Skip to content
Snippets Groups Projects
Select Git revision
  • a5b5bb9a053a973c23b867738c074acb3e80c0a0
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

sock.h

Blame
    • Ingo Molnar's avatar
      a5b5bb9a
      [PATCH] lockdep: annotate sk_locks · a5b5bb9a
      Ingo Molnar authored
      
      Teach sk_lock semantics to the lock validator.  In the softirq path the
      slock has mutex_trylock()+mutex_unlock() semantics, in the process context
      sock_lock() case it has mutex_lock()/mutex_unlock() semantics.
      
      Thus we treat sock_owned_by_user() flagged areas as an exclusion area too,
      not just those areas covered by a held sk_lock.slock.
      
      Effect on non-lockdep kernels: minimal, sk_lock_sock_init() has been turned
      into an inline function.
      
      Signed-off-by: default avatarIngo Molnar <mingo@elte.hu>
      Cc: Arjan van de Ven <arjan@linux.intel.com>
      Cc: "David S. Miller" <davem@davemloft.net>
      Cc: Herbert Xu <herbert@gondor.apana.org.au>
      Signed-off-by: default avatarAndrew Morton <akpm@osdl.org>
      Signed-off-by: default avatarLinus Torvalds <torvalds@osdl.org>
      a5b5bb9a
      History
      [PATCH] lockdep: annotate sk_locks
      Ingo Molnar authored
      
      Teach sk_lock semantics to the lock validator.  In the softirq path the
      slock has mutex_trylock()+mutex_unlock() semantics, in the process context
      sock_lock() case it has mutex_lock()/mutex_unlock() semantics.
      
      Thus we treat sock_owned_by_user() flagged areas as an exclusion area too,
      not just those areas covered by a held sk_lock.slock.
      
      Effect on non-lockdep kernels: minimal, sk_lock_sock_init() has been turned
      into an inline function.
      
      Signed-off-by: default avatarIngo Molnar <mingo@elte.hu>
      Cc: Arjan van de Ven <arjan@linux.intel.com>
      Cc: "David S. Miller" <davem@davemloft.net>
      Cc: Herbert Xu <herbert@gondor.apana.org.au>
      Signed-off-by: default avatarAndrew Morton <akpm@osdl.org>
      Signed-off-by: default avatarLinus Torvalds <torvalds@osdl.org>
    sock.h 39.13 KiB
    /*
     * INET		An implementation of the TCP/IP protocol suite for the LINUX
     *		operating system.  INET is implemented using the  BSD Socket
     *		interface as the means of communication with the user level.
     *
     *		Definitions for the AF_INET socket handler.
     *
     * Version:	@(#)sock.h	1.0.4	05/13/93
     *
     * Authors:	Ross Biro
     *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
     *		Corey Minyard <wf-rch!minyard@relay.EU.net>
     *		Florian La Roche <flla@stud.uni-sb.de>
     *
     * Fixes:
     *		Alan Cox	:	Volatiles in skbuff pointers. See
     *					skbuff comments. May be overdone,
     *					better to prove they can be removed
     *					than the reverse.
     *		Alan Cox	:	Added a zapped field for tcp to note
     *					a socket is reset and must stay shut up
     *		Alan Cox	:	New fields for options
     *	Pauline Middelink	:	identd support
     *		Alan Cox	:	Eliminate low level recv/recvfrom
     *		David S. Miller	:	New socket lookup architecture.
     *              Steve Whitehouse:       Default routines for sock_ops
     *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
     *              			protinfo be just a void pointer, as the
     *              			protocol specific parts were moved to
     *              			respective headers and ipv4/v6, etc now
     *              			use private slabcaches for its socks
     *              Pedro Hortas	:	New flags field for socket options
     *
     *
     *		This program is free software; you can redistribute it and/or
     *		modify it under the terms of the GNU General Public License
     *		as published by the Free Software Foundation; either version
     *		2 of the License, or (at your option) any later version.
     */
    #ifndef _SOCK_H
    #define _SOCK_H
    
    #include <linux/list.h>
    #include <linux/timer.h>
    #include <linux/cache.h>
    #include <linux/module.h>
    #include <linux/lockdep.h>
    #include <linux/netdevice.h>
    #include <linux/skbuff.h>	/* struct sk_buff */
    #include <linux/security.h>
    
    #include <linux/filter.h>
    
    #include <asm/atomic.h>
    #include <net/dst.h>
    #include <net/checksum.h>
    
    /*
     * This structure really needs to be cleaned up.
     * Most of it is for TCP, and not used by any of
     * the other protocols.
     */
    
    /* Define this to get the SOCK_DBG debugging facility. */
    #define SOCK_DEBUGGING
    #ifdef SOCK_DEBUGGING
    #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
    					printk(KERN_DEBUG msg); } while (0)
    #else
    #define SOCK_DEBUG(sk, msg...) do { } while (0)
    #endif
    
    /* This is the per-socket lock.  The spinlock provides a synchronization
     * between user contexts and software interrupt processing, whereas the
     * mini-semaphore synchronizes multiple users amongst themselves.
     */
    struct sock_iocb;
    typedef struct {
    	spinlock_t		slock;
    	struct sock_iocb	*owner;
    	wait_queue_head_t	wq;
    	/*
    	 * We express the mutex-alike socket_lock semantics
    	 * to the lock validator by explicitly managing
    	 * the slock as a lock variant (in addition to
    	 * the slock itself):
    	 */
    #ifdef CONFIG_DEBUG_LOCK_ALLOC
    	struct lockdep_map dep_map;
    #endif
    } socket_lock_t;
    
    struct sock;
    struct proto;
    
    /**
     *	struct sock_common - minimal network layer representation of sockets
     *	@skc_family: network address family
     *	@skc_state: Connection state
     *	@skc_reuse: %SO_REUSEADDR setting
     *	@skc_bound_dev_if: bound device index if != 0
     *	@skc_node: main hash linkage for various protocol lookup tables
     *	@skc_bind_node: bind hash linkage for various protocol lookup tables
     *	@skc_refcnt: reference count
     *	@skc_hash: hash value used with various protocol lookup tables
     *	@skc_prot: protocol handlers inside a network family
     *
     *	This is the minimal network layer representation of sockets, the header
     *	for struct sock and struct inet_timewait_sock.
     */
    struct sock_common {
    	unsigned short		skc_family;
    	volatile unsigned char	skc_state;
    	unsigned char		skc_reuse;
    	int			skc_bound_dev_if;
    	struct hlist_node	skc_node;
    	struct hlist_node	skc_bind_node;
    	atomic_t		skc_refcnt;
    	unsigned int		skc_hash;
    	struct proto		*skc_prot;
    };
    
    /**
      *	struct sock - network layer representation of sockets
      *	@__sk_common: shared layout with inet_timewait_sock
      *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
      *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
      *	@sk_lock:	synchronizer
      *	@sk_rcvbuf: size of receive buffer in bytes
      *	@sk_sleep: sock wait queue
      *	@sk_dst_cache: destination cache
      *	@sk_dst_lock: destination cache lock
      *	@sk_policy: flow policy
      *	@sk_rmem_alloc: receive queue bytes committed
      *	@sk_receive_queue: incoming packets
      *	@sk_wmem_alloc: transmit queue bytes committed
      *	@sk_write_queue: Packet sending queue
      *	@sk_async_wait_queue: DMA copied packets
      *	@sk_omem_alloc: "o" is "option" or "other"
      *	@sk_wmem_queued: persistent queue size
      *	@sk_forward_alloc: space allocated forward
      *	@sk_allocation: allocation mode
      *	@sk_sndbuf: size of send buffer in bytes
      *	@sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, %SO_OOBINLINE settings
      *	@sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets
      *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
      *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
      *	@sk_lingertime: %SO_LINGER l_linger setting
      *	@sk_backlog: always used with the per-socket spinlock held
      *	@sk_callback_lock: used with the callbacks in the end of this struct
      *	@sk_error_queue: rarely used
      *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, IPV6_ADDRFORM for instance)
      *	@sk_err: last error
      *	@sk_err_soft: errors that don't cause failure but are the cause of a persistent failure not just 'timed out'
      *	@sk_ack_backlog: current listen backlog
      *	@sk_max_ack_backlog: listen backlog set in listen()
      *	@sk_priority: %SO_PRIORITY setting
      *	@sk_type: socket type (%SOCK_STREAM, etc)
      *	@sk_protocol: which protocol this socket belongs in this network family
      *	@sk_peercred: %SO_PEERCRED setting
      *	@sk_rcvlowat: %SO_RCVLOWAT setting
      *	@sk_rcvtimeo: %SO_RCVTIMEO setting
      *	@sk_sndtimeo: %SO_SNDTIMEO setting
      *	@sk_filter: socket filtering instructions
      *	@sk_protinfo: private area, net family specific, when not using slab
      *	@sk_timer: sock cleanup timer
      *	@sk_stamp: time stamp of last packet received
      *	@sk_socket: Identd and reporting IO signals
      *	@sk_user_data: RPC layer private data
      *	@sk_sndmsg_page: cached page for sendmsg
      *	@sk_sndmsg_off: cached offset for sendmsg
      *	@sk_send_head: front of stuff to transmit
      *	@sk_security: used by security modules
      *	@sk_write_pending: a write to stream socket waits to start
      *	@sk_state_change: callback to indicate change in the state of the sock
      *	@sk_data_ready: callback to indicate there is data to be processed
      *	@sk_write_space: callback to indicate there is bf sending space available
      *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
      *	@sk_backlog_rcv: callback to process the backlog
      *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
     */
    struct sock {
    	/*
    	 * Now struct inet_timewait_sock also uses sock_common, so please just
    	 * don't add nothing before this first member (__sk_common) --acme
    	 */
    	struct sock_common	__sk_common;
    #define sk_family		__sk_common.skc_family
    #define sk_state		__sk_common.skc_state
    #define sk_reuse		__sk_common.skc_reuse
    #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
    #define sk_node			__sk_common.skc_node
    #define sk_bind_node		__sk_common.skc_bind_node
    #define sk_refcnt		__sk_common.skc_refcnt
    #define sk_hash			__sk_common.skc_hash
    #define sk_prot			__sk_common.skc_prot
    	unsigned char		sk_shutdown : 2,
    				sk_no_check : 2,
    				sk_userlocks : 4;
    	unsigned char		sk_protocol;
    	unsigned short		sk_type;
    	int			sk_rcvbuf;
    	socket_lock_t		sk_lock;
    	wait_queue_head_t	*sk_sleep;
    	struct dst_entry	*sk_dst_cache;
    	struct xfrm_policy	*sk_policy[2];
    	rwlock_t		sk_dst_lock;
    	atomic_t		sk_rmem_alloc;
    	atomic_t		sk_wmem_alloc;
    	atomic_t		sk_omem_alloc;
    	struct sk_buff_head	sk_receive_queue;
    	struct sk_buff_head	sk_write_queue;
    	struct sk_buff_head	sk_async_wait_queue;
    	int			sk_wmem_queued;
    	int			sk_forward_alloc;
    	gfp_t			sk_allocation;
    	int			sk_sndbuf;
    	int			sk_route_caps;
    	int			sk_gso_type;
    	int			sk_rcvlowat;
    	unsigned long 		sk_flags;
    	unsigned long	        sk_lingertime;
    	/*
    	 * The backlog queue is special, it is always used with
    	 * the per-socket spinlock held and requires low latency
    	 * access. Therefore we special case it's implementation.
    	 */
    	struct {
    		struct sk_buff *head;
    		struct sk_buff *tail;
    	} sk_backlog;
    	struct sk_buff_head	sk_error_queue;
    	struct proto		*sk_prot_creator;
    	rwlock_t		sk_callback_lock;
    	int			sk_err,
    				sk_err_soft;
    	unsigned short		sk_ack_backlog;
    	unsigned short		sk_max_ack_backlog;
    	__u32			sk_priority;
    	struct ucred		sk_peercred;
    	long			sk_rcvtimeo;
    	long			sk_sndtimeo;
    	struct sk_filter      	*sk_filter;
    	void			*sk_protinfo;
    	struct timer_list	sk_timer;
    	struct timeval		sk_stamp;
    	struct socket		*sk_socket;
    	void			*sk_user_data;
    	struct page		*sk_sndmsg_page;
    	struct sk_buff		*sk_send_head;
    	__u32			sk_sndmsg_off;
    	int			sk_write_pending;
    	void			*sk_security;
    	void			(*sk_state_change)(struct sock *sk);
    	void			(*sk_data_ready)(struct sock *sk, int bytes);
    	void			(*sk_write_space)(struct sock *sk);
    	void			(*sk_error_report)(struct sock *sk);
      	int			(*sk_backlog_rcv)(struct sock *sk,
    						  struct sk_buff *skb);  
    	void                    (*sk_destruct)(struct sock *sk);
    };
    
    /*
     * Hashed lists helper routines
     */
    static inline struct sock *__sk_head(const struct hlist_head *head)
    {
    	return hlist_entry(head->first, struct sock, sk_node);
    }
    
    static inline struct sock *sk_head(const struct hlist_head *head)
    {
    	return hlist_empty(head) ? NULL : __sk_head(head);
    }
    
    static inline struct sock *sk_next(const struct sock *sk)
    {
    	return sk->sk_node.next ?
    		hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
    }
    
    static inline int sk_unhashed(const struct sock *sk)
    {
    	return hlist_unhashed(&sk->sk_node);
    }
    
    static inline int sk_hashed(const struct sock *sk)
    {
    	return !sk_unhashed(sk);
    }
    
    static __inline__ void sk_node_init(struct hlist_node *node)
    {
    	node->pprev = NULL;
    }
    
    static __inline__ void __sk_del_node(struct sock *sk)
    {
    	__hlist_del(&sk->sk_node);
    }
    
    static __inline__ int __sk_del_node_init(struct sock *sk)
    {
    	if (sk_hashed(sk)) {
    		__sk_del_node(sk);
    		sk_node_init(&sk->sk_node);
    		return 1;
    	}
    	return 0;
    }
    
    /* Grab socket reference count. This operation is valid only
       when sk is ALREADY grabbed f.e. it is found in hash table
       or a list and the lookup is made under lock preventing hash table
       modifications.
     */
    
    static inline void sock_hold(struct sock *sk)
    {
    	atomic_inc(&sk->sk_refcnt);
    }
    
    /* Ungrab socket in the context, which assumes that socket refcnt
       cannot hit zero, f.e. it is true in context of any socketcall.
     */
    static inline void __sock_put(struct sock *sk)
    {
    	atomic_dec(&sk->sk_refcnt);
    }
    
    static __inline__ int sk_del_node_init(struct sock *sk)
    {
    	int rc = __sk_del_node_init(sk);
    
    	if (rc) {
    		/* paranoid for a while -acme */
    		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
    		__sock_put(sk);
    	}
    	return rc;
    }
    
    static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list)
    {
    	hlist_add_head(&sk->sk_node, list);
    }
    
    static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list)
    {
    	sock_hold(sk);
    	__sk_add_node(sk, list);
    }
    
    static __inline__ void __sk_del_bind_node(struct sock *sk)
    {
    	__hlist_del(&sk->sk_bind_node);
    }
    
    static __inline__ void sk_add_bind_node(struct sock *sk,
    					struct hlist_head *list)
    {
    	hlist_add_head(&sk->sk_bind_node, list);
    }
    
    #define sk_for_each(__sk, node, list) \
    	hlist_for_each_entry(__sk, node, list, sk_node)
    #define sk_for_each_from(__sk, node) \
    	if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
    		hlist_for_each_entry_from(__sk, node, sk_node)
    #define sk_for_each_continue(__sk, node) \
    	if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
    		hlist_for_each_entry_continue(__sk, node, sk_node)
    #define sk_for_each_safe(__sk, node, tmp, list) \
    	hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
    #define sk_for_each_bound(__sk, node, list) \
    	hlist_for_each_entry(__sk, node, list, sk_bind_node)
    
    /* Sock flags */
    enum sock_flags {
    	SOCK_DEAD,
    	SOCK_DONE,
    	SOCK_URGINLINE,
    	SOCK_KEEPOPEN,
    	SOCK_LINGER,
    	SOCK_DESTROY,
    	SOCK_BROADCAST,
    	SOCK_TIMESTAMP,
    	SOCK_ZAPPED,
    	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
    	SOCK_DBG, /* %SO_DEBUG setting */
    	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
    	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
    	SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
    };
    
    static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
    {
    	nsk->sk_flags = osk->sk_flags;
    }
    
    static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
    {
    	__set_bit(flag, &sk->sk_flags);
    }
    
    static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
    {
    	__clear_bit(flag, &sk->sk_flags);
    }
    
    static inline int sock_flag(struct sock *sk, enum sock_flags flag)
    {
    	return test_bit(flag, &sk->sk_flags);
    }
    
    static inline void sk_acceptq_removed(struct sock *sk)
    {
    	sk->sk_ack_backlog--;
    }
    
    static inline void sk_acceptq_added(struct sock *sk)
    {
    	sk->sk_ack_backlog++;
    }
    
    static inline int sk_acceptq_is_full(struct sock *sk)
    {
    	return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
    }
    
    /*
     * Compute minimal free write space needed to queue new packets.
     */
    static inline int sk_stream_min_wspace(struct sock *sk)
    {
    	return sk->sk_wmem_queued / 2;
    }
    
    static inline int sk_stream_wspace(struct sock *sk)
    {
    	return sk->sk_sndbuf - sk->sk_wmem_queued;
    }
    
    extern void sk_stream_write_space(struct sock *sk);
    
    static inline int sk_stream_memory_free(struct sock *sk)
    {
    	return sk->sk_wmem_queued < sk->sk_sndbuf;
    }
    
    extern void sk_stream_rfree(struct sk_buff *skb);
    
    static inline void sk_stream_set_owner_r(struct sk_buff *skb, struct sock *sk)
    {
    	skb->sk = sk;
    	skb->destructor = sk_stream_rfree;
    	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
    	sk->sk_forward_alloc -= skb->truesize;
    }
    
    static inline void sk_stream_free_skb(struct sock *sk, struct sk_buff *skb)
    {
    	skb_truesize_check(skb);
    	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
    	sk->sk_wmem_queued   -= skb->truesize;
    	sk->sk_forward_alloc += skb->truesize;
    	__kfree_skb(skb);
    }
    
    /* The per-socket spinlock must be held here. */
    static inline void sk_add_backlog(struct sock *sk, struct sk_buff *skb)
    {
    	if (!sk->sk_backlog.tail) {
    		sk->sk_backlog.head = sk->sk_backlog.tail = skb;
    	} else {
    		sk->sk_backlog.tail->next = skb;
    		sk->sk_backlog.tail = skb;
    	}
    	skb->next = NULL;
    }
    
    #define sk_wait_event(__sk, __timeo, __condition)		\
    ({	int rc;							\
    	release_sock(__sk);					\
    	rc = __condition;					\
    	if (!rc) {						\
    		*(__timeo) = schedule_timeout(*(__timeo));	\
    	}							\
    	lock_sock(__sk);					\
    	rc = __condition;					\
    	rc;							\
    })
    
    extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
    extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
    extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
    extern int sk_stream_error(struct sock *sk, int flags, int err);
    extern void sk_stream_kill_queues(struct sock *sk);
    
    extern int sk_wait_data(struct sock *sk, long *timeo);
    
    struct request_sock_ops;
    struct timewait_sock_ops;
    
    /* Networking protocol blocks we attach to sockets.
     * socket layer -> transport layer interface
     * transport -> network interface is defined by struct inet_proto
     */
    struct proto {
    	void			(*close)(struct sock *sk, 
    					long timeout);
    	int			(*connect)(struct sock *sk,
    				        struct sockaddr *uaddr, 
    					int addr_len);
    	int			(*disconnect)(struct sock *sk, int flags);
    
    	struct sock *		(*accept) (struct sock *sk, int flags, int *err);
    
    	int			(*ioctl)(struct sock *sk, int cmd,
    					 unsigned long arg);
    	int			(*init)(struct sock *sk);
    	int			(*destroy)(struct sock *sk);
    	void			(*shutdown)(struct sock *sk, int how);
    	int			(*setsockopt)(struct sock *sk, int level, 
    					int optname, char __user *optval,
    					int optlen);
    	int			(*getsockopt)(struct sock *sk, int level, 
    					int optname, char __user *optval, 
    					int __user *option);  	 
    	int			(*compat_setsockopt)(struct sock *sk,
    					int level,
    					int optname, char __user *optval,
    					int optlen);
    	int			(*compat_getsockopt)(struct sock *sk,
    					int level,
    					int optname, char __user *optval,
    					int __user *option);
    	int			(*sendmsg)(struct kiocb *iocb, struct sock *sk,
    					   struct msghdr *msg, size_t len);
    	int			(*recvmsg)(struct kiocb *iocb, struct sock *sk,
    					   struct msghdr *msg,
    					size_t len, int noblock, int flags, 
    					int *addr_len);
    	int			(*sendpage)(struct sock *sk, struct page *page,
    					int offset, size_t size, int flags);
    	int			(*bind)(struct sock *sk, 
    					struct sockaddr *uaddr, int addr_len);
    
    	int			(*backlog_rcv) (struct sock *sk, 
    						struct sk_buff *skb);
    
    	/* Keeping track of sk's, looking them up, and port selection methods. */
    	void			(*hash)(struct sock *sk);
    	void			(*unhash)(struct sock *sk);
    	int			(*get_port)(struct sock *sk, unsigned short snum);
    
    	/* Memory pressure */
    	void			(*enter_memory_pressure)(void);
    	atomic_t		*memory_allocated;	/* Current allocated memory. */
    	atomic_t		*sockets_allocated;	/* Current number of sockets. */
    	/*
    	 * Pressure flag: try to collapse.
    	 * Technical note: it is used by multiple contexts non atomically.
    	 * All the sk_stream_mem_schedule() is of this nature: accounting
    	 * is strict, actions are advisory and have some latency.
    	 */
    	int			*memory_pressure;
    	int			*sysctl_mem;
    	int			*sysctl_wmem;
    	int			*sysctl_rmem;
    	int			max_header;
    
    	kmem_cache_t		*slab;
    	unsigned int		obj_size;
    
    	atomic_t		*orphan_count;
    
    	struct request_sock_ops	*rsk_prot;
    	struct timewait_sock_ops *twsk_prot;
    
    	struct module		*owner;
    
    	char			name[32];
    
    	struct list_head	node;
    #ifdef SOCK_REFCNT_DEBUG
    	atomic_t		socks;
    #endif
    	struct {
    		int inuse;
    		u8  __pad[SMP_CACHE_BYTES - sizeof(int)];
    	} stats[NR_CPUS];
    };
    
    extern int proto_register(struct proto *prot, int alloc_slab);
    extern void proto_unregister(struct proto *prot);
    
    #ifdef SOCK_REFCNT_DEBUG
    static inline void sk_refcnt_debug_inc(struct sock *sk)
    {
    	atomic_inc(&sk->sk_prot->socks);
    }
    
    static inline void sk_refcnt_debug_dec(struct sock *sk)
    {
    	atomic_dec(&sk->sk_prot->socks);
    	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
    	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
    }
    
    static inline void sk_refcnt_debug_release(const struct sock *sk)
    {
    	if (atomic_read(&sk->sk_refcnt) != 1)
    		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
    		       sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
    }
    #else /* SOCK_REFCNT_DEBUG */
    #define sk_refcnt_debug_inc(sk) do { } while (0)
    #define sk_refcnt_debug_dec(sk) do { } while (0)
    #define sk_refcnt_debug_release(sk) do { } while (0)
    #endif /* SOCK_REFCNT_DEBUG */
    
    /* Called with local bh disabled */
    static __inline__ void sock_prot_inc_use(struct proto *prot)
    {
    	prot->stats[smp_processor_id()].inuse++;
    }
    
    static __inline__ void sock_prot_dec_use(struct proto *prot)
    {
    	prot->stats[smp_processor_id()].inuse--;
    }
    
    /* With per-bucket locks this operation is not-atomic, so that
     * this version is not worse.
     */
    static inline void __sk_prot_rehash(struct sock *sk)
    {
    	sk->sk_prot->unhash(sk);
    	sk->sk_prot->hash(sk);
    }
    
    /* About 10 seconds */
    #define SOCK_DESTROY_TIME (10*HZ)
    
    /* Sockets 0-1023 can't be bound to unless you are superuser */
    #define PROT_SOCK	1024
    
    #define SHUTDOWN_MASK	3
    #define RCV_SHUTDOWN	1
    #define SEND_SHUTDOWN	2
    
    #define SOCK_SNDBUF_LOCK	1
    #define SOCK_RCVBUF_LOCK	2
    #define SOCK_BINDADDR_LOCK	4
    #define SOCK_BINDPORT_LOCK	8
    
    /* sock_iocb: used to kick off async processing of socket ios */
    struct sock_iocb {
    	struct list_head	list;
    
    	int			flags;
    	int			size;
    	struct socket		*sock;
    	struct sock		*sk;
    	struct scm_cookie	*scm;
    	struct msghdr		*msg, async_msg;
    	struct iovec		async_iov;
    	struct kiocb		*kiocb;
    };
    
    static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
    {
    	return (struct sock_iocb *)iocb->private;
    }
    
    static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
    {
    	return si->kiocb;
    }
    
    struct socket_alloc {
    	struct socket socket;
    	struct inode vfs_inode;
    };
    
    static inline struct socket *SOCKET_I(struct inode *inode)
    {
    	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
    }
    
    static inline struct inode *SOCK_INODE(struct socket *socket)
    {
    	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
    }
    
    extern void __sk_stream_mem_reclaim(struct sock *sk);
    extern int sk_stream_mem_schedule(struct sock *sk, int size, int kind);
    
    #define SK_STREAM_MEM_QUANTUM ((int)PAGE_SIZE)
    
    static inline int sk_stream_pages(int amt)
    {
    	return (amt + SK_STREAM_MEM_QUANTUM - 1) / SK_STREAM_MEM_QUANTUM;
    }
    
    static inline void sk_stream_mem_reclaim(struct sock *sk)
    {
    	if (sk->sk_forward_alloc >= SK_STREAM_MEM_QUANTUM)
    		__sk_stream_mem_reclaim(sk);
    }
    
    static inline void sk_stream_writequeue_purge(struct sock *sk)
    {
    	struct sk_buff *skb;
    
    	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL)
    		sk_stream_free_skb(sk, skb);
    	sk_stream_mem_reclaim(sk);
    }
    
    static inline int sk_stream_rmem_schedule(struct sock *sk, struct sk_buff *skb)
    {
    	return (int)skb->truesize <= sk->sk_forward_alloc ||
    		sk_stream_mem_schedule(sk, skb->truesize, 1);
    }
    
    static inline int sk_stream_wmem_schedule(struct sock *sk, int size)
    {
    	return size <= sk->sk_forward_alloc ||
    	       sk_stream_mem_schedule(sk, size, 0);
    }
    
    /* Used by processes to "lock" a socket state, so that
     * interrupts and bottom half handlers won't change it
     * from under us. It essentially blocks any incoming
     * packets, so that we won't get any new data or any
     * packets that change the state of the socket.
     *
     * While locked, BH processing will add new packets to
     * the backlog queue.  This queue is processed by the
     * owner of the socket lock right before it is released.
     *
     * Since ~2.3.5 it is also exclusive sleep lock serializing
     * accesses from user process context.
     */
    #define sock_owned_by_user(sk)	((sk)->sk_lock.owner)
    
    extern void FASTCALL(lock_sock(struct sock *sk));
    extern void FASTCALL(release_sock(struct sock *sk));
    
    /* BH context may only use the following locking interface. */
    #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
    #define bh_lock_sock_nested(__sk) \
    				spin_lock_nested(&((__sk)->sk_lock.slock), \
    				SINGLE_DEPTH_NESTING)
    #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
    
    extern struct sock		*sk_alloc(int family,
    					  gfp_t priority,
    					  struct proto *prot, int zero_it);
    extern void			sk_free(struct sock *sk);
    extern struct sock		*sk_clone(const struct sock *sk,
    					  const gfp_t priority);
    
    extern struct sk_buff		*sock_wmalloc(struct sock *sk,
    					      unsigned long size, int force,
    					      gfp_t priority);
    extern struct sk_buff		*sock_rmalloc(struct sock *sk,
    					      unsigned long size, int force,
    					      gfp_t priority);
    extern void			sock_wfree(struct sk_buff *skb);
    extern void			sock_rfree(struct sk_buff *skb);
    
    extern int			sock_setsockopt(struct socket *sock, int level,
    						int op, char __user *optval,
    						int optlen);
    
    extern int			sock_getsockopt(struct socket *sock, int level,
    						int op, char __user *optval, 
    						int __user *optlen);
    extern struct sk_buff 		*sock_alloc_send_skb(struct sock *sk,
    						     unsigned long size,
    						     int noblock,
    						     int *errcode);
    extern void *sock_kmalloc(struct sock *sk, int size,
    			  gfp_t priority);
    extern void sock_kfree_s(struct sock *sk, void *mem, int size);
    extern void sk_send_sigurg(struct sock *sk);
    
    /*
     * Functions to fill in entries in struct proto_ops when a protocol
     * does not implement a particular function.
     */
    extern int                      sock_no_bind(struct socket *, 
    					     struct sockaddr *, int);
    extern int                      sock_no_connect(struct socket *,
    						struct sockaddr *, int, int);
    extern int                      sock_no_socketpair(struct socket *,
    						   struct socket *);
    extern int                      sock_no_accept(struct socket *,
    					       struct socket *, int);
    extern int                      sock_no_getname(struct socket *,
    						struct sockaddr *, int *, int);
    extern unsigned int             sock_no_poll(struct file *, struct socket *,
    					     struct poll_table_struct *);
    extern int                      sock_no_ioctl(struct socket *, unsigned int,
    					      unsigned long);
    extern int			sock_no_listen(struct socket *, int);
    extern int                      sock_no_shutdown(struct socket *, int);
    extern int			sock_no_getsockopt(struct socket *, int , int,
    						   char __user *, int __user *);
    extern int			sock_no_setsockopt(struct socket *, int, int,
    						   char __user *, int);
    extern int                      sock_no_sendmsg(struct kiocb *, struct socket *,
    						struct msghdr *, size_t);
    extern int                      sock_no_recvmsg(struct kiocb *, struct socket *,
    						struct msghdr *, size_t, int);
    extern int			sock_no_mmap(struct file *file,
    					     struct socket *sock,
    					     struct vm_area_struct *vma);
    extern ssize_t			sock_no_sendpage(struct socket *sock,
    						struct page *page,
    						int offset, size_t size, 
    						int flags);
    
    /*
     * Functions to fill in entries in struct proto_ops when a protocol
     * uses the inet style.
     */
    extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
    				  char __user *optval, int __user *optlen);
    extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
    			       struct msghdr *msg, size_t size, int flags);
    extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
    				  char __user *optval, int optlen);
    extern int compat_sock_common_getsockopt(struct socket *sock, int level,
    		int optname, char __user *optval, int __user *optlen);
    extern int compat_sock_common_setsockopt(struct socket *sock, int level,
    		int optname, char __user *optval, int optlen);
    
    extern void sk_common_release(struct sock *sk);
    
    /*
     *	Default socket callbacks and setup code
     */
     
    /* Initialise core socket variables */
    extern void sock_init_data(struct socket *sock, struct sock *sk);
    
    /**
     *	sk_filter - run a packet through a socket filter
     *	@sk: sock associated with &sk_buff
     *	@skb: buffer to filter
     *	@needlock: set to 1 if the sock is not locked by caller.
     *
     * Run the filter code and then cut skb->data to correct size returned by
     * sk_run_filter. If pkt_len is 0 we toss packet. If skb->len is smaller
     * than pkt_len we keep whole skb->data. This is the socket level
     * wrapper to sk_run_filter. It returns 0 if the packet should
     * be accepted or -EPERM if the packet should be tossed.
     *
     */
    
    static inline int sk_filter(struct sock *sk, struct sk_buff *skb, int needlock)
    {
    	int err;
    	
    	err = security_sock_rcv_skb(sk, skb);
    	if (err)
    		return err;
    	
    	if (sk->sk_filter) {
    		struct sk_filter *filter;
    		
    		if (needlock)
    			bh_lock_sock(sk);
    		
    		filter = sk->sk_filter;
    		if (filter) {
    			unsigned int pkt_len = sk_run_filter(skb, filter->insns,
    							     filter->len);
    			err = pkt_len ? pskb_trim(skb, pkt_len) : -EPERM;
    		}
    
    		if (needlock)
    			bh_unlock_sock(sk);
    	}
    	return err;
    }
    
    /**
     *	sk_filter_release: Release a socket filter
     *	@sk: socket
     *	@fp: filter to remove
     *
     *	Remove a filter from a socket and release its resources.
     */
     
    static inline void sk_filter_release(struct sock *sk, struct sk_filter *fp)
    {
    	unsigned int size = sk_filter_len(fp);
    
    	atomic_sub(size, &sk->sk_omem_alloc);
    
    	if (atomic_dec_and_test(&fp->refcnt))
    		kfree(fp);
    }
    
    static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
    {
    	atomic_inc(&fp->refcnt);
    	atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
    }
    
    /*
     * Socket reference counting postulates.
     *
     * * Each user of socket SHOULD hold a reference count.
     * * Each access point to socket (an hash table bucket, reference from a list,
     *   running timer, skb in flight MUST hold a reference count.
     * * When reference count hits 0, it means it will never increase back.
     * * When reference count hits 0, it means that no references from
     *   outside exist to this socket and current process on current CPU
     *   is last user and may/should destroy this socket.
     * * sk_free is called from any context: process, BH, IRQ. When
     *   it is called, socket has no references from outside -> sk_free
     *   may release descendant resources allocated by the socket, but
     *   to the time when it is called, socket is NOT referenced by any
     *   hash tables, lists etc.
     * * Packets, delivered from outside (from network or from another process)
     *   and enqueued on receive/error queues SHOULD NOT grab reference count,
     *   when they sit in queue. Otherwise, packets will leak to hole, when
     *   socket is looked up by one cpu and unhasing is made by another CPU.
     *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
     *   (leak to backlog). Packet socket does all the processing inside
     *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
     *   use separate SMP lock, so that they are prone too.
     */
    
    /* Ungrab socket and destroy it, if it was the last reference. */
    static inline void sock_put(struct sock *sk)
    {
    	if (atomic_dec_and_test(&sk->sk_refcnt))
    		sk_free(sk);
    }
    
    extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb);
    
    /* Detach socket from process context.
     * Announce socket dead, detach it from wait queue and inode.
     * Note that parent inode held reference count on this struct sock,
     * we do not release it in this function, because protocol
     * probably wants some additional cleanups or even continuing
     * to work with this socket (TCP).
     */
    static inline void sock_orphan(struct sock *sk)
    {
    	write_lock_bh(&sk->sk_callback_lock);
    	sock_set_flag(sk, SOCK_DEAD);
    	sk->sk_socket = NULL;
    	sk->sk_sleep  = NULL;
    	write_unlock_bh(&sk->sk_callback_lock);
    }
    
    static inline void sock_graft(struct sock *sk, struct socket *parent)
    {
    	write_lock_bh(&sk->sk_callback_lock);
    	sk->sk_sleep = &parent->wait;
    	parent->sk = sk;
    	sk->sk_socket = parent;
    	write_unlock_bh(&sk->sk_callback_lock);
    }
    
    extern int sock_i_uid(struct sock *sk);
    extern unsigned long sock_i_ino(struct sock *sk);
    
    static inline struct dst_entry *
    __sk_dst_get(struct sock *sk)
    {
    	return sk->sk_dst_cache;
    }
    
    static inline struct dst_entry *
    sk_dst_get(struct sock *sk)
    {
    	struct dst_entry *dst;
    
    	read_lock(&sk->sk_dst_lock);
    	dst = sk->sk_dst_cache;
    	if (dst)
    		dst_hold(dst);
    	read_unlock(&sk->sk_dst_lock);
    	return dst;
    }
    
    static inline void
    __sk_dst_set(struct sock *sk, struct dst_entry *dst)
    {
    	struct dst_entry *old_dst;
    
    	old_dst = sk->sk_dst_cache;
    	sk->sk_dst_cache = dst;
    	dst_release(old_dst);
    }
    
    static inline void
    sk_dst_set(struct sock *sk, struct dst_entry *dst)
    {
    	write_lock(&sk->sk_dst_lock);
    	__sk_dst_set(sk, dst);
    	write_unlock(&sk->sk_dst_lock);
    }
    
    static inline void
    __sk_dst_reset(struct sock *sk)
    {
    	struct dst_entry *old_dst;
    
    	old_dst = sk->sk_dst_cache;
    	sk->sk_dst_cache = NULL;
    	dst_release(old_dst);
    }
    
    static inline void
    sk_dst_reset(struct sock *sk)
    {
    	write_lock(&sk->sk_dst_lock);
    	__sk_dst_reset(sk);
    	write_unlock(&sk->sk_dst_lock);
    }
    
    extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
    
    extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
    
    static inline int sk_can_gso(const struct sock *sk)
    {
    	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
    }
    
    static inline void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
    {
    	__sk_dst_set(sk, dst);
    	sk->sk_route_caps = dst->dev->features;
    	if (sk->sk_route_caps & NETIF_F_GSO)
    		sk->sk_route_caps |= NETIF_F_GSO_MASK;
    	if (sk_can_gso(sk)) {
    		if (dst->header_len)
    			sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
    		else 
    			sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
    	}
    }
    
    static inline void sk_charge_skb(struct sock *sk, struct sk_buff *skb)
    {
    	sk->sk_wmem_queued   += skb->truesize;
    	sk->sk_forward_alloc -= skb->truesize;
    }
    
    static inline int skb_copy_to_page(struct sock *sk, char __user *from,
    				   struct sk_buff *skb, struct page *page,
    				   int off, int copy)
    {
    	if (skb->ip_summed == CHECKSUM_NONE) {
    		int err = 0;
    		unsigned int csum = csum_and_copy_from_user(from,
    						     page_address(page) + off,
    							    copy, 0, &err);
    		if (err)
    			return err;
    		skb->csum = csum_block_add(skb->csum, csum, skb->len);
    	} else if (copy_from_user(page_address(page) + off, from, copy))
    		return -EFAULT;
    
    	skb->len	     += copy;
    	skb->data_len	     += copy;
    	skb->truesize	     += copy;
    	sk->sk_wmem_queued   += copy;
    	sk->sk_forward_alloc -= copy;
    	return 0;
    }
    
    /*
     * 	Queue a received datagram if it will fit. Stream and sequenced
     *	protocols can't normally use this as they need to fit buffers in
     *	and play with them.
     *
     * 	Inlined as it's very short and called for pretty much every
     *	packet ever received.
     */
    
    static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
    {
    	sock_hold(sk);
    	skb->sk = sk;
    	skb->destructor = sock_wfree;
    	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
    }
    
    static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
    {
    	skb->sk = sk;
    	skb->destructor = sock_rfree;
    	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
    }
    
    extern void sk_reset_timer(struct sock *sk, struct timer_list* timer,
    			   unsigned long expires);
    
    extern void sk_stop_timer(struct sock *sk, struct timer_list* timer);
    
    extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
    
    static inline int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
    {
    	/* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
    	   number of warnings when compiling with -W --ANK
    	 */
    	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
    	    (unsigned)sk->sk_rcvbuf)
    		return -ENOMEM;
    	skb_set_owner_r(skb, sk);
    	skb_queue_tail(&sk->sk_error_queue, skb);
    	if (!sock_flag(sk, SOCK_DEAD))
    		sk->sk_data_ready(sk, skb->len);
    	return 0;
    }
    
    /*
     *	Recover an error report and clear atomically
     */
     
    static inline int sock_error(struct sock *sk)
    {
    	int err;
    	if (likely(!sk->sk_err))
    		return 0;
    	err = xchg(&sk->sk_err, 0);
    	return -err;
    }
    
    static inline unsigned long sock_wspace(struct sock *sk)
    {
    	int amt = 0;
    
    	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
    		amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
    		if (amt < 0) 
    			amt = 0;
    	}
    	return amt;
    }
    
    static inline void sk_wake_async(struct sock *sk, int how, int band)
    {
    	if (sk->sk_socket && sk->sk_socket->fasync_list)
    		sock_wake_async(sk->sk_socket, how, band);
    }
    
    #define SOCK_MIN_SNDBUF 2048
    #define SOCK_MIN_RCVBUF 256
    
    static inline void sk_stream_moderate_sndbuf(struct sock *sk)
    {
    	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
    		sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued / 2);
    		sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
    	}
    }
    
    static inline struct sk_buff *sk_stream_alloc_pskb(struct sock *sk,
    						   int size, int mem,
    						   gfp_t gfp)
    {
    	struct sk_buff *skb;
    	int hdr_len;
    
    	hdr_len = SKB_DATA_ALIGN(sk->sk_prot->max_header);
    	skb = alloc_skb_fclone(size + hdr_len, gfp);
    	if (skb) {
    		skb->truesize += mem;
    		if (sk_stream_wmem_schedule(sk, skb->truesize)) {
    			skb_reserve(skb, hdr_len);
    			return skb;
    		}
    		__kfree_skb(skb);
    	} else {
    		sk->sk_prot->enter_memory_pressure();
    		sk_stream_moderate_sndbuf(sk);
    	}
    	return NULL;
    }
    
    static inline struct sk_buff *sk_stream_alloc_skb(struct sock *sk,
    						  int size,
    						  gfp_t gfp)
    {
    	return sk_stream_alloc_pskb(sk, size, 0, gfp);
    }
    
    static inline struct page *sk_stream_alloc_page(struct sock *sk)
    {
    	struct page *page = NULL;
    
    	page = alloc_pages(sk->sk_allocation, 0);
    	if (!page) {
    		sk->sk_prot->enter_memory_pressure();
    		sk_stream_moderate_sndbuf(sk);
    	}
    	return page;
    }
    
    #define sk_stream_for_retrans_queue(skb, sk)				\
    		for (skb = (sk)->sk_write_queue.next;			\
    		     (skb != (sk)->sk_send_head) &&			\
    		     (skb != (struct sk_buff *)&(sk)->sk_write_queue);	\
    		     skb = skb->next)
    
    /*from STCP for fast SACK Process*/
    #define sk_stream_for_retrans_queue_from(skb, sk)			\
    		for (; (skb != (sk)->sk_send_head) &&                   \
    		     (skb != (struct sk_buff *)&(sk)->sk_write_queue);	\
    		     skb = skb->next)
    
    /*
     *	Default write policy as shown to user space via poll/select/SIGIO
     */
    static inline int sock_writeable(const struct sock *sk) 
    {
    	return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf / 2);
    }
    
    static inline gfp_t gfp_any(void)
    {
    	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
    }
    
    static inline long sock_rcvtimeo(const struct sock *sk, int noblock)
    {
    	return noblock ? 0 : sk->sk_rcvtimeo;
    }
    
    static inline long sock_sndtimeo(const struct sock *sk, int noblock)
    {
    	return noblock ? 0 : sk->sk_sndtimeo;
    }
    
    static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
    {
    	return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
    }
    
    /* Alas, with timeout socket operations are not restartable.
     * Compare this to poll().
     */
    static inline int sock_intr_errno(long timeo)
    {
    	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
    }
    
    static __inline__ void
    sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
    {
    	struct timeval stamp;
    
    	skb_get_timestamp(skb, &stamp);
    	if (sock_flag(sk, SOCK_RCVTSTAMP)) {
    		/* Race occurred between timestamp enabling and packet
    		   receiving.  Fill in the current time for now. */
    		if (stamp.tv_sec == 0)
    			do_gettimeofday(&stamp);
    		skb_set_timestamp(skb, &stamp);
    		put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP, sizeof(struct timeval),
    			 &stamp);
    	} else
    		sk->sk_stamp = stamp;
    }
    
    /**
     * sk_eat_skb - Release a skb if it is no longer needed
     * @sk: socket to eat this skb from
     * @skb: socket buffer to eat
     * @copied_early: flag indicating whether DMA operations copied this data early
     *
     * This routine must be called with interrupts disabled or with the socket
     * locked so that the sk_buff queue operation is ok.
    */
    #ifdef CONFIG_NET_DMA
    static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
    {
    	__skb_unlink(skb, &sk->sk_receive_queue);
    	if (!copied_early)
    		__kfree_skb(skb);
    	else
    		__skb_queue_tail(&sk->sk_async_wait_queue, skb);
    }
    #else
    static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
    {
    	__skb_unlink(skb, &sk->sk_receive_queue);
    	__kfree_skb(skb);
    }
    #endif
    
    extern void sock_enable_timestamp(struct sock *sk);
    extern int sock_get_timestamp(struct sock *, struct timeval __user *);
    
    /* 
     *	Enable debug/info messages 
     */
    
    #ifdef CONFIG_NETDEBUG
    #define NETDEBUG(fmt, args...)	printk(fmt,##args)
    #define LIMIT_NETDEBUG(fmt, args...) do { if (net_ratelimit()) printk(fmt,##args); } while(0)
    #else
    #define NETDEBUG(fmt, args...)	do { } while (0)
    #define LIMIT_NETDEBUG(fmt, args...) do { } while(0)
    #endif
    
    /*
     * Macros for sleeping on a socket. Use them like this:
     *
     * SOCK_SLEEP_PRE(sk)
     * if (condition)
     * 	schedule();
     * SOCK_SLEEP_POST(sk)
     *
     * N.B. These are now obsolete and were, afaik, only ever used in DECnet
     * and when the last use of them in DECnet has gone, I'm intending to
     * remove them.
     */
    
    #define SOCK_SLEEP_PRE(sk) 	{ struct task_struct *tsk = current; \
    				DECLARE_WAITQUEUE(wait, tsk); \
    				tsk->state = TASK_INTERRUPTIBLE; \
    				add_wait_queue((sk)->sk_sleep, &wait); \
    				release_sock(sk);
    
    #define SOCK_SLEEP_POST(sk)	tsk->state = TASK_RUNNING; \
    				remove_wait_queue((sk)->sk_sleep, &wait); \
    				lock_sock(sk); \
    				}
    
    static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
    {
    	if (valbool)
    		sock_set_flag(sk, bit);
    	else
    		sock_reset_flag(sk, bit);
    }
    
    extern __u32 sysctl_wmem_max;
    extern __u32 sysctl_rmem_max;
    
    #ifdef CONFIG_NET
    int siocdevprivate_ioctl(unsigned int fd, unsigned int cmd, unsigned long arg);
    #else
    static inline int siocdevprivate_ioctl(unsigned int fd, unsigned int cmd, unsigned long arg)
    {
    	return -ENODEV;
    }
    #endif
    
    extern void sk_init(void);
    
    #ifdef CONFIG_SYSCTL
    extern struct ctl_table core_table[];
    #endif
    
    extern int sysctl_optmem_max;
    
    extern __u32 sysctl_wmem_default;
    extern __u32 sysctl_rmem_default;
    
    #endif	/* _SOCK_H */