite.cipher.dec.vecs,
    				  desc->suite.cipher.dec.count);
    
    out:
    	crypto_free_cipher(tfm);
    	return err;
    }
    
    static int alg_test_skcipher(const struct alg_test_desc *desc,
    			     const char *driver, u32 type, u32 mask)
    {
    	struct crypto_skcipher *tfm;
    	int err = 0;
    
    	tfm = crypto_alloc_skcipher(driver, type, mask);
    	if (IS_ERR(tfm)) {
    		printk(KERN_ERR "alg: skcipher: Failed to load transform for "
    		       "%s: %ld\n", driver, PTR_ERR(tfm));
    		return PTR_ERR(tfm);
    	}
    
    	if (desc->suite.cipher.enc.vecs) {
    		err = test_skcipher(tfm, ENCRYPT, desc->suite.cipher.enc.vecs,
    				    desc->suite.cipher.enc.count);
    		if (err)
    			goto out;
    	}
    
    	if (desc->suite.cipher.dec.vecs)
    		err = test_skcipher(tfm, DECRYPT, desc->suite.cipher.dec.vecs,
    				    desc->suite.cipher.dec.count);
    
    out:
    	crypto_free_skcipher(tfm);
    	return err;
    }
    
    static int alg_test_comp(const struct alg_test_desc *desc, const char *driver,
    			 u32 type, u32 mask)
    {
    	struct crypto_comp *comp;
    	struct crypto_acomp *acomp;
    	int err;
    	u32 algo_type = type & CRYPTO_ALG_TYPE_ACOMPRESS_MASK;
    
    	if (algo_type == CRYPTO_ALG_TYPE_ACOMPRESS) {
    		acomp = crypto_alloc_acomp(driver, type, mask);
    		if (IS_ERR(acomp)) {
    			pr_err("alg: acomp: Failed to load transform for %s: %ld\n",
    			       driver, PTR_ERR(acomp));
    			return PTR_ERR(acomp);
    		}
    		err = test_acomp(acomp, desc->suite.comp.comp.vecs,
    				 desc->suite.comp.decomp.vecs,
    				 desc->suite.comp.comp.count,
    				 desc->suite.comp.decomp.count);
    		crypto_free_acomp(acomp);
    	} else {
    		comp = crypto_alloc_comp(driver, type, mask);
    		if (IS_ERR(comp)) {
    			pr_err("alg: comp: Failed to load transform for %s: %ld\n",
    			       driver, PTR_ERR(comp));
    			return PTR_ERR(comp);
    		}
    
    		err = test_comp(comp, desc->suite.comp.comp.vecs,
    				desc->suite.comp.decomp.vecs,
    				desc->suite.comp.comp.count,
    				desc->suite.comp.decomp.count);
    
    		crypto_free_comp(comp);
    	}
    	return err;
    }
    
    static int alg_test_hash(const struct alg_test_desc *desc, const char *driver,
    			 u32 type, u32 mask)
    {
    	struct crypto_ahash *tfm;
    	int err;
    
    	tfm = crypto_alloc_ahash(driver, type, mask);
    	if (IS_ERR(tfm)) {
    		printk(KERN_ERR "alg: hash: Failed to load transform for %s: "
    		       "%ld\n", driver, PTR_ERR(tfm));
    		return PTR_ERR(tfm);
    	}
    
    	err = test_hash(tfm, desc->suite.hash.vecs,
    			desc->suite.hash.count, true);
    	if (!err)
    		err = test_hash(tfm, desc->suite.hash.vecs,
    				desc->suite.hash.count, false);
    
    	crypto_free_ahash(tfm);
    	return err;
    }
    
    static int alg_test_crc32c(const struct alg_test_desc *desc,
    			   const char *driver, u32 type, u32 mask)
    {
    	struct crypto_shash *tfm;
    	u32 val;
    	int err;
    
    	err = alg_test_hash(desc, driver, type, mask);
    	if (err)
    		goto out;
    
    	tfm = crypto_alloc_shash(driver, type, mask);
    	if (IS_ERR(tfm)) {
    		printk(KERN_ERR "alg: crc32c: Failed to load transform for %s: "
    		       "%ld\n", driver, PTR_ERR(tfm));
    		err = PTR_ERR(tfm);
    		goto out;
    	}
    
    	do {
    		SHASH_DESC_ON_STACK(shash, tfm);
    		u32 *ctx = (u32 *)shash_desc_ctx(shash);
    
    		shash->tfm = tfm;
    		shash->flags = 0;
    
    		*ctx = le32_to_cpu(420553207);
    		err = crypto_shash_final(shash, (u8 *)&val);
    		if (err) {
    			printk(KERN_ERR "alg: crc32c: Operation failed for "
    			       "%s: %d\n", driver, err);
    			break;
    		}
    
    		if (val != ~420553207) {
    			printk(KERN_ERR "alg: crc32c: Test failed for %s: "
    			       "%d\n", driver, val);
    			err = -EINVAL;
    		}
    	} while (0);
    
    	crypto_free_shash(tfm);
    
    out:
    	return err;
    }
    
    static int alg_test_cprng(const struct alg_test_desc *desc, const char *driver,
    			  u32 type, u32 mask)
    {
    	struct crypto_rng *rng;
    	int err;
    
    	rng = crypto_alloc_rng(driver, type, mask);
    	if (IS_ERR(rng)) {
    		printk(KERN_ERR "alg: cprng: Failed to load transform for %s: "
    		       "%ld\n", driver, PTR_ERR(rng));
    		return PTR_ERR(rng);
    	}
    
    	err = test_cprng(rng, desc->suite.cprng.vecs, desc->suite.cprng.count);
    
    	crypto_free_rng(rng);
    
    	return err;
    }
    
    
    static int drbg_cavs_test(const struct drbg_testvec *test, int pr,
    			  const char *driver, u32 type, u32 mask)
    {
    	int ret = -EAGAIN;
    	struct crypto_rng *drng;
    	struct drbg_test_data test_data;
    	struct drbg_string addtl, pers, testentropy;
    	unsigned char *buf = kzalloc(test->expectedlen, GFP_KERNEL);
    
    	if (!buf)
    		return -ENOMEM;
    
    	drng = crypto_alloc_rng(driver, type, mask);
    	if (IS_ERR(drng)) {
    		printk(KERN_ERR "alg: drbg: could not allocate DRNG handle for "
    		       "%s\n", driver);
    		kzfree(buf);
    		return -ENOMEM;
    	}
    
    	test_data.testentropy = &testentropy;
    	drbg_string_fill(&testentropy, test->entropy, test->entropylen);
    	drbg_string_fill(&pers, test->pers, test->perslen);
    	ret = crypto_drbg_reset_test(drng, &pers, &test_data);
    	if (ret) {
    		printk(KERN_ERR "alg: drbg: Failed to reset rng\n");
    		goto outbuf;
    	}
    
    	drbg_string_fill(&addtl, test->addtla, test->addtllen);
    	if (pr) {
    		drbg_string_fill(&testentropy, test->entpra, test->entprlen);
    		ret = crypto_drbg_get_bytes_addtl_test(drng,
    			buf, test->expectedlen, &addtl,	&test_data);
    	} else {
    		ret = crypto_drbg_get_bytes_addtl(drng,
    			buf, test->expectedlen, &addtl);
    	}
    	if (ret < 0) {
    		printk(KERN_ERR "alg: drbg: could not obtain random data for "
    		       "driver %s\n", driver);
    		goto outbuf;
    	}
    
    	drbg_string_fill(&addtl, test->addtlb, test->addtllen);
    	if (pr) {
    		drbg_string_fill(&testentropy, test->entprb, test->entprlen);
    		ret = crypto_drbg_get_bytes_addtl_test(drng,
    			buf, test->expectedlen, &addtl, &test_data);
    	} else {
    		ret = crypto_drbg_get_bytes_addtl(drng,
    			buf, test->expectedlen, &addtl);
    	}
    	if (ret < 0) {
    		printk(KERN_ERR "alg: drbg: could not obtain random data for "
    		       "driver %s\n", driver);
    		goto outbuf;
    	}
    
    	ret = memcmp(test->expected, buf, test->expectedlen);
    
    outbuf:
    	crypto_free_rng(drng);
    	kzfree(buf);
    	return ret;
    }
    
    
    static int alg_test_drbg(const struct alg_test_desc *desc, const char *driver,
    			 u32 type, u32 mask)
    {
    	int err = 0;
    	int pr = 0;
    	int i = 0;
    	const struct drbg_testvec *template = desc->suite.drbg.vecs;
    	unsigned int tcount = desc->suite.drbg.count;
    
    	if (0 == memcmp(driver, "drbg_pr_", 8))
    		pr = 1;
    
    	for (i = 0; i < tcount; i++) {
    		err = drbg_cavs_test(&template[i], pr, driver, type, mask);
    		if (err) {
    			printk(KERN_ERR "alg: drbg: Test %d failed for %s\n",
    			       i, driver);
    			err = -EINVAL;
    			break;
    		}
    	}
    	return err;
    
    }
    
    static int do_test_kpp(struct crypto_kpp *tfm, const struct kpp_testvec *vec,
    		       const char *alg)
    {
    	struct kpp_request *req;
    	void *input_buf = NULL;
    	void *output_buf = NULL;
    	void *a_public = NULL;
    	void *a_ss = NULL;
    	void *shared_secret = NULL;
    	struct crypto_wait wait;
    	unsigned int out_len_max;
    	int err = -ENOMEM;
    	struct scatterlist src, dst;
    
    	req = kpp_request_alloc(tfm, GFP_KERNEL);
    	if (!req)
    		return err;
    
    	crypto_init_wait(&wait);
    
    	err = crypto_kpp_set_secret(tfm, vec->secret, vec->secret_size);
    	if (err < 0)
    		goto free_req;
    
    	out_len_max = crypto_kpp_maxsize(tfm);
    	output_buf = kzalloc(out_len_max, GFP_KERNEL);
    	if (!output_buf) {
    		err = -ENOMEM;
    		goto free_req;
    	}
    
    	/* Use appropriate parameter as base */
    	kpp_request_set_input(req, NULL, 0);
    	sg_init_one(&dst, output_buf, out_len_max);
    	kpp_request_set_output(req, &dst, out_len_max);
    	kpp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
    				 crypto_req_done, &wait);
    
    	/* Compute party A's public key */
    	err = crypto_wait_req(crypto_kpp_generate_public_key(req), &wait);
    	if (err) {
    		pr_err("alg: %s: Party A: generate public key test failed. err %d\n",
    		       alg, err);
    		goto free_output;
    	}
    
    	if (vec->genkey) {
    		/* Save party A's public key */
    		a_public = kzalloc(out_len_max, GFP_KERNEL);
    		if (!a_public) {
    			err = -ENOMEM;
    			goto free_output;
    		}
    		memcpy(a_public, sg_virt(req->dst), out_len_max);
    	} else {
    		/* Verify calculated public key */
    		if (memcmp(vec->expected_a_public, sg_virt(req->dst),
    			   vec->expected_a_public_size)) {
    			pr_err("alg: %s: Party A: generate public key test failed. Invalid output\n",
    			       alg);
    			err = -EINVAL;
    			goto free_output;
    		}
    	}
    
    	/* Calculate shared secret key by using counter part (b) public key. */
    	input_buf = kzalloc(vec->b_public_size, GFP_KERNEL);
    	if (!input_buf) {
    		err = -ENOMEM;
    		goto free_output;
    	}
    
    	memcpy(input_buf, vec->b_public, vec->b_public_size);
    	sg_init_one(&src, input_buf, vec->b_public_size);
    	sg_init_one(&dst, output_buf, out_len_max);
    	kpp_request_set_input(req, &src, vec->b_public_size);
    	kpp_request_set_output(req, &dst, out_len_max);
    	kpp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
    				 crypto_req_done, &wait);
    	err = crypto_wait_req(crypto_kpp_compute_shared_secret(req), &wait);
    	if (err) {
    		pr_err("alg: %s: Party A: compute shared secret test failed. err %d\n",
    		       alg, err);
    		goto free_all;
    	}
    
    	if (vec->genkey) {
    		/* Save the shared secret obtained by party A */
    		a_ss = kzalloc(vec->expected_ss_size, GFP_KERNEL);
    		if (!a_ss) {
    			err = -ENOMEM;
    			goto free_all;
    		}
    		memcpy(a_ss, sg_virt(req->dst), vec->expected_ss_size);
    
    		/*
    		 * Calculate party B's shared secret by using party A's
    		 * public key.
    		 */
    		err = crypto_kpp_set_secret(tfm, vec->b_secret,
    					    vec->b_secret_size);
    		if (err < 0)
    			goto free_all;
    
    		sg_init_one(&src, a_public, vec->expected_a_public_size);
    		sg_init_one(&dst, output_buf, out_len_max);
    		kpp_request_set_input(req, &src, vec->expected_a_public_size);
    		kpp_request_set_output(req, &dst, out_len_max);
    		kpp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
    					 crypto_req_done, &wait);
    		err = crypto_wait_req(crypto_kpp_compute_shared_secret(req),
    				      &wait);
    		if (err) {
    			pr_err("alg: %s: Party B: compute shared secret failed. err %d\n",
    			       alg, err);
    			goto free_all;
    		}
    
    		shared_secret = a_ss;
    	} else {
    		shared_secret = (void *)vec->expected_ss;
    	}
    
    	/*
    	 * verify shared secret from which the user will derive
    	 * secret key by executing whatever hash it has chosen
    	 */
    	if (memcmp(shared_secret, sg_virt(req->dst),
    		   vec->expected_ss_size)) {
    		pr_err("alg: %s: compute shared secret test failed. Invalid output\n",
    		       alg);
    		err = -EINVAL;
    	}
    
    free_all:
    	kfree(a_ss);
    	kfree(input_buf);
    free_output:
    	kfree(a_public);
    	kfree(output_buf);
    free_req:
    	kpp_request_free(req);
    	return err;
    }
    
    static int test_kpp(struct crypto_kpp *tfm, const char *alg,
    		    const struct kpp_testvec *vecs, unsigned int tcount)
    {
    	int ret, i;
    
    	for (i = 0; i < tcount; i++) {
    		ret = do_test_kpp(tfm, vecs++, alg);
    		if (ret) {
    			pr_err("alg: %s: test failed on vector %d, err=%d\n",
    			       alg, i + 1, ret);
    			return ret;
    		}
    	}
    	return 0;
    }
    
    static int alg_test_kpp(const struct alg_test_desc *desc, const char *driver,
    			u32 type, u32 mask)
    {
    	struct crypto_kpp *tfm;
    	int err = 0;
    
    	tfm = crypto_alloc_kpp(driver, type, mask);
    	if (IS_ERR(tfm)) {
    		pr_err("alg: kpp: Failed to load tfm for %s: %ld\n",
    		       driver, PTR_ERR(tfm));
    		return PTR_ERR(tfm);
    	}
    	if (desc->suite.kpp.vecs)
    		err = test_kpp(tfm, desc->alg, desc->suite.kpp.vecs,
    			       desc->suite.kpp.count);
    
    	crypto_free_kpp(tfm);
    	return err;
    }
    
    static int test_akcipher_one(struct crypto_akcipher *tfm,
    			     const struct akcipher_testvec *vecs)
    {
    	char *xbuf[XBUFSIZE];
    	struct akcipher_request *req;
    	void *outbuf_enc = NULL;
    	void *outbuf_dec = NULL;
    	struct crypto_wait wait;
    	unsigned int out_len_max, out_len = 0;
    	int err = -ENOMEM;
    	struct scatterlist src, dst, src_tab[2];
    
    	if (testmgr_alloc_buf(xbuf))
    		return err;
    
    	req = akcipher_request_alloc(tfm, GFP_KERNEL);
    	if (!req)
    		goto free_xbuf;
    
    	crypto_init_wait(&wait);
    
    	if (vecs->public_key_vec)
    		err = crypto_akcipher_set_pub_key(tfm, vecs->key,
    						  vecs->key_len);
    	else
    		err = crypto_akcipher_set_priv_key(tfm, vecs->key,
    						   vecs->key_len);
    	if (err)
    		goto free_req;
    
    	err = -ENOMEM;
    	out_len_max = crypto_akcipher_maxsize(tfm);
    	outbuf_enc = kzalloc(out_len_max, GFP_KERNEL);
    	if (!outbuf_enc)
    		goto free_req;
    
    	if (WARN_ON(vecs->m_size > PAGE_SIZE))
    		goto free_all;
    
    	memcpy(xbuf[0], vecs->m, vecs->m_size);
    
    	sg_init_table(src_tab, 2);
    	sg_set_buf(&src_tab[0], xbuf[0], 8);
    	sg_set_buf(&src_tab[1], xbuf[0] + 8, vecs->m_size - 8);
    	sg_init_one(&dst, outbuf_enc, out_len_max);
    	akcipher_request_set_crypt(req, src_tab, &dst, vecs->m_size,
    				   out_len_max);
    	akcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
    				      crypto_req_done, &wait);
    
    	err = crypto_wait_req(vecs->siggen_sigver_test ?
    			      /* Run asymmetric signature generation */
    			      crypto_akcipher_sign(req) :
    			      /* Run asymmetric encrypt */
    			      crypto_akcipher_encrypt(req), &wait);
    	if (err) {
    		pr_err("alg: akcipher: encrypt test failed. err %d\n", err);
    		goto free_all;
    	}
    	if (req->dst_len != vecs->c_size) {
    		pr_err("alg: akcipher: encrypt test failed. Invalid output len\n");
    		err = -EINVAL;
    		goto free_all;
    	}
    	/* verify that encrypted message is equal to expected */
    	if (memcmp(vecs->c, outbuf_enc, vecs->c_size)) {
    		pr_err("alg: akcipher: encrypt test failed. Invalid output\n");
    		hexdump(outbuf_enc, vecs->c_size);
    		err = -EINVAL;
    		goto free_all;
    	}
    	/* Don't invoke decrypt for vectors with public key */
    	if (vecs->public_key_vec) {
    		err = 0;
    		goto free_all;
    	}
    	outbuf_dec = kzalloc(out_len_max, GFP_KERNEL);
    	if (!outbuf_dec) {
    		err = -ENOMEM;
    		goto free_all;
    	}
    
    	if (WARN_ON(vecs->c_size > PAGE_SIZE))
    		goto free_all;
    
    	memcpy(xbuf[0], vecs->c, vecs->c_size);
    
    	sg_init_one(&src, xbuf[0], vecs->c_size);
    	sg_init_one(&dst, outbuf_dec, out_len_max);
    	crypto_init_wait(&wait);
    	akcipher_request_set_crypt(req, &src, &dst, vecs->c_size, out_len_max);
    
    	err = crypto_wait_req(vecs->siggen_sigver_test ?
    			      /* Run asymmetric signature verification */
    			      crypto_akcipher_verify(req) :
    			      /* Run asymmetric decrypt */
    			      crypto_akcipher_decrypt(req), &wait);
    	if (err) {
    		pr_err("alg: akcipher: decrypt test failed. err %d\n", err);
    		goto free_all;
    	}
    	out_len = req->dst_len;
    	if (out_len < vecs->m_size) {
    		pr_err("alg: akcipher: decrypt test failed. "
    		       "Invalid output len %u\n", out_len);
    		err = -EINVAL;
    		goto free_all;
    	}
    	/* verify that decrypted message is equal to the original msg */
    	if (memchr_inv(outbuf_dec, 0, out_len - vecs->m_size) ||
    	    memcmp(vecs->m, outbuf_dec + out_len - vecs->m_size,
    		   vecs->m_size)) {
    		pr_err("alg: akcipher: decrypt test failed. Invalid output\n");
    		hexdump(outbuf_dec, out_len);
    		err = -EINVAL;
    	}
    free_all:
    	kfree(outbuf_dec);
    	kfree(outbuf_enc);
    free_req:
    	akcipher_request_free(req);
    free_xbuf:
    	testmgr_free_buf(xbuf);
    	return err;
    }
    
    static int test_akcipher(struct crypto_akcipher *tfm, const char *alg,
    			 const struct akcipher_testvec *vecs,
    			 unsigned int tcount)
    {
    	const char *algo =
    		crypto_tfm_alg_driver_name(crypto_akcipher_tfm(tfm));
    	int ret, i;
    
    	for (i = 0; i < tcount; i++) {
    		ret = test_akcipher_one(tfm, vecs++);
    		if (!ret)
    			continue;
    
    		pr_err("alg: akcipher: test %d failed for %s, err=%d\n",
    		       i + 1, algo, ret);
    		return ret;
    	}
    	return 0;
    }
    
    static int alg_test_akcipher(const struct alg_test_desc *desc,
    			     const char *driver, u32 type, u32 mask)
    {
    	struct crypto_akcipher *tfm;
    	int err = 0;
    
    	tfm = crypto_alloc_akcipher(driver, type, mask);
    	if (IS_ERR(tfm)) {
    		pr_err("alg: akcipher: Failed to load tfm for %s: %ld\n",
    		       driver, PTR_ERR(tfm));
    		return PTR_ERR(tfm);
    	}
    	if (desc->suite.akcipher.vecs)
    		err = test_akcipher(tfm, desc->alg, desc->suite.akcipher.vecs,
    				    desc->suite.akcipher.count);
    
    	crypto_free_akcipher(tfm);
    	return err;
    }
    
    static int alg_test_null(const struct alg_test_desc *desc,
    			     const char *driver, u32 type, u32 mask)
    {
    	return 0;
    }
    
    #define __VECS(tv)	{ .vecs = tv, .count = ARRAY_SIZE(tv) }
    
    /* Please keep this list sorted by algorithm name. */
    static const struct alg_test_desc alg_test_descs[] = {
    	{
    		.alg = "ansi_cprng",
    		.test = alg_test_cprng,
    		.suite = {
    			.cprng = __VECS(ansi_cprng_aes_tv_template)
    		}
    	}, {
    		.alg = "authenc(hmac(md5),ecb(cipher_null))",
    		.test = alg_test_aead,
    		.suite = {
    			.aead = {
    				.enc = __VECS(hmac_md5_ecb_cipher_null_enc_tv_template),
    				.dec = __VECS(hmac_md5_ecb_cipher_null_dec_tv_template)
    			}
    		}
    	}, {
    		.alg = "authenc(hmac(sha1),cbc(aes))",
    		.test = alg_test_aead,
    		.fips_allowed = 1,
    		.suite = {
    			.aead = {
    				.enc = __VECS(hmac_sha1_aes_cbc_enc_tv_temp)
    			}
    		}
    	}, {
    		.alg = "authenc(hmac(sha1),cbc(des))",
    		.test = alg_test_aead,
    		.suite = {
    			.aead = {
    				.enc = __VECS(hmac_sha1_des_cbc_enc_tv_temp)
    			}
    		}
    	}, {
    		.alg = "authenc(hmac(sha1),cbc(des3_ede))",
    		.test = alg_test_aead,
    		.fips_allowed = 1,
    		.suite = {
    			.aead = {
    				.enc = __VECS(hmac_sha1_des3_ede_cbc_enc_tv_temp)
    			}
    		}
    	}, {
    		.alg = "authenc(hmac(sha1),ctr(aes))",
    		.test = alg_test_null,
    		.fips_allowed = 1,
    	}, {
    		.alg = "authenc(hmac(sha1),ecb(cipher_null))",
    		.test = alg_test_aead,
    		.suite = {
    			.aead = {
    				.enc = __VECS(hmac_sha1_ecb_cipher_null_enc_tv_temp),
    				.dec = __VECS(hmac_sha1_ecb_cipher_null_dec_tv_temp)
    			}
    		}
    	}, {
    		.alg = "authenc(hmac(sha1),rfc3686(ctr(aes)))",
    		.test = alg_test_null,
    		.fips_allowed = 1,
    	}, {
    		.alg = "authenc(hmac(sha224),cbc(des))",
    		.test = alg_test_aead,
    		.suite = {
    			.aead = {
    				.enc = __VECS(hmac_sha224_des_cbc_enc_tv_temp)
    			}
    		}
    	}, {
    		.alg = "authenc(hmac(sha224),cbc(des3_ede))",
    		.test = alg_test_aead,
    		.fips_allowed = 1,
    		.suite = {
    			.aead = {
    				.enc = __VECS(hmac_sha224_des3_ede_cbc_enc_tv_temp)
    			}
    		}
    	}, {
    		.alg = "authenc(hmac(sha256),cbc(aes))",
    		.test = alg_test_aead,
    		.fips_allowed = 1,
    		.suite = {
    			.aead = {
    				.enc = __VECS(hmac_sha256_aes_cbc_enc_tv_temp)
    			}
    		}
    	}, {
    		.alg = "authenc(hmac(sha256),cbc(des))",
    		.test = alg_test_aead,
    		.suite = {
    			.aead = {
    				.enc = __VECS(hmac_sha256_des_cbc_enc_tv_temp)
    			}
    		}
    	}, {
    		.alg = "authenc(hmac(sha256),cbc(des3_ede))",
    		.test = alg_test_aead,
    		.fips_allowed = 1,
    		.suite = {
    			.aead = {
    				.enc = __VECS(hmac_sha256_des3_ede_cbc_enc_tv_temp)
    			}
    		}
    	}, {
    		.alg = "authenc(hmac(sha256),ctr(aes))",
    		.test = alg_test_null,
    		.fips_allowed = 1,
    	}, {
    		.alg = "authenc(hmac(sha256),rfc3686(ctr(aes)))",
    		.test = alg_test_null,
    		.fips_allowed = 1,
    	}, {
    		.alg = "authenc(hmac(sha384),cbc(des))",
    		.test = alg_test_aead,
    		.suite = {
    			.aead = {
    				.enc = __VECS(hmac_sha384_des_cbc_enc_tv_temp)
    			}
    		}
    	}, {
    		.alg = "authenc(hmac(sha384),cbc(des3_ede))",
    		.test = alg_test_aead,
    		.fips_allowed = 1,
    		.suite = {
    			.aead = {
    				.enc = __VECS(hmac_sha384_des3_ede_cbc_enc_tv_temp)
    			}
    		}
    	}, {
    		.alg = "authenc(hmac(sha384),ctr(aes))",
    		.test = alg_test_null,
    		.fips_allowed = 1,
    	}, {
    		.alg = "authenc(hmac(sha384),rfc3686(ctr(aes)))",
    		.test = alg_test_null,
    		.fips_allowed = 1,
    	}, {
    		.alg = "authenc(hmac(sha512),cbc(aes))",
    		.fips_allowed = 1,
    		.test = alg_test_aead,
    		.suite = {
    			.aead = {
    				.enc = __VECS(hmac_sha512_aes_cbc_enc_tv_temp)
    			}
    		}
    	}, {
    		.alg = "authenc(hmac(sha512),cbc(des))",
    		.test = alg_test_aead,
    		.suite = {
    			.aead = {
    				.enc = __VECS(hmac_sha512_des_cbc_enc_tv_temp)
    			}
    		}
    	}, {
    		.alg = "authenc(hmac(sha512),cbc(des3_ede))",
    		.test = alg_test_aead,
    		.fips_allowed = 1,
    		.suite = {
    			.aead = {
    				.enc = __VECS(hmac_sha512_des3_ede_cbc_enc_tv_temp)
    			}
    		}
    	}, {
    		.alg = "authenc(hmac(sha512),ctr(aes))",
    		.test = alg_test_null,
    		.fips_allowed = 1,
    	}, {
    		.alg = "authenc(hmac(sha512),rfc3686(ctr(aes)))",
    		.test = alg_test_null,
    		.fips_allowed = 1,
    	}, {
    		.alg = "cbc(aes)",
    		.test = alg_test_skcipher,
    		.fips_allowed = 1,
    		.suite = {
    			.cipher = {
    				.enc = __VECS(aes_cbc_enc_tv_template),
    				.dec = __VECS(aes_cbc_dec_tv_template)
    			}
    		}
    	}, {
    		.alg = "cbc(anubis)",
    		.test = alg_test_skcipher,
    		.suite = {
    			.cipher = {
    				.enc = __VECS(anubis_cbc_enc_tv_template),
    				.dec = __VECS(anubis_cbc_dec_tv_template)
    			}
    		}
    	}, {
    		.alg = "cbc(blowfish)",
    		.test = alg_test_skcipher,
    		.suite = {
    			.cipher = {
    				.enc = __VECS(bf_cbc_enc_tv_template),
    				.dec = __VECS(bf_cbc_dec_tv_template)
    			}
    		}
    	}, {
    		.alg = "cbc(camellia)",
    		.test = alg_test_skcipher,
    		.suite = {
    			.cipher = {
    				.enc = __VECS(camellia_cbc_enc_tv_template),
    				.dec = __VECS(camellia_cbc_dec_tv_template)
    			}
    		}
    	}, {
    		.alg = "cbc(cast5)",
    		.test = alg_test_skcipher,
    		.suite = {
    			.cipher = {
    				.enc = __VECS(cast5_cbc_enc_tv_template),
    				.dec = __VECS(cast5_cbc_dec_tv_template)
    			}
    		}
    	}, {
    		.alg = "cbc(cast6)",
    		.test = alg_test_skcipher,
    		.suite = {
    			.cipher = {
    				.enc = __VECS(cast6_cbc_enc_tv_template),
    				.dec = __VECS(cast6_cbc_dec_tv_template)
    			}
    		}
    	}, {
    		.alg = "cbc(des)",
    		.test = alg_test_skcipher,
    		.suite = {
    			.cipher = {
    				.enc = __VECS(des_cbc_enc_tv_template),
    				.dec = __VECS(des_cbc_dec_tv_template)
    			}
    		}
    	}, {
    		.alg = "cbc(des3_ede)",
    		.test = alg_test_skcipher,
    		.fips_allowed = 1,
    		.suite = {
    			.cipher = {
    				.enc = __VECS(des3_ede_cbc_enc_tv_template),
    				.dec = __VECS(des3_ede_cbc_dec_tv_template)
    			}
    		}
    	}, {
    		/* Same as cbc(aes) except the key is stored in
    		 * hardware secure memory which we reference by index
    		 */
    		.alg = "cbc(paes)",
    		.test = alg_test_null,
    		.fips_allowed = 1,
    	}, {
    		.alg = "cbc(serpent)",
    		.test = alg_test_skcipher,
    		.suite = {
    			.cipher = {
    				.enc = __VECS(serpent_cbc_enc_tv_template),
    				.dec = __VECS(serpent_cbc_dec_tv_template)
    			}
    		}
    	}, {
    		.alg = "cbc(twofish)",
    		.test = alg_test_skcipher,
    		.suite = {
    			.cipher = {
    				.enc = __VECS(tf_cbc_enc_tv_template),
    				.dec = __VECS(tf_cbc_dec_tv_template)
    			}
    		}
    	}, {
    		.alg = "cbcmac(aes)",
    		.fips_allowed = 1,
    		.test = alg_test_hash,
    		.suite = {
    			.hash = __VECS(aes_cbcmac_tv_template)
    		}
    	}, {
    		.alg = "ccm(aes)",
    		.test = alg_test_aead,
    		.fips_allowed = 1,
    		.suite = {
    			.aead = {
    				.enc = __VECS(aes_ccm_enc_tv_template),
    				.dec = __VECS(aes_ccm_dec_tv_template)
    			}
    		}
    	}, {
    		.alg = "chacha20",
    		.test = alg_test_skcipher,
    		.suite = {
    			.cipher = {
    				.enc = __VECS(chacha20_enc_tv_template),
    				.dec = __VECS(chacha20_enc_tv_template),
    			}
    		}
    	}, {
    		.alg = "cmac(aes)",
    		.fips_allowed = 1,
    		.test = alg_test_hash,
    		.suite = {
    			.hash = __VECS(aes_cmac128_tv_template)
    		}
    	}, {
    		.alg = "cmac(des3_ede)",
    		.fips_allowed = 1,
    		.test = alg_test_hash,
    		.suite = {
    			.hash = __VECS(des3_ede_cmac64_tv_template)
    		}
    	}, {
    		.alg = "compress_null",
    		.test = alg_test_null,
    	}, {
    		.alg = "crc32",
    		.test = alg_test_hash,
    		.suite = {
    			.hash = __VECS(crc32_tv_template)
    		}
    	}, {
    		.alg = "crc32c",
    		.test = alg_test_crc32c,
    		.fips_allowed = 1,
    		.suite = {
    			.hash = __VECS(crc32c_tv_template)
    		}
    	}, {
    		.alg = "crct10dif",
    		.test = alg_test_hash,
    		.fips_allowed = 1,
    		.suite = {
    			.hash = __VECS(crct10dif_tv_template)
    		}
    	}, {
    		.alg = "ctr(aes)",
    		.test = alg_test_skcipher,
    		.fips_allowed = 1,
    		.suite = {
    			.cipher = {
    				.enc = __VECS(aes_ctr_enc_tv_template),
    				.dec = __VECS(aes_ctr_dec_tv_template)
    			}
    		}
    	}, {
    		.alg = "ctr(blowfish)",
    		.test = alg_test_skcipher,
    		.suite = {
    			.cipher = {
    				.enc = __VECS(bf_ctr_enc_tv_template),
    				.dec = __VECS(bf_ctr_dec_tv_template)
    			}
    		}
    	}, {
    		.alg = "ctr(camellia)",
    		.test = alg_test_skcipher,
    		.suite = {
    			.cipher = {
    				.enc = __VECS(camellia_ctr_enc_tv_template),
    				.dec = __VECS(camellia_ctr_dec_tv_template)
    			}
    		}
    	}, {
    		.alg = "ctr(cast5)",
    		.test = alg_test_skcipher,
    		.suite = {
    			.cipher = {
    				.enc = __VECS(cast5_ctr_enc_tv_template),
    				.dec = __VECS(cast5_ctr_dec_tv_template)
    			}
    		}
    	}, {
    		.alg = "ctr(cast6)",
    		.test = alg_test_skcipher,
    		.suite = {
    			.cipher = {
    				.enc = __VECS(cast6_ctr_enc_tv_template),
    				.dec = __VECS(cast6_ctr_dec_tv_template)
    			}
    		}
    	}, {
    		.alg = "ctr(des)",
    		.test = alg_test_skcipher,
    		.suite = {
    			.cipher = {
    				.enc = __VECS(des_ctr_enc_tv_template),
    				.dec = __VECS(des_ctr_dec_tv_template)
    			}
    		}
    	}, {
    		.alg = "ctr(des3_ede)",
    		.test = alg_test_skcipher,
    		.fips_allowed = 1,
    		.suite = {
    			.cipher = {
    				.enc = __VECS(des3_ede_ctr_enc_tv_template),
    				.dec = __VECS(des3_ede_ctr_dec_tv_template)
    			}
    		}
    	}, {
    		/* Same as ctr(aes) except the key is stored in
    		 * hardware secure memory which we reference by index
    		 */
    		.alg = "ctr(paes)",
    		.test = alg_test_null,
    		.fips_allowed = 1,
    	}, {
    		.alg = "ctr(serpent)",
    		.test = alg_test_skcipher,
    		.suite = {
    			.cipher = {
    				.enc = __VECS(serpent_ctr_enc_tv_template),
    				.dec = __VECS(serpent_ctr_dec_tv_template)
    			}
    		}
    	}, {
    		.alg = "ctr(twofish)",
    		.test = alg_test_skcipher,
    		.suite = {
    			.cipher = {
    				.enc = __VECS(tf_ctr_enc_tv_template),
    				.dec = __VECS(tf_ctr_dec_tv_template)
    			}
    		}
    	}, {
    		.alg = "cts(cbc(aes))",
    		.test = alg_test_skcipher,
    		.suite = {
    			.cipher = {
    				.enc = __VECS(cts_mode_enc_tv_template),
    				.dec = __VECS(cts_mode_dec_tv_template)
    			}
    		}
    	}, {
    		.alg = "deflate",
    		.test = alg_test_comp,
    		.fips_allowed = 1,
    		.suite = {
    			.comp = {
    				.comp = __VECS(deflate_comp_tv_template),
    				.decomp = __VECS(deflate_decomp_tv_template)
    			}
    		}
    	}, {
    		.alg = "dh",
    		.test = alg_test_kpp,
    		.fips_allowed = 1,
    		.suite = {
    			.kpp = __VECS(dh_tv_template)
    		}
    	}, {
    		.alg = "digest_null",
    		.test = alg_test_null,
    	}, {
    		.alg = "drbg_nopr_ctr_aes128",
    		.test = alg_test_drbg,
    		.fips_allowed = 1,
    		.suite = {
    			.drbg = __VECS(drbg_nopr_ctr_aes128_tv_template)
    		}
    	}, {
    		.alg = "drbg_nopr_ctr_aes192",
    		.test = alg_test_drbg,
    		.fips_allowed = 1,
    		.suite = {
    			.drbg = __VECS(drbg_nopr_ctr_aes192_tv_template)
    		}
    	}, {
    		.alg = "drbg_nopr_ctr_aes256",
    		.test = alg_test_drbg,
    		.fips_allowed = 1,
    		.suite = {
    			.drbg = __VECS(drbg_nopr_ctr_aes256_tv_template)
    		}
    	}, {
    		/*
    		 * There is no need to specifically test the DRBG with every
    		 * backend cipher -- covered by drbg_nopr_hmac_sha256 test
    		 */
    		.alg = "drbg_nopr_hmac_sha1",
    		.fips_allowed = 1,
    		.test = alg_test_null,
    	}, {
    		.alg = "drbg_nopr_hmac_sha256",
    		.test = alg_test_drbg,
    		.fips_allowed = 1,
    		.suite = {
    			.drbg = __VECS(drbg_nopr_hmac_sha256_tv_template)
    		}
    	}, {
    		/* covered by drbg_nopr_hmac_sha256 test */
    		.alg = "drbg_nopr_hmac_sha384",
    		.fips_allowed = 1,
    		.test = alg_test_null,
    	}, {
    		.alg = "drbg_nopr_hmac_sha512",
    		.test = alg_test_null,
    		.fips_allowed = 1,
    	}, {
    		.alg = "drbg_nopr_sha1",
    		.fips_allowed = 1,
    		.test = alg_test_null,
    	}, {
    		.alg = "drbg_nopr_sha256",
    		.test = alg_test_drbg,
    		.fips_allowed = 1,
    		.suite = {
    			.drbg = __VECS(drbg_nopr_sha256_tv_template)
    		}
    	}, {
    		/* covered by drbg_nopr_sha256 test */
    		.alg = "drbg_nopr_sha384",
    		.fips_allowed = 1,
    		.test = alg_test_null,
    	}, {
    		.alg = "drbg_nopr_sha512",
    		.fips_allowed = 1,
    		.test = alg_test_null,
    	}, {
    		.alg = "drbg_pr_ctr_aes128",
    		.test = alg_test_drbg,
    		.fips_allowed = 1,
    		.suite = {
    			.drbg = __VECS(drbg_pr_ctr_aes128_tv_template)
    		}
    	}, {
    		/* covered by drbg_pr_ctr_aes128 test */
    		.alg = "drbg_pr_ctr_aes192",
    		.fips_allowed = 1,
    		.test = alg_test_null,
    	}, {
    		.alg = "drbg_pr_ctr_aes256",
    		.fips_allowed = 1,
    		.test = alg_test_null,
    	}, {
    		.alg = "drbg_pr_hmac_sha1",
    		.fips_allowed = 1,
    		.test = alg_test_null,
    	}, {
    		.alg = "drbg_pr_hmac_sha256",
    		.test = alg_test_drbg,
    		.fips_allowed = 1,
    		.suite = {
    			.drbg = __VECS(drbg_pr_hmac_sha256_tv_template)
    		}
    	}, {
    		/* covered by drbg_pr_hmac_sha256 test */
    		.alg = "drbg_pr_hmac_sha384",
    		.fips_allowed = 1,
    		.test = alg_test_null,
    	}, {
    		.alg = "drbg_pr_hmac_sha512",
    		.test = alg_test_null,
    		.fips_allowed = 1,
    	}, {
    		.alg = "drbg_pr_sha1",
    		.fips_allowed = 1,
    		.test = alg_test_null,
    	}, {
    		.alg = "drbg_pr_sha256",
    		.test = alg_test_drbg,
    		.fips_allowed = 1,
    		.suite = {
    			.drbg = __VECS(drbg_pr_sha256_tv_template)
    		}
    	}, {
    		/* covered by drbg_pr_sha256 test */
    		.alg = "drbg_pr_sha384",
    		.fips_allowed = 1,
    		.test = alg_test_null,
    	}, {
    		.alg = "drbg_pr_sha512",
    		.fips_allowed = 1,
    		.test = alg_test_null,
    	}, {
    		.alg = "ecb(aes)",
    		.test = alg_test_skcipher,
    		.fips_allowed = 1,
    		.suite = {
    			.cipher = {
    				.enc = __VECS(aes_enc_tv_template),
    				.dec = __VECS(aes_dec_tv_template)
    			}
    		}
    	}, {
    		.alg = "ecb(anubis)",
    		.test = alg_test_skcipher,
    		.suite = {
    			.cipher = {
    				.enc = __VECS(anubis_enc_tv_template),
    				.dec = __VECS(anubis_dec_tv_template)
    			}
    		}
    	}, {
    		.alg = "ecb(arc4)",
    		.test = alg_test_skcipher,
    		.suite = {
    			.cipher = {
    				.enc = __VECS(arc4_enc_tv_template),
    				.dec = __VECS(arc4_dec_tv_template)
    			}
    		}
    	}, {
    		.alg = "ecb(blowfish)",
    		.test = alg_test_skcipher,
    		.suite = {
    			.cipher = {
    				.enc = __VECS(bf_enc_tv_template),
    				.dec = __VECS(bf_dec_tv_template)
    			}
    		}
    	}, {
    		.alg = "ecb(camellia)",
    		.test = alg_test_skcipher,
    		.suite = {
    			.cipher = {
    				.enc = __VECS(camellia_enc_tv_template),
    				.dec = __VECS(camellia_dec_tv_template)
    			}
    		}
    	}, {
    		.alg = "ecb(cast5)",
    		.test = alg_test_skcipher,
    		.suite = {
    			.cipher = {
    				.enc = __VECS(cast5_enc_tv_template),
    				.dec = __VECS(cast5_dec_tv_template)
    			}
    		}
    	}, {
    		.alg = "ecb(cast6)",
    		.test = alg_test_skcipher,
    		.suite = {
    			.cipher = {
    				.enc = __VECS(cast6_enc_tv_template),
    				.dec = __VECS(cast6_dec_tv_template)
    			}
    		}
    	}, {
    		.alg = "ecb(cipher_null)",
    		.test = alg_test_null,
    		.fips_allowed = 1,
    	}, {
    		.alg = "ecb(des)",
    		.test = alg_test_skcipher,
    		.suite = {
    			.cipher = {
    				.enc = __VECS(des_enc_tv_template),
    				.dec = __VECS(des_dec_tv_template)
    			}
    		}
    	}, {
    		.alg = "ecb(des3_ede)",
    		.test = alg_test_skcipher,
    		.fips_allowed = 1,
    		.suite = {
    			.cipher = {
    				.enc = __VECS(des3_ede_enc_tv_template),
    				.dec = __VECS(des3_ede_dec_tv_template)
    			}
    		}
    	}, {
    		.alg = "ecb(fcrypt)",
    		.test = alg_test_skcipher,
    		.suite = {
    			.cipher = {
    				.enc = {
    					.vecs = fcrypt_pcbc_enc_tv_template,
    					.count = 1
    				},
    				.dec = {
    					.vecs = fcrypt_pcbc_dec_tv_template,
    					.count = 1
    				}
    			}
    		}
    	}, {
    		.alg = "ecb(khazad)",
    		.test = alg_test_skcipher,
    		.suite = {
    			.cipher = {
    				.enc = __VECS(khazad_enc_tv_template),
    				.dec = __VECS(khazad_dec_tv_template)
    			}
    		}
    	}, {
    		/* Same as ecb(aes) except the key is stored in
    		 * hardware secure memory which we reference by index
    		 */
    		.alg = "ecb(paes)",
    		.test = alg_test_null,
    		.fips_allowed = 1,
    	}, {
    		.alg = "ecb(seed)",
    		.test = alg_test_skcipher,
    		.suite = {
    			.cipher = {
    				.enc = __VECS(seed_enc_tv_template),
    				.dec = __VECS(seed_dec_tv_template)
    			}
    		}
    	}, {
    		.alg = "ecb(serpent)",
    		.test = alg_test_skcipher,
    		.suite = {
    			.cipher = {
    				.enc = __VECS(serpent_enc_tv_template),
    				.dec = __VECS(serpent_dec_tv_template)
    			}
    		}
    	}, {
    		.alg = "ecb(sm4)",
    		.test = alg_test_skcipher,
    		.suite = {
    			.cipher = {
    				.enc = __VECS(sm4_enc_tv_template),
    				.dec = __VECS(sm4_dec_tv_template)
    			}
    		}
    	}, {
    		.alg = "ecb(speck128)",
    		.test = alg_test_skcipher,
    		.suite = {
    			.cipher = {
    				.enc = __VECS(speck128_enc_tv_template),
    				.dec = __VECS(speck128_dec_tv_template)
    			}
    		}
    	}, {
    		.alg = "ecb(speck64)",
    		.test = alg_test_skcipher,
    		.suite = {
    			.cipher = {
    				.enc = __VECS(speck64_enc_tv_template),
    				.dec = __VECS(speck64_dec_tv_template)
    			}
    		}
    	}, {
    		.alg = "ecb(tea)",
    		.test = alg_test_skcipher,
    		.suite = {
    			.cipher = {
    				.enc = __VECS(tea_enc_tv_template),
    				.dec = __VECS(tea_dec_tv_template)
    			}
    		}
    	}, {
    		.alg = "ecb(tnepres)",
    		.test = alg_test_skcipher,
    		.suite = {
    			.cipher = {
    				.enc = __VECS(tnepres_enc_tv_template),
    				.dec = __VECS(tnepres_dec_tv_template)
    			}
    		}
    	}, {
    		.alg = "ecb(twofish)",
    		.test = alg_test_skcipher,
    		.suite = {
    			.cipher = {
    				.enc = __VECS(tf_enc_tv_template),
    				.dec = __VECS(tf_dec_tv_template)
    			}
    		}
    	}, {
    		.alg = "ecb(xeta)",
    		.test = alg_test_skcipher,
    		.suite = {
    			.cipher = {
    				.enc = __VECS(xeta_enc_tv_template),
    				.dec = __VECS(xeta_dec_tv_template)
    			}
    		}
    	}, {
    		.alg = "ecb(xtea)",
    		.test = alg_test_skcipher,
    		.suite = {
    			.cipher = {
    				.enc = __VECS(xtea_enc_tv_template),
    				.dec = __VECS(xtea_dec_tv_template)
    			}
    		}
    	}, {
    		.alg = "ecdh",
    		.test = alg_test_kpp,
    		.fips_allowed = 1,
    		.suite = {
    			.kpp = __VECS(ecdh_tv_template)
    		}
    	}, {
    		.alg = "gcm(aes)",
    		.test = alg_test_aead,
    		.fips_allowed = 1,
    		.suite = {
    			.aead = {
    				.enc = __VECS(aes_gcm_enc_tv_template),
    				.dec = __VECS(aes_gcm_dec_tv_template)
    			}
    		}
    	}, {
    		.alg = "ghash",
    		.test = alg_test_hash,
    		.fips_allowed = 1,
    		.suite = {
    			.hash = __VECS(ghash_tv_template)
    		}
    	}, {
    		.alg = "hmac(crc32)",
    		.test = alg_test_hash,
    		.suite = {
    			.hash = __VECS(bfin_crc_tv_template)
    		}
    	}, {
    		.alg = "hmac(md5)",
    		.test = alg_test_hash,
    		.suite = {
    			.hash = __VECS(hmac_md5_tv_template)
    		}
    	}, {
    		.alg = "hmac(rmd128)",
    		.test = alg_test_hash,
    		.suite = {
    			.hash = __VECS(hmac_rmd128_tv_template)
    		}
    	}, {
    		.alg = "hmac(rmd160)",
    		.test = alg_test_hash,
    		.suite = {
    			.hash = __VECS(hmac_rmd160_tv_template)
    		}
    	}, {
    		.alg = "hmac(sha1)",
    		.test = alg_test_hash,
    		.fips_allowed = 1,
    		.suite = {
    			.hash = __VECS(hmac_sha1_tv_template)
    		}
    	}, {
    		.alg = "hmac(sha224)",
    		.test = alg_test_hash,
    		.fips_allowed = 1,
    		.suite = {
    			.hash = __VECS(hmac_sha224_tv_template)
    		}
    	}, {
    		.alg = "hmac(sha256)",
    		.test = alg_test_hash,
    		.fips_allowed = 1,
    		.suite = {
    			.hash = __VECS(hmac_sha256_tv_template)
    		}
    	}, {
    		.alg = "hmac(sha3-224)",
    		.test = alg_test_hash,
    		.fips_allowed = 1,
    		.suite = {
    			.hash = __VECS(hmac_sha3_224_tv_template)
    		}
    	}, {
    		.alg = "hmac(sha3-256)",
    		.test = alg_test_hash,
    		.fips_allowed = 1,
    		.suite = {
    			.hash = __VECS(hmac_sha3_256_tv_template)
    		}
    	}, {
    		.alg = "hmac(sha3-384)",
    		.test = alg_test_hash,
    		.fips_allowed = 1,
    		.suite = {
    			.hash = __VECS(hmac_sha3_384_tv_template)
    		}
    	}, {
    		.alg = "hmac(sha3-512)",
    		.test = alg_test_hash,
    		.fips_allowed = 1,
    		.suite = {
    			.hash = __VECS(hmac_sha3_512_tv_template)
    		}
    	}, {
    		.alg = "hmac(sha384)",
    		.test = alg_test_hash,
    		.fips_allowed = 1,
    		.suite = {
    			.hash = __VECS(hmac_sha384_tv_template)
    		}
    	}, {
    		.alg = "hmac(sha512)",
    		.test = alg_test_hash,
    		.fips_allowed = 1,
    		.suite = {
    			.hash = __VECS(hmac_sha512_tv_template)
    		}
    	}, {
    		.alg = "jitterentropy_rng",
    		.fips_allowed = 1,
    		.test = alg_test_null,
    	}, {
    		.alg = "kw(aes)",
    		.test = alg_test_skcipher,
    		.fips_allowed = 1,
    		.suite = {
    			.cipher = {
    				.enc = __VECS(aes_kw_enc_tv_template),
    				.dec = __VECS(aes_kw_dec_tv_template)
    			}
    		}
    	}, {
    		.alg = "lrw(aes)",
    		.test = alg_test_skcipher,
    		.suite = {
    			.cipher = {
    				.enc = __VECS(aes_lrw_enc_tv_template),
    				.dec = __VECS(aes_lrw_dec_tv_template)
    			}
    		}
    	}, {
    		.alg = "lrw(camellia)",
    		.test = alg_test_skcipher,
    		.suite = {
    			.cipher = {
    				.enc = __VECS(camellia_lrw_enc_tv_template),
    				.dec = __VECS(camellia_lrw_dec_tv_template)
    			}
    		}
    	}, {
    		.alg = "lrw(cast6)",
    		.test = alg_test_skcipher,
    		.suite = {
    			.cipher = {
    				.enc = __VECS(cast6_lrw_enc_tv_template),
    				.dec = __VECS(cast6_lrw_dec_tv_template)
    			}
    		}
    	}, {
    		.alg = "lrw(serpent)",
    		.test = alg_test_skcipher,
    		.suite = {
    			.cipher = {
    				.enc = __VECS(serpent_lrw_enc_tv_template),
    				.dec = __VECS(serpent_lrw_dec_tv_template)
    			}
    		}
    	}, {
    		.alg = "lrw(twofish)",
    		.test = alg_test_skcipher,
    		.suite = {
    			.cipher = {
    				.enc = __VECS(tf_lrw_enc_tv_template),
    				.dec = __VECS(tf_lrw_dec_tv_template)
    			}
    		}
    	}, {
    		.alg = "lz4",
    		.test = alg_test_comp,
    		.fips_allowed = 1,
    		.suite = {
    			.comp = {
    				.comp = __VECS(lz4_comp_tv_template),
    				.decomp = __VECS(lz4_decomp_tv_template)
    			}
    		}
    	}, {
    		.alg = "lz4hc",
    		.test = alg_test_comp,
    		.fips_allowed = 1,
    		.suite = {
    			.comp = {
    				.comp = __VECS(lz4hc_comp_tv_template),
    				.decomp = __VECS(lz4hc_decomp_tv_template)
    			}
    		}
    	}, {
    		.alg = "lzo",
    		.test = alg_test_comp,
    		.fips_allowed = 1,
    		.suite = {
    			.comp = {
    				.comp = __VECS(lzo_comp_tv_template),
    				.decomp = __VECS(lzo_decomp_tv_template)
    			}
    		}
    	}, {
    		.alg = "md4",
    		.test = alg_test_hash,
    		.suite = {
    			.hash = __VECS(md4_tv_template)
    		}
    	}, {
    		.alg = "md5",
    		.test = alg_test_hash,
    		.suite = {
    			.hash = __VECS(md5_tv_template)
    		}
    	}, {
    		.alg = "michael_mic",
    		.test = alg_test_hash,
    		.suite = {
    			.hash = __VECS(michael_mic_tv_template)
    		}
    	}, {
    		.alg = "ofb(aes)",
    		.test = alg_test_skcipher,
    		.fips_allowed = 1,
    		.suite = {
    			.cipher = {
    				.enc = __VECS(aes_ofb_enc_tv_template),
    				.dec = __VECS(aes_ofb_dec_tv_template)
    			}
    		}
    	}, {
    		/* Same as ofb(aes) except the key is stored in
    		 * hardware secure memory which we reference by index
    		 */
    		.alg = "ofb(paes)",
    		.test = alg_test_null,
    		.fips_allowed = 1,
    	}, {
    		.alg = "pcbc(fcrypt)",
    		.test = alg_test_skcipher,
    		.suite = {
    			.cipher = {
    				.enc = __VECS(fcrypt_pcbc_enc_tv_template),
    				.dec = __VECS(fcrypt_pcbc_dec_tv_template)
    			}
    		}
    	}, {
    		.alg = "pkcs1pad(rsa,sha224)",
    		.test = alg_test_null,
    		.fips_allowed = 1,
    	}, {
    		.alg = "pkcs1pad(rsa,sha256)",
    		.test = alg_test_akcipher,
    		.fips_allowed = 1,
    		.suite = {
    			.akcipher = __VECS(pkcs1pad_rsa_tv_template)
    		}
    	}, {
    		.alg = "pkcs1pad(rsa,sha384)",
    		.test = alg_test_null,
    		.fips_allowed = 1,
    	}, {
    		.alg = "pkcs1pad(rsa,sha512)",
    		.test = alg_test_null,
    		.fips_allowed = 1,
    	}, {
    		.alg = "poly1305",
    		.test = alg_test_hash,
    		.suite = {
    			.hash = __VECS(poly1305_tv_template)
    		}
    	}, {
    		.alg = "rfc3686(ctr(aes))",
    		.test = alg_test_skcipher,
    		.fips_allowed = 1,
    		.suite = {
    			.cipher = {
    				.enc = __VECS(aes_ctr_rfc3686_enc_tv_template),
    				.dec = __VECS(aes_ctr_rfc3686_dec_tv_template)
    			}
    		}
    	}, {
    		.alg = "rfc4106(gcm(aes))",
    		.test = alg_test_aead,
    		.fips_allowed = 1,
    		.suite = {
    			.aead = {
    				.enc = __VECS(aes_gcm_rfc4106_enc_tv_template),
    				.dec = __VECS(aes_gcm_rfc4106_dec_tv_template)
    			}
    		}
    	}, {
    		.alg = "rfc4309(ccm(aes))",
    		.test = alg_test_aead,
    		.fips_allowed = 1,
    		.suite = {
    			.aead = {
    				.enc = __VECS(aes_ccm_rfc4309_enc_tv_template),
    				.dec = __VECS(aes_ccm_rfc4309_dec_tv_template)
    			}
    		}
    	}, {
    		.alg = "rfc4543(gcm(aes))",
    		.test = alg_test_aead,
    		.suite = {
    			.aead = {
    				.enc = __VECS(aes_gcm_rfc4543_enc_tv_template),
    				.dec = __VECS(aes_gcm_rfc4543_dec_tv_template),
    			}
    		}
    	}, {
    		.alg = "rfc7539(chacha20,poly1305)",
    		.test = alg_test_aead,
    		.suite = {
    			.aead = {
    				.enc = __VECS(rfc7539_enc_tv_template),
    				.dec = __VECS(rfc7539_dec_tv_template),
    			}
    		}
    	}, {
    		.alg = "rfc7539esp(chacha20,poly1305)",
    		.test = alg_test_aead,
    		.suite = {
    			.aead = {
    				.enc = __VECS(rfc7539esp_enc_tv_template),
    				.dec = __VECS(rfc7539esp_dec_tv_template),
    			}
    		}
    	}, {
    		.alg = "rmd128",
    		.test = alg_test_hash,
    		.suite = {
    			.hash = __VECS(rmd128_tv_template)
    		}
    	}, {
    		.alg = "rmd160",
    		.test = alg_test_hash,
    		.suite = {
    			.hash = __VECS(rmd160_tv_template)
    		}
    	}, {
    		.alg = "rmd256",
    		.test = alg_test_hash,
    		.suite = {
    			.hash = __VECS(rmd256_tv_template)
    		}
    	}, {
    		.alg = "rmd320",
    		.test = alg_test_hash,
    		.suite = {
    			.hash = __VECS(rmd320_tv_template)
    		}
    	}, {
    		.alg = "rsa",
    		.test = alg_test_akcipher,
    		.fips_allowed = 1,
    		.suite = {
    			.akcipher = __VECS(rsa_tv_template)
    		}
    	}, {
    		.alg = "salsa20",
    		.test = alg_test_skcipher,
    		.suite = {
    			.cipher = {
    				.enc = __VECS(salsa20_stream_enc_tv_template)
    			}
    		}
    	}, {
    		.alg = "sha1",
    		.test = alg_test_hash,
    		.fips_allowed = 1,
    		.suite = {
    			.hash = __VECS(sha1_tv_template)
    		}
    	}, {
    		.alg = "sha224",
    		.test = alg_test_hash,
    		.fips_allowed = 1,
    		.suite = {
    			.hash = __VECS(sha224_tv_template)
    		}
    	}, {
    		.alg = "sha256",
    		.test = alg_test_hash,
    		.fips_allowed = 1,
    		.suite = {
    			.hash = __VECS(sha256_tv_template)
    		}
    	}, {
    		.alg = "sha3-224",
    		.test = alg_test_hash,
    		.fips_allowed = 1,
    		.suite = {
    			.hash = __VECS(sha3_224_tv_template)
    		}
    	}, {
    		.alg = "sha3-256",
    		.test = alg_test_hash,
    		.fips_allowed = 1,
    		.suite = {
    			.hash = __VECS(sha3_256_tv_template)
    		}
    	}, {
    		.alg = "sha3-384",
    		.test = alg_test_hash,
    		.fips_allowed = 1,
    		.suite = {
    			.hash = __VECS(sha3_384_tv_template)
    		}
    	}, {
    		.alg = "sha3-512",
    		.test = alg_test_hash,
    		.fips_allowed = 1,
    		.suite = {
    			.hash = __VECS(sha3_512_tv_template)
    		}
    	}, {
    		.alg = "sha384",
    		.test = alg_test_hash,
    		.fips_allowed = 1,
    		.suite = {
    			.hash = __VECS(sha384_tv_template)
    		}
    	}, {
    		.alg = "sha512",
    		.test = alg_test_hash,
    		.fips_allowed = 1,
    		.suite = {
    			.hash = __VECS(sha512_tv_template)
    		}
    	}, {
    		.alg = "sm3",
    		.test = alg_test_hash,
    		.suite = {
    			.hash = __VECS(sm3_tv_template)
    		}
    	}, {
    		.alg = "tgr128",
    		.test = alg_test_hash,
    		.suite = {
    			.hash = __VECS(tgr128_tv_template)
    		}
    	}, {
    		.alg = "tgr160",
    		.test = alg_test_hash,
    		.suite = {
    			.hash = __VECS(tgr160_tv_template)
    		}
    	}, {
    		.alg = "tgr192",
    		.test = alg_test_hash,
    		.suite = {
    			.hash = __VECS(tgr192_tv_template)
    		}
    	}, {
    		.alg = "vmac(aes)",
    		.test = alg_test_hash,
    		.suite = {
    			.hash = __VECS(aes_vmac128_tv_template)
    		}
    	}, {
    		.alg = "wp256",
    		.test = alg_test_hash,
    		.suite = {
    			.hash = __VECS(wp256_tv_template)
    		}
    	}, {
    		.alg = "wp384",
    		.test = alg_test_hash,
    		.suite = {
    			.hash = __VECS(wp384_tv_template)
    		}
    	}, {
    		.alg = "wp512",
    		.test = alg_test_hash,
    		.suite = {
    			.hash = __VECS(wp512_tv_template)
    		}
    	}, {
    		.alg = "xcbc(aes)",
    		.test = alg_test_hash,
    		.suite = {
    			.hash = __VECS(aes_xcbc128_tv_template)
    		}
    	}, {
    		.alg = "xts(aes)",
    		.test = alg_test_skcipher,
    		.fips_allowed = 1,
    		.suite = {
    			.cipher = {
    				.enc = __VECS(aes_xts_enc_tv_template),
    				.dec = __VECS(aes_xts_dec_tv_template)
    			}
    		}
    	}, {
    		.alg = "xts(camellia)",
    		.test = alg_test_skcipher,
    		.suite = {
    			.cipher = {
    				.enc = __VECS(camellia_xts_enc_tv_template),
    				.dec = __VECS(camellia_xts_dec_tv_template)
    			}
    		}
    	}, {
    		.alg = "xts(cast6)",
    		.test = alg_test_skcipher,
    		.suite = {
    			.cipher = {
    				.enc = __VECS(cast6_xts_enc_tv_template),
    				.dec = __VECS(cast6_xts_dec_tv_template)
    			}
    		}
    	}, {
    		/* Same as xts(aes) except the key is stored in
    		 * hardware secure memory which we reference by index
    		 */
    		.alg = "xts(paes)",
    		.test = alg_test_null,
    		.fips_allowed = 1,
    	}, {
    		.alg = "xts(serpent)",
    		.test = alg_test_skcipher,
    		.suite = {
    			.cipher = {
    				.enc = __VECS(serpent_xts_enc_tv_template),
    				.dec = __VECS(serpent_xts_dec_tv_template)
    			}
    		}
    	}, {
    		.alg = "xts(speck128)",
    		.test = alg_test_skcipher,
    		.suite = {
    			.cipher = {
    				.enc = __VECS(speck128_xts_enc_tv_template),
    				.dec = __VECS(speck128_xts_dec_tv_template)
    			}
    		}
    	}, {
    		.alg = "xts(speck64)",
    		.test = alg_test_skcipher,
    		.suite = {
    			.cipher = {
    				.enc = __VECS(speck64_xts_enc_tv_template),
    				.dec = __VECS(speck64_xts_dec_tv_template)
    			}
    		}
    	}, {
    		.alg = "xts(twofish)",
    		.test = alg_test_skcipher,
    		.suite = {
    			.cipher = {
    				.enc = __VECS(tf_xts_enc_tv_template),
    				.dec = __VECS(tf_xts_dec_tv_template)
    			}
    		}
    	}, {
    		.alg = "xts4096(paes)",
    		.test = alg_test_null,
    		.fips_allowed = 1,
    	}, {
    		.alg = "xts512(paes)",
    		.test = alg_test_null,
    		.fips_allowed = 1,
    	}, {
    		.alg = "zlib-deflate",
    		.test = alg_test_comp,
    		.fips_allowed = 1,
    		.suite = {
    			.comp = {
    				.comp = __VECS(zlib_deflate_comp_tv_template),
    				.decomp = __VECS(zlib_deflate_decomp_tv_template)
    			}
    		}
    	}, {
    		.alg = "zstd",
    		.test = alg_test_comp,
    		.fips_allowed = 1,
    		.suite = {
    			.comp = {
    				.comp = __VECS(zstd_comp_tv_template),
    				.decomp = __VECS(zstd_decomp_tv_template)
    			}
    		}
    	}
    };
    
    static bool alg_test_descs_checked;
    
    static void alg_test_descs_check_order(void)
    {
    	int i;
    
    	/* only check once */
    	if (alg_test_descs_checked)
    		return;
    
    	alg_test_descs_checked = true;
    
    	for (i = 1; i < ARRAY_SIZE(alg_test_descs); i++) {
    		int diff = strcmp(alg_test_descs[i - 1].alg,
    				  alg_test_descs[i].alg);
    
    		if (WARN_ON(diff > 0)) {
    			pr_warn("testmgr: alg_test_descs entries in wrong order: '%s' before '%s'\n",
    				alg_test_descs[i - 1].alg,
    				alg_test_descs[i].alg);
    		}
    
    		if (WARN_ON(diff == 0)) {
    			pr_warn("testmgr: duplicate alg_test_descs entry: '%s'\n",
    				alg_test_descs[i].alg);
    		}
    	}
    }
    
    static int alg_find_test(const char *alg)
    {
    	int start = 0;
    	int end = ARRAY_SIZE(alg_test_descs);
    
    	while (start < end) {
    		int i = (start + end) / 2;
    		int diff = strcmp(alg_test_descs[i].alg, alg);
    
    		if (diff > 0) {
    			end = i;
    			continue;
    		}
    
    		if (diff < 0) {
    			start = i + 1;
    			continue;
    		}
    
    		return i;
    	}
    
    	return -1;
    }
    
    int alg_test(const char *driver, const char *alg, u32 type, u32 mask)
    {
    	int i;
    	int j;
    	int rc;
    
    	if (!fips_enabled && notests) {
    		printk_once(KERN_INFO "alg: self-tests disabled\n");
    		return 0;
    	}
    
    	alg_test_descs_check_order();
    
    	if ((type & CRYPTO_ALG_TYPE_MASK) == CRYPTO_ALG_TYPE_CIPHER) {
    		char nalg[CRYPTO_MAX_ALG_NAME];
    
    		if (snprintf(nalg, sizeof(nalg), "ecb(%s)", alg) >=
    		    sizeof(nalg))
    			return -ENAMETOOLONG;
    
    		i = alg_find_test(nalg);
    		if (i < 0)
    			goto notest;
    
    		if (fips_enabled && !alg_test_descs[i].fips_allowed)
    			goto non_fips_alg;
    
    		rc = alg_test_cipher(alg_test_descs + i, driver, type, mask);
    		goto test_done;
    	}
    
    	i = alg_find_test(alg);
    	j = alg_find_test(driver);
    	if (i < 0 && j < 0)
    		goto notest;
    
    	if (fips_enabled && ((i >= 0 && !alg_test_descs[i].fips_allowed) ||
    			     (j >= 0 && !alg_test_descs[j].fips_allowed)))
    		goto non_fips_alg;
    
    	rc = 0;
    	if (i >= 0)
    		rc |= alg_test_descs[i].test(alg_test_descs + i, driver,
    					     type, mask);
    	if (j >= 0 && j != i)
    		rc |= alg_test_descs[j].test(alg_test_descs + j, driver,
    					     type, mask);
    
    test_done:
    	if (fips_enabled && rc)
    		panic("%s: %s alg self test failed in fips mode!\n", driver, alg);
    
    	if (fips_enabled && !rc)
    		pr_info("alg: self-tests for %s (%s) passed\n", driver, alg);
    
    	return rc;
    
    notest:
    	printk(KERN_INFO "alg: No test for %s (%s)\n", alg, driver);
    	return 0;
    non_fips_alg:
    	return -EINVAL;
    }
    
    #endif /* CONFIG_CRYPTO_MANAGER_DISABLE_TESTS */
    
    EXPORT_SYMBOL_GPL(alg_test);