Skip to content
Snippets Groups Projects
Select Git revision
  • a439fe51a1f8eb087c22dd24d69cebae4a3addac
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

dma_32.h

Blame
  • memory.c 102.03 KiB
    /*
     *  linux/mm/memory.c
     *
     *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
     */
    
    /*
     * demand-loading started 01.12.91 - seems it is high on the list of
     * things wanted, and it should be easy to implement. - Linus
     */
    
    /*
     * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
     * pages started 02.12.91, seems to work. - Linus.
     *
     * Tested sharing by executing about 30 /bin/sh: under the old kernel it
     * would have taken more than the 6M I have free, but it worked well as
     * far as I could see.
     *
     * Also corrected some "invalidate()"s - I wasn't doing enough of them.
     */
    
    /*
     * Real VM (paging to/from disk) started 18.12.91. Much more work and
     * thought has to go into this. Oh, well..
     * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
     *		Found it. Everything seems to work now.
     * 20.12.91  -  Ok, making the swap-device changeable like the root.
     */
    
    /*
     * 05.04.94  -  Multi-page memory management added for v1.1.
     * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
     *
     * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
     *		(Gerhard.Wichert@pdb.siemens.de)
     *
     * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
     */
    
    #include <linux/kernel_stat.h>
    #include <linux/mm.h>
    #include <linux/hugetlb.h>
    #include <linux/mman.h>
    #include <linux/swap.h>
    #include <linux/highmem.h>
    #include <linux/pagemap.h>
    #include <linux/ksm.h>
    #include <linux/rmap.h>
    #include <linux/export.h>
    #include <linux/delayacct.h>
    #include <linux/init.h>
    #include <linux/writeback.h>
    #include <linux/memcontrol.h>
    #include <linux/mmu_notifier.h>
    #include <linux/kallsyms.h>
    #include <linux/swapops.h>
    #include <linux/elf.h>
    #include <linux/gfp.h>
    #include <linux/migrate.h>
    #include <linux/string.h>
    #include <linux/dma-debug.h>
    #include <linux/debugfs.h>
    
    #include <asm/io.h>
    #include <asm/pgalloc.h>
    #include <asm/uaccess.h>
    #include <asm/tlb.h>
    #include <asm/tlbflush.h>
    #include <asm/pgtable.h>
    
    #include "internal.h"
    
    #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
    #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
    #endif
    
    #ifndef CONFIG_NEED_MULTIPLE_NODES
    /* use the per-pgdat data instead for discontigmem - mbligh */
    unsigned long max_mapnr;
    struct page *mem_map;
    
    EXPORT_SYMBOL(max_mapnr);
    EXPORT_SYMBOL(mem_map);
    #endif
    
    /*
     * A number of key systems in x86 including ioremap() rely on the assumption
     * that high_memory defines the upper bound on direct map memory, then end
     * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
     * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
     * and ZONE_HIGHMEM.
     */
    void * high_memory;
    
    EXPORT_SYMBOL(high_memory);
    
    /*
     * Randomize the address space (stacks, mmaps, brk, etc.).
     *
     * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
     *   as ancient (libc5 based) binaries can segfault. )
     */
    int randomize_va_space __read_mostly =
    #ifdef CONFIG_COMPAT_BRK
    					1;
    #else
    					2;
    #endif
    
    static int __init disable_randmaps(char *s)
    {
    	randomize_va_space = 0;
    	return 1;
    }
    __setup("norandmaps", disable_randmaps);
    
    unsigned long zero_pfn __read_mostly;
    unsigned long highest_memmap_pfn __read_mostly;
    
    EXPORT_SYMBOL(zero_pfn);
    
    /*
     * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
     */
    static int __init init_zero_pfn(void)
    {
    	zero_pfn = page_to_pfn(ZERO_PAGE(0));
    	return 0;
    }
    core_initcall(init_zero_pfn);
    
    
    #if defined(SPLIT_RSS_COUNTING)
    
    void sync_mm_rss(struct mm_struct *mm)
    {
    	int i;
    
    	for (i = 0; i < NR_MM_COUNTERS; i++) {
    		if (current->rss_stat.count[i]) {
    			add_mm_counter(mm, i, current->rss_stat.count[i]);
    			current->rss_stat.count[i] = 0;
    		}
    	}
    	current->rss_stat.events = 0;
    }
    
    static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
    {
    	struct task_struct *task = current;
    
    	if (likely(task->mm == mm))
    		task->rss_stat.count[member] += val;
    	else
    		add_mm_counter(mm, member, val);
    }
    #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
    #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
    
    /* sync counter once per 64 page faults */
    #define TASK_RSS_EVENTS_THRESH	(64)
    static void check_sync_rss_stat(struct task_struct *task)
    {
    	if (unlikely(task != current))
    		return;
    	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
    		sync_mm_rss(task->mm);
    }
    #else /* SPLIT_RSS_COUNTING */
    
    #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
    #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
    
    static void check_sync_rss_stat(struct task_struct *task)
    {
    }
    
    #endif /* SPLIT_RSS_COUNTING */
    
    #ifdef HAVE_GENERIC_MMU_GATHER
    
    static int tlb_next_batch(struct mmu_gather *tlb)
    {
    	struct mmu_gather_batch *batch;
    
    	batch = tlb->active;
    	if (batch->next) {
    		tlb->active = batch->next;
    		return 1;
    	}
    
    	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
    		return 0;
    
    	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
    	if (!batch)
    		return 0;
    
    	tlb->batch_count++;
    	batch->next = NULL;
    	batch->nr   = 0;
    	batch->max  = MAX_GATHER_BATCH;
    
    	tlb->active->next = batch;
    	tlb->active = batch;
    
    	return 1;
    }
    
    /* tlb_gather_mmu
     *	Called to initialize an (on-stack) mmu_gather structure for page-table
     *	tear-down from @mm. The @fullmm argument is used when @mm is without
     *	users and we're going to destroy the full address space (exit/execve).
     */
    void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
    {
    	tlb->mm = mm;
    
    	/* Is it from 0 to ~0? */
    	tlb->fullmm     = !(start | (end+1));
    	tlb->need_flush_all = 0;
    	tlb->local.next = NULL;
    	tlb->local.nr   = 0;
    	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
    	tlb->active     = &tlb->local;
    	tlb->batch_count = 0;
    
    #ifdef CONFIG_HAVE_RCU_TABLE_FREE
    	tlb->batch = NULL;
    #endif
    
    	__tlb_reset_range(tlb);
    }
    
    static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
    {
    	if (!tlb->end)
    		return;
    
    	tlb_flush(tlb);
    #ifdef CONFIG_HAVE_RCU_TABLE_FREE
    	tlb_table_flush(tlb);
    #endif
    	__tlb_reset_range(tlb);
    }
    
    static void tlb_flush_mmu_free(struct mmu_gather *tlb)
    {
    	struct mmu_gather_batch *batch;
    
    	for (batch = &tlb->local; batch; batch = batch->next) {
    		free_pages_and_swap_cache(batch->pages, batch->nr);
    		batch->nr = 0;
    	}
    	tlb->active = &tlb->local;
    }
    
    void tlb_flush_mmu(struct mmu_gather *tlb)
    {
    	tlb_flush_mmu_tlbonly(tlb);
    	tlb_flush_mmu_free(tlb);
    }
    
    /* tlb_finish_mmu
     *	Called at the end of the shootdown operation to free up any resources
     *	that were required.
     */
    void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
    {
    	struct mmu_gather_batch *batch, *next;
    
    	tlb_flush_mmu(tlb);
    
    	/* keep the page table cache within bounds */
    	check_pgt_cache();
    
    	for (batch = tlb->local.next; batch; batch = next) {
    		next = batch->next;
    		free_pages((unsigned long)batch, 0);
    	}
    	tlb->local.next = NULL;
    }
    
    /* __tlb_remove_page
     *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
     *	handling the additional races in SMP caused by other CPUs caching valid
     *	mappings in their TLBs. Returns the number of free page slots left.
     *	When out of page slots we must call tlb_flush_mmu().
     */
    int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
    {
    	struct mmu_gather_batch *batch;
    
    	VM_BUG_ON(!tlb->end);
    
    	batch = tlb->active;
    	batch->pages[batch->nr++] = page;
    	if (batch->nr == batch->max) {
    		if (!tlb_next_batch(tlb))
    			return 0;
    		batch = tlb->active;
    	}
    	VM_BUG_ON_PAGE(batch->nr > batch->max, page);
    
    	return batch->max - batch->nr;
    }
    
    #endif /* HAVE_GENERIC_MMU_GATHER */
    
    #ifdef CONFIG_HAVE_RCU_TABLE_FREE
    
    /*
     * See the comment near struct mmu_table_batch.
     */
    
    static void tlb_remove_table_smp_sync(void *arg)
    {
    	/* Simply deliver the interrupt */
    }
    
    static void tlb_remove_table_one(void *table)
    {
    	/*
    	 * This isn't an RCU grace period and hence the page-tables cannot be
    	 * assumed to be actually RCU-freed.
    	 *
    	 * It is however sufficient for software page-table walkers that rely on
    	 * IRQ disabling. See the comment near struct mmu_table_batch.
    	 */
    	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
    	__tlb_remove_table(table);
    }
    
    static void tlb_remove_table_rcu(struct rcu_head *head)
    {
    	struct mmu_table_batch *batch;
    	int i;
    
    	batch = container_of(head, struct mmu_table_batch, rcu);
    
    	for (i = 0; i < batch->nr; i++)
    		__tlb_remove_table(batch->tables[i]);
    
    	free_page((unsigned long)batch);
    }
    
    void tlb_table_flush(struct mmu_gather *tlb)
    {
    	struct mmu_table_batch **batch = &tlb->batch;
    
    	if (*batch) {
    		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
    		*batch = NULL;
    	}
    }
    
    void tlb_remove_table(struct mmu_gather *tlb, void *table)
    {
    	struct mmu_table_batch **batch = &tlb->batch;
    
    	/*
    	 * When there's less then two users of this mm there cannot be a
    	 * concurrent page-table walk.
    	 */
    	if (atomic_read(&tlb->mm->mm_users) < 2) {
    		__tlb_remove_table(table);
    		return;
    	}
    
    	if (*batch == NULL) {
    		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
    		if (*batch == NULL) {
    			tlb_remove_table_one(table);
    			return;
    		}
    		(*batch)->nr = 0;
    	}
    	(*batch)->tables[(*batch)->nr++] = table;
    	if ((*batch)->nr == MAX_TABLE_BATCH)
    		tlb_table_flush(tlb);
    }
    
    #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
    
    /*
     * Note: this doesn't free the actual pages themselves. That
     * has been handled earlier when unmapping all the memory regions.
     */
    static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
    			   unsigned long addr)
    {
    	pgtable_t token = pmd_pgtable(*pmd);
    	pmd_clear(pmd);
    	pte_free_tlb(tlb, token, addr);
    	atomic_long_dec(&tlb->mm->nr_ptes);
    }
    
    static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
    				unsigned long addr, unsigned long end,
    				unsigned long floor, unsigned long ceiling)
    {
    	pmd_t *pmd;
    	unsigned long next;
    	unsigned long start;
    
    	start = addr;
    	pmd = pmd_offset(pud, addr);
    	do {
    		next = pmd_addr_end(addr, end);
    		if (pmd_none_or_clear_bad(pmd))
    			continue;
    		free_pte_range(tlb, pmd, addr);
    	} while (pmd++, addr = next, addr != end);
    
    	start &= PUD_MASK;
    	if (start < floor)
    		return;
    	if (ceiling) {
    		ceiling &= PUD_MASK;
    		if (!ceiling)
    			return;
    	}
    	if (end - 1 > ceiling - 1)
    		return;
    
    	pmd = pmd_offset(pud, start);
    	pud_clear(pud);
    	pmd_free_tlb(tlb, pmd, start);
    }
    
    static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
    				unsigned long addr, unsigned long end,
    				unsigned long floor, unsigned long ceiling)
    {
    	pud_t *pud;
    	unsigned long next;
    	unsigned long start;
    
    	start = addr;
    	pud = pud_offset(pgd, addr);
    	do {
    		next = pud_addr_end(addr, end);
    		if (pud_none_or_clear_bad(pud))
    			continue;
    		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
    	} while (pud++, addr = next, addr != end);
    
    	start &= PGDIR_MASK;
    	if (start < floor)
    		return;
    	if (ceiling) {
    		ceiling &= PGDIR_MASK;
    		if (!ceiling)
    			return;
    	}
    	if (end - 1 > ceiling - 1)
    		return;
    
    	pud = pud_offset(pgd, start);
    	pgd_clear(pgd);
    	pud_free_tlb(tlb, pud, start);
    }
    
    /*
     * This function frees user-level page tables of a process.
     */
    void free_pgd_range(struct mmu_gather *tlb,
    			unsigned long addr, unsigned long end,
    			unsigned long floor, unsigned long ceiling)
    {
    	pgd_t *pgd;
    	unsigned long next;
    
    	/*
    	 * The next few lines have given us lots of grief...
    	 *
    	 * Why are we testing PMD* at this top level?  Because often
    	 * there will be no work to do at all, and we'd prefer not to
    	 * go all the way down to the bottom just to discover that.
    	 *
    	 * Why all these "- 1"s?  Because 0 represents both the bottom
    	 * of the address space and the top of it (using -1 for the
    	 * top wouldn't help much: the masks would do the wrong thing).
    	 * The rule is that addr 0 and floor 0 refer to the bottom of
    	 * the address space, but end 0 and ceiling 0 refer to the top
    	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
    	 * that end 0 case should be mythical).
    	 *
    	 * Wherever addr is brought up or ceiling brought down, we must
    	 * be careful to reject "the opposite 0" before it confuses the
    	 * subsequent tests.  But what about where end is brought down
    	 * by PMD_SIZE below? no, end can't go down to 0 there.
    	 *
    	 * Whereas we round start (addr) and ceiling down, by different
    	 * masks at different levels, in order to test whether a table
    	 * now has no other vmas using it, so can be freed, we don't
    	 * bother to round floor or end up - the tests don't need that.
    	 */
    
    	addr &= PMD_MASK;
    	if (addr < floor) {
    		addr += PMD_SIZE;
    		if (!addr)
    			return;
    	}
    	if (ceiling) {
    		ceiling &= PMD_MASK;
    		if (!ceiling)
    			return;
    	}
    	if (end - 1 > ceiling - 1)
    		end -= PMD_SIZE;
    	if (addr > end - 1)
    		return;
    
    	pgd = pgd_offset(tlb->mm, addr);
    	do {
    		next = pgd_addr_end(addr, end);
    		if (pgd_none_or_clear_bad(pgd))
    			continue;
    		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
    	} while (pgd++, addr = next, addr != end);
    }
    
    void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
    		unsigned long floor, unsigned long ceiling)
    {
    	while (vma) {
    		struct vm_area_struct *next = vma->vm_next;
    		unsigned long addr = vma->vm_start;
    
    		/*
    		 * Hide vma from rmap and truncate_pagecache before freeing
    		 * pgtables
    		 */
    		unlink_anon_vmas(vma);
    		unlink_file_vma(vma);
    
    		if (is_vm_hugetlb_page(vma)) {
    			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
    				floor, next? next->vm_start: ceiling);
    		} else {
    			/*
    			 * Optimization: gather nearby vmas into one call down
    			 */
    			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
    			       && !is_vm_hugetlb_page(next)) {
    				vma = next;
    				next = vma->vm_next;
    				unlink_anon_vmas(vma);
    				unlink_file_vma(vma);
    			}
    			free_pgd_range(tlb, addr, vma->vm_end,
    				floor, next? next->vm_start: ceiling);
    		}
    		vma = next;
    	}
    }
    
    int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
    		pmd_t *pmd, unsigned long address)
    {
    	spinlock_t *ptl;
    	pgtable_t new = pte_alloc_one(mm, address);
    	int wait_split_huge_page;
    	if (!new)
    		return -ENOMEM;
    
    	/*
    	 * Ensure all pte setup (eg. pte page lock and page clearing) are
    	 * visible before the pte is made visible to other CPUs by being
    	 * put into page tables.
    	 *
    	 * The other side of the story is the pointer chasing in the page
    	 * table walking code (when walking the page table without locking;
    	 * ie. most of the time). Fortunately, these data accesses consist
    	 * of a chain of data-dependent loads, meaning most CPUs (alpha
    	 * being the notable exception) will already guarantee loads are
    	 * seen in-order. See the alpha page table accessors for the
    	 * smp_read_barrier_depends() barriers in page table walking code.
    	 */
    	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
    
    	ptl = pmd_lock(mm, pmd);
    	wait_split_huge_page = 0;
    	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
    		atomic_long_inc(&mm->nr_ptes);
    		pmd_populate(mm, pmd, new);
    		new = NULL;
    	} else if (unlikely(pmd_trans_splitting(*pmd)))
    		wait_split_huge_page = 1;
    	spin_unlock(ptl);
    	if (new)
    		pte_free(mm, new);
    	if (wait_split_huge_page)
    		wait_split_huge_page(vma->anon_vma, pmd);
    	return 0;
    }
    
    int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
    {
    	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
    	if (!new)
    		return -ENOMEM;
    
    	smp_wmb(); /* See comment in __pte_alloc */
    
    	spin_lock(&init_mm.page_table_lock);
    	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
    		pmd_populate_kernel(&init_mm, pmd, new);
    		new = NULL;
    	} else
    		VM_BUG_ON(pmd_trans_splitting(*pmd));
    	spin_unlock(&init_mm.page_table_lock);
    	if (new)
    		pte_free_kernel(&init_mm, new);
    	return 0;
    }
    
    static inline void init_rss_vec(int *rss)
    {
    	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
    }
    
    static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
    {
    	int i;
    
    	if (current->mm == mm)
    		sync_mm_rss(mm);
    	for (i = 0; i < NR_MM_COUNTERS; i++)
    		if (rss[i])
    			add_mm_counter(mm, i, rss[i]);
    }
    
    /*
     * This function is called to print an error when a bad pte
     * is found. For example, we might have a PFN-mapped pte in
     * a region that doesn't allow it.
     *
     * The calling function must still handle the error.
     */
    static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
    			  pte_t pte, struct page *page)
    {
    	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
    	pud_t *pud = pud_offset(pgd, addr);
    	pmd_t *pmd = pmd_offset(pud, addr);
    	struct address_space *mapping;
    	pgoff_t index;
    	static unsigned long resume;
    	static unsigned long nr_shown;
    	static unsigned long nr_unshown;
    
    	/*
    	 * Allow a burst of 60 reports, then keep quiet for that minute;
    	 * or allow a steady drip of one report per second.
    	 */
    	if (nr_shown == 60) {
    		if (time_before(jiffies, resume)) {
    			nr_unshown++;
    			return;
    		}
    		if (nr_unshown) {
    			printk(KERN_ALERT
    				"BUG: Bad page map: %lu messages suppressed\n",
    				nr_unshown);
    			nr_unshown = 0;
    		}
    		nr_shown = 0;
    	}
    	if (nr_shown++ == 0)
    		resume = jiffies + 60 * HZ;
    
    	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
    	index = linear_page_index(vma, addr);
    
    	printk(KERN_ALERT
    		"BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
    		current->comm,
    		(long long)pte_val(pte), (long long)pmd_val(*pmd));
    	if (page)
    		dump_page(page, "bad pte");
    	printk(KERN_ALERT
    		"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
    		(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
    	/*
    	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
    	 */
    	if (vma->vm_ops)
    		printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
    		       vma->vm_ops->fault);
    	if (vma->vm_file)
    		printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
    		       vma->vm_file->f_op->mmap);
    	dump_stack();
    	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
    }
    
    /*
     * vm_normal_page -- This function gets the "struct page" associated with a pte.
     *
     * "Special" mappings do not wish to be associated with a "struct page" (either
     * it doesn't exist, or it exists but they don't want to touch it). In this
     * case, NULL is returned here. "Normal" mappings do have a struct page.
     *
     * There are 2 broad cases. Firstly, an architecture may define a pte_special()
     * pte bit, in which case this function is trivial. Secondly, an architecture
     * may not have a spare pte bit, which requires a more complicated scheme,
     * described below.
     *
     * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
     * special mapping (even if there are underlying and valid "struct pages").
     * COWed pages of a VM_PFNMAP are always normal.
     *
     * The way we recognize COWed pages within VM_PFNMAP mappings is through the
     * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
     * set, and the vm_pgoff will point to the first PFN mapped: thus every special
     * mapping will always honor the rule
     *
     *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
     *
     * And for normal mappings this is false.
     *
     * This restricts such mappings to be a linear translation from virtual address
     * to pfn. To get around this restriction, we allow arbitrary mappings so long
     * as the vma is not a COW mapping; in that case, we know that all ptes are
     * special (because none can have been COWed).
     *
     *
     * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
     *
     * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
     * page" backing, however the difference is that _all_ pages with a struct
     * page (that is, those where pfn_valid is true) are refcounted and considered
     * normal pages by the VM. The disadvantage is that pages are refcounted
     * (which can be slower and simply not an option for some PFNMAP users). The
     * advantage is that we don't have to follow the strict linearity rule of
     * PFNMAP mappings in order to support COWable mappings.
     *
     */
    #ifdef __HAVE_ARCH_PTE_SPECIAL
    # define HAVE_PTE_SPECIAL 1
    #else
    # define HAVE_PTE_SPECIAL 0
    #endif
    struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
    				pte_t pte)
    {
    	unsigned long pfn = pte_pfn(pte);
    
    	if (HAVE_PTE_SPECIAL) {
    		if (likely(!pte_special(pte)))
    			goto check_pfn;
    		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
    			return NULL;
    		if (!is_zero_pfn(pfn))
    			print_bad_pte(vma, addr, pte, NULL);
    		return NULL;
    	}
    
    	/* !HAVE_PTE_SPECIAL case follows: */
    
    	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
    		if (vma->vm_flags & VM_MIXEDMAP) {
    			if (!pfn_valid(pfn))
    				return NULL;
    			goto out;
    		} else {
    			unsigned long off;
    			off = (addr - vma->vm_start) >> PAGE_SHIFT;
    			if (pfn == vma->vm_pgoff + off)
    				return NULL;
    			if (!is_cow_mapping(vma->vm_flags))
    				return NULL;
    		}
    	}
    
    	if (is_zero_pfn(pfn))
    		return NULL;
    check_pfn:
    	if (unlikely(pfn > highest_memmap_pfn)) {
    		print_bad_pte(vma, addr, pte, NULL);
    		return NULL;
    	}
    
    	/*
    	 * NOTE! We still have PageReserved() pages in the page tables.
    	 * eg. VDSO mappings can cause them to exist.
    	 */
    out:
    	return pfn_to_page(pfn);
    }
    
    /*
     * copy one vm_area from one task to the other. Assumes the page tables
     * already present in the new task to be cleared in the whole range
     * covered by this vma.
     */
    
    static inline unsigned long
    copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
    		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
    		unsigned long addr, int *rss)
    {
    	unsigned long vm_flags = vma->vm_flags;
    	pte_t pte = *src_pte;
    	struct page *page;
    
    	/* pte contains position in swap or file, so copy. */
    	if (unlikely(!pte_present(pte))) {
    		if (!pte_file(pte)) {
    			swp_entry_t entry = pte_to_swp_entry(pte);
    
    			if (likely(!non_swap_entry(entry))) {
    				if (swap_duplicate(entry) < 0)
    					return entry.val;
    
    				/* make sure dst_mm is on swapoff's mmlist. */
    				if (unlikely(list_empty(&dst_mm->mmlist))) {
    					spin_lock(&mmlist_lock);
    					if (list_empty(&dst_mm->mmlist))
    						list_add(&dst_mm->mmlist,
    							 &src_mm->mmlist);
    					spin_unlock(&mmlist_lock);
    				}
    				rss[MM_SWAPENTS]++;
    			} else if (is_migration_entry(entry)) {
    				page = migration_entry_to_page(entry);
    
    				if (PageAnon(page))
    					rss[MM_ANONPAGES]++;
    				else
    					rss[MM_FILEPAGES]++;
    
    				if (is_write_migration_entry(entry) &&
    				    is_cow_mapping(vm_flags)) {
    					/*
    					 * COW mappings require pages in both
    					 * parent and child to be set to read.
    					 */
    					make_migration_entry_read(&entry);
    					pte = swp_entry_to_pte(entry);
    					if (pte_swp_soft_dirty(*src_pte))
    						pte = pte_swp_mksoft_dirty(pte);
    					set_pte_at(src_mm, addr, src_pte, pte);
    				}
    			}
    		}
    		goto out_set_pte;
    	}
    
    	/*
    	 * If it's a COW mapping, write protect it both
    	 * in the parent and the child
    	 */
    	if (is_cow_mapping(vm_flags)) {
    		ptep_set_wrprotect(src_mm, addr, src_pte);
    		pte = pte_wrprotect(pte);
    	}
    
    	/*
    	 * If it's a shared mapping, mark it clean in
    	 * the child
    	 */
    	if (vm_flags & VM_SHARED)
    		pte = pte_mkclean(pte);
    	pte = pte_mkold(pte);
    
    	page = vm_normal_page(vma, addr, pte);
    	if (page) {
    		get_page(page);
    		page_dup_rmap(page);
    		if (PageAnon(page))
    			rss[MM_ANONPAGES]++;
    		else
    			rss[MM_FILEPAGES]++;
    	}
    
    out_set_pte:
    	set_pte_at(dst_mm, addr, dst_pte, pte);
    	return 0;
    }
    
    static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
    		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
    		   unsigned long addr, unsigned long end)
    {
    	pte_t *orig_src_pte, *orig_dst_pte;
    	pte_t *src_pte, *dst_pte;
    	spinlock_t *src_ptl, *dst_ptl;
    	int progress = 0;
    	int rss[NR_MM_COUNTERS];
    	swp_entry_t entry = (swp_entry_t){0};
    
    again:
    	init_rss_vec(rss);
    
    	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
    	if (!dst_pte)
    		return -ENOMEM;
    	src_pte = pte_offset_map(src_pmd, addr);
    	src_ptl = pte_lockptr(src_mm, src_pmd);
    	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
    	orig_src_pte = src_pte;
    	orig_dst_pte = dst_pte;
    	arch_enter_lazy_mmu_mode();
    
    	do {
    		/*
    		 * We are holding two locks at this point - either of them
    		 * could generate latencies in another task on another CPU.
    		 */
    		if (progress >= 32) {
    			progress = 0;
    			if (need_resched() ||
    			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
    				break;
    		}
    		if (pte_none(*src_pte)) {
    			progress++;
    			continue;
    		}
    		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
    							vma, addr, rss);
    		if (entry.val)
    			break;
    		progress += 8;
    	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
    
    	arch_leave_lazy_mmu_mode();
    	spin_unlock(src_ptl);
    	pte_unmap(orig_src_pte);
    	add_mm_rss_vec(dst_mm, rss);
    	pte_unmap_unlock(orig_dst_pte, dst_ptl);
    	cond_resched();
    
    	if (entry.val) {
    		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
    			return -ENOMEM;
    		progress = 0;
    	}
    	if (addr != end)
    		goto again;
    	return 0;
    }
    
    static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
    		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
    		unsigned long addr, unsigned long end)
    {
    	pmd_t *src_pmd, *dst_pmd;
    	unsigned long next;
    
    	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
    	if (!dst_pmd)
    		return -ENOMEM;
    	src_pmd = pmd_offset(src_pud, addr);
    	do {
    		next = pmd_addr_end(addr, end);
    		if (pmd_trans_huge(*src_pmd)) {
    			int err;
    			VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
    			err = copy_huge_pmd(dst_mm, src_mm,
    					    dst_pmd, src_pmd, addr, vma);
    			if (err == -ENOMEM)
    				return -ENOMEM;
    			if (!err)
    				continue;
    			/* fall through */
    		}
    		if (pmd_none_or_clear_bad(src_pmd))
    			continue;
    		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
    						vma, addr, next))
    			return -ENOMEM;
    	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
    	return 0;
    }
    
    static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
    		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
    		unsigned long addr, unsigned long end)
    {
    	pud_t *src_pud, *dst_pud;
    	unsigned long next;
    
    	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
    	if (!dst_pud)
    		return -ENOMEM;
    	src_pud = pud_offset(src_pgd, addr);
    	do {
    		next = pud_addr_end(addr, end);
    		if (pud_none_or_clear_bad(src_pud))
    			continue;
    		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
    						vma, addr, next))
    			return -ENOMEM;
    	} while (dst_pud++, src_pud++, addr = next, addr != end);
    	return 0;
    }
    
    int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
    		struct vm_area_struct *vma)
    {
    	pgd_t *src_pgd, *dst_pgd;
    	unsigned long next;
    	unsigned long addr = vma->vm_start;
    	unsigned long end = vma->vm_end;
    	unsigned long mmun_start;	/* For mmu_notifiers */
    	unsigned long mmun_end;		/* For mmu_notifiers */
    	bool is_cow;
    	int ret;
    
    	/*
    	 * Don't copy ptes where a page fault will fill them correctly.
    	 * Fork becomes much lighter when there are big shared or private
    	 * readonly mappings. The tradeoff is that copy_page_range is more
    	 * efficient than faulting.
    	 */
    	if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
    			       VM_PFNMAP | VM_MIXEDMAP))) {
    		if (!vma->anon_vma)
    			return 0;
    	}
    
    	if (is_vm_hugetlb_page(vma))
    		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
    
    	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
    		/*
    		 * We do not free on error cases below as remove_vma
    		 * gets called on error from higher level routine
    		 */
    		ret = track_pfn_copy(vma);
    		if (ret)
    			return ret;
    	}
    
    	/*
    	 * We need to invalidate the secondary MMU mappings only when
    	 * there could be a permission downgrade on the ptes of the
    	 * parent mm. And a permission downgrade will only happen if
    	 * is_cow_mapping() returns true.
    	 */
    	is_cow = is_cow_mapping(vma->vm_flags);
    	mmun_start = addr;
    	mmun_end   = end;
    	if (is_cow)
    		mmu_notifier_invalidate_range_start(src_mm, mmun_start,
    						    mmun_end);
    
    	ret = 0;
    	dst_pgd = pgd_offset(dst_mm, addr);
    	src_pgd = pgd_offset(src_mm, addr);
    	do {
    		next = pgd_addr_end(addr, end);
    		if (pgd_none_or_clear_bad(src_pgd))
    			continue;
    		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
    					    vma, addr, next))) {
    			ret = -ENOMEM;
    			break;
    		}
    	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
    
    	if (is_cow)
    		mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
    	return ret;
    }
    
    static unsigned long zap_pte_range(struct mmu_gather *tlb,
    				struct vm_area_struct *vma, pmd_t *pmd,
    				unsigned long addr, unsigned long end,
    				struct zap_details *details)
    {
    	struct mm_struct *mm = tlb->mm;
    	int force_flush = 0;
    	int rss[NR_MM_COUNTERS];
    	spinlock_t *ptl;
    	pte_t *start_pte;
    	pte_t *pte;
    
    again:
    	init_rss_vec(rss);
    	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
    	pte = start_pte;
    	arch_enter_lazy_mmu_mode();
    	do {
    		pte_t ptent = *pte;
    		if (pte_none(ptent)) {
    			continue;
    		}
    
    		if (pte_present(ptent)) {
    			struct page *page;
    
    			page = vm_normal_page(vma, addr, ptent);
    			if (unlikely(details) && page) {
    				/*
    				 * unmap_shared_mapping_pages() wants to
    				 * invalidate cache without truncating:
    				 * unmap shared but keep private pages.
    				 */
    				if (details->check_mapping &&
    				    details->check_mapping != page->mapping)
    					continue;
    				/*
    				 * Each page->index must be checked when
    				 * invalidating or truncating nonlinear.
    				 */
    				if (details->nonlinear_vma &&
    				    (page->index < details->first_index ||
    				     page->index > details->last_index))
    					continue;
    			}
    			ptent = ptep_get_and_clear_full(mm, addr, pte,
    							tlb->fullmm);
    			tlb_remove_tlb_entry(tlb, pte, addr);
    			if (unlikely(!page))
    				continue;
    			if (unlikely(details) && details->nonlinear_vma
    			    && linear_page_index(details->nonlinear_vma,
    						addr) != page->index) {
    				pte_t ptfile = pgoff_to_pte(page->index);
    				if (pte_soft_dirty(ptent))
    					ptfile = pte_file_mksoft_dirty(ptfile);
    				set_pte_at(mm, addr, pte, ptfile);
    			}
    			if (PageAnon(page))
    				rss[MM_ANONPAGES]--;
    			else {
    				if (pte_dirty(ptent)) {
    					force_flush = 1;
    					set_page_dirty(page);
    				}
    				if (pte_young(ptent) &&
    				    likely(!(vma->vm_flags & VM_SEQ_READ)))
    					mark_page_accessed(page);
    				rss[MM_FILEPAGES]--;
    			}
    			page_remove_rmap(page);
    			if (unlikely(page_mapcount(page) < 0))
    				print_bad_pte(vma, addr, ptent, page);
    			if (unlikely(!__tlb_remove_page(tlb, page))) {
    				force_flush = 1;
    				addr += PAGE_SIZE;
    				break;
    			}
    			continue;
    		}
    		/*
    		 * If details->check_mapping, we leave swap entries;
    		 * if details->nonlinear_vma, we leave file entries.
    		 */
    		if (unlikely(details))
    			continue;
    		if (pte_file(ptent)) {
    			if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
    				print_bad_pte(vma, addr, ptent, NULL);
    		} else {
    			swp_entry_t entry = pte_to_swp_entry(ptent);
    
    			if (!non_swap_entry(entry))
    				rss[MM_SWAPENTS]--;
    			else if (is_migration_entry(entry)) {
    				struct page *page;
    
    				page = migration_entry_to_page(entry);
    
    				if (PageAnon(page))
    					rss[MM_ANONPAGES]--;
    				else
    					rss[MM_FILEPAGES]--;
    			}
    			if (unlikely(!free_swap_and_cache(entry)))
    				print_bad_pte(vma, addr, ptent, NULL);
    		}
    		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
    	} while (pte++, addr += PAGE_SIZE, addr != end);
    
    	add_mm_rss_vec(mm, rss);
    	arch_leave_lazy_mmu_mode();
    
    	/* Do the actual TLB flush before dropping ptl */
    	if (force_flush)
    		tlb_flush_mmu_tlbonly(tlb);
    	pte_unmap_unlock(start_pte, ptl);
    
    	/*
    	 * If we forced a TLB flush (either due to running out of
    	 * batch buffers or because we needed to flush dirty TLB
    	 * entries before releasing the ptl), free the batched
    	 * memory too. Restart if we didn't do everything.
    	 */
    	if (force_flush) {
    		force_flush = 0;
    		tlb_flush_mmu_free(tlb);
    
    		if (addr != end)
    			goto again;
    	}
    
    	return addr;
    }
    
    static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
    				struct vm_area_struct *vma, pud_t *pud,
    				unsigned long addr, unsigned long end,
    				struct zap_details *details)
    {
    	pmd_t *pmd;
    	unsigned long next;
    
    	pmd = pmd_offset(pud, addr);
    	do {
    		next = pmd_addr_end(addr, end);
    		if (pmd_trans_huge(*pmd)) {
    			if (next - addr != HPAGE_PMD_SIZE) {
    #ifdef CONFIG_DEBUG_VM
    				if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
    					pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
    						__func__, addr, end,
    						vma->vm_start,
    						vma->vm_end);
    					BUG();
    				}
    #endif
    				split_huge_page_pmd(vma, addr, pmd);
    			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
    				goto next;
    			/* fall through */
    		}
    		/*
    		 * Here there can be other concurrent MADV_DONTNEED or
    		 * trans huge page faults running, and if the pmd is
    		 * none or trans huge it can change under us. This is
    		 * because MADV_DONTNEED holds the mmap_sem in read
    		 * mode.
    		 */
    		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
    			goto next;
    		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
    next:
    		cond_resched();
    	} while (pmd++, addr = next, addr != end);
    
    	return addr;
    }
    
    static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
    				struct vm_area_struct *vma, pgd_t *pgd,
    				unsigned long addr, unsigned long end,
    				struct zap_details *details)
    {
    	pud_t *pud;
    	unsigned long next;
    
    	pud = pud_offset(pgd, addr);
    	do {
    		next = pud_addr_end(addr, end);
    		if (pud_none_or_clear_bad(pud))
    			continue;
    		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
    	} while (pud++, addr = next, addr != end);
    
    	return addr;
    }
    
    static void unmap_page_range(struct mmu_gather *tlb,
    			     struct vm_area_struct *vma,
    			     unsigned long addr, unsigned long end,
    			     struct zap_details *details)
    {
    	pgd_t *pgd;
    	unsigned long next;
    
    	if (details && !details->check_mapping && !details->nonlinear_vma)
    		details = NULL;
    
    	BUG_ON(addr >= end);
    	tlb_start_vma(tlb, vma);
    	pgd = pgd_offset(vma->vm_mm, addr);
    	do {
    		next = pgd_addr_end(addr, end);
    		if (pgd_none_or_clear_bad(pgd))
    			continue;
    		next = zap_pud_range(tlb, vma, pgd, addr, next, details);
    	} while (pgd++, addr = next, addr != end);
    	tlb_end_vma(tlb, vma);
    }
    
    
    static void unmap_single_vma(struct mmu_gather *tlb,
    		struct vm_area_struct *vma, unsigned long start_addr,
    		unsigned long end_addr,
    		struct zap_details *details)
    {
    	unsigned long start = max(vma->vm_start, start_addr);
    	unsigned long end;
    
    	if (start >= vma->vm_end)
    		return;
    	end = min(vma->vm_end, end_addr);
    	if (end <= vma->vm_start)
    		return;
    
    	if (vma->vm_file)
    		uprobe_munmap(vma, start, end);
    
    	if (unlikely(vma->vm_flags & VM_PFNMAP))
    		untrack_pfn(vma, 0, 0);
    
    	if (start != end) {
    		if (unlikely(is_vm_hugetlb_page(vma))) {
    			/*
    			 * It is undesirable to test vma->vm_file as it
    			 * should be non-null for valid hugetlb area.
    			 * However, vm_file will be NULL in the error
    			 * cleanup path of mmap_region. When
    			 * hugetlbfs ->mmap method fails,
    			 * mmap_region() nullifies vma->vm_file
    			 * before calling this function to clean up.
    			 * Since no pte has actually been setup, it is
    			 * safe to do nothing in this case.
    			 */
    			if (vma->vm_file) {
    				mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
    				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
    				mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
    			}
    		} else
    			unmap_page_range(tlb, vma, start, end, details);
    	}
    }
    
    /**
     * unmap_vmas - unmap a range of memory covered by a list of vma's
     * @tlb: address of the caller's struct mmu_gather
     * @vma: the starting vma
     * @start_addr: virtual address at which to start unmapping
     * @end_addr: virtual address at which to end unmapping
     *
     * Unmap all pages in the vma list.
     *
     * Only addresses between `start' and `end' will be unmapped.
     *
     * The VMA list must be sorted in ascending virtual address order.
     *
     * unmap_vmas() assumes that the caller will flush the whole unmapped address
     * range after unmap_vmas() returns.  So the only responsibility here is to
     * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
     * drops the lock and schedules.
     */
    void unmap_vmas(struct mmu_gather *tlb,
    		struct vm_area_struct *vma, unsigned long start_addr,
    		unsigned long end_addr)
    {
    	struct mm_struct *mm = vma->vm_mm;
    
    	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
    	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
    		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
    	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
    }
    
    /**
     * zap_page_range - remove user pages in a given range
     * @vma: vm_area_struct holding the applicable pages
     * @start: starting address of pages to zap
     * @size: number of bytes to zap
     * @details: details of nonlinear truncation or shared cache invalidation
     *
     * Caller must protect the VMA list
     */
    void zap_page_range(struct vm_area_struct *vma, unsigned long start,
    		unsigned long size, struct zap_details *details)
    {
    	struct mm_struct *mm = vma->vm_mm;
    	struct mmu_gather tlb;
    	unsigned long end = start + size;
    
    	lru_add_drain();
    	tlb_gather_mmu(&tlb, mm, start, end);
    	update_hiwater_rss(mm);
    	mmu_notifier_invalidate_range_start(mm, start, end);
    	for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
    		unmap_single_vma(&tlb, vma, start, end, details);
    	mmu_notifier_invalidate_range_end(mm, start, end);
    	tlb_finish_mmu(&tlb, start, end);
    }
    
    /**
     * zap_page_range_single - remove user pages in a given range
     * @vma: vm_area_struct holding the applicable pages
     * @address: starting address of pages to zap
     * @size: number of bytes to zap
     * @details: details of nonlinear truncation or shared cache invalidation
     *
     * The range must fit into one VMA.
     */
    static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
    		unsigned long size, struct zap_details *details)
    {
    	struct mm_struct *mm = vma->vm_mm;
    	struct mmu_gather tlb;
    	unsigned long end = address + size;
    
    	lru_add_drain();
    	tlb_gather_mmu(&tlb, mm, address, end);
    	update_hiwater_rss(mm);
    	mmu_notifier_invalidate_range_start(mm, address, end);
    	unmap_single_vma(&tlb, vma, address, end, details);
    	mmu_notifier_invalidate_range_end(mm, address, end);
    	tlb_finish_mmu(&tlb, address, end);
    }
    
    /**
     * zap_vma_ptes - remove ptes mapping the vma
     * @vma: vm_area_struct holding ptes to be zapped
     * @address: starting address of pages to zap
     * @size: number of bytes to zap
     *
     * This function only unmaps ptes assigned to VM_PFNMAP vmas.
     *
     * The entire address range must be fully contained within the vma.
     *
     * Returns 0 if successful.
     */
    int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
    		unsigned long size)
    {
    	if (address < vma->vm_start || address + size > vma->vm_end ||
    	    		!(vma->vm_flags & VM_PFNMAP))
    		return -1;
    	zap_page_range_single(vma, address, size, NULL);
    	return 0;
    }
    EXPORT_SYMBOL_GPL(zap_vma_ptes);
    
    pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
    			spinlock_t **ptl)
    {
    	pgd_t * pgd = pgd_offset(mm, addr);
    	pud_t * pud = pud_alloc(mm, pgd, addr);
    	if (pud) {
    		pmd_t * pmd = pmd_alloc(mm, pud, addr);
    		if (pmd) {
    			VM_BUG_ON(pmd_trans_huge(*pmd));
    			return pte_alloc_map_lock(mm, pmd, addr, ptl);
    		}
    	}
    	return NULL;
    }
    
    /*
     * This is the old fallback for page remapping.
     *
     * For historical reasons, it only allows reserved pages. Only
     * old drivers should use this, and they needed to mark their
     * pages reserved for the old functions anyway.
     */
    static int insert_page(struct vm_area_struct *vma, unsigned long addr,
    			struct page *page, pgprot_t prot)
    {
    	struct mm_struct *mm = vma->vm_mm;
    	int retval;
    	pte_t *pte;
    	spinlock_t *ptl;
    
    	retval = -EINVAL;
    	if (PageAnon(page))
    		goto out;
    	retval = -ENOMEM;
    	flush_dcache_page(page);
    	pte = get_locked_pte(mm, addr, &ptl);
    	if (!pte)
    		goto out;
    	retval = -EBUSY;
    	if (!pte_none(*pte))
    		goto out_unlock;
    
    	/* Ok, finally just insert the thing.. */
    	get_page(page);
    	inc_mm_counter_fast(mm, MM_FILEPAGES);
    	page_add_file_rmap(page);
    	set_pte_at(mm, addr, pte, mk_pte(page, prot));
    
    	retval = 0;
    	pte_unmap_unlock(pte, ptl);
    	return retval;
    out_unlock:
    	pte_unmap_unlock(pte, ptl);
    out:
    	return retval;
    }
    
    /**
     * vm_insert_page - insert single page into user vma
     * @vma: user vma to map to
     * @addr: target user address of this page
     * @page: source kernel page
     *
     * This allows drivers to insert individual pages they've allocated
     * into a user vma.
     *
     * The page has to be a nice clean _individual_ kernel allocation.
     * If you allocate a compound page, you need to have marked it as
     * such (__GFP_COMP), or manually just split the page up yourself
     * (see split_page()).
     *
     * NOTE! Traditionally this was done with "remap_pfn_range()" which
     * took an arbitrary page protection parameter. This doesn't allow
     * that. Your vma protection will have to be set up correctly, which
     * means that if you want a shared writable mapping, you'd better
     * ask for a shared writable mapping!
     *
     * The page does not need to be reserved.
     *
     * Usually this function is called from f_op->mmap() handler
     * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
     * Caller must set VM_MIXEDMAP on vma if it wants to call this
     * function from other places, for example from page-fault handler.
     */
    int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
    			struct page *page)
    {
    	if (addr < vma->vm_start || addr >= vma->vm_end)
    		return -EFAULT;
    	if (!page_count(page))
    		return -EINVAL;
    	if (!(vma->vm_flags & VM_MIXEDMAP)) {
    		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
    		BUG_ON(vma->vm_flags & VM_PFNMAP);
    		vma->vm_flags |= VM_MIXEDMAP;
    	}
    	return insert_page(vma, addr, page, vma->vm_page_prot);
    }
    EXPORT_SYMBOL(vm_insert_page);
    
    static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
    			unsigned long pfn, pgprot_t prot)
    {
    	struct mm_struct *mm = vma->vm_mm;
    	int retval;
    	pte_t *pte, entry;
    	spinlock_t *ptl;
    
    	retval = -ENOMEM;
    	pte = get_locked_pte(mm, addr, &ptl);
    	if (!pte)
    		goto out;
    	retval = -EBUSY;
    	if (!pte_none(*pte))
    		goto out_unlock;
    
    	/* Ok, finally just insert the thing.. */
    	entry = pte_mkspecial(pfn_pte(pfn, prot));
    	set_pte_at(mm, addr, pte, entry);
    	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
    
    	retval = 0;
    out_unlock:
    	pte_unmap_unlock(pte, ptl);
    out:
    	return retval;
    }
    
    /**
     * vm_insert_pfn - insert single pfn into user vma
     * @vma: user vma to map to
     * @addr: target user address of this page
     * @pfn: source kernel pfn
     *
     * Similar to vm_insert_page, this allows drivers to insert individual pages
     * they've allocated into a user vma. Same comments apply.
     *
     * This function should only be called from a vm_ops->fault handler, and
     * in that case the handler should return NULL.
     *
     * vma cannot be a COW mapping.
     *
     * As this is called only for pages that do not currently exist, we
     * do not need to flush old virtual caches or the TLB.
     */
    int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
    			unsigned long pfn)
    {
    	int ret;
    	pgprot_t pgprot = vma->vm_page_prot;
    	/*
    	 * Technically, architectures with pte_special can avoid all these
    	 * restrictions (same for remap_pfn_range).  However we would like
    	 * consistency in testing and feature parity among all, so we should
    	 * try to keep these invariants in place for everybody.
    	 */
    	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
    	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
    						(VM_PFNMAP|VM_MIXEDMAP));
    	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
    	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
    
    	if (addr < vma->vm_start || addr >= vma->vm_end)
    		return -EFAULT;
    	if (track_pfn_insert(vma, &pgprot, pfn))
    		return -EINVAL;
    
    	ret = insert_pfn(vma, addr, pfn, pgprot);
    
    	return ret;
    }
    EXPORT_SYMBOL(vm_insert_pfn);
    
    int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
    			unsigned long pfn)
    {
    	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
    
    	if (addr < vma->vm_start || addr >= vma->vm_end)
    		return -EFAULT;
    
    	/*
    	 * If we don't have pte special, then we have to use the pfn_valid()
    	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
    	 * refcount the page if pfn_valid is true (hence insert_page rather
    	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
    	 * without pte special, it would there be refcounted as a normal page.
    	 */
    	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
    		struct page *page;
    
    		page = pfn_to_page(pfn);
    		return insert_page(vma, addr, page, vma->vm_page_prot);
    	}
    	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
    }
    EXPORT_SYMBOL(vm_insert_mixed);
    
    /*
     * maps a range of physical memory into the requested pages. the old
     * mappings are removed. any references to nonexistent pages results
     * in null mappings (currently treated as "copy-on-access")
     */
    static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
    			unsigned long addr, unsigned long end,
    			unsigned long pfn, pgprot_t prot)
    {
    	pte_t *pte;
    	spinlock_t *ptl;
    
    	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
    	if (!pte)
    		return -ENOMEM;
    	arch_enter_lazy_mmu_mode();
    	do {
    		BUG_ON(!pte_none(*pte));
    		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
    		pfn++;
    	} while (pte++, addr += PAGE_SIZE, addr != end);
    	arch_leave_lazy_mmu_mode();
    	pte_unmap_unlock(pte - 1, ptl);
    	return 0;
    }
    
    static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
    			unsigned long addr, unsigned long end,
    			unsigned long pfn, pgprot_t prot)
    {
    	pmd_t *pmd;
    	unsigned long next;
    
    	pfn -= addr >> PAGE_SHIFT;
    	pmd = pmd_alloc(mm, pud, addr);
    	if (!pmd)
    		return -ENOMEM;
    	VM_BUG_ON(pmd_trans_huge(*pmd));
    	do {
    		next = pmd_addr_end(addr, end);
    		if (remap_pte_range(mm, pmd, addr, next,
    				pfn + (addr >> PAGE_SHIFT), prot))
    			return -ENOMEM;
    	} while (pmd++, addr = next, addr != end);
    	return 0;
    }
    
    static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
    			unsigned long addr, unsigned long end,
    			unsigned long pfn, pgprot_t prot)
    {
    	pud_t *pud;
    	unsigned long next;
    
    	pfn -= addr >> PAGE_SHIFT;
    	pud = pud_alloc(mm, pgd, addr);
    	if (!pud)
    		return -ENOMEM;
    	do {
    		next = pud_addr_end(addr, end);
    		if (remap_pmd_range(mm, pud, addr, next,
    				pfn + (addr >> PAGE_SHIFT), prot))
    			return -ENOMEM;
    	} while (pud++, addr = next, addr != end);
    	return 0;
    }
    
    /**
     * remap_pfn_range - remap kernel memory to userspace
     * @vma: user vma to map to
     * @addr: target user address to start at
     * @pfn: physical address of kernel memory
     * @size: size of map area
     * @prot: page protection flags for this mapping
     *
     *  Note: this is only safe if the mm semaphore is held when called.
     */
    int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
    		    unsigned long pfn, unsigned long size, pgprot_t prot)
    {
    	pgd_t *pgd;
    	unsigned long next;
    	unsigned long end = addr + PAGE_ALIGN(size);
    	struct mm_struct *mm = vma->vm_mm;
    	int err;
    
    	/*
    	 * Physically remapped pages are special. Tell the
    	 * rest of the world about it:
    	 *   VM_IO tells people not to look at these pages
    	 *	(accesses can have side effects).
    	 *   VM_PFNMAP tells the core MM that the base pages are just
    	 *	raw PFN mappings, and do not have a "struct page" associated
    	 *	with them.
    	 *   VM_DONTEXPAND
    	 *      Disable vma merging and expanding with mremap().
    	 *   VM_DONTDUMP
    	 *      Omit vma from core dump, even when VM_IO turned off.
    	 *
    	 * There's a horrible special case to handle copy-on-write
    	 * behaviour that some programs depend on. We mark the "original"
    	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
    	 * See vm_normal_page() for details.
    	 */
    	if (is_cow_mapping(vma->vm_flags)) {
    		if (addr != vma->vm_start || end != vma->vm_end)
    			return -EINVAL;
    		vma->vm_pgoff = pfn;
    	}
    
    	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
    	if (err)
    		return -EINVAL;
    
    	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
    
    	BUG_ON(addr >= end);
    	pfn -= addr >> PAGE_SHIFT;
    	pgd = pgd_offset(mm, addr);
    	flush_cache_range(vma, addr, end);
    	do {
    		next = pgd_addr_end(addr, end);
    		err = remap_pud_range(mm, pgd, addr, next,
    				pfn + (addr >> PAGE_SHIFT), prot);
    		if (err)
    			break;
    	} while (pgd++, addr = next, addr != end);
    
    	if (err)
    		untrack_pfn(vma, pfn, PAGE_ALIGN(size));
    
    	return err;
    }
    EXPORT_SYMBOL(remap_pfn_range);
    
    /**
     * vm_iomap_memory - remap memory to userspace
     * @vma: user vma to map to
     * @start: start of area
     * @len: size of area
     *
     * This is a simplified io_remap_pfn_range() for common driver use. The
     * driver just needs to give us the physical memory range to be mapped,
     * we'll figure out the rest from the vma information.
     *
     * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
     * whatever write-combining details or similar.
     */
    int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
    {
    	unsigned long vm_len, pfn, pages;
    
    	/* Check that the physical memory area passed in looks valid */
    	if (start + len < start)
    		return -EINVAL;
    	/*
    	 * You *really* shouldn't map things that aren't page-aligned,
    	 * but we've historically allowed it because IO memory might
    	 * just have smaller alignment.
    	 */
    	len += start & ~PAGE_MASK;
    	pfn = start >> PAGE_SHIFT;
    	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
    	if (pfn + pages < pfn)
    		return -EINVAL;
    
    	/* We start the mapping 'vm_pgoff' pages into the area */
    	if (vma->vm_pgoff > pages)
    		return -EINVAL;
    	pfn += vma->vm_pgoff;
    	pages -= vma->vm_pgoff;
    
    	/* Can we fit all of the mapping? */
    	vm_len = vma->vm_end - vma->vm_start;
    	if (vm_len >> PAGE_SHIFT > pages)
    		return -EINVAL;
    
    	/* Ok, let it rip */
    	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
    }
    EXPORT_SYMBOL(vm_iomap_memory);
    
    static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
    				     unsigned long addr, unsigned long end,
    				     pte_fn_t fn, void *data)
    {
    	pte_t *pte;
    	int err;
    	pgtable_t token;
    	spinlock_t *uninitialized_var(ptl);
    
    	pte = (mm == &init_mm) ?
    		pte_alloc_kernel(pmd, addr) :
    		pte_alloc_map_lock(mm, pmd, addr, &ptl);
    	if (!pte)
    		return -ENOMEM;
    
    	BUG_ON(pmd_huge(*pmd));
    
    	arch_enter_lazy_mmu_mode();
    
    	token = pmd_pgtable(*pmd);
    
    	do {
    		err = fn(pte++, token, addr, data);
    		if (err)
    			break;
    	} while (addr += PAGE_SIZE, addr != end);
    
    	arch_leave_lazy_mmu_mode();
    
    	if (mm != &init_mm)
    		pte_unmap_unlock(pte-1, ptl);
    	return err;
    }
    
    static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
    				     unsigned long addr, unsigned long end,
    				     pte_fn_t fn, void *data)
    {
    	pmd_t *pmd;
    	unsigned long next;
    	int err;
    
    	BUG_ON(pud_huge(*pud));
    
    	pmd = pmd_alloc(mm, pud, addr);
    	if (!pmd)
    		return -ENOMEM;
    	do {
    		next = pmd_addr_end(addr, end);
    		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
    		if (err)
    			break;
    	} while (pmd++, addr = next, addr != end);
    	return err;
    }
    
    static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
    				     unsigned long addr, unsigned long end,
    				     pte_fn_t fn, void *data)
    {
    	pud_t *pud;
    	unsigned long next;
    	int err;
    
    	pud = pud_alloc(mm, pgd, addr);
    	if (!pud)
    		return -ENOMEM;
    	do {
    		next = pud_addr_end(addr, end);
    		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
    		if (err)
    			break;
    	} while (pud++, addr = next, addr != end);
    	return err;
    }
    
    /*
     * Scan a region of virtual memory, filling in page tables as necessary
     * and calling a provided function on each leaf page table.
     */
    int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
    			unsigned long size, pte_fn_t fn, void *data)
    {
    	pgd_t *pgd;
    	unsigned long next;
    	unsigned long end = addr + size;
    	int err;
    
    	BUG_ON(addr >= end);
    	pgd = pgd_offset(mm, addr);
    	do {
    		next = pgd_addr_end(addr, end);
    		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
    		if (err)
    			break;
    	} while (pgd++, addr = next, addr != end);
    
    	return err;
    }
    EXPORT_SYMBOL_GPL(apply_to_page_range);
    
    /*
     * handle_pte_fault chooses page fault handler according to an entry
     * which was read non-atomically.  Before making any commitment, on
     * those architectures or configurations (e.g. i386 with PAE) which
     * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
     * must check under lock before unmapping the pte and proceeding
     * (but do_wp_page is only called after already making such a check;
     * and do_anonymous_page can safely check later on).
     */
    static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
    				pte_t *page_table, pte_t orig_pte)
    {
    	int same = 1;
    #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
    	if (sizeof(pte_t) > sizeof(unsigned long)) {
    		spinlock_t *ptl = pte_lockptr(mm, pmd);
    		spin_lock(ptl);
    		same = pte_same(*page_table, orig_pte);
    		spin_unlock(ptl);
    	}
    #endif
    	pte_unmap(page_table);
    	return same;
    }
    
    static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
    {
    	debug_dma_assert_idle(src);
    
    	/*
    	 * If the source page was a PFN mapping, we don't have
    	 * a "struct page" for it. We do a best-effort copy by
    	 * just copying from the original user address. If that
    	 * fails, we just zero-fill it. Live with it.
    	 */
    	if (unlikely(!src)) {
    		void *kaddr = kmap_atomic(dst);
    		void __user *uaddr = (void __user *)(va & PAGE_MASK);
    
    		/*
    		 * This really shouldn't fail, because the page is there
    		 * in the page tables. But it might just be unreadable,
    		 * in which case we just give up and fill the result with
    		 * zeroes.
    		 */
    		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
    			clear_page(kaddr);
    		kunmap_atomic(kaddr);
    		flush_dcache_page(dst);
    	} else
    		copy_user_highpage(dst, src, va, vma);
    }
    
    /*
     * Notify the address space that the page is about to become writable so that
     * it can prohibit this or wait for the page to get into an appropriate state.
     *
     * We do this without the lock held, so that it can sleep if it needs to.
     */
    static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
    	       unsigned long address)
    {
    	struct vm_fault vmf;
    	int ret;
    
    	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
    	vmf.pgoff = page->index;
    	vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
    	vmf.page = page;
    
    	ret = vma->vm_ops->page_mkwrite(vma, &vmf);
    	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
    		return ret;
    	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
    		lock_page(page);
    		if (!page->mapping) {
    			unlock_page(page);
    			return 0; /* retry */
    		}
    		ret |= VM_FAULT_LOCKED;
    	} else
    		VM_BUG_ON_PAGE(!PageLocked(page), page);
    	return ret;
    }
    
    /*
     * This routine handles present pages, when users try to write
     * to a shared page. It is done by copying the page to a new address
     * and decrementing the shared-page counter for the old page.
     *
     * Note that this routine assumes that the protection checks have been
     * done by the caller (the low-level page fault routine in most cases).
     * Thus we can safely just mark it writable once we've done any necessary
     * COW.
     *
     * We also mark the page dirty at this point even though the page will
     * change only once the write actually happens. This avoids a few races,
     * and potentially makes it more efficient.
     *
     * We enter with non-exclusive mmap_sem (to exclude vma changes,
     * but allow concurrent faults), with pte both mapped and locked.
     * We return with mmap_sem still held, but pte unmapped and unlocked.
     */
    static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
    		unsigned long address, pte_t *page_table, pmd_t *pmd,
    		spinlock_t *ptl, pte_t orig_pte)
    	__releases(ptl)
    {
    	struct page *old_page, *new_page = NULL;
    	pte_t entry;
    	int ret = 0;
    	int page_mkwrite = 0;
    	struct page *dirty_page = NULL;
    	unsigned long mmun_start = 0;	/* For mmu_notifiers */
    	unsigned long mmun_end = 0;	/* For mmu_notifiers */
    	struct mem_cgroup *memcg;
    
    	old_page = vm_normal_page(vma, address, orig_pte);
    	if (!old_page) {
    		/*
    		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
    		 * VM_PFNMAP VMA.
    		 *
    		 * We should not cow pages in a shared writeable mapping.
    		 * Just mark the pages writable as we can't do any dirty
    		 * accounting on raw pfn maps.
    		 */
    		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
    				     (VM_WRITE|VM_SHARED))
    			goto reuse;
    		goto gotten;
    	}
    
    	/*
    	 * Take out anonymous pages first, anonymous shared vmas are
    	 * not dirty accountable.
    	 */
    	if (PageAnon(old_page) && !PageKsm(old_page)) {
    		if (!trylock_page(old_page)) {
    			page_cache_get(old_page);
    			pte_unmap_unlock(page_table, ptl);
    			lock_page(old_page);
    			page_table = pte_offset_map_lock(mm, pmd, address,
    							 &ptl);
    			if (!pte_same(*page_table, orig_pte)) {
    				unlock_page(old_page);
    				goto unlock;
    			}
    			page_cache_release(old_page);
    		}
    		if (reuse_swap_page(old_page)) {
    			/*
    			 * The page is all ours.  Move it to our anon_vma so
    			 * the rmap code will not search our parent or siblings.
    			 * Protected against the rmap code by the page lock.
    			 */
    			page_move_anon_rmap(old_page, vma, address);
    			unlock_page(old_page);
    			goto reuse;
    		}
    		unlock_page(old_page);
    	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
    					(VM_WRITE|VM_SHARED))) {
    		/*
    		 * Only catch write-faults on shared writable pages,
    		 * read-only shared pages can get COWed by
    		 * get_user_pages(.write=1, .force=1).
    		 */
    		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
    			int tmp;
    			page_cache_get(old_page);
    			pte_unmap_unlock(page_table, ptl);
    			tmp = do_page_mkwrite(vma, old_page, address);
    			if (unlikely(!tmp || (tmp &
    					(VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
    				page_cache_release(old_page);
    				return tmp;
    			}
    			/*
    			 * Since we dropped the lock we need to revalidate
    			 * the PTE as someone else may have changed it.  If
    			 * they did, we just return, as we can count on the
    			 * MMU to tell us if they didn't also make it writable.
    			 */
    			page_table = pte_offset_map_lock(mm, pmd, address,
    							 &ptl);
    			if (!pte_same(*page_table, orig_pte)) {
    				unlock_page(old_page);
    				goto unlock;
    			}
    
    			page_mkwrite = 1;
    		}
    		dirty_page = old_page;
    		get_page(dirty_page);
    
    reuse:
    		/*
    		 * Clear the pages cpupid information as the existing
    		 * information potentially belongs to a now completely
    		 * unrelated process.
    		 */
    		if (old_page)
    			page_cpupid_xchg_last(old_page, (1 << LAST_CPUPID_SHIFT) - 1);
    
    		flush_cache_page(vma, address, pte_pfn(orig_pte));
    		entry = pte_mkyoung(orig_pte);
    		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
    		if (ptep_set_access_flags(vma, address, page_table, entry,1))
    			update_mmu_cache(vma, address, page_table);
    		pte_unmap_unlock(page_table, ptl);
    		ret |= VM_FAULT_WRITE;
    
    		if (!dirty_page)
    			return ret;
    
    		/*
    		 * Yes, Virginia, this is actually required to prevent a race
    		 * with clear_page_dirty_for_io() from clearing the page dirty
    		 * bit after it clear all dirty ptes, but before a racing
    		 * do_wp_page installs a dirty pte.
    		 *
    		 * do_shared_fault is protected similarly.
    		 */
    		if (!page_mkwrite) {
    			wait_on_page_locked(dirty_page);
    			set_page_dirty_balance(dirty_page);
    			/* file_update_time outside page_lock */
    			if (vma->vm_file)
    				file_update_time(vma->vm_file);
    		}
    		put_page(dirty_page);
    		if (page_mkwrite) {
    			struct address_space *mapping = dirty_page->mapping;
    
    			set_page_dirty(dirty_page);
    			unlock_page(dirty_page);
    			page_cache_release(dirty_page);
    			if (mapping)	{
    				/*
    				 * Some device drivers do not set page.mapping
    				 * but still dirty their pages
    				 */
    				balance_dirty_pages_ratelimited(mapping);
    			}
    		}
    
    		return ret;
    	}
    
    	/*
    	 * Ok, we need to copy. Oh, well..
    	 */
    	page_cache_get(old_page);
    gotten:
    	pte_unmap_unlock(page_table, ptl);
    
    	if (unlikely(anon_vma_prepare(vma)))
    		goto oom;
    
    	if (is_zero_pfn(pte_pfn(orig_pte))) {
    		new_page = alloc_zeroed_user_highpage_movable(vma, address);
    		if (!new_page)
    			goto oom;
    	} else {
    		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
    		if (!new_page)
    			goto oom;
    		cow_user_page(new_page, old_page, address, vma);
    	}
    	__SetPageUptodate(new_page);
    
    	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg))
    		goto oom_free_new;
    
    	mmun_start  = address & PAGE_MASK;
    	mmun_end    = mmun_start + PAGE_SIZE;
    	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
    
    	/*
    	 * Re-check the pte - we dropped the lock
    	 */
    	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
    	if (likely(pte_same(*page_table, orig_pte))) {
    		if (old_page) {
    			if (!PageAnon(old_page)) {
    				dec_mm_counter_fast(mm, MM_FILEPAGES);
    				inc_mm_counter_fast(mm, MM_ANONPAGES);
    			}
    		} else
    			inc_mm_counter_fast(mm, MM_ANONPAGES);
    		flush_cache_page(vma, address, pte_pfn(orig_pte));
    		entry = mk_pte(new_page, vma->vm_page_prot);
    		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
    		/*
    		 * Clear the pte entry and flush it first, before updating the
    		 * pte with the new entry. This will avoid a race condition
    		 * seen in the presence of one thread doing SMC and another
    		 * thread doing COW.
    		 */
    		ptep_clear_flush(vma, address, page_table);
    		page_add_new_anon_rmap(new_page, vma, address);
    		mem_cgroup_commit_charge(new_page, memcg, false);
    		lru_cache_add_active_or_unevictable(new_page, vma);
    		/*
    		 * We call the notify macro here because, when using secondary
    		 * mmu page tables (such as kvm shadow page tables), we want the
    		 * new page to be mapped directly into the secondary page table.
    		 */
    		set_pte_at_notify(mm, address, page_table, entry);
    		update_mmu_cache(vma, address, page_table);
    		if (old_page) {
    			/*
    			 * Only after switching the pte to the new page may
    			 * we remove the mapcount here. Otherwise another
    			 * process may come and find the rmap count decremented
    			 * before the pte is switched to the new page, and
    			 * "reuse" the old page writing into it while our pte
    			 * here still points into it and can be read by other
    			 * threads.
    			 *
    			 * The critical issue is to order this
    			 * page_remove_rmap with the ptp_clear_flush above.
    			 * Those stores are ordered by (if nothing else,)
    			 * the barrier present in the atomic_add_negative
    			 * in page_remove_rmap.
    			 *
    			 * Then the TLB flush in ptep_clear_flush ensures that
    			 * no process can access the old page before the
    			 * decremented mapcount is visible. And the old page
    			 * cannot be reused until after the decremented
    			 * mapcount is visible. So transitively, TLBs to
    			 * old page will be flushed before it can be reused.
    			 */
    			page_remove_rmap(old_page);
    		}
    
    		/* Free the old page.. */
    		new_page = old_page;
    		ret |= VM_FAULT_WRITE;
    	} else
    		mem_cgroup_cancel_charge(new_page, memcg);
    
    	if (new_page)
    		page_cache_release(new_page);
    unlock:
    	pte_unmap_unlock(page_table, ptl);
    	if (mmun_end > mmun_start)
    		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
    	if (old_page) {
    		/*
    		 * Don't let another task, with possibly unlocked vma,
    		 * keep the mlocked page.
    		 */
    		if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
    			lock_page(old_page);	/* LRU manipulation */
    			munlock_vma_page(old_page);
    			unlock_page(old_page);
    		}
    		page_cache_release(old_page);
    	}
    	return ret;
    oom_free_new:
    	page_cache_release(new_page);
    oom:
    	if (old_page)
    		page_cache_release(old_page);
    	return VM_FAULT_OOM;
    }
    
    static void unmap_mapping_range_vma(struct vm_area_struct *vma,
    		unsigned long start_addr, unsigned long end_addr,
    		struct zap_details *details)
    {
    	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
    }
    
    static inline void unmap_mapping_range_tree(struct rb_root *root,
    					    struct zap_details *details)
    {
    	struct vm_area_struct *vma;
    	pgoff_t vba, vea, zba, zea;
    
    	vma_interval_tree_foreach(vma, root,
    			details->first_index, details->last_index) {
    
    		vba = vma->vm_pgoff;
    		vea = vba + vma_pages(vma) - 1;
    		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
    		zba = details->first_index;
    		if (zba < vba)
    			zba = vba;
    		zea = details->last_index;
    		if (zea > vea)
    			zea = vea;
    
    		unmap_mapping_range_vma(vma,
    			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
    			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
    				details);
    	}
    }
    
    static inline void unmap_mapping_range_list(struct list_head *head,
    					    struct zap_details *details)
    {
    	struct vm_area_struct *vma;
    
    	/*
    	 * In nonlinear VMAs there is no correspondence between virtual address
    	 * offset and file offset.  So we must perform an exhaustive search
    	 * across *all* the pages in each nonlinear VMA, not just the pages
    	 * whose virtual address lies outside the file truncation point.
    	 */
    	list_for_each_entry(vma, head, shared.nonlinear) {
    		details->nonlinear_vma = vma;
    		unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
    	}
    }
    
    /**
     * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
     * @mapping: the address space containing mmaps to be unmapped.
     * @holebegin: byte in first page to unmap, relative to the start of
     * the underlying file.  This will be rounded down to a PAGE_SIZE
     * boundary.  Note that this is different from truncate_pagecache(), which
     * must keep the partial page.  In contrast, we must get rid of
     * partial pages.
     * @holelen: size of prospective hole in bytes.  This will be rounded
     * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
     * end of the file.
     * @even_cows: 1 when truncating a file, unmap even private COWed pages;
     * but 0 when invalidating pagecache, don't throw away private data.
     */
    void unmap_mapping_range(struct address_space *mapping,
    		loff_t const holebegin, loff_t const holelen, int even_cows)
    {
    	struct zap_details details;
    	pgoff_t hba = holebegin >> PAGE_SHIFT;
    	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
    
    	/* Check for overflow. */
    	if (sizeof(holelen) > sizeof(hlen)) {
    		long long holeend =
    			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
    		if (holeend & ~(long long)ULONG_MAX)
    			hlen = ULONG_MAX - hba + 1;
    	}
    
    	details.check_mapping = even_cows? NULL: mapping;
    	details.nonlinear_vma = NULL;
    	details.first_index = hba;
    	details.last_index = hba + hlen - 1;
    	if (details.last_index < details.first_index)
    		details.last_index = ULONG_MAX;
    
    
    	mutex_lock(&mapping->i_mmap_mutex);
    	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
    		unmap_mapping_range_tree(&mapping->i_mmap, &details);
    	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
    		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
    	mutex_unlock(&mapping->i_mmap_mutex);
    }
    EXPORT_SYMBOL(unmap_mapping_range);
    
    /*
     * We enter with non-exclusive mmap_sem (to exclude vma changes,
     * but allow concurrent faults), and pte mapped but not yet locked.
     * We return with pte unmapped and unlocked.
     *
     * We return with the mmap_sem locked or unlocked in the same cases
     * as does filemap_fault().
     */
    static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
    		unsigned long address, pte_t *page_table, pmd_t *pmd,
    		unsigned int flags, pte_t orig_pte)
    {
    	spinlock_t *ptl;
    	struct page *page, *swapcache;
    	struct mem_cgroup *memcg;
    	swp_entry_t entry;
    	pte_t pte;
    	int locked;
    	int exclusive = 0;
    	int ret = 0;
    
    	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
    		goto out;
    
    	entry = pte_to_swp_entry(orig_pte);
    	if (unlikely(non_swap_entry(entry))) {
    		if (is_migration_entry(entry)) {
    			migration_entry_wait(mm, pmd, address);
    		} else if (is_hwpoison_entry(entry)) {
    			ret = VM_FAULT_HWPOISON;
    		} else {
    			print_bad_pte(vma, address, orig_pte, NULL);
    			ret = VM_FAULT_SIGBUS;
    		}
    		goto out;
    	}
    	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
    	page = lookup_swap_cache(entry);
    	if (!page) {
    		page = swapin_readahead(entry,
    					GFP_HIGHUSER_MOVABLE, vma, address);
    		if (!page) {
    			/*
    			 * Back out if somebody else faulted in this pte
    			 * while we released the pte lock.
    			 */
    			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
    			if (likely(pte_same(*page_table, orig_pte)))
    				ret = VM_FAULT_OOM;
    			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
    			goto unlock;
    		}
    
    		/* Had to read the page from swap area: Major fault */
    		ret = VM_FAULT_MAJOR;
    		count_vm_event(PGMAJFAULT);
    		mem_cgroup_count_vm_event(mm, PGMAJFAULT);
    	} else if (PageHWPoison(page)) {
    		/*
    		 * hwpoisoned dirty swapcache pages are kept for killing
    		 * owner processes (which may be unknown at hwpoison time)
    		 */
    		ret = VM_FAULT_HWPOISON;
    		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
    		swapcache = page;
    		goto out_release;
    	}
    
    	swapcache = page;
    	locked = lock_page_or_retry(page, mm, flags);
    
    	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
    	if (!locked) {
    		ret |= VM_FAULT_RETRY;
    		goto out_release;
    	}
    
    	/*
    	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
    	 * release the swapcache from under us.  The page pin, and pte_same
    	 * test below, are not enough to exclude that.  Even if it is still
    	 * swapcache, we need to check that the page's swap has not changed.
    	 */
    	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
    		goto out_page;
    
    	page = ksm_might_need_to_copy(page, vma, address);
    	if (unlikely(!page)) {
    		ret = VM_FAULT_OOM;
    		page = swapcache;
    		goto out_page;
    	}
    
    	if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) {
    		ret = VM_FAULT_OOM;
    		goto out_page;
    	}
    
    	/*
    	 * Back out if somebody else already faulted in this pte.
    	 */
    	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
    	if (unlikely(!pte_same(*page_table, orig_pte)))
    		goto out_nomap;
    
    	if (unlikely(!PageUptodate(page))) {
    		ret = VM_FAULT_SIGBUS;
    		goto out_nomap;
    	}
    
    	/*
    	 * The page isn't present yet, go ahead with the fault.
    	 *
    	 * Be careful about the sequence of operations here.
    	 * To get its accounting right, reuse_swap_page() must be called
    	 * while the page is counted on swap but not yet in mapcount i.e.
    	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
    	 * must be called after the swap_free(), or it will never succeed.
    	 */
    
    	inc_mm_counter_fast(mm, MM_ANONPAGES);
    	dec_mm_counter_fast(mm, MM_SWAPENTS);
    	pte = mk_pte(page, vma->vm_page_prot);
    	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
    		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
    		flags &= ~FAULT_FLAG_WRITE;
    		ret |= VM_FAULT_WRITE;
    		exclusive = 1;
    	}
    	flush_icache_page(vma, page);
    	if (pte_swp_soft_dirty(orig_pte))
    		pte = pte_mksoft_dirty(pte);
    	set_pte_at(mm, address, page_table, pte);
    	if (page == swapcache) {
    		do_page_add_anon_rmap(page, vma, address, exclusive);
    		mem_cgroup_commit_charge(page, memcg, true);
    	} else { /* ksm created a completely new copy */
    		page_add_new_anon_rmap(page, vma, address);
    		mem_cgroup_commit_charge(page, memcg, false);
    		lru_cache_add_active_or_unevictable(page, vma);
    	}
    
    	swap_free(entry);
    	if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
    		try_to_free_swap(page);
    	unlock_page(page);
    	if (page != swapcache) {
    		/*
    		 * Hold the lock to avoid the swap entry to be reused
    		 * until we take the PT lock for the pte_same() check
    		 * (to avoid false positives from pte_same). For
    		 * further safety release the lock after the swap_free
    		 * so that the swap count won't change under a
    		 * parallel locked swapcache.
    		 */
    		unlock_page(swapcache);
    		page_cache_release(swapcache);
    	}
    
    	if (flags & FAULT_FLAG_WRITE) {
    		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
    		if (ret & VM_FAULT_ERROR)
    			ret &= VM_FAULT_ERROR;
    		goto out;
    	}
    
    	/* No need to invalidate - it was non-present before */
    	update_mmu_cache(vma, address, page_table);
    unlock:
    	pte_unmap_unlock(page_table, ptl);
    out:
    	return ret;
    out_nomap:
    	mem_cgroup_cancel_charge(page, memcg);
    	pte_unmap_unlock(page_table, ptl);
    out_page:
    	unlock_page(page);
    out_release:
    	page_cache_release(page);
    	if (page != swapcache) {
    		unlock_page(swapcache);
    		page_cache_release(swapcache);
    	}
    	return ret;
    }
    
    /*
     * This is like a special single-page "expand_{down|up}wards()",
     * except we must first make sure that 'address{-|+}PAGE_SIZE'
     * doesn't hit another vma.
     */
    static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
    {
    	address &= PAGE_MASK;
    	if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
    		struct vm_area_struct *prev = vma->vm_prev;
    
    		/*
    		 * Is there a mapping abutting this one below?
    		 *
    		 * That's only ok if it's the same stack mapping
    		 * that has gotten split..
    		 */
    		if (prev && prev->vm_end == address)
    			return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
    
    		expand_downwards(vma, address - PAGE_SIZE);
    	}
    	if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
    		struct vm_area_struct *next = vma->vm_next;
    
    		/* As VM_GROWSDOWN but s/below/above/ */
    		if (next && next->vm_start == address + PAGE_SIZE)
    			return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
    
    		expand_upwards(vma, address + PAGE_SIZE);
    	}
    	return 0;
    }
    
    /*
     * We enter with non-exclusive mmap_sem (to exclude vma changes,
     * but allow concurrent faults), and pte mapped but not yet locked.
     * We return with mmap_sem still held, but pte unmapped and unlocked.
     */
    static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
    		unsigned long address, pte_t *page_table, pmd_t *pmd,
    		unsigned int flags)
    {
    	struct mem_cgroup *memcg;
    	struct page *page;
    	spinlock_t *ptl;
    	pte_t entry;
    
    	pte_unmap(page_table);
    
    	/* Check if we need to add a guard page to the stack */
    	if (check_stack_guard_page(vma, address) < 0)
    		return VM_FAULT_SIGBUS;
    
    	/* Use the zero-page for reads */
    	if (!(flags & FAULT_FLAG_WRITE)) {
    		entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
    						vma->vm_page_prot));
    		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
    		if (!pte_none(*page_table))
    			goto unlock;
    		goto setpte;
    	}
    
    	/* Allocate our own private page. */
    	if (unlikely(anon_vma_prepare(vma)))
    		goto oom;
    	page = alloc_zeroed_user_highpage_movable(vma, address);
    	if (!page)
    		goto oom;
    	/*
    	 * The memory barrier inside __SetPageUptodate makes sure that
    	 * preceeding stores to the page contents become visible before
    	 * the set_pte_at() write.
    	 */
    	__SetPageUptodate(page);
    
    	if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg))
    		goto oom_free_page;
    
    	entry = mk_pte(page, vma->vm_page_prot);
    	if (vma->vm_flags & VM_WRITE)
    		entry = pte_mkwrite(pte_mkdirty(entry));
    
    	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
    	if (!pte_none(*page_table))
    		goto release;
    
    	inc_mm_counter_fast(mm, MM_ANONPAGES);
    	page_add_new_anon_rmap(page, vma, address);
    	mem_cgroup_commit_charge(page, memcg, false);
    	lru_cache_add_active_or_unevictable(page, vma);
    setpte:
    	set_pte_at(mm, address, page_table, entry);
    
    	/* No need to invalidate - it was non-present before */
    	update_mmu_cache(vma, address, page_table);
    unlock:
    	pte_unmap_unlock(page_table, ptl);
    	return 0;
    release:
    	mem_cgroup_cancel_charge(page, memcg);
    	page_cache_release(page);
    	goto unlock;
    oom_free_page:
    	page_cache_release(page);
    oom:
    	return VM_FAULT_OOM;
    }
    
    /*
     * The mmap_sem must have been held on entry, and may have been
     * released depending on flags and vma->vm_ops->fault() return value.
     * See filemap_fault() and __lock_page_retry().
     */
    static int __do_fault(struct vm_area_struct *vma, unsigned long address,
    		pgoff_t pgoff, unsigned int flags, struct page **page)
    {
    	struct vm_fault vmf;
    	int ret;
    
    	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
    	vmf.pgoff = pgoff;
    	vmf.flags = flags;
    	vmf.page = NULL;
    
    	ret = vma->vm_ops->fault(vma, &vmf);
    	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
    		return ret;
    
    	if (unlikely(PageHWPoison(vmf.page))) {
    		if (ret & VM_FAULT_LOCKED)
    			unlock_page(vmf.page);
    		page_cache_release(vmf.page);
    		return VM_FAULT_HWPOISON;
    	}
    
    	if (unlikely(!(ret & VM_FAULT_LOCKED)))
    		lock_page(vmf.page);
    	else
    		VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
    
    	*page = vmf.page;
    	return ret;
    }
    
    /**
     * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
     *
     * @vma: virtual memory area
     * @address: user virtual address
     * @page: page to map
     * @pte: pointer to target page table entry
     * @write: true, if new entry is writable
     * @anon: true, if it's anonymous page
     *
     * Caller must hold page table lock relevant for @pte.
     *
     * Target users are page handler itself and implementations of
     * vm_ops->map_pages.
     */
    void do_set_pte(struct vm_area_struct *vma, unsigned long address,
    		struct page *page, pte_t *pte, bool write, bool anon)
    {
    	pte_t entry;
    
    	flush_icache_page(vma, page);
    	entry = mk_pte(page, vma->vm_page_prot);
    	if (write)
    		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
    	else if (pte_file(*pte) && pte_file_soft_dirty(*pte))
    		entry = pte_mksoft_dirty(entry);
    	if (anon) {
    		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
    		page_add_new_anon_rmap(page, vma, address);
    	} else {
    		inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES);
    		page_add_file_rmap(page);
    	}
    	set_pte_at(vma->vm_mm, address, pte, entry);
    
    	/* no need to invalidate: a not-present page won't be cached */
    	update_mmu_cache(vma, address, pte);
    }
    
    static unsigned long fault_around_bytes __read_mostly =
    	rounddown_pow_of_two(65536);
    
    #ifdef CONFIG_DEBUG_FS
    static int fault_around_bytes_get(void *data, u64 *val)
    {
    	*val = fault_around_bytes;
    	return 0;
    }
    
    /*
     * fault_around_pages() and fault_around_mask() expects fault_around_bytes
     * rounded down to nearest page order. It's what do_fault_around() expects to
     * see.
     */
    static int fault_around_bytes_set(void *data, u64 val)
    {
    	if (val / PAGE_SIZE > PTRS_PER_PTE)
    		return -EINVAL;
    	if (val > PAGE_SIZE)
    		fault_around_bytes = rounddown_pow_of_two(val);
    	else
    		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
    	return 0;
    }
    DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
    		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
    
    static int __init fault_around_debugfs(void)
    {
    	void *ret;
    
    	ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
    			&fault_around_bytes_fops);
    	if (!ret)
    		pr_warn("Failed to create fault_around_bytes in debugfs");
    	return 0;
    }
    late_initcall(fault_around_debugfs);
    #endif
    
    /*
     * do_fault_around() tries to map few pages around the fault address. The hope
     * is that the pages will be needed soon and this will lower the number of
     * faults to handle.
     *
     * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
     * not ready to be mapped: not up-to-date, locked, etc.
     *
     * This function is called with the page table lock taken. In the split ptlock
     * case the page table lock only protects only those entries which belong to
     * the page table corresponding to the fault address.
     *
     * This function doesn't cross the VMA boundaries, in order to call map_pages()
     * only once.
     *
     * fault_around_pages() defines how many pages we'll try to map.
     * do_fault_around() expects it to return a power of two less than or equal to
     * PTRS_PER_PTE.
     *
     * The virtual address of the area that we map is naturally aligned to the
     * fault_around_pages() value (and therefore to page order).  This way it's
     * easier to guarantee that we don't cross page table boundaries.
     */
    static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
    		pte_t *pte, pgoff_t pgoff, unsigned int flags)
    {
    	unsigned long start_addr, nr_pages, mask;
    	pgoff_t max_pgoff;
    	struct vm_fault vmf;
    	int off;
    
    	nr_pages = ACCESS_ONCE(fault_around_bytes) >> PAGE_SHIFT;
    	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
    
    	start_addr = max(address & mask, vma->vm_start);
    	off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
    	pte -= off;
    	pgoff -= off;
    
    	/*
    	 *  max_pgoff is either end of page table or end of vma
    	 *  or fault_around_pages() from pgoff, depending what is nearest.
    	 */
    	max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
    		PTRS_PER_PTE - 1;
    	max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
    			pgoff + nr_pages - 1);
    
    	/* Check if it makes any sense to call ->map_pages */
    	while (!pte_none(*pte)) {
    		if (++pgoff > max_pgoff)
    			return;
    		start_addr += PAGE_SIZE;
    		if (start_addr >= vma->vm_end)
    			return;
    		pte++;
    	}
    
    	vmf.virtual_address = (void __user *) start_addr;
    	vmf.pte = pte;
    	vmf.pgoff = pgoff;
    	vmf.max_pgoff = max_pgoff;
    	vmf.flags = flags;
    	vma->vm_ops->map_pages(vma, &vmf);
    }
    
    static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
    		unsigned long address, pmd_t *pmd,
    		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
    {
    	struct page *fault_page;
    	spinlock_t *ptl;
    	pte_t *pte;
    	int ret = 0;
    
    	/*
    	 * Let's call ->map_pages() first and use ->fault() as fallback
    	 * if page by the offset is not ready to be mapped (cold cache or
    	 * something).
    	 */
    	if (vma->vm_ops->map_pages && !(flags & FAULT_FLAG_NONLINEAR) &&
    	    fault_around_bytes >> PAGE_SHIFT > 1) {
    		pte = pte_offset_map_lock(mm, pmd, address, &ptl);
    		do_fault_around(vma, address, pte, pgoff, flags);
    		if (!pte_same(*pte, orig_pte))
    			goto unlock_out;
    		pte_unmap_unlock(pte, ptl);
    	}
    
    	ret = __do_fault(vma, address, pgoff, flags, &fault_page);
    	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
    		return ret;
    
    	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
    	if (unlikely(!pte_same(*pte, orig_pte))) {
    		pte_unmap_unlock(pte, ptl);
    		unlock_page(fault_page);
    		page_cache_release(fault_page);
    		return ret;
    	}
    	do_set_pte(vma, address, fault_page, pte, false, false);
    	unlock_page(fault_page);
    unlock_out:
    	pte_unmap_unlock(pte, ptl);
    	return ret;
    }
    
    static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
    		unsigned long address, pmd_t *pmd,
    		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
    {
    	struct page *fault_page, *new_page;
    	struct mem_cgroup *memcg;
    	spinlock_t *ptl;
    	pte_t *pte;
    	int ret;
    
    	if (unlikely(anon_vma_prepare(vma)))
    		return VM_FAULT_OOM;
    
    	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
    	if (!new_page)
    		return VM_FAULT_OOM;
    
    	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) {
    		page_cache_release(new_page);
    		return VM_FAULT_OOM;
    	}
    
    	ret = __do_fault(vma, address, pgoff, flags, &fault_page);
    	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
    		goto uncharge_out;
    
    	copy_user_highpage(new_page, fault_page, address, vma);
    	__SetPageUptodate(new_page);
    
    	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
    	if (unlikely(!pte_same(*pte, orig_pte))) {
    		pte_unmap_unlock(pte, ptl);
    		unlock_page(fault_page);
    		page_cache_release(fault_page);
    		goto uncharge_out;
    	}
    	do_set_pte(vma, address, new_page, pte, true, true);
    	mem_cgroup_commit_charge(new_page, memcg, false);
    	lru_cache_add_active_or_unevictable(new_page, vma);
    	pte_unmap_unlock(pte, ptl);
    	unlock_page(fault_page);
    	page_cache_release(fault_page);
    	return ret;
    uncharge_out:
    	mem_cgroup_cancel_charge(new_page, memcg);
    	page_cache_release(new_page);
    	return ret;
    }
    
    static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
    		unsigned long address, pmd_t *pmd,
    		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
    {
    	struct page *fault_page;
    	struct address_space *mapping;
    	spinlock_t *ptl;
    	pte_t *pte;
    	int dirtied = 0;
    	int ret, tmp;
    
    	ret = __do_fault(vma, address, pgoff, flags, &fault_page);
    	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
    		return ret;
    
    	/*
    	 * Check if the backing address space wants to know that the page is
    	 * about to become writable
    	 */
    	if (vma->vm_ops->page_mkwrite) {
    		unlock_page(fault_page);
    		tmp = do_page_mkwrite(vma, fault_page, address);
    		if (unlikely(!tmp ||
    				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
    			page_cache_release(fault_page);
    			return tmp;
    		}
    	}
    
    	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
    	if (unlikely(!pte_same(*pte, orig_pte))) {
    		pte_unmap_unlock(pte, ptl);
    		unlock_page(fault_page);
    		page_cache_release(fault_page);
    		return ret;
    	}
    	do_set_pte(vma, address, fault_page, pte, true, false);
    	pte_unmap_unlock(pte, ptl);
    
    	if (set_page_dirty(fault_page))
    		dirtied = 1;
    	mapping = fault_page->mapping;
    	unlock_page(fault_page);
    	if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
    		/*
    		 * Some device drivers do not set page.mapping but still
    		 * dirty their pages
    		 */
    		balance_dirty_pages_ratelimited(mapping);
    	}
    
    	/* file_update_time outside page_lock */
    	if (vma->vm_file && !vma->vm_ops->page_mkwrite)
    		file_update_time(vma->vm_file);
    
    	return ret;
    }
    
    /*
     * We enter with non-exclusive mmap_sem (to exclude vma changes,
     * but allow concurrent faults).
     * The mmap_sem may have been released depending on flags and our
     * return value.  See filemap_fault() and __lock_page_or_retry().
     */
    static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
    		unsigned long address, pte_t *page_table, pmd_t *pmd,
    		unsigned int flags, pte_t orig_pte)
    {
    	pgoff_t pgoff = (((address & PAGE_MASK)
    			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
    
    	pte_unmap(page_table);
    	if (!(flags & FAULT_FLAG_WRITE))
    		return do_read_fault(mm, vma, address, pmd, pgoff, flags,
    				orig_pte);
    	if (!(vma->vm_flags & VM_SHARED))
    		return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
    				orig_pte);
    	return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
    }
    
    /*
     * Fault of a previously existing named mapping. Repopulate the pte
     * from the encoded file_pte if possible. This enables swappable
     * nonlinear vmas.
     *
     * We enter with non-exclusive mmap_sem (to exclude vma changes,
     * but allow concurrent faults), and pte mapped but not yet locked.
     * We return with pte unmapped and unlocked.
     * The mmap_sem may have been released depending on flags and our
     * return value.  See filemap_fault() and __lock_page_or_retry().
     */
    static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
    		unsigned long address, pte_t *page_table, pmd_t *pmd,
    		unsigned int flags, pte_t orig_pte)
    {
    	pgoff_t pgoff;
    
    	flags |= FAULT_FLAG_NONLINEAR;
    
    	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
    		return 0;
    
    	if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
    		/*
    		 * Page table corrupted: show pte and kill process.
    		 */
    		print_bad_pte(vma, address, orig_pte, NULL);
    		return VM_FAULT_SIGBUS;
    	}
    
    	pgoff = pte_to_pgoff(orig_pte);
    	if (!(flags & FAULT_FLAG_WRITE))
    		return do_read_fault(mm, vma, address, pmd, pgoff, flags,
    				orig_pte);
    	if (!(vma->vm_flags & VM_SHARED))
    		return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
    				orig_pte);
    	return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
    }
    
    static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
    				unsigned long addr, int page_nid,
    				int *flags)
    {
    	get_page(page);
    
    	count_vm_numa_event(NUMA_HINT_FAULTS);
    	if (page_nid == numa_node_id()) {
    		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
    		*flags |= TNF_FAULT_LOCAL;
    	}
    
    	return mpol_misplaced(page, vma, addr);
    }
    
    static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
    		   unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
    {
    	struct page *page = NULL;
    	spinlock_t *ptl;
    	int page_nid = -1;
    	int last_cpupid;
    	int target_nid;
    	bool migrated = false;
    	int flags = 0;
    
    	/*
    	* The "pte" at this point cannot be used safely without
    	* validation through pte_unmap_same(). It's of NUMA type but
    	* the pfn may be screwed if the read is non atomic.
    	*
    	* ptep_modify_prot_start is not called as this is clearing
    	* the _PAGE_NUMA bit and it is not really expected that there
    	* would be concurrent hardware modifications to the PTE.
    	*/
    	ptl = pte_lockptr(mm, pmd);
    	spin_lock(ptl);
    	if (unlikely(!pte_same(*ptep, pte))) {
    		pte_unmap_unlock(ptep, ptl);
    		goto out;
    	}
    
    	pte = pte_mknonnuma(pte);
    	set_pte_at(mm, addr, ptep, pte);
    	update_mmu_cache(vma, addr, ptep);
    
    	page = vm_normal_page(vma, addr, pte);
    	if (!page) {
    		pte_unmap_unlock(ptep, ptl);
    		return 0;
    	}
    	BUG_ON(is_zero_pfn(page_to_pfn(page)));
    
    	/*
    	 * Avoid grouping on DSO/COW pages in specific and RO pages
    	 * in general, RO pages shouldn't hurt as much anyway since
    	 * they can be in shared cache state.
    	 */
    	if (!pte_write(pte))
    		flags |= TNF_NO_GROUP;
    
    	/*
    	 * Flag if the page is shared between multiple address spaces. This
    	 * is later used when determining whether to group tasks together
    	 */
    	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
    		flags |= TNF_SHARED;
    
    	last_cpupid = page_cpupid_last(page);
    	page_nid = page_to_nid(page);
    	target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
    	pte_unmap_unlock(ptep, ptl);
    	if (target_nid == -1) {
    		put_page(page);
    		goto out;
    	}
    
    	/* Migrate to the requested node */
    	migrated = migrate_misplaced_page(page, vma, target_nid);
    	if (migrated) {
    		page_nid = target_nid;
    		flags |= TNF_MIGRATED;
    	}
    
    out:
    	if (page_nid != -1)
    		task_numa_fault(last_cpupid, page_nid, 1, flags);
    	return 0;
    }
    
    /*
     * These routines also need to handle stuff like marking pages dirty
     * and/or accessed for architectures that don't do it in hardware (most
     * RISC architectures).  The early dirtying is also good on the i386.
     *
     * There is also a hook called "update_mmu_cache()" that architectures
     * with external mmu caches can use to update those (ie the Sparc or
     * PowerPC hashed page tables that act as extended TLBs).
     *
     * We enter with non-exclusive mmap_sem (to exclude vma changes,
     * but allow concurrent faults), and pte mapped but not yet locked.
     * We return with pte unmapped and unlocked.
     *
     * The mmap_sem may have been released depending on flags and our
     * return value.  See filemap_fault() and __lock_page_or_retry().
     */
    static int handle_pte_fault(struct mm_struct *mm,
    		     struct vm_area_struct *vma, unsigned long address,
    		     pte_t *pte, pmd_t *pmd, unsigned int flags)
    {
    	pte_t entry;
    	spinlock_t *ptl;
    
    	entry = ACCESS_ONCE(*pte);
    	if (!pte_present(entry)) {
    		if (pte_none(entry)) {
    			if (vma->vm_ops) {
    				if (likely(vma->vm_ops->fault))
    					return do_linear_fault(mm, vma, address,
    						pte, pmd, flags, entry);
    			}
    			return do_anonymous_page(mm, vma, address,
    						 pte, pmd, flags);
    		}
    		if (pte_file(entry))
    			return do_nonlinear_fault(mm, vma, address,
    					pte, pmd, flags, entry);
    		return do_swap_page(mm, vma, address,
    					pte, pmd, flags, entry);
    	}
    
    	if (pte_numa(entry))
    		return do_numa_page(mm, vma, address, entry, pte, pmd);
    
    	ptl = pte_lockptr(mm, pmd);
    	spin_lock(ptl);
    	if (unlikely(!pte_same(*pte, entry)))
    		goto unlock;
    	if (flags & FAULT_FLAG_WRITE) {
    		if (!pte_write(entry))
    			return do_wp_page(mm, vma, address,
    					pte, pmd, ptl, entry);
    		entry = pte_mkdirty(entry);
    	}
    	entry = pte_mkyoung(entry);
    	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
    		update_mmu_cache(vma, address, pte);
    	} else {
    		/*
    		 * This is needed only for protection faults but the arch code
    		 * is not yet telling us if this is a protection fault or not.
    		 * This still avoids useless tlb flushes for .text page faults
    		 * with threads.
    		 */
    		if (flags & FAULT_FLAG_WRITE)
    			flush_tlb_fix_spurious_fault(vma, address);
    	}
    unlock:
    	pte_unmap_unlock(pte, ptl);
    	return 0;
    }
    
    /*
     * By the time we get here, we already hold the mm semaphore
     *
     * The mmap_sem may have been released depending on flags and our
     * return value.  See filemap_fault() and __lock_page_or_retry().
     */
    static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
    			     unsigned long address, unsigned int flags)
    {
    	pgd_t *pgd;
    	pud_t *pud;
    	pmd_t *pmd;
    	pte_t *pte;
    
    	if (unlikely(is_vm_hugetlb_page(vma)))
    		return hugetlb_fault(mm, vma, address, flags);
    
    	pgd = pgd_offset(mm, address);
    	pud = pud_alloc(mm, pgd, address);
    	if (!pud)
    		return VM_FAULT_OOM;
    	pmd = pmd_alloc(mm, pud, address);
    	if (!pmd)
    		return VM_FAULT_OOM;
    	if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
    		int ret = VM_FAULT_FALLBACK;
    		if (!vma->vm_ops)
    			ret = do_huge_pmd_anonymous_page(mm, vma, address,
    					pmd, flags);
    		if (!(ret & VM_FAULT_FALLBACK))
    			return ret;
    	} else {
    		pmd_t orig_pmd = *pmd;
    		int ret;
    
    		barrier();
    		if (pmd_trans_huge(orig_pmd)) {
    			unsigned int dirty = flags & FAULT_FLAG_WRITE;
    
    			/*
    			 * If the pmd is splitting, return and retry the
    			 * the fault.  Alternative: wait until the split
    			 * is done, and goto retry.
    			 */
    			if (pmd_trans_splitting(orig_pmd))
    				return 0;
    
    			if (pmd_numa(orig_pmd))
    				return do_huge_pmd_numa_page(mm, vma, address,
    							     orig_pmd, pmd);
    
    			if (dirty && !pmd_write(orig_pmd)) {
    				ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
    							  orig_pmd);
    				if (!(ret & VM_FAULT_FALLBACK))
    					return ret;
    			} else {
    				huge_pmd_set_accessed(mm, vma, address, pmd,
    						      orig_pmd, dirty);
    				return 0;
    			}
    		}
    	}
    
    	/*
    	 * Use __pte_alloc instead of pte_alloc_map, because we can't
    	 * run pte_offset_map on the pmd, if an huge pmd could
    	 * materialize from under us from a different thread.
    	 */
    	if (unlikely(pmd_none(*pmd)) &&
    	    unlikely(__pte_alloc(mm, vma, pmd, address)))
    		return VM_FAULT_OOM;
    	/* if an huge pmd materialized from under us just retry later */
    	if (unlikely(pmd_trans_huge(*pmd)))
    		return 0;
    	/*
    	 * A regular pmd is established and it can't morph into a huge pmd
    	 * from under us anymore at this point because we hold the mmap_sem
    	 * read mode and khugepaged takes it in write mode. So now it's
    	 * safe to run pte_offset_map().
    	 */
    	pte = pte_offset_map(pmd, address);
    
    	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
    }
    
    /*
     * By the time we get here, we already hold the mm semaphore
     *
     * The mmap_sem may have been released depending on flags and our
     * return value.  See filemap_fault() and __lock_page_or_retry().
     */
    int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
    		    unsigned long address, unsigned int flags)
    {
    	int ret;
    
    	__set_current_state(TASK_RUNNING);
    
    	count_vm_event(PGFAULT);
    	mem_cgroup_count_vm_event(mm, PGFAULT);
    
    	/* do counter updates before entering really critical section. */
    	check_sync_rss_stat(current);
    
    	/*
    	 * Enable the memcg OOM handling for faults triggered in user
    	 * space.  Kernel faults are handled more gracefully.
    	 */
    	if (flags & FAULT_FLAG_USER)
    		mem_cgroup_oom_enable();
    
    	ret = __handle_mm_fault(mm, vma, address, flags);
    
    	if (flags & FAULT_FLAG_USER) {
    		mem_cgroup_oom_disable();
                    /*
                     * The task may have entered a memcg OOM situation but
                     * if the allocation error was handled gracefully (no
                     * VM_FAULT_OOM), there is no need to kill anything.
                     * Just clean up the OOM state peacefully.
                     */
                    if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
                            mem_cgroup_oom_synchronize(false);
    	}
    
    	return ret;
    }
    
    #ifndef __PAGETABLE_PUD_FOLDED
    /*
     * Allocate page upper directory.
     * We've already handled the fast-path in-line.
     */
    int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
    {
    	pud_t *new = pud_alloc_one(mm, address);
    	if (!new)
    		return -ENOMEM;
    
    	smp_wmb(); /* See comment in __pte_alloc */
    
    	spin_lock(&mm->page_table_lock);
    	if (pgd_present(*pgd))		/* Another has populated it */
    		pud_free(mm, new);
    	else
    		pgd_populate(mm, pgd, new);
    	spin_unlock(&mm->page_table_lock);
    	return 0;
    }
    #endif /* __PAGETABLE_PUD_FOLDED */
    
    #ifndef __PAGETABLE_PMD_FOLDED
    /*
     * Allocate page middle directory.
     * We've already handled the fast-path in-line.
     */
    int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
    {
    	pmd_t *new = pmd_alloc_one(mm, address);
    	if (!new)
    		return -ENOMEM;
    
    	smp_wmb(); /* See comment in __pte_alloc */
    
    	spin_lock(&mm->page_table_lock);
    #ifndef __ARCH_HAS_4LEVEL_HACK
    	if (pud_present(*pud))		/* Another has populated it */
    		pmd_free(mm, new);
    	else
    		pud_populate(mm, pud, new);
    #else
    	if (pgd_present(*pud))		/* Another has populated it */
    		pmd_free(mm, new);
    	else
    		pgd_populate(mm, pud, new);
    #endif /* __ARCH_HAS_4LEVEL_HACK */
    	spin_unlock(&mm->page_table_lock);
    	return 0;
    }
    #endif /* __PAGETABLE_PMD_FOLDED */
    
    static int __follow_pte(struct mm_struct *mm, unsigned long address,
    		pte_t **ptepp, spinlock_t **ptlp)
    {
    	pgd_t *pgd;
    	pud_t *pud;
    	pmd_t *pmd;
    	pte_t *ptep;
    
    	pgd = pgd_offset(mm, address);
    	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
    		goto out;
    
    	pud = pud_offset(pgd, address);
    	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
    		goto out;
    
    	pmd = pmd_offset(pud, address);
    	VM_BUG_ON(pmd_trans_huge(*pmd));
    	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
    		goto out;
    
    	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
    	if (pmd_huge(*pmd))
    		goto out;
    
    	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
    	if (!ptep)
    		goto out;
    	if (!pte_present(*ptep))
    		goto unlock;
    	*ptepp = ptep;
    	return 0;
    unlock:
    	pte_unmap_unlock(ptep, *ptlp);
    out:
    	return -EINVAL;
    }
    
    static inline int follow_pte(struct mm_struct *mm, unsigned long address,
    			     pte_t **ptepp, spinlock_t **ptlp)
    {
    	int res;
    
    	/* (void) is needed to make gcc happy */
    	(void) __cond_lock(*ptlp,
    			   !(res = __follow_pte(mm, address, ptepp, ptlp)));
    	return res;
    }
    
    /**
     * follow_pfn - look up PFN at a user virtual address
     * @vma: memory mapping
     * @address: user virtual address
     * @pfn: location to store found PFN
     *
     * Only IO mappings and raw PFN mappings are allowed.
     *
     * Returns zero and the pfn at @pfn on success, -ve otherwise.
     */
    int follow_pfn(struct vm_area_struct *vma, unsigned long address,
    	unsigned long *pfn)
    {
    	int ret = -EINVAL;
    	spinlock_t *ptl;
    	pte_t *ptep;
    
    	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
    		return ret;
    
    	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
    	if (ret)
    		return ret;
    	*pfn = pte_pfn(*ptep);
    	pte_unmap_unlock(ptep, ptl);
    	return 0;
    }
    EXPORT_SYMBOL(follow_pfn);
    
    #ifdef CONFIG_HAVE_IOREMAP_PROT
    int follow_phys(struct vm_area_struct *vma,
    		unsigned long address, unsigned int flags,
    		unsigned long *prot, resource_size_t *phys)
    {
    	int ret = -EINVAL;
    	pte_t *ptep, pte;
    	spinlock_t *ptl;
    
    	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
    		goto out;
    
    	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
    		goto out;
    	pte = *ptep;
    
    	if ((flags & FOLL_WRITE) && !pte_write(pte))
    		goto unlock;
    
    	*prot = pgprot_val(pte_pgprot(pte));
    	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
    
    	ret = 0;
    unlock:
    	pte_unmap_unlock(ptep, ptl);
    out:
    	return ret;
    }
    
    int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
    			void *buf, int len, int write)
    {
    	resource_size_t phys_addr;
    	unsigned long prot = 0;
    	void __iomem *maddr;
    	int offset = addr & (PAGE_SIZE-1);
    
    	if (follow_phys(vma, addr, write, &prot, &phys_addr))
    		return -EINVAL;
    
    	maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
    	if (write)
    		memcpy_toio(maddr + offset, buf, len);
    	else
    		memcpy_fromio(buf, maddr + offset, len);
    	iounmap(maddr);
    
    	return len;
    }
    EXPORT_SYMBOL_GPL(generic_access_phys);
    #endif
    
    /*
     * Access another process' address space as given in mm.  If non-NULL, use the
     * given task for page fault accounting.
     */
    static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
    		unsigned long addr, void *buf, int len, int write)
    {
    	struct vm_area_struct *vma;
    	void *old_buf = buf;
    
    	down_read(&mm->mmap_sem);
    	/* ignore errors, just check how much was successfully transferred */
    	while (len) {
    		int bytes, ret, offset;
    		void *maddr;
    		struct page *page = NULL;
    
    		ret = get_user_pages(tsk, mm, addr, 1,
    				write, 1, &page, &vma);
    		if (ret <= 0) {
    #ifndef CONFIG_HAVE_IOREMAP_PROT
    			break;
    #else
    			/*
    			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
    			 * we can access using slightly different code.
    			 */
    			vma = find_vma(mm, addr);
    			if (!vma || vma->vm_start > addr)
    				break;
    			if (vma->vm_ops && vma->vm_ops->access)
    				ret = vma->vm_ops->access(vma, addr, buf,
    							  len, write);
    			if (ret <= 0)
    				break;
    			bytes = ret;
    #endif
    		} else {
    			bytes = len;
    			offset = addr & (PAGE_SIZE-1);
    			if (bytes > PAGE_SIZE-offset)
    				bytes = PAGE_SIZE-offset;
    
    			maddr = kmap(page);
    			if (write) {
    				copy_to_user_page(vma, page, addr,
    						  maddr + offset, buf, bytes);
    				set_page_dirty_lock(page);
    			} else {
    				copy_from_user_page(vma, page, addr,
    						    buf, maddr + offset, bytes);
    			}
    			kunmap(page);
    			page_cache_release(page);
    		}
    		len -= bytes;
    		buf += bytes;
    		addr += bytes;
    	}
    	up_read(&mm->mmap_sem);
    
    	return buf - old_buf;
    }
    
    /**
     * access_remote_vm - access another process' address space
     * @mm:		the mm_struct of the target address space
     * @addr:	start address to access
     * @buf:	source or destination buffer
     * @len:	number of bytes to transfer
     * @write:	whether the access is a write
     *
     * The caller must hold a reference on @mm.
     */
    int access_remote_vm(struct mm_struct *mm, unsigned long addr,
    		void *buf, int len, int write)
    {
    	return __access_remote_vm(NULL, mm, addr, buf, len, write);
    }
    
    /*
     * Access another process' address space.
     * Source/target buffer must be kernel space,
     * Do not walk the page table directly, use get_user_pages
     */
    int access_process_vm(struct task_struct *tsk, unsigned long addr,
    		void *buf, int len, int write)
    {
    	struct mm_struct *mm;
    	int ret;
    
    	mm = get_task_mm(tsk);
    	if (!mm)
    		return 0;
    
    	ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
    	mmput(mm);
    
    	return ret;
    }
    
    /*
     * Print the name of a VMA.
     */
    void print_vma_addr(char *prefix, unsigned long ip)
    {
    	struct mm_struct *mm = current->mm;
    	struct vm_area_struct *vma;
    
    	/*
    	 * Do not print if we are in atomic
    	 * contexts (in exception stacks, etc.):
    	 */
    	if (preempt_count())
    		return;
    
    	down_read(&mm->mmap_sem);
    	vma = find_vma(mm, ip);
    	if (vma && vma->vm_file) {
    		struct file *f = vma->vm_file;
    		char *buf = (char *)__get_free_page(GFP_KERNEL);
    		if (buf) {
    			char *p;
    
    			p = d_path(&f->f_path, buf, PAGE_SIZE);
    			if (IS_ERR(p))
    				p = "?";
    			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
    					vma->vm_start,
    					vma->vm_end - vma->vm_start);
    			free_page((unsigned long)buf);
    		}
    	}
    	up_read(&mm->mmap_sem);
    }
    
    #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
    void might_fault(void)
    {
    	/*
    	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
    	 * holding the mmap_sem, this is safe because kernel memory doesn't
    	 * get paged out, therefore we'll never actually fault, and the
    	 * below annotations will generate false positives.
    	 */
    	if (segment_eq(get_fs(), KERNEL_DS))
    		return;
    
    	/*
    	 * it would be nicer only to annotate paths which are not under
    	 * pagefault_disable, however that requires a larger audit and
    	 * providing helpers like get_user_atomic.
    	 */
    	if (in_atomic())
    		return;
    
    	__might_sleep(__FILE__, __LINE__, 0);
    
    	if (current->mm)
    		might_lock_read(&current->mm->mmap_sem);
    }
    EXPORT_SYMBOL(might_fault);
    #endif
    
    #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
    static void clear_gigantic_page(struct page *page,
    				unsigned long addr,
    				unsigned int pages_per_huge_page)
    {
    	int i;
    	struct page *p = page;
    
    	might_sleep();
    	for (i = 0; i < pages_per_huge_page;
    	     i++, p = mem_map_next(p, page, i)) {
    		cond_resched();
    		clear_user_highpage(p, addr + i * PAGE_SIZE);
    	}
    }
    void clear_huge_page(struct page *page,
    		     unsigned long addr, unsigned int pages_per_huge_page)
    {
    	int i;
    
    	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
    		clear_gigantic_page(page, addr, pages_per_huge_page);
    		return;
    	}
    
    	might_sleep();
    	for (i = 0; i < pages_per_huge_page; i++) {
    		cond_resched();
    		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
    	}
    }
    
    static void copy_user_gigantic_page(struct page *dst, struct page *src,
    				    unsigned long addr,
    				    struct vm_area_struct *vma,
    				    unsigned int pages_per_huge_page)
    {
    	int i;
    	struct page *dst_base = dst;
    	struct page *src_base = src;
    
    	for (i = 0; i < pages_per_huge_page; ) {
    		cond_resched();
    		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
    
    		i++;
    		dst = mem_map_next(dst, dst_base, i);
    		src = mem_map_next(src, src_base, i);
    	}
    }
    
    void copy_user_huge_page(struct page *dst, struct page *src,
    			 unsigned long addr, struct vm_area_struct *vma,
    			 unsigned int pages_per_huge_page)
    {
    	int i;
    
    	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
    		copy_user_gigantic_page(dst, src, addr, vma,
    					pages_per_huge_page);
    		return;
    	}
    
    	might_sleep();
    	for (i = 0; i < pages_per_huge_page; i++) {
    		cond_resched();
    		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
    	}
    }
    #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
    
    #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
    
    static struct kmem_cache *page_ptl_cachep;
    
    void __init ptlock_cache_init(void)
    {
    	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
    			SLAB_PANIC, NULL);
    }
    
    bool ptlock_alloc(struct page *page)
    {
    	spinlock_t *ptl;
    
    	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
    	if (!ptl)
    		return false;
    	page->ptl = ptl;
    	return true;
    }
    
    void ptlock_free(struct page *page)
    {
    	kmem_cache_free(page_ptl_cachep, page->ptl);
    }
    #endif