Skip to content
Snippets Groups Projects
Select Git revision
  • a5b5bb9a053a973c23b867738c074acb3e80c0a0
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

sock.c

Blame
    • Ingo Molnar's avatar
      a5b5bb9a
      [PATCH] lockdep: annotate sk_locks · a5b5bb9a
      Ingo Molnar authored
      
      Teach sk_lock semantics to the lock validator.  In the softirq path the
      slock has mutex_trylock()+mutex_unlock() semantics, in the process context
      sock_lock() case it has mutex_lock()/mutex_unlock() semantics.
      
      Thus we treat sock_owned_by_user() flagged areas as an exclusion area too,
      not just those areas covered by a held sk_lock.slock.
      
      Effect on non-lockdep kernels: minimal, sk_lock_sock_init() has been turned
      into an inline function.
      
      Signed-off-by: default avatarIngo Molnar <mingo@elte.hu>
      Cc: Arjan van de Ven <arjan@linux.intel.com>
      Cc: "David S. Miller" <davem@davemloft.net>
      Cc: Herbert Xu <herbert@gondor.apana.org.au>
      Signed-off-by: default avatarAndrew Morton <akpm@osdl.org>
      Signed-off-by: default avatarLinus Torvalds <torvalds@osdl.org>
      a5b5bb9a
      History
      [PATCH] lockdep: annotate sk_locks
      Ingo Molnar authored
      
      Teach sk_lock semantics to the lock validator.  In the softirq path the
      slock has mutex_trylock()+mutex_unlock() semantics, in the process context
      sock_lock() case it has mutex_lock()/mutex_unlock() semantics.
      
      Thus we treat sock_owned_by_user() flagged areas as an exclusion area too,
      not just those areas covered by a held sk_lock.slock.
      
      Effect on non-lockdep kernels: minimal, sk_lock_sock_init() has been turned
      into an inline function.
      
      Signed-off-by: default avatarIngo Molnar <mingo@elte.hu>
      Cc: Arjan van de Ven <arjan@linux.intel.com>
      Cc: "David S. Miller" <davem@davemloft.net>
      Cc: Herbert Xu <herbert@gondor.apana.org.au>
      Signed-off-by: default avatarAndrew Morton <akpm@osdl.org>
      Signed-off-by: default avatarLinus Torvalds <torvalds@osdl.org>
    sock.c 48.85 KiB
    /*
     * INET		An implementation of the TCP/IP protocol suite for the LINUX
     *		operating system.  INET is implemented using the  BSD Socket
     *		interface as the means of communication with the user level.
     *
     *		Generic socket support routines. Memory allocators, socket lock/release
     *		handler for protocols to use and generic option handler.
     *
     *
     * Version:	$Id: sock.c,v 1.117 2002/02/01 22:01:03 davem Exp $
     *
     * Authors:	Ross Biro
     *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
     *		Florian La Roche, <flla@stud.uni-sb.de>
     *		Alan Cox, <A.Cox@swansea.ac.uk>
     *
     * Fixes:
     *		Alan Cox	: 	Numerous verify_area() problems
     *		Alan Cox	:	Connecting on a connecting socket
     *					now returns an error for tcp.
     *		Alan Cox	:	sock->protocol is set correctly.
     *					and is not sometimes left as 0.
     *		Alan Cox	:	connect handles icmp errors on a
     *					connect properly. Unfortunately there
     *					is a restart syscall nasty there. I
     *					can't match BSD without hacking the C
     *					library. Ideas urgently sought!
     *		Alan Cox	:	Disallow bind() to addresses that are
     *					not ours - especially broadcast ones!!
     *		Alan Cox	:	Socket 1024 _IS_ ok for users. (fencepost)
     *		Alan Cox	:	sock_wfree/sock_rfree don't destroy sockets,
     *					instead they leave that for the DESTROY timer.
     *		Alan Cox	:	Clean up error flag in accept
     *		Alan Cox	:	TCP ack handling is buggy, the DESTROY timer
     *					was buggy. Put a remove_sock() in the handler
     *					for memory when we hit 0. Also altered the timer
     *					code. The ACK stuff can wait and needs major 
     *					TCP layer surgery.
     *		Alan Cox	:	Fixed TCP ack bug, removed remove sock
     *					and fixed timer/inet_bh race.
     *		Alan Cox	:	Added zapped flag for TCP
     *		Alan Cox	:	Move kfree_skb into skbuff.c and tidied up surplus code
     *		Alan Cox	:	for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
     *		Alan Cox	:	kfree_s calls now are kfree_skbmem so we can track skb resources
     *		Alan Cox	:	Supports socket option broadcast now as does udp. Packet and raw need fixing.
     *		Alan Cox	:	Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
     *		Rick Sladkey	:	Relaxed UDP rules for matching packets.
     *		C.E.Hawkins	:	IFF_PROMISC/SIOCGHWADDR support
     *	Pauline Middelink	:	identd support
     *		Alan Cox	:	Fixed connect() taking signals I think.
     *		Alan Cox	:	SO_LINGER supported
     *		Alan Cox	:	Error reporting fixes
     *		Anonymous	:	inet_create tidied up (sk->reuse setting)
     *		Alan Cox	:	inet sockets don't set sk->type!
     *		Alan Cox	:	Split socket option code
     *		Alan Cox	:	Callbacks
     *		Alan Cox	:	Nagle flag for Charles & Johannes stuff
     *		Alex		:	Removed restriction on inet fioctl
     *		Alan Cox	:	Splitting INET from NET core
     *		Alan Cox	:	Fixed bogus SO_TYPE handling in getsockopt()
     *		Adam Caldwell	:	Missing return in SO_DONTROUTE/SO_DEBUG code
     *		Alan Cox	:	Split IP from generic code
     *		Alan Cox	:	New kfree_skbmem()
     *		Alan Cox	:	Make SO_DEBUG superuser only.
     *		Alan Cox	:	Allow anyone to clear SO_DEBUG
     *					(compatibility fix)
     *		Alan Cox	:	Added optimistic memory grabbing for AF_UNIX throughput.
     *		Alan Cox	:	Allocator for a socket is settable.
     *		Alan Cox	:	SO_ERROR includes soft errors.
     *		Alan Cox	:	Allow NULL arguments on some SO_ opts
     *		Alan Cox	: 	Generic socket allocation to make hooks
     *					easier (suggested by Craig Metz).
     *		Michael Pall	:	SO_ERROR returns positive errno again
     *              Steve Whitehouse:       Added default destructor to free
     *                                      protocol private data.
     *              Steve Whitehouse:       Added various other default routines
     *                                      common to several socket families.
     *              Chris Evans     :       Call suser() check last on F_SETOWN
     *		Jay Schulist	:	Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
     *		Andi Kleen	:	Add sock_kmalloc()/sock_kfree_s()
     *		Andi Kleen	:	Fix write_space callback
     *		Chris Evans	:	Security fixes - signedness again
     *		Arnaldo C. Melo :       cleanups, use skb_queue_purge
     *
     * To Fix:
     *
     *
     *		This program is free software; you can redistribute it and/or
     *		modify it under the terms of the GNU General Public License
     *		as published by the Free Software Foundation; either version
     *		2 of the License, or (at your option) any later version.
     */
    
    #include <linux/capability.h>
    #include <linux/errno.h>
    #include <linux/types.h>
    #include <linux/socket.h>
    #include <linux/in.h>
    #include <linux/kernel.h>
    #include <linux/module.h>
    #include <linux/proc_fs.h>
    #include <linux/seq_file.h>
    #include <linux/sched.h>
    #include <linux/timer.h>
    #include <linux/string.h>
    #include <linux/sockios.h>
    #include <linux/net.h>
    #include <linux/mm.h>
    #include <linux/slab.h>
    #include <linux/interrupt.h>
    #include <linux/poll.h>
    #include <linux/tcp.h>
    #include <linux/init.h>
    
    #include <asm/uaccess.h>
    #include <asm/system.h>
    
    #include <linux/netdevice.h>
    #include <net/protocol.h>
    #include <linux/skbuff.h>
    #include <net/request_sock.h>
    #include <net/sock.h>
    #include <net/xfrm.h>
    #include <linux/ipsec.h>
    
    #include <linux/filter.h>
    
    #ifdef CONFIG_INET
    #include <net/tcp.h>
    #endif
    
    /*
     * Each address family might have different locking rules, so we have
     * one slock key per address family:
     */
    static struct lock_class_key af_family_keys[AF_MAX];
    static struct lock_class_key af_family_slock_keys[AF_MAX];
    
    #ifdef CONFIG_DEBUG_LOCK_ALLOC
    /*
     * Make lock validator output more readable. (we pre-construct these
     * strings build-time, so that runtime initialization of socket
     * locks is fast):
     */
    static const char *af_family_key_strings[AF_MAX+1] = {
      "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX"     , "sk_lock-AF_INET"     ,
      "sk_lock-AF_AX25"  , "sk_lock-AF_IPX"      , "sk_lock-AF_APPLETALK",
      "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE"   , "sk_lock-AF_ATMPVC"   ,
      "sk_lock-AF_X25"   , "sk_lock-AF_INET6"    , "sk_lock-AF_ROSE"     ,
      "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI"  , "sk_lock-AF_SECURITY" ,
      "sk_lock-AF_KEY"   , "sk_lock-AF_NETLINK"  , "sk_lock-AF_PACKET"   ,
      "sk_lock-AF_ASH"   , "sk_lock-AF_ECONET"   , "sk_lock-AF_ATMSVC"   ,
      "sk_lock-21"       , "sk_lock-AF_SNA"      , "sk_lock-AF_IRDA"     ,
      "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE"  , "sk_lock-AF_LLC"      ,
      "sk_lock-27"       , "sk_lock-28"          , "sk_lock-29"          ,
      "sk_lock-AF_TIPC"  , "sk_lock-AF_BLUETOOTH", "sk_lock-AF_MAX"
    };
    static const char *af_family_slock_key_strings[AF_MAX+1] = {
      "slock-AF_UNSPEC", "slock-AF_UNIX"     , "slock-AF_INET"     ,
      "slock-AF_AX25"  , "slock-AF_IPX"      , "slock-AF_APPLETALK",
      "slock-AF_NETROM", "slock-AF_BRIDGE"   , "slock-AF_ATMPVC"   ,
      "slock-AF_X25"   , "slock-AF_INET6"    , "slock-AF_ROSE"     ,
      "slock-AF_DECnet", "slock-AF_NETBEUI"  , "slock-AF_SECURITY" ,
      "slock-AF_KEY"   , "slock-AF_NETLINK"  , "slock-AF_PACKET"   ,
      "slock-AF_ASH"   , "slock-AF_ECONET"   , "slock-AF_ATMSVC"   ,
      "slock-21"       , "slock-AF_SNA"      , "slock-AF_IRDA"     ,
      "slock-AF_PPPOX" , "slock-AF_WANPIPE"  , "slock-AF_LLC"      ,
      "slock-27"       , "slock-28"          , "slock-29"          ,
      "slock-AF_TIPC"  , "slock-AF_BLUETOOTH", "slock-AF_MAX"
    };
    #endif
    
    /*
     * sk_callback_lock locking rules are per-address-family,
     * so split the lock classes by using a per-AF key:
     */
    static struct lock_class_key af_callback_keys[AF_MAX];
    
    /* Take into consideration the size of the struct sk_buff overhead in the
     * determination of these values, since that is non-constant across
     * platforms.  This makes socket queueing behavior and performance
     * not depend upon such differences.
     */
    #define _SK_MEM_PACKETS		256
    #define _SK_MEM_OVERHEAD	(sizeof(struct sk_buff) + 256)
    #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
    #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
    
    /* Run time adjustable parameters. */
    __u32 sysctl_wmem_max = SK_WMEM_MAX;
    __u32 sysctl_rmem_max = SK_RMEM_MAX;
    __u32 sysctl_wmem_default = SK_WMEM_MAX;
    __u32 sysctl_rmem_default = SK_RMEM_MAX;
    
    /* Maximal space eaten by iovec or ancilliary data plus some space */
    int sysctl_optmem_max = sizeof(unsigned long)*(2*UIO_MAXIOV + 512);
    
    static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
    {
    	struct timeval tv;
    
    	if (optlen < sizeof(tv))
    		return -EINVAL;
    	if (copy_from_user(&tv, optval, sizeof(tv)))
    		return -EFAULT;
    
    	*timeo_p = MAX_SCHEDULE_TIMEOUT;
    	if (tv.tv_sec == 0 && tv.tv_usec == 0)
    		return 0;
    	if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
    		*timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
    	return 0;
    }
    
    static void sock_warn_obsolete_bsdism(const char *name)
    {
    	static int warned;
    	static char warncomm[TASK_COMM_LEN];
    	if (strcmp(warncomm, current->comm) && warned < 5) { 
    		strcpy(warncomm,  current->comm); 
    		printk(KERN_WARNING "process `%s' is using obsolete "
    		       "%s SO_BSDCOMPAT\n", warncomm, name);
    		warned++;
    	}
    }
    
    static void sock_disable_timestamp(struct sock *sk)
    {	
    	if (sock_flag(sk, SOCK_TIMESTAMP)) { 
    		sock_reset_flag(sk, SOCK_TIMESTAMP);
    		net_disable_timestamp();
    	}
    }
    
    
    int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
    {
    	int err = 0;
    	int skb_len;
    
    	/* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
    	   number of warnings when compiling with -W --ANK
    	 */
    	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
    	    (unsigned)sk->sk_rcvbuf) {
    		err = -ENOMEM;
    		goto out;
    	}
    
    	/* It would be deadlock, if sock_queue_rcv_skb is used
    	   with socket lock! We assume that users of this
    	   function are lock free.
    	*/
    	err = sk_filter(sk, skb, 1);
    	if (err)
    		goto out;
    
    	skb->dev = NULL;
    	skb_set_owner_r(skb, sk);
    
    	/* Cache the SKB length before we tack it onto the receive
    	 * queue.  Once it is added it no longer belongs to us and
    	 * may be freed by other threads of control pulling packets
    	 * from the queue.
    	 */
    	skb_len = skb->len;
    
    	skb_queue_tail(&sk->sk_receive_queue, skb);
    
    	if (!sock_flag(sk, SOCK_DEAD))
    		sk->sk_data_ready(sk, skb_len);
    out:
    	return err;
    }
    EXPORT_SYMBOL(sock_queue_rcv_skb);
    
    int sk_receive_skb(struct sock *sk, struct sk_buff *skb)
    {
    	int rc = NET_RX_SUCCESS;
    
    	if (sk_filter(sk, skb, 0))
    		goto discard_and_relse;
    
    	skb->dev = NULL;
    
    	bh_lock_sock(sk);
    	if (!sock_owned_by_user(sk)) {
    		/*
    		 * trylock + unlock semantics:
    		 */
    		mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
    
    		rc = sk->sk_backlog_rcv(sk, skb);
    
    		mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
    	} else
    		sk_add_backlog(sk, skb);
    	bh_unlock_sock(sk);
    out:
    	sock_put(sk);
    	return rc;
    discard_and_relse:
    	kfree_skb(skb);
    	goto out;
    }
    EXPORT_SYMBOL(sk_receive_skb);
    
    struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
    {
    	struct dst_entry *dst = sk->sk_dst_cache;
    
    	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
    		sk->sk_dst_cache = NULL;
    		dst_release(dst);
    		return NULL;
    	}
    
    	return dst;
    }
    EXPORT_SYMBOL(__sk_dst_check);
    
    struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
    {
    	struct dst_entry *dst = sk_dst_get(sk);
    
    	if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
    		sk_dst_reset(sk);
    		dst_release(dst);
    		return NULL;
    	}
    
    	return dst;
    }
    EXPORT_SYMBOL(sk_dst_check);
    
    /*
     *	This is meant for all protocols to use and covers goings on
     *	at the socket level. Everything here is generic.
     */
    
    int sock_setsockopt(struct socket *sock, int level, int optname,
    		    char __user *optval, int optlen)
    {
    	struct sock *sk=sock->sk;
    	struct sk_filter *filter;
    	int val;
    	int valbool;
    	struct linger ling;
    	int ret = 0;
    	
    	/*
    	 *	Options without arguments
    	 */
    
    #ifdef SO_DONTLINGER		/* Compatibility item... */
    	if (optname == SO_DONTLINGER) {
    		lock_sock(sk);
    		sock_reset_flag(sk, SOCK_LINGER);
    		release_sock(sk);
    		return 0;
    	}
    #endif
    	
      	if(optlen<sizeof(int))
      		return(-EINVAL);
      	
    	if (get_user(val, (int __user *)optval))
    		return -EFAULT;
    	
      	valbool = val?1:0;
    
    	lock_sock(sk);
    
      	switch(optname) 
      	{
    		case SO_DEBUG:	
    			if(val && !capable(CAP_NET_ADMIN))
    			{
    				ret = -EACCES;
    			}
    			else if (valbool)
    				sock_set_flag(sk, SOCK_DBG);
    			else
    				sock_reset_flag(sk, SOCK_DBG);
    			break;
    		case SO_REUSEADDR:
    			sk->sk_reuse = valbool;
    			break;
    		case SO_TYPE:
    		case SO_ERROR:
    			ret = -ENOPROTOOPT;
    		  	break;
    		case SO_DONTROUTE:
    			if (valbool)
    				sock_set_flag(sk, SOCK_LOCALROUTE);
    			else
    				sock_reset_flag(sk, SOCK_LOCALROUTE);
    			break;
    		case SO_BROADCAST:
    			sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
    			break;
    		case SO_SNDBUF:
    			/* Don't error on this BSD doesn't and if you think
    			   about it this is right. Otherwise apps have to
    			   play 'guess the biggest size' games. RCVBUF/SNDBUF
    			   are treated in BSD as hints */
    			   
    			if (val > sysctl_wmem_max)
    				val = sysctl_wmem_max;
    set_sndbuf:
    			sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
    			if ((val * 2) < SOCK_MIN_SNDBUF)
    				sk->sk_sndbuf = SOCK_MIN_SNDBUF;
    			else
    				sk->sk_sndbuf = val * 2;
    
    			/*
    			 *	Wake up sending tasks if we
    			 *	upped the value.
    			 */
    			sk->sk_write_space(sk);
    			break;
    
    		case SO_SNDBUFFORCE:
    			if (!capable(CAP_NET_ADMIN)) {
    				ret = -EPERM;
    				break;
    			}
    			goto set_sndbuf;
    
    		case SO_RCVBUF:
    			/* Don't error on this BSD doesn't and if you think
    			   about it this is right. Otherwise apps have to
    			   play 'guess the biggest size' games. RCVBUF/SNDBUF
    			   are treated in BSD as hints */
    			  
    			if (val > sysctl_rmem_max)
    				val = sysctl_rmem_max;
    set_rcvbuf:
    			sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
    			/*
    			 * We double it on the way in to account for
    			 * "struct sk_buff" etc. overhead.   Applications
    			 * assume that the SO_RCVBUF setting they make will
    			 * allow that much actual data to be received on that
    			 * socket.
    			 *
    			 * Applications are unaware that "struct sk_buff" and
    			 * other overheads allocate from the receive buffer
    			 * during socket buffer allocation.
    			 *
    			 * And after considering the possible alternatives,
    			 * returning the value we actually used in getsockopt
    			 * is the most desirable behavior.
    			 */
    			if ((val * 2) < SOCK_MIN_RCVBUF)
    				sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
    			else
    				sk->sk_rcvbuf = val * 2;
    			break;
    
    		case SO_RCVBUFFORCE:
    			if (!capable(CAP_NET_ADMIN)) {
    				ret = -EPERM;
    				break;
    			}
    			goto set_rcvbuf;
    
    		case SO_KEEPALIVE:
    #ifdef CONFIG_INET
    			if (sk->sk_protocol == IPPROTO_TCP)
    				tcp_set_keepalive(sk, valbool);
    #endif
    			sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
    			break;
    
    	 	case SO_OOBINLINE:
    			sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
    			break;
    
    	 	case SO_NO_CHECK:
    			sk->sk_no_check = valbool;
    			break;
    
    		case SO_PRIORITY:
    			if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN)) 
    				sk->sk_priority = val;
    			else
    				ret = -EPERM;
    			break;
    
    		case SO_LINGER:
    			if(optlen<sizeof(ling)) {
    				ret = -EINVAL;	/* 1003.1g */
    				break;
    			}
    			if (copy_from_user(&ling,optval,sizeof(ling))) {
    				ret = -EFAULT;
    				break;
    			}
    			if (!ling.l_onoff)
    				sock_reset_flag(sk, SOCK_LINGER);
    			else {
    #if (BITS_PER_LONG == 32)
    				if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
    					sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
    				else
    #endif
    					sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
    				sock_set_flag(sk, SOCK_LINGER);
    			}
    			break;
    
    		case SO_BSDCOMPAT:
    			sock_warn_obsolete_bsdism("setsockopt");
    			break;
    
    		case SO_PASSCRED:
    			if (valbool)
    				set_bit(SOCK_PASSCRED, &sock->flags);
    			else
    				clear_bit(SOCK_PASSCRED, &sock->flags);
    			break;
    
    		case SO_TIMESTAMP:
    			if (valbool)  {
    				sock_set_flag(sk, SOCK_RCVTSTAMP);
    				sock_enable_timestamp(sk);
    			} else
    				sock_reset_flag(sk, SOCK_RCVTSTAMP);
    			break;
    
    		case SO_RCVLOWAT:
    			if (val < 0)
    				val = INT_MAX;
    			sk->sk_rcvlowat = val ? : 1;
    			break;
    
    		case SO_RCVTIMEO:
    			ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
    			break;
    
    		case SO_SNDTIMEO:
    			ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
    			break;
    
    #ifdef CONFIG_NETDEVICES
    		case SO_BINDTODEVICE:
    		{
    			char devname[IFNAMSIZ]; 
    
    			/* Sorry... */ 
    			if (!capable(CAP_NET_RAW)) {
    				ret = -EPERM;
    				break;
    			}
    
    			/* Bind this socket to a particular device like "eth0",
    			 * as specified in the passed interface name. If the
    			 * name is "" or the option length is zero the socket 
    			 * is not bound. 
    			 */ 
    
    			if (!valbool) {
    				sk->sk_bound_dev_if = 0;
    			} else {
    				if (optlen > IFNAMSIZ - 1)
    					optlen = IFNAMSIZ - 1;
    				memset(devname, 0, sizeof(devname));
    				if (copy_from_user(devname, optval, optlen)) {
    					ret = -EFAULT;
    					break;
    				}
    
    				/* Remove any cached route for this socket. */
    				sk_dst_reset(sk);
    
    				if (devname[0] == '\0') {
    					sk->sk_bound_dev_if = 0;
    				} else {
    					struct net_device *dev = dev_get_by_name(devname);
    					if (!dev) {
    						ret = -ENODEV;
    						break;
    					}
    					sk->sk_bound_dev_if = dev->ifindex;
    					dev_put(dev);
    				}
    			}
    			break;
    		}
    #endif
    
    
    		case SO_ATTACH_FILTER:
    			ret = -EINVAL;
    			if (optlen == sizeof(struct sock_fprog)) {
    				struct sock_fprog fprog;
    
    				ret = -EFAULT;
    				if (copy_from_user(&fprog, optval, sizeof(fprog)))
    					break;
    
    				ret = sk_attach_filter(&fprog, sk);
    			}
    			break;
    
    		case SO_DETACH_FILTER:
    			spin_lock_bh(&sk->sk_lock.slock);
    			filter = sk->sk_filter;
                            if (filter) {
    				sk->sk_filter = NULL;
    				spin_unlock_bh(&sk->sk_lock.slock);
    				sk_filter_release(sk, filter);
    				break;
    			}
    			spin_unlock_bh(&sk->sk_lock.slock);
    			ret = -ENONET;
    			break;
    
    		case SO_PASSSEC:
    			if (valbool)
    				set_bit(SOCK_PASSSEC, &sock->flags);
    			else
    				clear_bit(SOCK_PASSSEC, &sock->flags);
    			break;
    
    		/* We implement the SO_SNDLOWAT etc to
    		   not be settable (1003.1g 5.3) */
    		default:
    		  	ret = -ENOPROTOOPT;
    			break;
      	}
    	release_sock(sk);
    	return ret;
    }
    
    
    int sock_getsockopt(struct socket *sock, int level, int optname,
    		    char __user *optval, int __user *optlen)
    {
    	struct sock *sk = sock->sk;
    	
    	union
    	{
      		int val;
      		struct linger ling;
    		struct timeval tm;
    	} v;
    	
    	unsigned int lv = sizeof(int);
    	int len;
      	
      	if(get_user(len,optlen))
      		return -EFAULT;
    	if(len < 0)
    		return -EINVAL;
    		
      	switch(optname) 
      	{
    		case SO_DEBUG:		
    			v.val = sock_flag(sk, SOCK_DBG);
    			break;
    		
    		case SO_DONTROUTE:
    			v.val = sock_flag(sk, SOCK_LOCALROUTE);
    			break;
    		
    		case SO_BROADCAST:
    			v.val = !!sock_flag(sk, SOCK_BROADCAST);
    			break;
    
    		case SO_SNDBUF:
    			v.val = sk->sk_sndbuf;
    			break;
    		
    		case SO_RCVBUF:
    			v.val = sk->sk_rcvbuf;
    			break;
    
    		case SO_REUSEADDR:
    			v.val = sk->sk_reuse;
    			break;
    
    		case SO_KEEPALIVE:
    			v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
    			break;
    
    		case SO_TYPE:
    			v.val = sk->sk_type;		  		
    			break;
    
    		case SO_ERROR:
    			v.val = -sock_error(sk);
    			if(v.val==0)
    				v.val = xchg(&sk->sk_err_soft, 0);
    			break;
    
    		case SO_OOBINLINE:
    			v.val = !!sock_flag(sk, SOCK_URGINLINE);
    			break;
    	
    		case SO_NO_CHECK:
    			v.val = sk->sk_no_check;
    			break;
    
    		case SO_PRIORITY:
    			v.val = sk->sk_priority;
    			break;
    		
    		case SO_LINGER:	
    			lv		= sizeof(v.ling);
    			v.ling.l_onoff	= !!sock_flag(sk, SOCK_LINGER);
     			v.ling.l_linger	= sk->sk_lingertime / HZ;
    			break;
    					
    		case SO_BSDCOMPAT:
    			sock_warn_obsolete_bsdism("getsockopt");
    			break;
    
    		case SO_TIMESTAMP:
    			v.val = sock_flag(sk, SOCK_RCVTSTAMP);
    			break;
    
    		case SO_RCVTIMEO:
    			lv=sizeof(struct timeval);
    			if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
    				v.tm.tv_sec = 0;
    				v.tm.tv_usec = 0;
    			} else {
    				v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
    				v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
    			}
    			break;
    
    		case SO_SNDTIMEO:
    			lv=sizeof(struct timeval);
    			if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
    				v.tm.tv_sec = 0;
    				v.tm.tv_usec = 0;
    			} else {
    				v.tm.tv_sec = sk->sk_sndtimeo / HZ;
    				v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
    			}
    			break;
    
    		case SO_RCVLOWAT:
    			v.val = sk->sk_rcvlowat;
    			break;
    
    		case SO_SNDLOWAT:
    			v.val=1;
    			break; 
    
    		case SO_PASSCRED:
    			v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
    			break;
    
    		case SO_PEERCRED:
    			if (len > sizeof(sk->sk_peercred))
    				len = sizeof(sk->sk_peercred);
    			if (copy_to_user(optval, &sk->sk_peercred, len))
    				return -EFAULT;
    			goto lenout;
    
    		case SO_PEERNAME:
    		{
    			char address[128];
    
    			if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
    				return -ENOTCONN;
    			if (lv < len)
    				return -EINVAL;
    			if (copy_to_user(optval, address, len))
    				return -EFAULT;
    			goto lenout;
    		}
    
    		/* Dubious BSD thing... Probably nobody even uses it, but
    		 * the UNIX standard wants it for whatever reason... -DaveM
    		 */
    		case SO_ACCEPTCONN:
    			v.val = sk->sk_state == TCP_LISTEN;
    			break;
    
    		case SO_PASSSEC:
    			v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
    			break;
    
    		case SO_PEERSEC:
    			return security_socket_getpeersec_stream(sock, optval, optlen, len);
    
    		default:
    			return(-ENOPROTOOPT);
    	}
    	if (len > lv)
    		len = lv;
    	if (copy_to_user(optval, &v, len))
    		return -EFAULT;
    lenout:
      	if (put_user(len, optlen))
      		return -EFAULT;
      	return 0;
    }
    
    /*
     * Initialize an sk_lock.
     *
     * (We also register the sk_lock with the lock validator.)
     */
    static void inline sock_lock_init(struct sock *sk)
    {
    	spin_lock_init(&sk->sk_lock.slock);
    	sk->sk_lock.owner = NULL;
    	init_waitqueue_head(&sk->sk_lock.wq);
    	/*
    	 * Make sure we are not reinitializing a held lock:
    	 */
    	debug_check_no_locks_freed((void *)&sk->sk_lock, sizeof(sk->sk_lock));
    
    	/*
    	 * Mark both the sk_lock and the sk_lock.slock as a
    	 * per-address-family lock class:
    	 */
    	lockdep_set_class_and_name(&sk->sk_lock.slock,
    				   af_family_slock_keys + sk->sk_family,
    				   af_family_slock_key_strings[sk->sk_family]);
    	lockdep_init_map(&sk->sk_lock.dep_map,
    			 af_family_key_strings[sk->sk_family],
    			 af_family_keys + sk->sk_family);
    }
    
    /**
     *	sk_alloc - All socket objects are allocated here
     *	@family: protocol family
     *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
     *	@prot: struct proto associated with this new sock instance
     *	@zero_it: if we should zero the newly allocated sock
     */
    struct sock *sk_alloc(int family, gfp_t priority,
    		      struct proto *prot, int zero_it)
    {
    	struct sock *sk = NULL;
    	kmem_cache_t *slab = prot->slab;
    
    	if (slab != NULL)
    		sk = kmem_cache_alloc(slab, priority);
    	else
    		sk = kmalloc(prot->obj_size, priority);
    
    	if (sk) {
    		if (zero_it) {
    			memset(sk, 0, prot->obj_size);
    			sk->sk_family = family;
    			/*
    			 * See comment in struct sock definition to understand
    			 * why we need sk_prot_creator -acme
    			 */
    			sk->sk_prot = sk->sk_prot_creator = prot;
    			sock_lock_init(sk);
    		}
    		
    		if (security_sk_alloc(sk, family, priority))
    			goto out_free;
    
    		if (!try_module_get(prot->owner))
    			goto out_free;
    	}
    	return sk;
    
    out_free:
    	if (slab != NULL)
    		kmem_cache_free(slab, sk);
    	else
    		kfree(sk);
    	return NULL;
    }
    
    void sk_free(struct sock *sk)
    {
    	struct sk_filter *filter;
    	struct module *owner = sk->sk_prot_creator->owner;
    
    	if (sk->sk_destruct)
    		sk->sk_destruct(sk);
    
    	filter = sk->sk_filter;
    	if (filter) {
    		sk_filter_release(sk, filter);
    		sk->sk_filter = NULL;
    	}
    
    	sock_disable_timestamp(sk);
    
    	if (atomic_read(&sk->sk_omem_alloc))
    		printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
    		       __FUNCTION__, atomic_read(&sk->sk_omem_alloc));
    
    	security_sk_free(sk);
    	if (sk->sk_prot_creator->slab != NULL)
    		kmem_cache_free(sk->sk_prot_creator->slab, sk);
    	else
    		kfree(sk);
    	module_put(owner);
    }
    
    struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
    {
    	struct sock *newsk = sk_alloc(sk->sk_family, priority, sk->sk_prot, 0);
    
    	if (newsk != NULL) {
    		struct sk_filter *filter;
    
    		memcpy(newsk, sk, sk->sk_prot->obj_size);
    
    		/* SANITY */
    		sk_node_init(&newsk->sk_node);
    		sock_lock_init(newsk);
    		bh_lock_sock(newsk);
    
    		atomic_set(&newsk->sk_rmem_alloc, 0);
    		atomic_set(&newsk->sk_wmem_alloc, 0);
    		atomic_set(&newsk->sk_omem_alloc, 0);
    		skb_queue_head_init(&newsk->sk_receive_queue);
    		skb_queue_head_init(&newsk->sk_write_queue);
    #ifdef CONFIG_NET_DMA
    		skb_queue_head_init(&newsk->sk_async_wait_queue);
    #endif
    
    		rwlock_init(&newsk->sk_dst_lock);
    		rwlock_init(&newsk->sk_callback_lock);
    		lockdep_set_class(&newsk->sk_callback_lock,
    				   af_callback_keys + newsk->sk_family);
    
    		newsk->sk_dst_cache	= NULL;
    		newsk->sk_wmem_queued	= 0;
    		newsk->sk_forward_alloc = 0;
    		newsk->sk_send_head	= NULL;
    		newsk->sk_backlog.head	= newsk->sk_backlog.tail = NULL;
    		newsk->sk_userlocks	= sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
    
    		sock_reset_flag(newsk, SOCK_DONE);
    		skb_queue_head_init(&newsk->sk_error_queue);
    
    		filter = newsk->sk_filter;
    		if (filter != NULL)
    			sk_filter_charge(newsk, filter);
    
    		if (unlikely(xfrm_sk_clone_policy(newsk))) {
    			/* It is still raw copy of parent, so invalidate
    			 * destructor and make plain sk_free() */
    			newsk->sk_destruct = NULL;
    			sk_free(newsk);
    			newsk = NULL;
    			goto out;
    		}
    
    		newsk->sk_err	   = 0;
    		newsk->sk_priority = 0;
    		atomic_set(&newsk->sk_refcnt, 2);
    
    		/*
    		 * Increment the counter in the same struct proto as the master
    		 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
    		 * is the same as sk->sk_prot->socks, as this field was copied
    		 * with memcpy).
    		 *
    		 * This _changes_ the previous behaviour, where
    		 * tcp_create_openreq_child always was incrementing the
    		 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
    		 * to be taken into account in all callers. -acme
    		 */
    		sk_refcnt_debug_inc(newsk);
    		newsk->sk_socket = NULL;
    		newsk->sk_sleep	 = NULL;
    
    		if (newsk->sk_prot->sockets_allocated)
    			atomic_inc(newsk->sk_prot->sockets_allocated);
    	}
    out:
    	return newsk;
    }
    
    EXPORT_SYMBOL_GPL(sk_clone);
    
    void __init sk_init(void)
    {
    	if (num_physpages <= 4096) {
    		sysctl_wmem_max = 32767;
    		sysctl_rmem_max = 32767;
    		sysctl_wmem_default = 32767;
    		sysctl_rmem_default = 32767;
    	} else if (num_physpages >= 131072) {
    		sysctl_wmem_max = 131071;
    		sysctl_rmem_max = 131071;
    	}
    }
    
    /*
     *	Simple resource managers for sockets.
     */
    
    
    /* 
     * Write buffer destructor automatically called from kfree_skb. 
     */
    void sock_wfree(struct sk_buff *skb)
    {
    	struct sock *sk = skb->sk;
    
    	/* In case it might be waiting for more memory. */
    	atomic_sub(skb->truesize, &sk->sk_wmem_alloc);
    	if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE))
    		sk->sk_write_space(sk);
    	sock_put(sk);
    }
    
    /* 
     * Read buffer destructor automatically called from kfree_skb. 
     */
    void sock_rfree(struct sk_buff *skb)
    {
    	struct sock *sk = skb->sk;
    
    	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
    }
    
    
    int sock_i_uid(struct sock *sk)
    {
    	int uid;
    
    	read_lock(&sk->sk_callback_lock);
    	uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
    	read_unlock(&sk->sk_callback_lock);
    	return uid;
    }
    
    unsigned long sock_i_ino(struct sock *sk)
    {
    	unsigned long ino;
    
    	read_lock(&sk->sk_callback_lock);
    	ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
    	read_unlock(&sk->sk_callback_lock);
    	return ino;
    }
    
    /*
     * Allocate a skb from the socket's send buffer.
     */
    struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
    			     gfp_t priority)
    {
    	if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
    		struct sk_buff * skb = alloc_skb(size, priority);
    		if (skb) {
    			skb_set_owner_w(skb, sk);
    			return skb;
    		}
    	}
    	return NULL;
    }
    
    /*
     * Allocate a skb from the socket's receive buffer.
     */ 
    struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
    			     gfp_t priority)
    {
    	if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
    		struct sk_buff *skb = alloc_skb(size, priority);
    		if (skb) {
    			skb_set_owner_r(skb, sk);
    			return skb;
    		}
    	}
    	return NULL;
    }
    
    /* 
     * Allocate a memory block from the socket's option memory buffer.
     */ 
    void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
    {
    	if ((unsigned)size <= sysctl_optmem_max &&
    	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
    		void *mem;
    		/* First do the add, to avoid the race if kmalloc
     		 * might sleep.
    		 */
    		atomic_add(size, &sk->sk_omem_alloc);
    		mem = kmalloc(size, priority);
    		if (mem)
    			return mem;
    		atomic_sub(size, &sk->sk_omem_alloc);
    	}
    	return NULL;
    }
    
    /*
     * Free an option memory block.
     */
    void sock_kfree_s(struct sock *sk, void *mem, int size)
    {
    	kfree(mem);
    	atomic_sub(size, &sk->sk_omem_alloc);
    }
    
    /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
       I think, these locks should be removed for datagram sockets.
     */
    static long sock_wait_for_wmem(struct sock * sk, long timeo)
    {
    	DEFINE_WAIT(wait);
    
    	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
    	for (;;) {
    		if (!timeo)
    			break;
    		if (signal_pending(current))
    			break;
    		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
    		prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
    		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
    			break;
    		if (sk->sk_shutdown & SEND_SHUTDOWN)
    			break;
    		if (sk->sk_err)
    			break;
    		timeo = schedule_timeout(timeo);
    	}
    	finish_wait(sk->sk_sleep, &wait);
    	return timeo;
    }
    
    
    /*
     *	Generic send/receive buffer handlers
     */
    
    static struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
    					    unsigned long header_len,
    					    unsigned long data_len,
    					    int noblock, int *errcode)
    {
    	struct sk_buff *skb;
    	gfp_t gfp_mask;
    	long timeo;
    	int err;
    
    	gfp_mask = sk->sk_allocation;
    	if (gfp_mask & __GFP_WAIT)
    		gfp_mask |= __GFP_REPEAT;
    
    	timeo = sock_sndtimeo(sk, noblock);
    	while (1) {
    		err = sock_error(sk);
    		if (err != 0)
    			goto failure;
    
    		err = -EPIPE;
    		if (sk->sk_shutdown & SEND_SHUTDOWN)
    			goto failure;
    
    		if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
    			skb = alloc_skb(header_len, sk->sk_allocation);
    			if (skb) {
    				int npages;
    				int i;
    
    				/* No pages, we're done... */
    				if (!data_len)
    					break;
    
    				npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
    				skb->truesize += data_len;
    				skb_shinfo(skb)->nr_frags = npages;
    				for (i = 0; i < npages; i++) {
    					struct page *page;
    					skb_frag_t *frag;
    
    					page = alloc_pages(sk->sk_allocation, 0);
    					if (!page) {
    						err = -ENOBUFS;
    						skb_shinfo(skb)->nr_frags = i;
    						kfree_skb(skb);
    						goto failure;
    					}
    
    					frag = &skb_shinfo(skb)->frags[i];
    					frag->page = page;
    					frag->page_offset = 0;
    					frag->size = (data_len >= PAGE_SIZE ?
    						      PAGE_SIZE :
    						      data_len);
    					data_len -= PAGE_SIZE;
    				}
    
    				/* Full success... */
    				break;
    			}
    			err = -ENOBUFS;
    			goto failure;
    		}
    		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
    		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
    		err = -EAGAIN;
    		if (!timeo)
    			goto failure;
    		if (signal_pending(current))
    			goto interrupted;
    		timeo = sock_wait_for_wmem(sk, timeo);
    	}
    
    	skb_set_owner_w(skb, sk);
    	return skb;
    
    interrupted:
    	err = sock_intr_errno(timeo);
    failure:
    	*errcode = err;
    	return NULL;
    }
    
    struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, 
    				    int noblock, int *errcode)
    {
    	return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
    }
    
    static void __lock_sock(struct sock *sk)
    {
    	DEFINE_WAIT(wait);
    
    	for(;;) {
    		prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
    					TASK_UNINTERRUPTIBLE);
    		spin_unlock_bh(&sk->sk_lock.slock);
    		schedule();
    		spin_lock_bh(&sk->sk_lock.slock);
    		if(!sock_owned_by_user(sk))
    			break;
    	}
    	finish_wait(&sk->sk_lock.wq, &wait);
    }
    
    static void __release_sock(struct sock *sk)
    {
    	struct sk_buff *skb = sk->sk_backlog.head;
    
    	do {
    		sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
    		bh_unlock_sock(sk);
    
    		do {
    			struct sk_buff *next = skb->next;
    
    			skb->next = NULL;
    			sk->sk_backlog_rcv(sk, skb);
    
    			/*
    			 * We are in process context here with softirqs
    			 * disabled, use cond_resched_softirq() to preempt.
    			 * This is safe to do because we've taken the backlog
    			 * queue private:
    			 */
    			cond_resched_softirq();
    
    			skb = next;
    		} while (skb != NULL);
    
    		bh_lock_sock(sk);
    	} while((skb = sk->sk_backlog.head) != NULL);
    }
    
    /**
     * sk_wait_data - wait for data to arrive at sk_receive_queue
     * @sk:    sock to wait on
     * @timeo: for how long
     *
     * Now socket state including sk->sk_err is changed only under lock,
     * hence we may omit checks after joining wait queue.
     * We check receive queue before schedule() only as optimization;
     * it is very likely that release_sock() added new data.
     */
    int sk_wait_data(struct sock *sk, long *timeo)
    {
    	int rc;
    	DEFINE_WAIT(wait);
    
    	prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
    	set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
    	rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
    	clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
    	finish_wait(sk->sk_sleep, &wait);
    	return rc;
    }
    
    EXPORT_SYMBOL(sk_wait_data);
    
    /*
     * Set of default routines for initialising struct proto_ops when
     * the protocol does not support a particular function. In certain
     * cases where it makes no sense for a protocol to have a "do nothing"
     * function, some default processing is provided.
     */
    
    int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
    {
    	return -EOPNOTSUPP;
    }
    
    int sock_no_connect(struct socket *sock, struct sockaddr *saddr, 
    		    int len, int flags)
    {
    	return -EOPNOTSUPP;
    }
    
    int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
    {
    	return -EOPNOTSUPP;
    }
    
    int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
    {
    	return -EOPNOTSUPP;
    }
    
    int sock_no_getname(struct socket *sock, struct sockaddr *saddr, 
    		    int *len, int peer)
    {
    	return -EOPNOTSUPP;
    }
    
    unsigned int sock_no_poll(struct file * file, struct socket *sock, poll_table *pt)
    {
    	return 0;
    }
    
    int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
    {
    	return -EOPNOTSUPP;
    }
    
    int sock_no_listen(struct socket *sock, int backlog)
    {
    	return -EOPNOTSUPP;
    }
    
    int sock_no_shutdown(struct socket *sock, int how)
    {
    	return -EOPNOTSUPP;
    }
    
    int sock_no_setsockopt(struct socket *sock, int level, int optname,
    		    char __user *optval, int optlen)
    {
    	return -EOPNOTSUPP;
    }
    
    int sock_no_getsockopt(struct socket *sock, int level, int optname,
    		    char __user *optval, int __user *optlen)
    {
    	return -EOPNOTSUPP;
    }
    
    int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
    		    size_t len)
    {
    	return -EOPNOTSUPP;
    }
    
    int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
    		    size_t len, int flags)
    {
    	return -EOPNOTSUPP;
    }
    
    int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
    {
    	/* Mirror missing mmap method error code */
    	return -ENODEV;
    }
    
    ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
    {
    	ssize_t res;
    	struct msghdr msg = {.msg_flags = flags};
    	struct kvec iov;
    	char *kaddr = kmap(page);
    	iov.iov_base = kaddr + offset;
    	iov.iov_len = size;
    	res = kernel_sendmsg(sock, &msg, &iov, 1, size);
    	kunmap(page);
    	return res;
    }
    
    /*
     *	Default Socket Callbacks
     */
    
    static void sock_def_wakeup(struct sock *sk)
    {
    	read_lock(&sk->sk_callback_lock);
    	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
    		wake_up_interruptible_all(sk->sk_sleep);
    	read_unlock(&sk->sk_callback_lock);
    }
    
    static void sock_def_error_report(struct sock *sk)
    {
    	read_lock(&sk->sk_callback_lock);
    	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
    		wake_up_interruptible(sk->sk_sleep);
    	sk_wake_async(sk,0,POLL_ERR); 
    	read_unlock(&sk->sk_callback_lock);
    }
    
    static void sock_def_readable(struct sock *sk, int len)
    {
    	read_lock(&sk->sk_callback_lock);
    	if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
    		wake_up_interruptible(sk->sk_sleep);
    	sk_wake_async(sk,1,POLL_IN);
    	read_unlock(&sk->sk_callback_lock);
    }
    
    static void sock_def_write_space(struct sock *sk)
    {
    	read_lock(&sk->sk_callback_lock);
    
    	/* Do not wake up a writer until he can make "significant"
    	 * progress.  --DaveM
    	 */
    	if((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
    		if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
    			wake_up_interruptible(sk->sk_sleep);
    
    		/* Should agree with poll, otherwise some programs break */
    		if (sock_writeable(sk))
    			sk_wake_async(sk, 2, POLL_OUT);
    	}
    
    	read_unlock(&sk->sk_callback_lock);
    }
    
    static void sock_def_destruct(struct sock *sk)
    {
    	kfree(sk->sk_protinfo);
    }
    
    void sk_send_sigurg(struct sock *sk)
    {
    	if (sk->sk_socket && sk->sk_socket->file)
    		if (send_sigurg(&sk->sk_socket->file->f_owner))
    			sk_wake_async(sk, 3, POLL_PRI);
    }
    
    void sk_reset_timer(struct sock *sk, struct timer_list* timer,
    		    unsigned long expires)
    {
    	if (!mod_timer(timer, expires))
    		sock_hold(sk);
    }
    
    EXPORT_SYMBOL(sk_reset_timer);
    
    void sk_stop_timer(struct sock *sk, struct timer_list* timer)
    {
    	if (timer_pending(timer) && del_timer(timer))
    		__sock_put(sk);
    }
    
    EXPORT_SYMBOL(sk_stop_timer);
    
    void sock_init_data(struct socket *sock, struct sock *sk)
    {
    	skb_queue_head_init(&sk->sk_receive_queue);
    	skb_queue_head_init(&sk->sk_write_queue);
    	skb_queue_head_init(&sk->sk_error_queue);
    #ifdef CONFIG_NET_DMA
    	skb_queue_head_init(&sk->sk_async_wait_queue);
    #endif
    
    	sk->sk_send_head	=	NULL;
    
    	init_timer(&sk->sk_timer);
    	
    	sk->sk_allocation	=	GFP_KERNEL;
    	sk->sk_rcvbuf		=	sysctl_rmem_default;
    	sk->sk_sndbuf		=	sysctl_wmem_default;
    	sk->sk_state		=	TCP_CLOSE;
    	sk->sk_socket		=	sock;
    
    	sock_set_flag(sk, SOCK_ZAPPED);
    
    	if(sock)
    	{
    		sk->sk_type	=	sock->type;
    		sk->sk_sleep	=	&sock->wait;
    		sock->sk	=	sk;
    	} else
    		sk->sk_sleep	=	NULL;
    
    	rwlock_init(&sk->sk_dst_lock);
    	rwlock_init(&sk->sk_callback_lock);
    	lockdep_set_class(&sk->sk_callback_lock,
    			   af_callback_keys + sk->sk_family);
    
    	sk->sk_state_change	=	sock_def_wakeup;
    	sk->sk_data_ready	=	sock_def_readable;
    	sk->sk_write_space	=	sock_def_write_space;
    	sk->sk_error_report	=	sock_def_error_report;
    	sk->sk_destruct		=	sock_def_destruct;
    
    	sk->sk_sndmsg_page	=	NULL;
    	sk->sk_sndmsg_off	=	0;
    
    	sk->sk_peercred.pid 	=	0;
    	sk->sk_peercred.uid	=	-1;
    	sk->sk_peercred.gid	=	-1;
    	sk->sk_write_pending	=	0;
    	sk->sk_rcvlowat		=	1;
    	sk->sk_rcvtimeo		=	MAX_SCHEDULE_TIMEOUT;
    	sk->sk_sndtimeo		=	MAX_SCHEDULE_TIMEOUT;
    
    	sk->sk_stamp.tv_sec     = -1L;
    	sk->sk_stamp.tv_usec    = -1L;
    
    	atomic_set(&sk->sk_refcnt, 1);
    }
    
    void fastcall lock_sock(struct sock *sk)
    {
    	might_sleep();
    	spin_lock_bh(&sk->sk_lock.slock);
    	if (sk->sk_lock.owner)
    		__lock_sock(sk);
    	sk->sk_lock.owner = (void *)1;
    	spin_unlock(&sk->sk_lock.slock);
    	/*
    	 * The sk_lock has mutex_lock() semantics here:
    	 */
    	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
    	local_bh_enable();
    }
    
    EXPORT_SYMBOL(lock_sock);
    
    void fastcall release_sock(struct sock *sk)
    {
    	/*
    	 * The sk_lock has mutex_unlock() semantics:
    	 */
    	mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
    
    	spin_lock_bh(&sk->sk_lock.slock);
    	if (sk->sk_backlog.tail)
    		__release_sock(sk);
    	sk->sk_lock.owner = NULL;
    	if (waitqueue_active(&sk->sk_lock.wq))
    		wake_up(&sk->sk_lock.wq);
    	spin_unlock_bh(&sk->sk_lock.slock);
    }
    EXPORT_SYMBOL(release_sock);
    
    int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
    { 
    	if (!sock_flag(sk, SOCK_TIMESTAMP))
    		sock_enable_timestamp(sk);
    	if (sk->sk_stamp.tv_sec == -1) 
    		return -ENOENT;
    	if (sk->sk_stamp.tv_sec == 0)
    		do_gettimeofday(&sk->sk_stamp);
    	return copy_to_user(userstamp, &sk->sk_stamp, sizeof(struct timeval)) ?
    		-EFAULT : 0; 
    } 
    EXPORT_SYMBOL(sock_get_timestamp);
    
    void sock_enable_timestamp(struct sock *sk)
    {	
    	if (!sock_flag(sk, SOCK_TIMESTAMP)) { 
    		sock_set_flag(sk, SOCK_TIMESTAMP);
    		net_enable_timestamp();
    	}
    }
    EXPORT_SYMBOL(sock_enable_timestamp); 
    
    /*
     *	Get a socket option on an socket.
     *
     *	FIX: POSIX 1003.1g is very ambiguous here. It states that
     *	asynchronous errors should be reported by getsockopt. We assume
     *	this means if you specify SO_ERROR (otherwise whats the point of it).
     */
    int sock_common_getsockopt(struct socket *sock, int level, int optname,
    			   char __user *optval, int __user *optlen)
    {
    	struct sock *sk = sock->sk;
    
    	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
    }
    
    EXPORT_SYMBOL(sock_common_getsockopt);
    
    #ifdef CONFIG_COMPAT
    int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
    				  char __user *optval, int __user *optlen)
    {
    	struct sock *sk = sock->sk;
    
    	if (sk->sk_prot->compat_setsockopt != NULL)
    		return sk->sk_prot->compat_getsockopt(sk, level, optname,
    						      optval, optlen);
    	return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
    }
    EXPORT_SYMBOL(compat_sock_common_getsockopt);
    #endif
    
    int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
    			struct msghdr *msg, size_t size, int flags)
    {
    	struct sock *sk = sock->sk;
    	int addr_len = 0;
    	int err;
    
    	err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
    				   flags & ~MSG_DONTWAIT, &addr_len);
    	if (err >= 0)
    		msg->msg_namelen = addr_len;
    	return err;
    }
    
    EXPORT_SYMBOL(sock_common_recvmsg);
    
    /*
     *	Set socket options on an inet socket.
     */
    int sock_common_setsockopt(struct socket *sock, int level, int optname,
    			   char __user *optval, int optlen)
    {
    	struct sock *sk = sock->sk;
    
    	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
    }
    
    EXPORT_SYMBOL(sock_common_setsockopt);
    
    #ifdef CONFIG_COMPAT
    int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
    				  char __user *optval, int optlen)
    {
    	struct sock *sk = sock->sk;
    
    	if (sk->sk_prot->compat_setsockopt != NULL)
    		return sk->sk_prot->compat_setsockopt(sk, level, optname,
    						      optval, optlen);
    	return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
    }
    EXPORT_SYMBOL(compat_sock_common_setsockopt);
    #endif
    
    void sk_common_release(struct sock *sk)
    {
    	if (sk->sk_prot->destroy)
    		sk->sk_prot->destroy(sk);
    
    	/*
    	 * Observation: when sock_common_release is called, processes have
    	 * no access to socket. But net still has.
    	 * Step one, detach it from networking:
    	 *
    	 * A. Remove from hash tables.
    	 */
    
    	sk->sk_prot->unhash(sk);
    
    	/*
    	 * In this point socket cannot receive new packets, but it is possible
    	 * that some packets are in flight because some CPU runs receiver and
    	 * did hash table lookup before we unhashed socket. They will achieve
    	 * receive queue and will be purged by socket destructor.
    	 *
    	 * Also we still have packets pending on receive queue and probably,
    	 * our own packets waiting in device queues. sock_destroy will drain
    	 * receive queue, but transmitted packets will delay socket destruction
    	 * until the last reference will be released.
    	 */
    
    	sock_orphan(sk);
    
    	xfrm_sk_free_policy(sk);
    
    	sk_refcnt_debug_release(sk);
    	sock_put(sk);
    }
    
    EXPORT_SYMBOL(sk_common_release);
    
    static DEFINE_RWLOCK(proto_list_lock);
    static LIST_HEAD(proto_list);
    
    int proto_register(struct proto *prot, int alloc_slab)
    {
    	char *request_sock_slab_name = NULL;
    	char *timewait_sock_slab_name;
    	int rc = -ENOBUFS;
    
    	if (alloc_slab) {
    		prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
    					       SLAB_HWCACHE_ALIGN, NULL, NULL);
    
    		if (prot->slab == NULL) {
    			printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
    			       prot->name);
    			goto out;
    		}
    
    		if (prot->rsk_prot != NULL) {
    			static const char mask[] = "request_sock_%s";
    
    			request_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
    			if (request_sock_slab_name == NULL)
    				goto out_free_sock_slab;
    
    			sprintf(request_sock_slab_name, mask, prot->name);
    			prot->rsk_prot->slab = kmem_cache_create(request_sock_slab_name,
    								 prot->rsk_prot->obj_size, 0,
    								 SLAB_HWCACHE_ALIGN, NULL, NULL);
    
    			if (prot->rsk_prot->slab == NULL) {
    				printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
    				       prot->name);
    				goto out_free_request_sock_slab_name;
    			}
    		}
    
    		if (prot->twsk_prot != NULL) {
    			static const char mask[] = "tw_sock_%s";
    
    			timewait_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
    
    			if (timewait_sock_slab_name == NULL)
    				goto out_free_request_sock_slab;
    
    			sprintf(timewait_sock_slab_name, mask, prot->name);
    			prot->twsk_prot->twsk_slab =
    				kmem_cache_create(timewait_sock_slab_name,
    						  prot->twsk_prot->twsk_obj_size,
    						  0, SLAB_HWCACHE_ALIGN,
    						  NULL, NULL);
    			if (prot->twsk_prot->twsk_slab == NULL)
    				goto out_free_timewait_sock_slab_name;
    		}
    	}
    
    	write_lock(&proto_list_lock);
    	list_add(&prot->node, &proto_list);
    	write_unlock(&proto_list_lock);
    	rc = 0;
    out:
    	return rc;
    out_free_timewait_sock_slab_name:
    	kfree(timewait_sock_slab_name);
    out_free_request_sock_slab:
    	if (prot->rsk_prot && prot->rsk_prot->slab) {
    		kmem_cache_destroy(prot->rsk_prot->slab);
    		prot->rsk_prot->slab = NULL;
    	}
    out_free_request_sock_slab_name:
    	kfree(request_sock_slab_name);
    out_free_sock_slab:
    	kmem_cache_destroy(prot->slab);
    	prot->slab = NULL;
    	goto out;
    }
    
    EXPORT_SYMBOL(proto_register);
    
    void proto_unregister(struct proto *prot)
    {
    	write_lock(&proto_list_lock);
    	list_del(&prot->node);
    	write_unlock(&proto_list_lock);
    
    	if (prot->slab != NULL) {
    		kmem_cache_destroy(prot->slab);
    		prot->slab = NULL;
    	}
    
    	if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
    		const char *name = kmem_cache_name(prot->rsk_prot->slab);
    
    		kmem_cache_destroy(prot->rsk_prot->slab);
    		kfree(name);
    		prot->rsk_prot->slab = NULL;
    	}
    
    	if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
    		const char *name = kmem_cache_name(prot->twsk_prot->twsk_slab);
    
    		kmem_cache_destroy(prot->twsk_prot->twsk_slab);
    		kfree(name);
    		prot->twsk_prot->twsk_slab = NULL;
    	}
    }
    
    EXPORT_SYMBOL(proto_unregister);
    
    #ifdef CONFIG_PROC_FS
    static inline struct proto *__proto_head(void)
    {
    	return list_entry(proto_list.next, struct proto, node);
    }
    
    static inline struct proto *proto_head(void)
    {
    	return list_empty(&proto_list) ? NULL : __proto_head();
    }
    
    static inline struct proto *proto_next(struct proto *proto)
    {
    	return proto->node.next == &proto_list ? NULL :
    		list_entry(proto->node.next, struct proto, node);
    }
    
    static inline struct proto *proto_get_idx(loff_t pos)
    {
    	struct proto *proto;
    	loff_t i = 0;
    
    	list_for_each_entry(proto, &proto_list, node)
    		if (i++ == pos)
    			goto out;
    
    	proto = NULL;
    out:
    	return proto;
    }
    
    static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
    {
    	read_lock(&proto_list_lock);
    	return *pos ? proto_get_idx(*pos - 1) : SEQ_START_TOKEN;
    }
    
    static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
    {
    	++*pos;
    	return v == SEQ_START_TOKEN ? proto_head() : proto_next(v);
    }
    
    static void proto_seq_stop(struct seq_file *seq, void *v)
    {
    	read_unlock(&proto_list_lock);
    }
    
    static char proto_method_implemented(const void *method)
    {
    	return method == NULL ? 'n' : 'y';
    }
    
    static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
    {
    	seq_printf(seq, "%-9s %4u %6d  %6d   %-3s %6u   %-3s  %-10s "
    			"%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
    		   proto->name,
    		   proto->obj_size,
    		   proto->sockets_allocated != NULL ? atomic_read(proto->sockets_allocated) : -1,
    		   proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
    		   proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
    		   proto->max_header,
    		   proto->slab == NULL ? "no" : "yes",
    		   module_name(proto->owner),
    		   proto_method_implemented(proto->close),
    		   proto_method_implemented(proto->connect),
    		   proto_method_implemented(proto->disconnect),
    		   proto_method_implemented(proto->accept),
    		   proto_method_implemented(proto->ioctl),
    		   proto_method_implemented(proto->init),
    		   proto_method_implemented(proto->destroy),
    		   proto_method_implemented(proto->shutdown),
    		   proto_method_implemented(proto->setsockopt),
    		   proto_method_implemented(proto->getsockopt),
    		   proto_method_implemented(proto->sendmsg),
    		   proto_method_implemented(proto->recvmsg),
    		   proto_method_implemented(proto->sendpage),
    		   proto_method_implemented(proto->bind),
    		   proto_method_implemented(proto->backlog_rcv),
    		   proto_method_implemented(proto->hash),
    		   proto_method_implemented(proto->unhash),
    		   proto_method_implemented(proto->get_port),
    		   proto_method_implemented(proto->enter_memory_pressure));
    }
    
    static int proto_seq_show(struct seq_file *seq, void *v)
    {
    	if (v == SEQ_START_TOKEN)
    		seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
    			   "protocol",
    			   "size",
    			   "sockets",
    			   "memory",
    			   "press",
    			   "maxhdr",
    			   "slab",
    			   "module",
    			   "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
    	else
    		proto_seq_printf(seq, v);
    	return 0;
    }
    
    static struct seq_operations proto_seq_ops = {
    	.start  = proto_seq_start,
    	.next   = proto_seq_next,
    	.stop   = proto_seq_stop,
    	.show   = proto_seq_show,
    };
    
    static int proto_seq_open(struct inode *inode, struct file *file)
    {
    	return seq_open(file, &proto_seq_ops);
    }
    
    static struct file_operations proto_seq_fops = {
    	.owner		= THIS_MODULE,
    	.open		= proto_seq_open,
    	.read		= seq_read,
    	.llseek		= seq_lseek,
    	.release	= seq_release,
    };
    
    static int __init proto_init(void)
    {
    	/* register /proc/net/protocols */
    	return proc_net_fops_create("protocols", S_IRUGO, &proto_seq_fops) == NULL ? -ENOBUFS : 0;
    }
    
    subsys_initcall(proto_init);
    
    #endif /* PROC_FS */
    
    EXPORT_SYMBOL(sk_alloc);
    EXPORT_SYMBOL(sk_free);
    EXPORT_SYMBOL(sk_send_sigurg);
    EXPORT_SYMBOL(sock_alloc_send_skb);
    EXPORT_SYMBOL(sock_init_data);
    EXPORT_SYMBOL(sock_kfree_s);
    EXPORT_SYMBOL(sock_kmalloc);
    EXPORT_SYMBOL(sock_no_accept);
    EXPORT_SYMBOL(sock_no_bind);
    EXPORT_SYMBOL(sock_no_connect);
    EXPORT_SYMBOL(sock_no_getname);
    EXPORT_SYMBOL(sock_no_getsockopt);
    EXPORT_SYMBOL(sock_no_ioctl);
    EXPORT_SYMBOL(sock_no_listen);
    EXPORT_SYMBOL(sock_no_mmap);
    EXPORT_SYMBOL(sock_no_poll);
    EXPORT_SYMBOL(sock_no_recvmsg);
    EXPORT_SYMBOL(sock_no_sendmsg);
    EXPORT_SYMBOL(sock_no_sendpage);
    EXPORT_SYMBOL(sock_no_setsockopt);
    EXPORT_SYMBOL(sock_no_shutdown);
    EXPORT_SYMBOL(sock_no_socketpair);
    EXPORT_SYMBOL(sock_rfree);
    EXPORT_SYMBOL(sock_setsockopt);
    EXPORT_SYMBOL(sock_wfree);
    EXPORT_SYMBOL(sock_wmalloc);
    EXPORT_SYMBOL(sock_i_uid);
    EXPORT_SYMBOL(sock_i_ino);
    EXPORT_SYMBOL(sysctl_optmem_max);
    #ifdef CONFIG_SYSCTL
    EXPORT_SYMBOL(sysctl_rmem_max);
    EXPORT_SYMBOL(sysctl_wmem_max);
    #endif