Skip to content
Snippets Groups Projects
Select Git revision
  • abdba2dda0c477ca708a939b02f9b2e74666ed2d
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

mmap.c

Blame
  • mmap.c 99.46 KiB
    // SPDX-License-Identifier: GPL-2.0-only
    /*
     * mm/mmap.c
     *
     * Written by obz.
     *
     * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
     */
    
    #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
    
    #include <linux/kernel.h>
    #include <linux/slab.h>
    #include <linux/backing-dev.h>
    #include <linux/mm.h>
    #include <linux/mm_inline.h>
    #include <linux/vmacache.h>
    #include <linux/shm.h>
    #include <linux/mman.h>
    #include <linux/pagemap.h>
    #include <linux/swap.h>
    #include <linux/syscalls.h>
    #include <linux/capability.h>
    #include <linux/init.h>
    #include <linux/file.h>
    #include <linux/fs.h>
    #include <linux/personality.h>
    #include <linux/security.h>
    #include <linux/hugetlb.h>
    #include <linux/shmem_fs.h>
    #include <linux/profile.h>
    #include <linux/export.h>
    #include <linux/mount.h>
    #include <linux/mempolicy.h>
    #include <linux/rmap.h>
    #include <linux/mmu_notifier.h>
    #include <linux/mmdebug.h>
    #include <linux/perf_event.h>
    #include <linux/audit.h>
    #include <linux/khugepaged.h>
    #include <linux/uprobes.h>
    #include <linux/notifier.h>
    #include <linux/memory.h>
    #include <linux/printk.h>
    #include <linux/userfaultfd_k.h>
    #include <linux/moduleparam.h>
    #include <linux/pkeys.h>
    #include <linux/oom.h>
    #include <linux/sched/mm.h>
    
    #include <linux/uaccess.h>
    #include <asm/cacheflush.h>
    #include <asm/tlb.h>
    #include <asm/mmu_context.h>
    
    #define CREATE_TRACE_POINTS
    #include <trace/events/mmap.h>
    
    #include "internal.h"
    
    #ifndef arch_mmap_check
    #define arch_mmap_check(addr, len, flags)	(0)
    #endif
    
    #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
    const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
    const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
    int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
    #endif
    #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
    const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
    const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
    int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
    #endif
    
    static bool ignore_rlimit_data;
    core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
    
    static void unmap_region(struct mm_struct *mm,
    		struct vm_area_struct *vma, struct vm_area_struct *prev,
    		unsigned long start, unsigned long end);
    
    static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
    {
    	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
    }
    
    /* Update vma->vm_page_prot to reflect vma->vm_flags. */
    void vma_set_page_prot(struct vm_area_struct *vma)
    {
    	unsigned long vm_flags = vma->vm_flags;
    	pgprot_t vm_page_prot;
    
    	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
    	if (vma_wants_writenotify(vma, vm_page_prot)) {
    		vm_flags &= ~VM_SHARED;
    		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
    	}
    	/* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
    	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
    }
    
    /*
     * Requires inode->i_mapping->i_mmap_rwsem
     */
    static void __remove_shared_vm_struct(struct vm_area_struct *vma,
    		struct file *file, struct address_space *mapping)
    {
    	if (vma->vm_flags & VM_SHARED)
    		mapping_unmap_writable(mapping);
    
    	flush_dcache_mmap_lock(mapping);
    	vma_interval_tree_remove(vma, &mapping->i_mmap);
    	flush_dcache_mmap_unlock(mapping);
    }
    
    /*
     * Unlink a file-based vm structure from its interval tree, to hide
     * vma from rmap and vmtruncate before freeing its page tables.
     */
    void unlink_file_vma(struct vm_area_struct *vma)
    {
    	struct file *file = vma->vm_file;
    
    	if (file) {
    		struct address_space *mapping = file->f_mapping;
    		i_mmap_lock_write(mapping);
    		__remove_shared_vm_struct(vma, file, mapping);
    		i_mmap_unlock_write(mapping);
    	}
    }
    
    /*
     * Close a vm structure and free it, returning the next.
     */
    static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
    {
    	struct vm_area_struct *next = vma->vm_next;
    
    	might_sleep();
    	if (vma->vm_ops && vma->vm_ops->close)
    		vma->vm_ops->close(vma);
    	if (vma->vm_file)
    		fput(vma->vm_file);
    	mpol_put(vma_policy(vma));
    	vm_area_free(vma);
    	return next;
    }
    
    /*
     * check_brk_limits() - Use platform specific check of range & verify mlock
     * limits.
     * @addr: The address to check
     * @len: The size of increase.
     *
     * Return: 0 on success.
     */
    static int check_brk_limits(unsigned long addr, unsigned long len)
    {
    	unsigned long mapped_addr;
    
    	mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
    	if (IS_ERR_VALUE(mapped_addr))
    		return mapped_addr;
    
    	return mlock_future_check(current->mm, current->mm->def_flags, len);
    }
    static int do_brk_munmap(struct ma_state *mas, struct vm_area_struct *vma,
    			 unsigned long newbrk, unsigned long oldbrk,
    			 struct list_head *uf);
    static int do_brk_flags(struct ma_state *mas, struct vm_area_struct *brkvma,
    			unsigned long addr, unsigned long request,
    			unsigned long flags);
    SYSCALL_DEFINE1(brk, unsigned long, brk)
    {
    	unsigned long newbrk, oldbrk, origbrk;
    	struct mm_struct *mm = current->mm;
    	struct vm_area_struct *brkvma, *next = NULL;
    	unsigned long min_brk;
    	bool populate;
    	bool downgraded = false;
    	LIST_HEAD(uf);
    	MA_STATE(mas, &mm->mm_mt, 0, 0);
    
    	if (mmap_write_lock_killable(mm))
    		return -EINTR;
    
    	origbrk = mm->brk;
    
    #ifdef CONFIG_COMPAT_BRK
    	/*
    	 * CONFIG_COMPAT_BRK can still be overridden by setting
    	 * randomize_va_space to 2, which will still cause mm->start_brk
    	 * to be arbitrarily shifted
    	 */
    	if (current->brk_randomized)
    		min_brk = mm->start_brk;
    	else
    		min_brk = mm->end_data;
    #else
    	min_brk = mm->start_brk;
    #endif
    	if (brk < min_brk)
    		goto out;
    
    	/*
    	 * Check against rlimit here. If this check is done later after the test
    	 * of oldbrk with newbrk then it can escape the test and let the data
    	 * segment grow beyond its set limit the in case where the limit is
    	 * not page aligned -Ram Gupta
    	 */
    	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
    			      mm->end_data, mm->start_data))
    		goto out;
    
    	newbrk = PAGE_ALIGN(brk);
    	oldbrk = PAGE_ALIGN(mm->brk);
    	if (oldbrk == newbrk) {
    		mm->brk = brk;
    		goto success;
    	}
    
    	/*
    	 * Always allow shrinking brk.
    	 * do_brk_munmap() may downgrade mmap_lock to read.
    	 */
    	if (brk <= mm->brk) {
    		int ret;
    
    		/* Search one past newbrk */
    		mas_set(&mas, newbrk);
    		brkvma = mas_find(&mas, oldbrk);
    		BUG_ON(brkvma == NULL);
    		if (brkvma->vm_start >= oldbrk)
    			goto out; /* mapping intersects with an existing non-brk vma. */
    		/*
    		 * mm->brk must be protected by write mmap_lock.
    		 * do_brk_munmap() may downgrade the lock,  so update it
    		 * before calling do_brk_munmap().
    		 */
    		mm->brk = brk;
    		mas.last = oldbrk - 1;
    		ret = do_brk_munmap(&mas, brkvma, newbrk, oldbrk, &uf);
    		if (ret == 1)  {
    			downgraded = true;
    			goto success;
    		} else if (!ret)
    			goto success;
    
    		mm->brk = origbrk;
    		goto out;
    	}
    
    	if (check_brk_limits(oldbrk, newbrk - oldbrk))
    		goto out;
    
    	/*
    	 * Only check if the next VMA is within the stack_guard_gap of the
    	 * expansion area
    	 */
    	mas_set(&mas, oldbrk);
    	next = mas_find(&mas, newbrk - 1 + PAGE_SIZE + stack_guard_gap);
    	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
    		goto out;
    
    	brkvma = mas_prev(&mas, mm->start_brk);
    	/* Ok, looks good - let it rip. */
    	if (do_brk_flags(&mas, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
    		goto out;
    
    	mm->brk = brk;
    
    success:
    	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
    	if (downgraded)
    		mmap_read_unlock(mm);
    	else
    		mmap_write_unlock(mm);
    	userfaultfd_unmap_complete(mm, &uf);
    	if (populate)
    		mm_populate(oldbrk, newbrk - oldbrk);
    	return brk;
    
    out:
    	mmap_write_unlock(mm);
    	return origbrk;
    }
    
    #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
    extern void mt_validate(struct maple_tree *mt);
    extern void mt_dump(const struct maple_tree *mt);
    
    /* Validate the maple tree */
    static void validate_mm_mt(struct mm_struct *mm)
    {
    	struct maple_tree *mt = &mm->mm_mt;
    	struct vm_area_struct *vma_mt, *vma = mm->mmap;
    
    	MA_STATE(mas, mt, 0, 0);
    
    	mt_validate(&mm->mm_mt);
    	mas_for_each(&mas, vma_mt, ULONG_MAX) {
    		if (xa_is_zero(vma_mt))
    			continue;
    
    		if (!vma)
    			break;
    
    		if ((vma != vma_mt) ||
    		    (vma->vm_start != vma_mt->vm_start) ||
    		    (vma->vm_end != vma_mt->vm_end) ||
    		    (vma->vm_start != mas.index) ||
    		    (vma->vm_end - 1 != mas.last)) {
    			pr_emerg("issue in %s\n", current->comm);
    			dump_stack();
    			dump_vma(vma_mt);
    			pr_emerg("and vm_next\n");
    			dump_vma(vma->vm_next);
    			pr_emerg("mt piv: %p %lu - %lu\n", vma_mt,
    				 mas.index, mas.last);
    			pr_emerg("mt vma: %p %lu - %lu\n", vma_mt,
    				 vma_mt->vm_start, vma_mt->vm_end);
    			if (vma->vm_prev) {
    				pr_emerg("ll prev: %p %lu - %lu\n",
    					 vma->vm_prev, vma->vm_prev->vm_start,
    					 vma->vm_prev->vm_end);
    			}
    			pr_emerg("ll vma: %p %lu - %lu\n", vma,
    				 vma->vm_start, vma->vm_end);
    			if (vma->vm_next) {
    				pr_emerg("ll next: %p %lu - %lu\n",
    					 vma->vm_next, vma->vm_next->vm_start,
    					 vma->vm_next->vm_end);
    			}
    
    			mt_dump(mas.tree);
    			if (vma_mt->vm_end != mas.last + 1) {
    				pr_err("vma: %p vma_mt %lu-%lu\tmt %lu-%lu\n",
    						mm, vma_mt->vm_start, vma_mt->vm_end,
    						mas.index, mas.last);
    				mt_dump(mas.tree);
    			}
    			VM_BUG_ON_MM(vma_mt->vm_end != mas.last + 1, mm);
    			if (vma_mt->vm_start != mas.index) {
    				pr_err("vma: %p vma_mt %p %lu - %lu doesn't match\n",
    						mm, vma_mt, vma_mt->vm_start, vma_mt->vm_end);
    				mt_dump(mas.tree);
    			}
    			VM_BUG_ON_MM(vma_mt->vm_start != mas.index, mm);
    		}
    		VM_BUG_ON(vma != vma_mt);
    		vma = vma->vm_next;
    
    	}
    	VM_BUG_ON(vma);
    }
    
    static void validate_mm(struct mm_struct *mm)
    {
    	int bug = 0;
    	int i = 0;
    	unsigned long highest_address = 0;
    	struct vm_area_struct *vma = mm->mmap;
    
    	validate_mm_mt(mm);
    
    	while (vma) {
    #ifdef CONFIG_DEBUG_VM_RB
    		struct anon_vma *anon_vma = vma->anon_vma;
    		struct anon_vma_chain *avc;
    
    		if (anon_vma) {
    			anon_vma_lock_read(anon_vma);
    			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
    				anon_vma_interval_tree_verify(avc);
    			anon_vma_unlock_read(anon_vma);
    		}
    #endif
    
    		highest_address = vm_end_gap(vma);
    		vma = vma->vm_next;
    		i++;
    	}
    	if (i != mm->map_count) {
    		pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
    		bug = 1;
    	}
    	if (highest_address != mm->highest_vm_end) {
    		pr_emerg("mm->highest_vm_end %lx, found %lx\n",
    			  mm->highest_vm_end, highest_address);
    		bug = 1;
    	}
    	VM_BUG_ON_MM(bug, mm);
    }
    
    #else /* !CONFIG_DEBUG_VM_MAPLE_TREE */
    #define validate_mm_mt(root) do { } while (0)
    #define validate_mm(mm) do { } while (0)
    #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
    
    /*
     * vma has some anon_vma assigned, and is already inserted on that
     * anon_vma's interval trees.
     *
     * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
     * vma must be removed from the anon_vma's interval trees using
     * anon_vma_interval_tree_pre_update_vma().
     *
     * After the update, the vma will be reinserted using
     * anon_vma_interval_tree_post_update_vma().
     *
     * The entire update must be protected by exclusive mmap_lock and by
     * the root anon_vma's mutex.
     */
    static inline void
    anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
    {
    	struct anon_vma_chain *avc;
    
    	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
    		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
    }
    
    static inline void
    anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
    {
    	struct anon_vma_chain *avc;
    
    	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
    		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
    }
    
    /*
     * range_has_overlap() - Check the @start - @end range for overlapping VMAs and
     * sets up a pointer to the previous VMA
     * @mm: the mm struct
     * @start: the start address of the range
     * @end: the end address of the range
     * @pprev: the pointer to the pointer of the previous VMA
     *
     * Returns: True if there is an overlapping VMA, false otherwise
     */
    static inline
    bool range_has_overlap(struct mm_struct *mm, unsigned long start,
    		       unsigned long end, struct vm_area_struct **pprev)
    {
    	struct vm_area_struct *existing;
    
    	MA_STATE(mas, &mm->mm_mt, start, start);
    	existing = mas_find(&mas, end - 1);
    	*pprev = mas_prev(&mas, 0);
    	return existing ? true : false;
    }
    
    /*
     * __vma_next() - Get the next VMA.
     * @mm: The mm_struct.
     * @vma: The current vma.
     *
     * If @vma is NULL, return the first vma in the mm.
     *
     * Returns: The next VMA after @vma.
     */
    static inline struct vm_area_struct *__vma_next(struct mm_struct *mm,
    					 struct vm_area_struct *vma)
    {
    	if (!vma)
    		return mm->mmap;
    
    	return vma->vm_next;
    }
    
    /*
     * munmap_vma_range() - munmap VMAs that overlap a range.
     * @mm: The mm struct
     * @start: The start of the range.
     * @len: The length of the range.
     * @pprev: pointer to the pointer that will be set to previous vm_area_struct
     *
     * Find all the vm_area_struct that overlap from @start to
     * @end and munmap them.  Set @pprev to the previous vm_area_struct.
     *
     * Returns: -ENOMEM on munmap failure or 0 on success.
     */
    static inline int
    munmap_vma_range(struct mm_struct *mm, unsigned long start, unsigned long len,
    		 struct vm_area_struct **pprev, struct list_head *uf)
    {
    	while (range_has_overlap(mm, start, start + len, pprev))
    		if (do_munmap(mm, start, len, uf))
    			return -ENOMEM;
    	return 0;
    }
    
    static unsigned long count_vma_pages_range(struct mm_struct *mm,
    		unsigned long addr, unsigned long end)
    {
    	VMA_ITERATOR(vmi, mm, addr);
    	struct vm_area_struct *vma;
    	unsigned long nr_pages = 0;
    
    	for_each_vma_range(vmi, vma, end) {
    		unsigned long vm_start = max(addr, vma->vm_start);
    		unsigned long vm_end = min(end, vma->vm_end);
    
    		nr_pages += PHYS_PFN(vm_end - vm_start);
    	}
    
    	return nr_pages;
    }
    
    static void __vma_link_file(struct vm_area_struct *vma)
    {
    	struct file *file;
    
    	file = vma->vm_file;
    	if (file) {
    		struct address_space *mapping = file->f_mapping;
    
    		if (vma->vm_flags & VM_SHARED)
    			mapping_allow_writable(mapping);
    
    		flush_dcache_mmap_lock(mapping);
    		vma_interval_tree_insert(vma, &mapping->i_mmap);
    		flush_dcache_mmap_unlock(mapping);
    	}
    }
    
    /*
     * vma_mas_store() - Store a VMA in the maple tree.
     * @vma: The vm_area_struct
     * @mas: The maple state
     *
     * Efficient way to store a VMA in the maple tree when the @mas has already
     * walked to the correct location.
     *
     * Note: the end address is inclusive in the maple tree.
     */
    void vma_mas_store(struct vm_area_struct *vma, struct ma_state *mas)
    {
    	trace_vma_store(mas->tree, vma);
    	mas_set_range(mas, vma->vm_start, vma->vm_end - 1);
    	mas_store_prealloc(mas, vma);
    }
    
    /*
     * vma_mas_remove() - Remove a VMA from the maple tree.
     * @vma: The vm_area_struct
     * @mas: The maple state
     *
     * Efficient way to remove a VMA from the maple tree when the @mas has already
     * been established and points to the correct location.
     * Note: the end address is inclusive in the maple tree.
     */
    void vma_mas_remove(struct vm_area_struct *vma, struct ma_state *mas)
    {
    	trace_vma_mas_szero(mas->tree, vma->vm_start, vma->vm_end - 1);
    	mas->index = vma->vm_start;
    	mas->last = vma->vm_end - 1;
    	mas_store_prealloc(mas, NULL);
    }
    
    /*
     * vma_mas_szero() - Set a given range to zero.  Used when modifying a
     * vm_area_struct start or end.
     *
     * @mm: The struct_mm
     * @start: The start address to zero
     * @end: The end address to zero.
     */
    static inline void vma_mas_szero(struct ma_state *mas, unsigned long start,
    				unsigned long end)
    {
    	trace_vma_mas_szero(mas->tree, start, end - 1);
    	mas_set_range(mas, start, end - 1);
    	mas_store_prealloc(mas, NULL);
    }
    
    static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
    			struct vm_area_struct *prev)
    {
    	MA_STATE(mas, &mm->mm_mt, 0, 0);
    	struct address_space *mapping = NULL;
    
    	if (mas_preallocate(&mas, vma, GFP_KERNEL))
    		return -ENOMEM;
    
    	if (vma->vm_file) {
    		mapping = vma->vm_file->f_mapping;
    		i_mmap_lock_write(mapping);
    	}
    
    	vma_mas_store(vma, &mas);
    	__vma_link_list(mm, vma, prev);
    	__vma_link_file(vma);
    
    	if (mapping)
    		i_mmap_unlock_write(mapping);
    
    	mm->map_count++;
    	validate_mm(mm);
    	return 0;
    }
    
    /*
     * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
     * mm's list and the mm tree.  It has already been inserted into the interval tree.
     */
    static void __insert_vm_struct(struct mm_struct *mm, struct ma_state *mas,
    		struct vm_area_struct *vma, unsigned long location)
    {
    	struct vm_area_struct *prev;
    
    	mas_set(mas, location);
    	prev = mas_prev(mas, 0);
    	vma_mas_store(vma, mas);
    	__vma_link_list(mm, vma, prev);
    	mm->map_count++;
    }
    
    /*
     * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
     * is already present in an i_mmap tree without adjusting the tree.
     * The following helper function should be used when such adjustments
     * are necessary.  The "insert" vma (if any) is to be inserted
     * before we drop the necessary locks.
     */
    int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
    	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
    	struct vm_area_struct *expand)
    {
    	struct mm_struct *mm = vma->vm_mm;
    	struct vm_area_struct *next_next, *next = find_vma(mm, vma->vm_end);
    	struct vm_area_struct *orig_vma = vma;
    	struct address_space *mapping = NULL;
    	struct rb_root_cached *root = NULL;
    	struct anon_vma *anon_vma = NULL;
    	struct file *file = vma->vm_file;
    	bool vma_changed = false;
    	long adjust_next = 0;
    	int remove_next = 0;
    	MA_STATE(mas, &mm->mm_mt, 0, 0);
    	struct vm_area_struct *exporter = NULL, *importer = NULL;
    	unsigned long ll_prev = vma->vm_start; /* linked list prev. */
    
    	if (next && !insert) {
    		if (end >= next->vm_end) {
    			/*
    			 * vma expands, overlapping all the next, and
    			 * perhaps the one after too (mprotect case 6).
    			 * The only other cases that gets here are
    			 * case 1, case 7 and case 8.
    			 */
    			if (next == expand) {
    				/*
    				 * The only case where we don't expand "vma"
    				 * and we expand "next" instead is case 8.
    				 */
    				VM_WARN_ON(end != next->vm_end);
    				/*
    				 * remove_next == 3 means we're
    				 * removing "vma" and that to do so we
    				 * swapped "vma" and "next".
    				 */
    				remove_next = 3;
    				VM_WARN_ON(file != next->vm_file);
    				swap(vma, next);
    			} else {
    				VM_WARN_ON(expand != vma);
    				/*
    				 * case 1, 6, 7, remove_next == 2 is case 6,
    				 * remove_next == 1 is case 1 or 7.
    				 */
    				remove_next = 1 + (end > next->vm_end);
    				if (remove_next == 2)
    					next_next = find_vma(mm, next->vm_end);
    
    				VM_WARN_ON(remove_next == 2 &&
    					   end != next->vm_next->vm_end);
    			}
    
    			exporter = next;
    			importer = vma;
    
    			/*
    			 * If next doesn't have anon_vma, import from vma after
    			 * next, if the vma overlaps with it.
    			 */
    			if (remove_next == 2 && !next->anon_vma)
    				exporter = next->vm_next;
    
    		} else if (end > next->vm_start) {
    			/*
    			 * vma expands, overlapping part of the next:
    			 * mprotect case 5 shifting the boundary up.
    			 */
    			adjust_next = (end - next->vm_start);
    			exporter = next;
    			importer = vma;
    			VM_WARN_ON(expand != importer);
    		} else if (end < vma->vm_end) {
    			/*
    			 * vma shrinks, and !insert tells it's not
    			 * split_vma inserting another: so it must be
    			 * mprotect case 4 shifting the boundary down.
    			 */
    			adjust_next = -(vma->vm_end - end);
    			exporter = vma;
    			importer = next;
    			VM_WARN_ON(expand != importer);
    		}
    
    		/*
    		 * Easily overlooked: when mprotect shifts the boundary,
    		 * make sure the expanding vma has anon_vma set if the
    		 * shrinking vma had, to cover any anon pages imported.
    		 */
    		if (exporter && exporter->anon_vma && !importer->anon_vma) {
    			int error;
    
    			importer->anon_vma = exporter->anon_vma;
    			error = anon_vma_clone(importer, exporter);
    			if (error)
    				return error;
    		}
    	}
    
    	if (mas_preallocate(&mas, vma, GFP_KERNEL))
    		return -ENOMEM;
    
    	vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
    	if (file) {
    		mapping = file->f_mapping;
    		root = &mapping->i_mmap;
    		uprobe_munmap(vma, vma->vm_start, vma->vm_end);
    
    		if (adjust_next)
    			uprobe_munmap(next, next->vm_start, next->vm_end);
    
    		i_mmap_lock_write(mapping);
    		if (insert) {
    			/*
    			 * Put into interval tree now, so instantiated pages
    			 * are visible to arm/parisc __flush_dcache_page
    			 * throughout; but we cannot insert into address
    			 * space until vma start or end is updated.
    			 */
    			__vma_link_file(insert);
    		}
    	}
    
    	anon_vma = vma->anon_vma;
    	if (!anon_vma && adjust_next)
    		anon_vma = next->anon_vma;
    	if (anon_vma) {
    		VM_WARN_ON(adjust_next && next->anon_vma &&
    			   anon_vma != next->anon_vma);
    		anon_vma_lock_write(anon_vma);
    		anon_vma_interval_tree_pre_update_vma(vma);
    		if (adjust_next)
    			anon_vma_interval_tree_pre_update_vma(next);
    	}
    
    	if (file) {
    		flush_dcache_mmap_lock(mapping);
    		vma_interval_tree_remove(vma, root);
    		if (adjust_next)
    			vma_interval_tree_remove(next, root);
    	}
    
    	if (start != vma->vm_start) {
    		if ((vma->vm_start < start) &&
    		    (!insert || (insert->vm_end != start))) {
    			vma_mas_szero(&mas, vma->vm_start, start);
    			VM_WARN_ON(insert && insert->vm_start > vma->vm_start);
    		} else {
    			vma_changed = true;
    		}
    		vma->vm_start = start;
    	}
    	if (end != vma->vm_end) {
    		if (vma->vm_end > end) {
    			if (!insert || (insert->vm_start != end)) {
    				vma_mas_szero(&mas, end, vma->vm_end);
    				VM_WARN_ON(insert &&
    					   insert->vm_end < vma->vm_end);
    			} else if (insert->vm_start == end) {
    				ll_prev = vma->vm_end;
    			}
    		} else {
    			vma_changed = true;
    		}
    		vma->vm_end = end;
    		if (!next)
    			mm->highest_vm_end = vm_end_gap(vma);
    	}
    
    	if (vma_changed)
    		vma_mas_store(vma, &mas);
    
    	vma->vm_pgoff = pgoff;
    	if (adjust_next) {
    		next->vm_start += adjust_next;
    		next->vm_pgoff += adjust_next >> PAGE_SHIFT;
    		vma_mas_store(next, &mas);
    	}
    
    	if (file) {
    		if (adjust_next)
    			vma_interval_tree_insert(next, root);
    		vma_interval_tree_insert(vma, root);
    		flush_dcache_mmap_unlock(mapping);
    	}
    
    	if (remove_next) {
    		/*
    		 * vma_merge has merged next into vma, and needs
    		 * us to remove next before dropping the locks.
    		 * Since we have expanded over this vma, the maple tree will
    		 * have overwritten by storing the value
    		 */
    		__vma_unlink_list(mm, next);
    		if (remove_next == 2)
    			__vma_unlink_list(mm, next_next);
    		/* Kill the cache */
    		vmacache_invalidate(mm);
    
    		if (file) {
    			__remove_shared_vm_struct(next, file, mapping);
    			if (remove_next == 2)
    				__remove_shared_vm_struct(next_next, file, mapping);
    		}
    	} else if (insert) {
    		/*
    		 * split_vma has split insert from vma, and needs
    		 * us to insert it before dropping the locks
    		 * (it may either follow vma or precede it).
    		 */
    		__insert_vm_struct(mm, &mas, insert, ll_prev);
    	}
    
    	if (anon_vma) {
    		anon_vma_interval_tree_post_update_vma(vma);
    		if (adjust_next)
    			anon_vma_interval_tree_post_update_vma(next);
    		anon_vma_unlock_write(anon_vma);
    	}
    
    	if (file) {
    		i_mmap_unlock_write(mapping);
    		uprobe_mmap(vma);
    
    		if (adjust_next)
    			uprobe_mmap(next);
    	}
    
    	if (remove_next) {
    again:
    		if (file) {
    			uprobe_munmap(next, next->vm_start, next->vm_end);
    			fput(file);
    		}
    		if (next->anon_vma)
    			anon_vma_merge(vma, next);
    		mm->map_count--;
    		mpol_put(vma_policy(next));
    		if (remove_next != 2)
    			BUG_ON(vma->vm_end < next->vm_end);
    		vm_area_free(next);
    
    		/*
    		 * In mprotect's case 6 (see comments on vma_merge),
    		 * we must remove another next too. It would clutter
    		 * up the code too much to do both in one go.
    		 */
    		if (remove_next != 3) {
    			/*
    			 * If "next" was removed and vma->vm_end was
    			 * expanded (up) over it, in turn
    			 * "next->vm_prev->vm_end" changed and the
    			 * "vma->vm_next" gap must be updated.
    			 */
    			next = next_next;
    		} else {
    			/*
    			 * For the scope of the comment "next" and
    			 * "vma" considered pre-swap(): if "vma" was
    			 * removed, next->vm_start was expanded (down)
    			 * over it and the "next" gap must be updated.
    			 * Because of the swap() the post-swap() "vma"
    			 * actually points to pre-swap() "next"
    			 * (post-swap() "next" as opposed is now a
    			 * dangling pointer).
    			 */
    			next = vma;
    		}
    		if (remove_next == 2) {
    			remove_next = 1;
    			goto again;
    		} else if (!next) {
    			/*
    			 * If remove_next == 2 we obviously can't
    			 * reach this path.
    			 *
    			 * If remove_next == 3 we can't reach this
    			 * path because pre-swap() next is always not
    			 * NULL. pre-swap() "next" is not being
    			 * removed and its next->vm_end is not altered
    			 * (and furthermore "end" already matches
    			 * next->vm_end in remove_next == 3).
    			 *
    			 * We reach this only in the remove_next == 1
    			 * case if the "next" vma that was removed was
    			 * the highest vma of the mm. However in such
    			 * case next->vm_end == "end" and the extended
    			 * "vma" has vma->vm_end == next->vm_end so
    			 * mm->highest_vm_end doesn't need any update
    			 * in remove_next == 1 case.
    			 */
    			VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
    		}
    	}
    	if (insert && file)
    		uprobe_mmap(insert);
    
    	mas_destroy(&mas);
    	validate_mm(mm);
    	return 0;
    }
    
    /*
     * If the vma has a ->close operation then the driver probably needs to release
     * per-vma resources, so we don't attempt to merge those.
     */
    static inline int is_mergeable_vma(struct vm_area_struct *vma,
    				struct file *file, unsigned long vm_flags,
    				struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
    				struct anon_vma_name *anon_name)
    {
    	/*
    	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
    	 * match the flags but dirty bit -- the caller should mark
    	 * merged VMA as dirty. If dirty bit won't be excluded from
    	 * comparison, we increase pressure on the memory system forcing
    	 * the kernel to generate new VMAs when old one could be
    	 * extended instead.
    	 */
    	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
    		return 0;
    	if (vma->vm_file != file)
    		return 0;
    	if (vma->vm_ops && vma->vm_ops->close)
    		return 0;
    	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
    		return 0;
    	if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
    		return 0;
    	return 1;
    }
    
    static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
    					struct anon_vma *anon_vma2,
    					struct vm_area_struct *vma)
    {
    	/*
    	 * The list_is_singular() test is to avoid merging VMA cloned from
    	 * parents. This can improve scalability caused by anon_vma lock.
    	 */
    	if ((!anon_vma1 || !anon_vma2) && (!vma ||
    		list_is_singular(&vma->anon_vma_chain)))
    		return 1;
    	return anon_vma1 == anon_vma2;
    }
    
    /*
     * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
     * in front of (at a lower virtual address and file offset than) the vma.
     *
     * We cannot merge two vmas if they have differently assigned (non-NULL)
     * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
     *
     * We don't check here for the merged mmap wrapping around the end of pagecache
     * indices (16TB on ia32) because do_mmap() does not permit mmap's which
     * wrap, nor mmaps which cover the final page at index -1UL.
     */
    static int
    can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
    		     struct anon_vma *anon_vma, struct file *file,
    		     pgoff_t vm_pgoff,
    		     struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
    		     struct anon_vma_name *anon_name)
    {
    	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
    	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
    		if (vma->vm_pgoff == vm_pgoff)
    			return 1;
    	}
    	return 0;
    }
    
    /*
     * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
     * beyond (at a higher virtual address and file offset than) the vma.
     *
     * We cannot merge two vmas if they have differently assigned (non-NULL)
     * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
     */
    static int
    can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
    		    struct anon_vma *anon_vma, struct file *file,
    		    pgoff_t vm_pgoff,
    		    struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
    		    struct anon_vma_name *anon_name)
    {
    	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
    	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
    		pgoff_t vm_pglen;
    		vm_pglen = vma_pages(vma);
    		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
    			return 1;
    	}
    	return 0;
    }
    
    /*
     * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
     * figure out whether that can be merged with its predecessor or its
     * successor.  Or both (it neatly fills a hole).
     *
     * In most cases - when called for mmap, brk or mremap - [addr,end) is
     * certain not to be mapped by the time vma_merge is called; but when
     * called for mprotect, it is certain to be already mapped (either at
     * an offset within prev, or at the start of next), and the flags of
     * this area are about to be changed to vm_flags - and the no-change
     * case has already been eliminated.
     *
     * The following mprotect cases have to be considered, where AAAA is
     * the area passed down from mprotect_fixup, never extending beyond one
     * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
     *
     *     AAAA             AAAA                   AAAA
     *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPNNNNNN
     *    cannot merge    might become       might become
     *                    PPNNNNNNNNNN       PPPPPPPPPPNN
     *    mmap, brk or    case 4 below       case 5 below
     *    mremap move:
     *                        AAAA               AAAA
     *                    PPPP    NNNN       PPPPNNNNXXXX
     *                    might become       might become
     *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
     *                    PPPPPPPPNNNN 2 or  PPPPPPPPXXXX 7 or
     *                    PPPPNNNNNNNN 3     PPPPXXXXXXXX 8
     *
     * It is important for case 8 that the vma NNNN overlapping the
     * region AAAA is never going to extended over XXXX. Instead XXXX must
     * be extended in region AAAA and NNNN must be removed. This way in
     * all cases where vma_merge succeeds, the moment vma_adjust drops the
     * rmap_locks, the properties of the merged vma will be already
     * correct for the whole merged range. Some of those properties like
     * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
     * be correct for the whole merged range immediately after the
     * rmap_locks are released. Otherwise if XXXX would be removed and
     * NNNN would be extended over the XXXX range, remove_migration_ptes
     * or other rmap walkers (if working on addresses beyond the "end"
     * parameter) may establish ptes with the wrong permissions of NNNN
     * instead of the right permissions of XXXX.
     */
    struct vm_area_struct *vma_merge(struct mm_struct *mm,
    			struct vm_area_struct *prev, unsigned long addr,
    			unsigned long end, unsigned long vm_flags,
    			struct anon_vma *anon_vma, struct file *file,
    			pgoff_t pgoff, struct mempolicy *policy,
    			struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
    			struct anon_vma_name *anon_name)
    {
    	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
    	struct vm_area_struct *area, *next;
    	int err;
    
    	/*
    	 * We later require that vma->vm_flags == vm_flags,
    	 * so this tests vma->vm_flags & VM_SPECIAL, too.
    	 */
    	if (vm_flags & VM_SPECIAL)
    		return NULL;
    
    	next = __vma_next(mm, prev);
    	area = next;
    	if (area && area->vm_end == end)		/* cases 6, 7, 8 */
    		next = next->vm_next;
    
    	/* verify some invariant that must be enforced by the caller */
    	VM_WARN_ON(prev && addr <= prev->vm_start);
    	VM_WARN_ON(area && end > area->vm_end);
    	VM_WARN_ON(addr >= end);
    
    	/*
    	 * Can it merge with the predecessor?
    	 */
    	if (prev && prev->vm_end == addr &&
    			mpol_equal(vma_policy(prev), policy) &&
    			can_vma_merge_after(prev, vm_flags,
    					    anon_vma, file, pgoff,
    					    vm_userfaultfd_ctx, anon_name)) {
    		/*
    		 * OK, it can.  Can we now merge in the successor as well?
    		 */
    		if (next && end == next->vm_start &&
    				mpol_equal(policy, vma_policy(next)) &&
    				can_vma_merge_before(next, vm_flags,
    						     anon_vma, file,
    						     pgoff+pglen,
    						     vm_userfaultfd_ctx, anon_name) &&
    				is_mergeable_anon_vma(prev->anon_vma,
    						      next->anon_vma, NULL)) {
    							/* cases 1, 6 */
    			err = __vma_adjust(prev, prev->vm_start,
    					 next->vm_end, prev->vm_pgoff, NULL,
    					 prev);
    		} else					/* cases 2, 5, 7 */
    			err = __vma_adjust(prev, prev->vm_start,
    					 end, prev->vm_pgoff, NULL, prev);
    		if (err)
    			return NULL;
    		khugepaged_enter_vma(prev, vm_flags);
    		return prev;
    	}
    
    	/*
    	 * Can this new request be merged in front of next?
    	 */
    	if (next && end == next->vm_start &&
    			mpol_equal(policy, vma_policy(next)) &&
    			can_vma_merge_before(next, vm_flags,
    					     anon_vma, file, pgoff+pglen,
    					     vm_userfaultfd_ctx, anon_name)) {
    		if (prev && addr < prev->vm_end)	/* case 4 */
    			err = __vma_adjust(prev, prev->vm_start,
    					 addr, prev->vm_pgoff, NULL, next);
    		else {					/* cases 3, 8 */
    			err = __vma_adjust(area, addr, next->vm_end,
    					 next->vm_pgoff - pglen, NULL, next);
    			/*
    			 * In case 3 area is already equal to next and
    			 * this is a noop, but in case 8 "area" has
    			 * been removed and next was expanded over it.
    			 */
    			area = next;
    		}
    		if (err)
    			return NULL;
    		khugepaged_enter_vma(area, vm_flags);
    		return area;
    	}
    
    	return NULL;
    }
    
    /*
     * Rough compatibility check to quickly see if it's even worth looking
     * at sharing an anon_vma.
     *
     * They need to have the same vm_file, and the flags can only differ
     * in things that mprotect may change.
     *
     * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
     * we can merge the two vma's. For example, we refuse to merge a vma if
     * there is a vm_ops->close() function, because that indicates that the
     * driver is doing some kind of reference counting. But that doesn't
     * really matter for the anon_vma sharing case.
     */
    static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
    {
    	return a->vm_end == b->vm_start &&
    		mpol_equal(vma_policy(a), vma_policy(b)) &&
    		a->vm_file == b->vm_file &&
    		!((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
    		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
    }
    
    /*
     * Do some basic sanity checking to see if we can re-use the anon_vma
     * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
     * the same as 'old', the other will be the new one that is trying
     * to share the anon_vma.
     *
     * NOTE! This runs with mmap_lock held for reading, so it is possible that
     * the anon_vma of 'old' is concurrently in the process of being set up
     * by another page fault trying to merge _that_. But that's ok: if it
     * is being set up, that automatically means that it will be a singleton
     * acceptable for merging, so we can do all of this optimistically. But
     * we do that READ_ONCE() to make sure that we never re-load the pointer.
     *
     * IOW: that the "list_is_singular()" test on the anon_vma_chain only
     * matters for the 'stable anon_vma' case (ie the thing we want to avoid
     * is to return an anon_vma that is "complex" due to having gone through
     * a fork).
     *
     * We also make sure that the two vma's are compatible (adjacent,
     * and with the same memory policies). That's all stable, even with just
     * a read lock on the mmap_lock.
     */
    static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
    {
    	if (anon_vma_compatible(a, b)) {
    		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
    
    		if (anon_vma && list_is_singular(&old->anon_vma_chain))
    			return anon_vma;
    	}
    	return NULL;
    }
    
    /*
     * find_mergeable_anon_vma is used by anon_vma_prepare, to check
     * neighbouring vmas for a suitable anon_vma, before it goes off
     * to allocate a new anon_vma.  It checks because a repetitive
     * sequence of mprotects and faults may otherwise lead to distinct
     * anon_vmas being allocated, preventing vma merge in subsequent
     * mprotect.
     */
    struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
    {
    	struct anon_vma *anon_vma = NULL;
    
    	/* Try next first. */
    	if (vma->vm_next) {
    		anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next);
    		if (anon_vma)
    			return anon_vma;
    	}
    
    	/* Try prev next. */
    	if (vma->vm_prev)
    		anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma);
    
    	/*
    	 * We might reach here with anon_vma == NULL if we can't find
    	 * any reusable anon_vma.
    	 * There's no absolute need to look only at touching neighbours:
    	 * we could search further afield for "compatible" anon_vmas.
    	 * But it would probably just be a waste of time searching,
    	 * or lead to too many vmas hanging off the same anon_vma.
    	 * We're trying to allow mprotect remerging later on,
    	 * not trying to minimize memory used for anon_vmas.
    	 */
    	return anon_vma;
    }
    
    /*
     * If a hint addr is less than mmap_min_addr change hint to be as
     * low as possible but still greater than mmap_min_addr
     */
    static inline unsigned long round_hint_to_min(unsigned long hint)
    {
    	hint &= PAGE_MASK;
    	if (((void *)hint != NULL) &&
    	    (hint < mmap_min_addr))
    		return PAGE_ALIGN(mmap_min_addr);
    	return hint;
    }
    
    int mlock_future_check(struct mm_struct *mm, unsigned long flags,
    		       unsigned long len)
    {
    	unsigned long locked, lock_limit;
    
    	/*  mlock MCL_FUTURE? */
    	if (flags & VM_LOCKED) {
    		locked = len >> PAGE_SHIFT;
    		locked += mm->locked_vm;
    		lock_limit = rlimit(RLIMIT_MEMLOCK);
    		lock_limit >>= PAGE_SHIFT;
    		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
    			return -EAGAIN;
    	}
    	return 0;
    }
    
    static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
    {
    	if (S_ISREG(inode->i_mode))
    		return MAX_LFS_FILESIZE;
    
    	if (S_ISBLK(inode->i_mode))
    		return MAX_LFS_FILESIZE;
    
    	if (S_ISSOCK(inode->i_mode))
    		return MAX_LFS_FILESIZE;
    
    	/* Special "we do even unsigned file positions" case */
    	if (file->f_mode & FMODE_UNSIGNED_OFFSET)
    		return 0;
    
    	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
    	return ULONG_MAX;
    }
    
    static inline bool file_mmap_ok(struct file *file, struct inode *inode,
    				unsigned long pgoff, unsigned long len)
    {
    	u64 maxsize = file_mmap_size_max(file, inode);
    
    	if (maxsize && len > maxsize)
    		return false;
    	maxsize -= len;
    	if (pgoff > maxsize >> PAGE_SHIFT)
    		return false;
    	return true;
    }
    
    /*
     * The caller must write-lock current->mm->mmap_lock.
     */
    unsigned long do_mmap(struct file *file, unsigned long addr,
    			unsigned long len, unsigned long prot,
    			unsigned long flags, unsigned long pgoff,
    			unsigned long *populate, struct list_head *uf)
    {
    	struct mm_struct *mm = current->mm;
    	vm_flags_t vm_flags;
    	int pkey = 0;
    
    	validate_mm(mm);
    	*populate = 0;
    
    	if (!len)
    		return -EINVAL;
    
    	/*
    	 * Does the application expect PROT_READ to imply PROT_EXEC?
    	 *
    	 * (the exception is when the underlying filesystem is noexec
    	 *  mounted, in which case we dont add PROT_EXEC.)
    	 */
    	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
    		if (!(file && path_noexec(&file->f_path)))
    			prot |= PROT_EXEC;
    
    	/* force arch specific MAP_FIXED handling in get_unmapped_area */
    	if (flags & MAP_FIXED_NOREPLACE)
    		flags |= MAP_FIXED;
    
    	if (!(flags & MAP_FIXED))
    		addr = round_hint_to_min(addr);
    
    	/* Careful about overflows.. */
    	len = PAGE_ALIGN(len);
    	if (!len)
    		return -ENOMEM;
    
    	/* offset overflow? */
    	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
    		return -EOVERFLOW;
    
    	/* Too many mappings? */
    	if (mm->map_count > sysctl_max_map_count)
    		return -ENOMEM;
    
    	/* Obtain the address to map to. we verify (or select) it and ensure
    	 * that it represents a valid section of the address space.
    	 */
    	addr = get_unmapped_area(file, addr, len, pgoff, flags);
    	if (IS_ERR_VALUE(addr))
    		return addr;
    
    	if (flags & MAP_FIXED_NOREPLACE) {
    		if (find_vma_intersection(mm, addr, addr + len))
    			return -EEXIST;
    	}
    
    	if (prot == PROT_EXEC) {
    		pkey = execute_only_pkey(mm);
    		if (pkey < 0)
    			pkey = 0;
    	}
    
    	/* Do simple checking here so the lower-level routines won't have
    	 * to. we assume access permissions have been handled by the open
    	 * of the memory object, so we don't do any here.
    	 */
    	vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
    			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
    
    	if (flags & MAP_LOCKED)
    		if (!can_do_mlock())
    			return -EPERM;
    
    	if (mlock_future_check(mm, vm_flags, len))
    		return -EAGAIN;
    
    	if (file) {
    		struct inode *inode = file_inode(file);
    		unsigned long flags_mask;
    
    		if (!file_mmap_ok(file, inode, pgoff, len))
    			return -EOVERFLOW;
    
    		flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
    
    		switch (flags & MAP_TYPE) {
    		case MAP_SHARED:
    			/*
    			 * Force use of MAP_SHARED_VALIDATE with non-legacy
    			 * flags. E.g. MAP_SYNC is dangerous to use with
    			 * MAP_SHARED as you don't know which consistency model
    			 * you will get. We silently ignore unsupported flags
    			 * with MAP_SHARED to preserve backward compatibility.
    			 */
    			flags &= LEGACY_MAP_MASK;
    			fallthrough;
    		case MAP_SHARED_VALIDATE:
    			if (flags & ~flags_mask)
    				return -EOPNOTSUPP;
    			if (prot & PROT_WRITE) {
    				if (!(file->f_mode & FMODE_WRITE))
    					return -EACCES;
    				if (IS_SWAPFILE(file->f_mapping->host))
    					return -ETXTBSY;
    			}
    
    			/*
    			 * Make sure we don't allow writing to an append-only
    			 * file..
    			 */
    			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
    				return -EACCES;
    
    			vm_flags |= VM_SHARED | VM_MAYSHARE;
    			if (!(file->f_mode & FMODE_WRITE))
    				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
    			fallthrough;
    		case MAP_PRIVATE:
    			if (!(file->f_mode & FMODE_READ))
    				return -EACCES;
    			if (path_noexec(&file->f_path)) {
    				if (vm_flags & VM_EXEC)
    					return -EPERM;
    				vm_flags &= ~VM_MAYEXEC;
    			}
    
    			if (!file->f_op->mmap)
    				return -ENODEV;
    			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
    				return -EINVAL;
    			break;
    
    		default:
    			return -EINVAL;
    		}
    	} else {
    		switch (flags & MAP_TYPE) {
    		case MAP_SHARED:
    			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
    				return -EINVAL;
    			/*
    			 * Ignore pgoff.
    			 */
    			pgoff = 0;
    			vm_flags |= VM_SHARED | VM_MAYSHARE;
    			break;
    		case MAP_PRIVATE:
    			/*
    			 * Set pgoff according to addr for anon_vma.
    			 */
    			pgoff = addr >> PAGE_SHIFT;
    			break;
    		default:
    			return -EINVAL;
    		}
    	}
    
    	/*
    	 * Set 'VM_NORESERVE' if we should not account for the
    	 * memory use of this mapping.
    	 */
    	if (flags & MAP_NORESERVE) {
    		/* We honor MAP_NORESERVE if allowed to overcommit */
    		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
    			vm_flags |= VM_NORESERVE;
    
    		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
    		if (file && is_file_hugepages(file))
    			vm_flags |= VM_NORESERVE;
    	}
    
    	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
    	if (!IS_ERR_VALUE(addr) &&
    	    ((vm_flags & VM_LOCKED) ||
    	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
    		*populate = len;
    	return addr;
    }
    
    unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
    			      unsigned long prot, unsigned long flags,
    			      unsigned long fd, unsigned long pgoff)
    {
    	struct file *file = NULL;
    	unsigned long retval;
    
    	if (!(flags & MAP_ANONYMOUS)) {
    		audit_mmap_fd(fd, flags);
    		file = fget(fd);
    		if (!file)
    			return -EBADF;
    		if (is_file_hugepages(file)) {
    			len = ALIGN(len, huge_page_size(hstate_file(file)));
    		} else if (unlikely(flags & MAP_HUGETLB)) {
    			retval = -EINVAL;
    			goto out_fput;
    		}
    	} else if (flags & MAP_HUGETLB) {
    		struct hstate *hs;
    
    		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
    		if (!hs)
    			return -EINVAL;
    
    		len = ALIGN(len, huge_page_size(hs));
    		/*
    		 * VM_NORESERVE is used because the reservations will be
    		 * taken when vm_ops->mmap() is called
    		 */
    		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
    				VM_NORESERVE,
    				HUGETLB_ANONHUGE_INODE,
    				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
    		if (IS_ERR(file))
    			return PTR_ERR(file);
    	}
    
    	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
    out_fput:
    	if (file)
    		fput(file);
    	return retval;
    }
    
    SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
    		unsigned long, prot, unsigned long, flags,
    		unsigned long, fd, unsigned long, pgoff)
    {
    	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
    }
    
    #ifdef __ARCH_WANT_SYS_OLD_MMAP
    struct mmap_arg_struct {
    	unsigned long addr;
    	unsigned long len;
    	unsigned long prot;
    	unsigned long flags;
    	unsigned long fd;
    	unsigned long offset;
    };
    
    SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
    {
    	struct mmap_arg_struct a;
    
    	if (copy_from_user(&a, arg, sizeof(a)))
    		return -EFAULT;
    	if (offset_in_page(a.offset))
    		return -EINVAL;
    
    	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
    			       a.offset >> PAGE_SHIFT);
    }
    #endif /* __ARCH_WANT_SYS_OLD_MMAP */
    
    /*
     * Some shared mappings will want the pages marked read-only
     * to track write events. If so, we'll downgrade vm_page_prot
     * to the private version (using protection_map[] without the
     * VM_SHARED bit).
     */
    int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
    {
    	vm_flags_t vm_flags = vma->vm_flags;
    	const struct vm_operations_struct *vm_ops = vma->vm_ops;
    
    	/* If it was private or non-writable, the write bit is already clear */
    	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
    		return 0;
    
    	/* The backer wishes to know when pages are first written to? */
    	if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
    		return 1;
    
    	/* The open routine did something to the protections that pgprot_modify
    	 * won't preserve? */
    	if (pgprot_val(vm_page_prot) !=
    	    pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
    		return 0;
    
    	/*
    	 * Do we need to track softdirty? hugetlb does not support softdirty
    	 * tracking yet.
    	 */
    	if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
    		return 1;
    
    	/* Specialty mapping? */
    	if (vm_flags & VM_PFNMAP)
    		return 0;
    
    	/* Can the mapping track the dirty pages? */
    	return vma->vm_file && vma->vm_file->f_mapping &&
    		mapping_can_writeback(vma->vm_file->f_mapping);
    }
    
    /*
     * We account for memory if it's a private writeable mapping,
     * not hugepages and VM_NORESERVE wasn't set.
     */
    static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
    {
    	/*
    	 * hugetlb has its own accounting separate from the core VM
    	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
    	 */
    	if (file && is_file_hugepages(file))
    		return 0;
    
    	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
    }
    
    unsigned long mmap_region(struct file *file, unsigned long addr,
    		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
    		struct list_head *uf)
    {
    	struct mm_struct *mm = current->mm;
    	struct vm_area_struct *vma, *prev, *merge;
    	int error;
    	unsigned long charged = 0;
    
    	/* Check against address space limit. */
    	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
    		unsigned long nr_pages;
    
    		/*
    		 * MAP_FIXED may remove pages of mappings that intersects with
    		 * requested mapping. Account for the pages it would unmap.
    		 */
    		nr_pages = count_vma_pages_range(mm, addr, addr + len);
    
    		if (!may_expand_vm(mm, vm_flags,
    					(len >> PAGE_SHIFT) - nr_pages))
    			return -ENOMEM;
    	}
    
    	/* Clear old maps, set up prev and uf */
    	if (munmap_vma_range(mm, addr, len, &prev, uf))
    		return -ENOMEM;
    	/*
    	 * Private writable mapping: check memory availability
    	 */
    	if (accountable_mapping(file, vm_flags)) {
    		charged = len >> PAGE_SHIFT;
    		if (security_vm_enough_memory_mm(mm, charged))
    			return -ENOMEM;
    		vm_flags |= VM_ACCOUNT;
    	}
    
    	/*
    	 * Can we just expand an old mapping?
    	 */
    	vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
    			NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
    	if (vma)
    		goto out;
    
    	/*
    	 * Determine the object being mapped and call the appropriate
    	 * specific mapper. the address has already been validated, but
    	 * not unmapped, but the maps are removed from the list.
    	 */
    	vma = vm_area_alloc(mm);
    	if (!vma) {
    		error = -ENOMEM;
    		goto unacct_error;
    	}
    
    	vma->vm_start = addr;
    	vma->vm_end = addr + len;
    	vma->vm_flags = vm_flags;
    	vma->vm_page_prot = vm_get_page_prot(vm_flags);
    	vma->vm_pgoff = pgoff;
    
    	if (file) {
    		if (vm_flags & VM_SHARED) {
    			error = mapping_map_writable(file->f_mapping);
    			if (error)
    				goto free_vma;
    		}
    
    		vma->vm_file = get_file(file);
    		error = call_mmap(file, vma);
    		if (error)
    			goto unmap_and_free_vma;
    
    		/* Can addr have changed??
    		 *
    		 * Answer: Yes, several device drivers can do it in their
    		 *         f_op->mmap method. -DaveM
    		 * Bug: If addr is changed, prev, rb_link, rb_parent should
    		 *      be updated for vma_link()
    		 */
    		WARN_ON_ONCE(addr != vma->vm_start);
    
    		addr = vma->vm_start;
    
    		/* If vm_flags changed after call_mmap(), we should try merge vma again
    		 * as we may succeed this time.
    		 */
    		if (unlikely(vm_flags != vma->vm_flags && prev)) {
    			merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags,
    				NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
    			if (merge) {
    				/* ->mmap() can change vma->vm_file and fput the original file. So
    				 * fput the vma->vm_file here or we would add an extra fput for file
    				 * and cause general protection fault ultimately.
    				 */
    				fput(vma->vm_file);
    				vm_area_free(vma);
    				vma = merge;
    				/* Update vm_flags to pick up the change. */
    				vm_flags = vma->vm_flags;
    				goto unmap_writable;
    			}
    		}
    
    		vm_flags = vma->vm_flags;
    	} else if (vm_flags & VM_SHARED) {
    		error = shmem_zero_setup(vma);
    		if (error)
    			goto free_vma;
    	} else {
    		vma_set_anonymous(vma);
    	}
    
    	/* Allow architectures to sanity-check the vm_flags */
    	if (!arch_validate_flags(vma->vm_flags)) {
    		error = -EINVAL;
    		if (file)
    			goto unmap_and_free_vma;
    		else
    			goto free_vma;
    	}
    
    	if (vma_link(mm, vma, prev)) {
    		error = -ENOMEM;
    		if (file)
    			goto unmap_and_free_vma;
    		else
    			goto free_vma;
    	}
    
    	/*
    	 * vma_merge() calls khugepaged_enter_vma() either, the below
    	 * call covers the non-merge case.
    	 */
    	khugepaged_enter_vma(vma, vma->vm_flags);
    
    	/* Once vma denies write, undo our temporary denial count */
    unmap_writable:
    	if (file && vm_flags & VM_SHARED)
    		mapping_unmap_writable(file->f_mapping);
    	file = vma->vm_file;
    out:
    	perf_event_mmap(vma);
    
    	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
    	if (vm_flags & VM_LOCKED) {
    		if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
    					is_vm_hugetlb_page(vma) ||
    					vma == get_gate_vma(current->mm))
    			vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
    		else
    			mm->locked_vm += (len >> PAGE_SHIFT);
    	}
    
    	if (file)
    		uprobe_mmap(vma);
    
    	/*
    	 * New (or expanded) vma always get soft dirty status.
    	 * Otherwise user-space soft-dirty page tracker won't
    	 * be able to distinguish situation when vma area unmapped,
    	 * then new mapped in-place (which must be aimed as
    	 * a completely new data area).
    	 */
    	vma->vm_flags |= VM_SOFTDIRTY;
    
    	vma_set_page_prot(vma);
    
    	return addr;
    
    unmap_and_free_vma:
    	fput(vma->vm_file);
    	vma->vm_file = NULL;
    
    	/* Undo any partial mapping done by a device driver. */
    	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
    	if (vm_flags & VM_SHARED)
    		mapping_unmap_writable(file->f_mapping);
    free_vma:
    	vm_area_free(vma);
    unacct_error:
    	if (charged)
    		vm_unacct_memory(charged);
    	return error;
    }
    
    /**
     * unmapped_area() - Find an area between the low_limit and the high_limit with
     * the correct alignment and offset, all from @info. Note: current->mm is used
     * for the search.
     *
     * @info: The unmapped area information including the range (low_limit -
     * hight_limit), the alignment offset and mask.
     *
     * Return: A memory address or -ENOMEM.
     */
    static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
    {
    	unsigned long length, gap;
    
    	MA_STATE(mas, &current->mm->mm_mt, 0, 0);
    
    	/* Adjust search length to account for worst case alignment overhead */
    	length = info->length + info->align_mask;
    	if (length < info->length)
    		return -ENOMEM;
    
    	if (mas_empty_area(&mas, info->low_limit, info->high_limit - 1,
    				  length))
    		return -ENOMEM;
    
    	gap = mas.index;
    	gap += (info->align_offset - gap) & info->align_mask;
    	return gap;
    }
    
    /**
     * unmapped_area_topdown() - Find an area between the low_limit and the
     * high_limit with * the correct alignment and offset at the highest available
     * address, all from @info. Note: current->mm is used for the search.
     *
     * @info: The unmapped area information including the range (low_limit -
     * hight_limit), the alignment offset and mask.
     *
     * Return: A memory address or -ENOMEM.
     */
    static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
    {
    	unsigned long length, gap;
    
    	MA_STATE(mas, &current->mm->mm_mt, 0, 0);
    	/* Adjust search length to account for worst case alignment overhead */
    	length = info->length + info->align_mask;
    	if (length < info->length)
    		return -ENOMEM;
    
    	if (mas_empty_area_rev(&mas, info->low_limit, info->high_limit - 1,
    				length))
    		return -ENOMEM;
    
    	gap = mas.last + 1 - info->length;
    	gap -= (gap - info->align_offset) & info->align_mask;
    	return gap;
    }
    
    /*
     * Search for an unmapped address range.
     *
     * We are looking for a range that:
     * - does not intersect with any VMA;
     * - is contained within the [low_limit, high_limit) interval;
     * - is at least the desired size.
     * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
     */
    unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
    {
    	unsigned long addr;
    
    	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
    		addr = unmapped_area_topdown(info);
    	else
    		addr = unmapped_area(info);
    
    	trace_vm_unmapped_area(addr, info);
    	return addr;
    }
    
    /* Get an address range which is currently unmapped.
     * For shmat() with addr=0.
     *
     * Ugly calling convention alert:
     * Return value with the low bits set means error value,
     * ie
     *	if (ret & ~PAGE_MASK)
     *		error = ret;
     *
     * This function "knows" that -ENOMEM has the bits set.
     */
    unsigned long
    generic_get_unmapped_area(struct file *filp, unsigned long addr,
    			  unsigned long len, unsigned long pgoff,
    			  unsigned long flags)
    {
    	struct mm_struct *mm = current->mm;
    	struct vm_area_struct *vma, *prev;
    	struct vm_unmapped_area_info info;
    	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
    
    	if (len > mmap_end - mmap_min_addr)
    		return -ENOMEM;
    
    	if (flags & MAP_FIXED)
    		return addr;
    
    	if (addr) {
    		addr = PAGE_ALIGN(addr);
    		vma = find_vma_prev(mm, addr, &prev);
    		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
    		    (!vma || addr + len <= vm_start_gap(vma)) &&
    		    (!prev || addr >= vm_end_gap(prev)))
    			return addr;
    	}
    
    	info.flags = 0;
    	info.length = len;
    	info.low_limit = mm->mmap_base;
    	info.high_limit = mmap_end;
    	info.align_mask = 0;
    	info.align_offset = 0;
    	return vm_unmapped_area(&info);
    }
    
    #ifndef HAVE_ARCH_UNMAPPED_AREA
    unsigned long
    arch_get_unmapped_area(struct file *filp, unsigned long addr,
    		       unsigned long len, unsigned long pgoff,
    		       unsigned long flags)
    {
    	return generic_get_unmapped_area(filp, addr, len, pgoff, flags);
    }
    #endif
    
    /*
     * This mmap-allocator allocates new areas top-down from below the
     * stack's low limit (the base):
     */
    unsigned long
    generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
    				  unsigned long len, unsigned long pgoff,
    				  unsigned long flags)
    {
    	struct vm_area_struct *vma, *prev;
    	struct mm_struct *mm = current->mm;
    	struct vm_unmapped_area_info info;
    	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
    
    	/* requested length too big for entire address space */
    	if (len > mmap_end - mmap_min_addr)
    		return -ENOMEM;
    
    	if (flags & MAP_FIXED)
    		return addr;
    
    	/* requesting a specific address */
    	if (addr) {
    		addr = PAGE_ALIGN(addr);
    		vma = find_vma_prev(mm, addr, &prev);
    		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
    				(!vma || addr + len <= vm_start_gap(vma)) &&
    				(!prev || addr >= vm_end_gap(prev)))
    			return addr;
    	}
    
    	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
    	info.length = len;
    	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
    	info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
    	info.align_mask = 0;
    	info.align_offset = 0;
    	addr = vm_unmapped_area(&info);
    
    	/*
    	 * A failed mmap() very likely causes application failure,
    	 * so fall back to the bottom-up function here. This scenario
    	 * can happen with large stack limits and large mmap()
    	 * allocations.
    	 */
    	if (offset_in_page(addr)) {
    		VM_BUG_ON(addr != -ENOMEM);
    		info.flags = 0;
    		info.low_limit = TASK_UNMAPPED_BASE;
    		info.high_limit = mmap_end;
    		addr = vm_unmapped_area(&info);
    	}
    
    	return addr;
    }
    
    #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
    unsigned long
    arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
    			       unsigned long len, unsigned long pgoff,
    			       unsigned long flags)
    {
    	return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
    }
    #endif
    
    unsigned long
    get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
    		unsigned long pgoff, unsigned long flags)
    {
    	unsigned long (*get_area)(struct file *, unsigned long,
    				  unsigned long, unsigned long, unsigned long);
    
    	unsigned long error = arch_mmap_check(addr, len, flags);
    	if (error)
    		return error;
    
    	/* Careful about overflows.. */
    	if (len > TASK_SIZE)
    		return -ENOMEM;
    
    	get_area = current->mm->get_unmapped_area;
    	if (file) {
    		if (file->f_op->get_unmapped_area)
    			get_area = file->f_op->get_unmapped_area;
    	} else if (flags & MAP_SHARED) {
    		/*
    		 * mmap_region() will call shmem_zero_setup() to create a file,
    		 * so use shmem's get_unmapped_area in case it can be huge.
    		 * do_mmap() will clear pgoff, so match alignment.
    		 */
    		pgoff = 0;
    		get_area = shmem_get_unmapped_area;
    	} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
    		/* Ensures that larger anonymous mappings are THP aligned. */
    		get_area = thp_get_unmapped_area;
    	}
    
    	addr = get_area(file, addr, len, pgoff, flags);
    	if (IS_ERR_VALUE(addr))
    		return addr;
    
    	if (addr > TASK_SIZE - len)
    		return -ENOMEM;
    	if (offset_in_page(addr))
    		return -EINVAL;
    
    	error = security_mmap_addr(addr);
    	return error ? error : addr;
    }
    
    EXPORT_SYMBOL(get_unmapped_area);
    
    /**
     * find_vma_intersection() - Look up the first VMA which intersects the interval
     * @mm: The process address space.
     * @start_addr: The inclusive start user address.
     * @end_addr: The exclusive end user address.
     *
     * Returns: The first VMA within the provided range, %NULL otherwise.  Assumes
     * start_addr < end_addr.
     */
    struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
    					     unsigned long start_addr,
    					     unsigned long end_addr)
    {
    	struct vm_area_struct *vma;
    	unsigned long index = start_addr;
    
    	mmap_assert_locked(mm);
    	/* Check the cache first. */
    	vma = vmacache_find(mm, start_addr);
    	if (likely(vma))
    		return vma;
    
    	vma = mt_find(&mm->mm_mt, &index, end_addr - 1);
    	if (vma)
    		vmacache_update(start_addr, vma);
    	return vma;
    }
    EXPORT_SYMBOL(find_vma_intersection);
    
    /**
     * find_vma() - Find the VMA for a given address, or the next VMA.
     * @mm: The mm_struct to check
     * @addr: The address
     *
     * Returns: The VMA associated with addr, or the next VMA.
     * May return %NULL in the case of no VMA at addr or above.
     */
    struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
    {
    	struct vm_area_struct *vma;
    	unsigned long index = addr;
    
    	mmap_assert_locked(mm);
    	/* Check the cache first. */
    	vma = vmacache_find(mm, addr);
    	if (likely(vma))
    		return vma;
    
    	vma = mt_find(&mm->mm_mt, &index, ULONG_MAX);
    	if (vma)
    		vmacache_update(addr, vma);
    	return vma;
    }
    EXPORT_SYMBOL(find_vma);
    
    /**
     * find_vma_prev() - Find the VMA for a given address, or the next vma and
     * set %pprev to the previous VMA, if any.
     * @mm: The mm_struct to check
     * @addr: The address
     * @pprev: The pointer to set to the previous VMA
     *
     * Note that RCU lock is missing here since the external mmap_lock() is used
     * instead.
     *
     * Returns: The VMA associated with @addr, or the next vma.
     * May return %NULL in the case of no vma at addr or above.
     */
    struct vm_area_struct *
    find_vma_prev(struct mm_struct *mm, unsigned long addr,
    			struct vm_area_struct **pprev)
    {
    	struct vm_area_struct *vma;
    	MA_STATE(mas, &mm->mm_mt, addr, addr);
    
    	vma = mas_walk(&mas);
    	*pprev = mas_prev(&mas, 0);
    	if (!vma)
    		vma = mas_next(&mas, ULONG_MAX);
    	return vma;
    }
    
    /*
     * Verify that the stack growth is acceptable and
     * update accounting. This is shared with both the
     * grow-up and grow-down cases.
     */
    static int acct_stack_growth(struct vm_area_struct *vma,
    			     unsigned long size, unsigned long grow)
    {
    	struct mm_struct *mm = vma->vm_mm;
    	unsigned long new_start;
    
    	/* address space limit tests */
    	if (!may_expand_vm(mm, vma->vm_flags, grow))
    		return -ENOMEM;
    
    	/* Stack limit test */
    	if (size > rlimit(RLIMIT_STACK))
    		return -ENOMEM;
    
    	/* mlock limit tests */
    	if (mlock_future_check(mm, vma->vm_flags, grow << PAGE_SHIFT))
    		return -ENOMEM;
    
    	/* Check to ensure the stack will not grow into a hugetlb-only region */
    	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
    			vma->vm_end - size;
    	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
    		return -EFAULT;
    
    	/*
    	 * Overcommit..  This must be the final test, as it will
    	 * update security statistics.
    	 */
    	if (security_vm_enough_memory_mm(mm, grow))
    		return -ENOMEM;
    
    	return 0;
    }
    
    #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
    /*
     * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
     * vma is the last one with address > vma->vm_end.  Have to extend vma.
     */
    int expand_upwards(struct vm_area_struct *vma, unsigned long address)
    {
    	struct mm_struct *mm = vma->vm_mm;
    	struct vm_area_struct *next;
    	unsigned long gap_addr;
    	int error = 0;
    	MA_STATE(mas, &mm->mm_mt, 0, 0);
    
    	if (!(vma->vm_flags & VM_GROWSUP))
    		return -EFAULT;
    
    	/* Guard against exceeding limits of the address space. */
    	address &= PAGE_MASK;
    	if (address >= (TASK_SIZE & PAGE_MASK))
    		return -ENOMEM;
    	address += PAGE_SIZE;
    
    	/* Enforce stack_guard_gap */
    	gap_addr = address + stack_guard_gap;
    
    	/* Guard against overflow */
    	if (gap_addr < address || gap_addr > TASK_SIZE)
    		gap_addr = TASK_SIZE;
    
    	next = vma->vm_next;
    	if (next && next->vm_start < gap_addr && vma_is_accessible(next)) {
    		if (!(next->vm_flags & VM_GROWSUP))
    			return -ENOMEM;
    		/* Check that both stack segments have the same anon_vma? */
    	}
    
    	if (mas_preallocate(&mas, vma, GFP_KERNEL))
    		return -ENOMEM;
    
    	/* We must make sure the anon_vma is allocated. */
    	if (unlikely(anon_vma_prepare(vma))) {
    		mas_destroy(&mas);
    		return -ENOMEM;
    	}
    
    	/*
    	 * vma->vm_start/vm_end cannot change under us because the caller
    	 * is required to hold the mmap_lock in read mode.  We need the
    	 * anon_vma lock to serialize against concurrent expand_stacks.
    	 */
    	anon_vma_lock_write(vma->anon_vma);
    
    	/* Somebody else might have raced and expanded it already */
    	if (address > vma->vm_end) {
    		unsigned long size, grow;
    
    		size = address - vma->vm_start;
    		grow = (address - vma->vm_end) >> PAGE_SHIFT;
    
    		error = -ENOMEM;
    		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
    			error = acct_stack_growth(vma, size, grow);
    			if (!error) {
    				/*
    				 * We only hold a shared mmap_lock lock here, so
    				 * we need to protect against concurrent vma
    				 * expansions.  anon_vma_lock_write() doesn't
    				 * help here, as we don't guarantee that all
    				 * growable vmas in a mm share the same root
    				 * anon vma.  So, we reuse mm->page_table_lock
    				 * to guard against concurrent vma expansions.
    				 */
    				spin_lock(&mm->page_table_lock);
    				if (vma->vm_flags & VM_LOCKED)
    					mm->locked_vm += grow;
    				vm_stat_account(mm, vma->vm_flags, grow);
    				anon_vma_interval_tree_pre_update_vma(vma);
    				vma->vm_end = address;
    				/* Overwrite old entry in mtree. */
    				vma_mas_store(vma, &mas);
    				anon_vma_interval_tree_post_update_vma(vma);
    				if (!vma->vm_next)
    					mm->highest_vm_end = vm_end_gap(vma);
    				spin_unlock(&mm->page_table_lock);
    
    				perf_event_mmap(vma);
    			}
    		}
    	}
    	anon_vma_unlock_write(vma->anon_vma);
    	khugepaged_enter_vma(vma, vma->vm_flags);
    	mas_destroy(&mas);
    	return error;
    }
    #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
    
    /*
     * vma is the first one with address < vma->vm_start.  Have to extend vma.
     */
    int expand_downwards(struct vm_area_struct *vma, unsigned long address)
    {
    	struct mm_struct *mm = vma->vm_mm;
    	struct vm_area_struct *prev;
    	int error = 0;
    	MA_STATE(mas, &mm->mm_mt, 0, 0);
    
    	address &= PAGE_MASK;
    	if (address < mmap_min_addr)
    		return -EPERM;
    
    	/* Enforce stack_guard_gap */
    	prev = vma->vm_prev;
    	/* Check that both stack segments have the same anon_vma? */
    	if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
    			vma_is_accessible(prev)) {
    		if (address - prev->vm_end < stack_guard_gap)
    			return -ENOMEM;
    	}
    
    	if (mas_preallocate(&mas, vma, GFP_KERNEL))
    		return -ENOMEM;
    
    	/* We must make sure the anon_vma is allocated. */
    	if (unlikely(anon_vma_prepare(vma))) {
    		mas_destroy(&mas);
    		return -ENOMEM;
    	}
    
    	/*
    	 * vma->vm_start/vm_end cannot change under us because the caller
    	 * is required to hold the mmap_lock in read mode.  We need the
    	 * anon_vma lock to serialize against concurrent expand_stacks.
    	 */
    	anon_vma_lock_write(vma->anon_vma);
    
    	/* Somebody else might have raced and expanded it already */
    	if (address < vma->vm_start) {
    		unsigned long size, grow;
    
    		size = vma->vm_end - address;
    		grow = (vma->vm_start - address) >> PAGE_SHIFT;
    
    		error = -ENOMEM;
    		if (grow <= vma->vm_pgoff) {
    			error = acct_stack_growth(vma, size, grow);
    			if (!error) {
    				/*
    				 * We only hold a shared mmap_lock lock here, so
    				 * we need to protect against concurrent vma
    				 * expansions.  anon_vma_lock_write() doesn't
    				 * help here, as we don't guarantee that all
    				 * growable vmas in a mm share the same root
    				 * anon vma.  So, we reuse mm->page_table_lock
    				 * to guard against concurrent vma expansions.
    				 */
    				spin_lock(&mm->page_table_lock);
    				if (vma->vm_flags & VM_LOCKED)
    					mm->locked_vm += grow;
    				vm_stat_account(mm, vma->vm_flags, grow);
    				anon_vma_interval_tree_pre_update_vma(vma);
    				vma->vm_start = address;
    				vma->vm_pgoff -= grow;
    				/* Overwrite old entry in mtree. */
    				vma_mas_store(vma, &mas);
    				anon_vma_interval_tree_post_update_vma(vma);
    				spin_unlock(&mm->page_table_lock);
    
    				perf_event_mmap(vma);
    			}
    		}
    	}
    	anon_vma_unlock_write(vma->anon_vma);
    	khugepaged_enter_vma(vma, vma->vm_flags);
    	mas_destroy(&mas);
    	return error;
    }
    
    /* enforced gap between the expanding stack and other mappings. */
    unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
    
    static int __init cmdline_parse_stack_guard_gap(char *p)
    {
    	unsigned long val;
    	char *endptr;
    
    	val = simple_strtoul(p, &endptr, 10);
    	if (!*endptr)
    		stack_guard_gap = val << PAGE_SHIFT;
    
    	return 1;
    }
    __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
    
    #ifdef CONFIG_STACK_GROWSUP
    int expand_stack(struct vm_area_struct *vma, unsigned long address)
    {
    	return expand_upwards(vma, address);
    }
    
    struct vm_area_struct *
    find_extend_vma(struct mm_struct *mm, unsigned long addr)
    {
    	struct vm_area_struct *vma, *prev;
    
    	addr &= PAGE_MASK;
    	vma = find_vma_prev(mm, addr, &prev);
    	if (vma && (vma->vm_start <= addr))
    		return vma;
    	if (!prev || expand_stack(prev, addr))
    		return NULL;
    	if (prev->vm_flags & VM_LOCKED)
    		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
    	return prev;
    }
    #else
    int expand_stack(struct vm_area_struct *vma, unsigned long address)
    {
    	return expand_downwards(vma, address);
    }
    
    struct vm_area_struct *
    find_extend_vma(struct mm_struct *mm, unsigned long addr)
    {
    	struct vm_area_struct *vma;
    	unsigned long start;
    
    	addr &= PAGE_MASK;
    	vma = find_vma(mm, addr);
    	if (!vma)
    		return NULL;
    	if (vma->vm_start <= addr)
    		return vma;
    	if (!(vma->vm_flags & VM_GROWSDOWN))
    		return NULL;
    	start = vma->vm_start;
    	if (expand_stack(vma, addr))
    		return NULL;
    	if (vma->vm_flags & VM_LOCKED)
    		populate_vma_page_range(vma, addr, start, NULL);
    	return vma;
    }
    #endif
    
    EXPORT_SYMBOL_GPL(find_extend_vma);
    
    /*
     * Ok - we have the memory areas we should free on the vma list,
     * so release them, and do the vma updates.
     *
     * Called with the mm semaphore held.
     */
    static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
    {
    	unsigned long nr_accounted = 0;
    
    	/* Update high watermark before we lower total_vm */
    	update_hiwater_vm(mm);
    	do {
    		long nrpages = vma_pages(vma);
    
    		if (vma->vm_flags & VM_ACCOUNT)
    			nr_accounted += nrpages;
    		vm_stat_account(mm, vma->vm_flags, -nrpages);
    		vma = remove_vma(vma);
    	} while (vma);
    	vm_unacct_memory(nr_accounted);
    	validate_mm(mm);
    }
    
    /*
     * Get rid of page table information in the indicated region.
     *
     * Called with the mm semaphore held.
     */
    static void unmap_region(struct mm_struct *mm,
    		struct vm_area_struct *vma, struct vm_area_struct *prev,
    		unsigned long start, unsigned long end)
    {
    	struct vm_area_struct *next = __vma_next(mm, prev);
    	struct mmu_gather tlb;
    
    	lru_add_drain();
    	tlb_gather_mmu(&tlb, mm);
    	update_hiwater_rss(mm);
    	unmap_vmas(&tlb, vma, start, end);
    	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
    				 next ? next->vm_start : USER_PGTABLES_CEILING);
    	tlb_finish_mmu(&tlb);
    }
    
    /*
     * Create a list of vma's touched by the unmap, removing them from the mm's
     * vma list as we go..
     */
    static bool
    detach_vmas_to_be_unmapped(struct mm_struct *mm, struct ma_state *mas,
    	struct vm_area_struct *vma, struct vm_area_struct *prev,
    	unsigned long end)
    {
    	struct vm_area_struct **insertion_point;
    	struct vm_area_struct *tail_vma = NULL;
    
    	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
    	vma->vm_prev = NULL;
    	vma_mas_szero(mas, vma->vm_start, end);
    	do {
    		if (vma->vm_flags & VM_LOCKED)
    			mm->locked_vm -= vma_pages(vma);
    		mm->map_count--;
    		tail_vma = vma;
    		vma = vma->vm_next;
    	} while (vma && vma->vm_start < end);
    	*insertion_point = vma;
    	if (vma)
    		vma->vm_prev = prev;
    	else
    		mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
    	tail_vma->vm_next = NULL;
    
    	/* Kill the cache */
    	vmacache_invalidate(mm);
    
    	/*
    	 * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
    	 * VM_GROWSUP VMA. Such VMAs can change their size under
    	 * down_read(mmap_lock) and collide with the VMA we are about to unmap.
    	 */
    	if (vma && (vma->vm_flags & VM_GROWSDOWN))
    		return false;
    	if (prev && (prev->vm_flags & VM_GROWSUP))
    		return false;
    	return true;
    }
    
    /*
     * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
     * has already been checked or doesn't make sense to fail.
     */
    int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
    		unsigned long addr, int new_below)
    {
    	struct vm_area_struct *new;
    	int err;
    	validate_mm_mt(mm);
    
    	if (vma->vm_ops && vma->vm_ops->may_split) {
    		err = vma->vm_ops->may_split(vma, addr);
    		if (err)
    			return err;
    	}
    
    	new = vm_area_dup(vma);
    	if (!new)
    		return -ENOMEM;
    
    	if (new_below)
    		new->vm_end = addr;
    	else {
    		new->vm_start = addr;
    		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
    	}
    
    	err = vma_dup_policy(vma, new);
    	if (err)
    		goto out_free_vma;
    
    	err = anon_vma_clone(new, vma);
    	if (err)
    		goto out_free_mpol;
    
    	if (new->vm_file)
    		get_file(new->vm_file);
    
    	if (new->vm_ops && new->vm_ops->open)
    		new->vm_ops->open(new);
    
    	if (new_below)
    		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
    			((addr - new->vm_start) >> PAGE_SHIFT), new);
    	else
    		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
    
    	/* Success. */
    	if (!err)
    		return 0;
    
    	/* Avoid vm accounting in close() operation */
    	new->vm_start = new->vm_end;
    	new->vm_pgoff = 0;
    	/* Clean everything up if vma_adjust failed. */
    	if (new->vm_ops && new->vm_ops->close)
    		new->vm_ops->close(new);
    	if (new->vm_file)
    		fput(new->vm_file);
    	unlink_anon_vmas(new);
     out_free_mpol:
    	mpol_put(vma_policy(new));
     out_free_vma:
    	vm_area_free(new);
    	validate_mm_mt(mm);
    	return err;
    }
    
    /*
     * Split a vma into two pieces at address 'addr', a new vma is allocated
     * either for the first part or the tail.
     */
    int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
    	      unsigned long addr, int new_below)
    {
    	if (mm->map_count >= sysctl_max_map_count)
    		return -ENOMEM;
    
    	return __split_vma(mm, vma, addr, new_below);
    }
    
    /* Munmap is split into 2 main parts -- this part which finds
     * what needs doing, and the areas themselves, which do the
     * work.  This now handles partial unmappings.
     * Jeremy Fitzhardinge <jeremy@goop.org>
     */
    int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
    		struct list_head *uf, bool downgrade)
    {
    	unsigned long end;
    	struct vm_area_struct *vma, *prev, *last;
    	int error = -ENOMEM;
    	MA_STATE(mas, &mm->mm_mt, 0, 0);
    
    	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
    		return -EINVAL;
    
    	len = PAGE_ALIGN(len);
    	end = start + len;
    	if (len == 0)
    		return -EINVAL;
    
    	 /* arch_unmap() might do unmaps itself.  */
    	arch_unmap(mm, start, end);
    
    	/* Find the first overlapping VMA where start < vma->vm_end */
    	vma = find_vma_intersection(mm, start, end);
    	if (!vma)
    		return 0;
    
    	if (mas_preallocate(&mas, vma, GFP_KERNEL))
    		return -ENOMEM;
    	prev = vma->vm_prev;
    	/* we have start < vma->vm_end  */
    
    	/* if it doesn't overlap, we have nothing.. */
    	if (vma->vm_start >= end)
    		return 0;
    
    	/*
    	 * If we need to split any vma, do it now to save pain later.
    	 *
    	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
    	 * unmapped vm_area_struct will remain in use: so lower split_vma
    	 * places tmp vma above, and higher split_vma places tmp vma below.
    	 */
    	if (start > vma->vm_start) {
    
    		/*
    		 * Make sure that map_count on return from munmap() will
    		 * not exceed its limit; but let map_count go just above
    		 * its limit temporarily, to help free resources as expected.
    		 */
    		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
    			goto map_count_exceeded;
    
    		error = __split_vma(mm, vma, start, 0);
    		if (error)
    			goto split_failed;
    		prev = vma;
    	}
    
    	/* Does it split the last one? */
    	last = find_vma(mm, end);
    	if (last && end > last->vm_start) {
    		error = __split_vma(mm, last, end, 1);
    		if (error)
    			goto split_failed;
    	}
    	vma = __vma_next(mm, prev);
    
    	if (unlikely(uf)) {
    		/*
    		 * If userfaultfd_unmap_prep returns an error the vmas
    		 * will remain split, but userland will get a
    		 * highly unexpected error anyway. This is no
    		 * different than the case where the first of the two
    		 * __split_vma fails, but we don't undo the first
    		 * split, despite we could. This is unlikely enough
    		 * failure that it's not worth optimizing it for.
    		 */
    		error = userfaultfd_unmap_prep(vma, start, end, uf);
    		if (error)
    			goto userfaultfd_error;
    	}
    
    	/* Detach vmas from rbtree */
    	if (!detach_vmas_to_be_unmapped(mm, &mas, vma, prev, end))
    		downgrade = false;
    
    	if (downgrade)
    		mmap_write_downgrade(mm);
    
    	unmap_region(mm, vma, prev, start, end);
    
    	/* Fix up all other VM information */
    	remove_vma_list(mm, vma);
    
    
    	validate_mm(mm);
    	return downgrade ? 1 : 0;
    
    map_count_exceeded:
    split_failed:
    userfaultfd_error:
    	mas_destroy(&mas);
    	return error;
    }
    
    int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
    	      struct list_head *uf)
    {
    	return __do_munmap(mm, start, len, uf, false);
    }
    
    static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
    {
    	int ret;
    	struct mm_struct *mm = current->mm;
    	LIST_HEAD(uf);
    
    	if (mmap_write_lock_killable(mm))
    		return -EINTR;
    
    	ret = __do_munmap(mm, start, len, &uf, downgrade);
    	/*
    	 * Returning 1 indicates mmap_lock is downgraded.
    	 * But 1 is not legal return value of vm_munmap() and munmap(), reset
    	 * it to 0 before return.
    	 */
    	if (ret == 1) {
    		mmap_read_unlock(mm);
    		ret = 0;
    	} else
    		mmap_write_unlock(mm);
    
    	userfaultfd_unmap_complete(mm, &uf);
    	return ret;
    }
    
    int vm_munmap(unsigned long start, size_t len)
    {
    	return __vm_munmap(start, len, false);
    }
    EXPORT_SYMBOL(vm_munmap);
    
    SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
    {
    	addr = untagged_addr(addr);
    	return __vm_munmap(addr, len, true);
    }
    
    
    /*
     * Emulation of deprecated remap_file_pages() syscall.
     */
    SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
    		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
    {
    
    	struct mm_struct *mm = current->mm;
    	struct vm_area_struct *vma;
    	unsigned long populate = 0;
    	unsigned long ret = -EINVAL;
    	struct file *file;
    
    	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
    		     current->comm, current->pid);
    
    	if (prot)
    		return ret;
    	start = start & PAGE_MASK;
    	size = size & PAGE_MASK;
    
    	if (start + size <= start)
    		return ret;
    
    	/* Does pgoff wrap? */
    	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
    		return ret;
    
    	if (mmap_write_lock_killable(mm))
    		return -EINTR;
    
    	vma = vma_lookup(mm, start);
    
    	if (!vma || !(vma->vm_flags & VM_SHARED))
    		goto out;
    
    	if (start + size > vma->vm_end) {
    		struct vm_area_struct *next;
    
    		for (next = vma->vm_next; next; next = next->vm_next) {
    			/* hole between vmas ? */
    			if (next->vm_start != next->vm_prev->vm_end)
    				goto out;
    
    			if (next->vm_file != vma->vm_file)
    				goto out;
    
    			if (next->vm_flags != vma->vm_flags)
    				goto out;
    
    			if (start + size <= next->vm_end)
    				break;
    		}
    
    		if (!next)
    			goto out;
    	}
    
    	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
    	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
    	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
    
    	flags &= MAP_NONBLOCK;
    	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
    	if (vma->vm_flags & VM_LOCKED)
    		flags |= MAP_LOCKED;
    
    	file = get_file(vma->vm_file);
    	ret = do_mmap(vma->vm_file, start, size,
    			prot, flags, pgoff, &populate, NULL);
    	fput(file);
    out:
    	mmap_write_unlock(mm);
    	if (populate)
    		mm_populate(ret, populate);
    	if (!IS_ERR_VALUE(ret))
    		ret = 0;
    	return ret;
    }
    
    /*
     * brk_munmap() - Unmap a parital vma.
     * @mas: The maple tree state.
     * @vma: The vma to be modified
     * @newbrk: the start of the address to unmap
     * @oldbrk: The end of the address to unmap
     * @uf: The userfaultfd list_head
     *
     * Returns: 1 on success.
     * unmaps a partial VMA mapping.  Does not handle alignment, downgrades lock if
     * possible.
     */
    static int do_brk_munmap(struct ma_state *mas, struct vm_area_struct *vma,
    			 unsigned long newbrk, unsigned long oldbrk,
    			 struct list_head *uf)
    {
    	struct mm_struct *mm = vma->vm_mm;
    	int ret;
    
    	arch_unmap(mm, newbrk, oldbrk);
    	ret = __do_munmap(mm, newbrk, oldbrk - newbrk, uf, true);
    	validate_mm_mt(mm);
    	return ret;
    }
    
    /*
     * do_brk_flags() - Increase the brk vma if the flags match.
     * @mas: The maple tree state.
     * @addr: The start address
     * @len: The length of the increase
     * @vma: The vma,
     * @flags: The VMA Flags
     *
     * Extend the brk VMA from addr to addr + len.  If the VMA is NULL or the flags
     * do not match then create a new anonymous VMA.  Eventually we may be able to
     * do some brk-specific accounting here.
     */
    static int do_brk_flags(struct ma_state *mas, struct vm_area_struct *vma,
    			unsigned long addr, unsigned long len,
    			unsigned long flags)
    {
    	struct mm_struct *mm = current->mm;
    	struct vm_area_struct *prev = NULL;
    
    	validate_mm_mt(mm);
    	/*
    	 * Check against address space limits by the changed size
    	 * Note: This happens *after* clearing old mappings in some code paths.
    	 */
    	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
    	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
    		return -ENOMEM;
    
    	if (mm->map_count > sysctl_max_map_count)
    		return -ENOMEM;
    
    	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
    		return -ENOMEM;
    
    	/*
    	 * Expand the existing vma if possible; Note that singular lists do not
    	 * occur after forking, so the expand will only happen on new VMAs.
    	 */
    	if (vma &&
    	    (!vma->anon_vma || list_is_singular(&vma->anon_vma_chain)) &&
    	    ((vma->vm_flags & ~VM_SOFTDIRTY) == flags)) {
    		mas->index = vma->vm_start;
    		mas->last = addr + len - 1;
    		vma_adjust_trans_huge(vma, addr, addr + len, 0);
    		if (vma->anon_vma) {
    			anon_vma_lock_write(vma->anon_vma);
    			anon_vma_interval_tree_pre_update_vma(vma);
    		}
    		vma->vm_end = addr + len;
    		vma->vm_flags |= VM_SOFTDIRTY;
    		if (mas_store_gfp(mas, vma, GFP_KERNEL))
    			goto mas_expand_failed;
    
    		if (vma->anon_vma) {
    			anon_vma_interval_tree_post_update_vma(vma);
    			anon_vma_unlock_write(vma->anon_vma);
    		}
    		khugepaged_enter_vma(vma, flags);
    		goto out;
    	}
    	prev = vma;
    
    	/* create a vma struct for an anonymous mapping */
    	vma = vm_area_alloc(mm);
    	if (!vma)
    		goto vma_alloc_fail;
    
    	vma_set_anonymous(vma);
    	vma->vm_start = addr;
    	vma->vm_end = addr + len;
    	vma->vm_pgoff = addr >> PAGE_SHIFT;
    	vma->vm_flags = flags;
    	vma->vm_page_prot = vm_get_page_prot(flags);
    	mas_set_range(mas, vma->vm_start, addr + len - 1);
    	if (mas_store_gfp(mas, vma, GFP_KERNEL))
    		goto mas_store_fail;
    
    	if (!prev)
    		prev = mas_prev(mas, 0);
    
    	__vma_link_list(mm, vma, prev);
    	mm->map_count++;
    out:
    	perf_event_mmap(vma);
    	mm->total_vm += len >> PAGE_SHIFT;
    	mm->data_vm += len >> PAGE_SHIFT;
    	if (flags & VM_LOCKED)
    		mm->locked_vm += (len >> PAGE_SHIFT);
    	vma->vm_flags |= VM_SOFTDIRTY;
    	validate_mm_mt(mm);
    	return 0;
    
    mas_store_fail:
    	vm_area_free(vma);
    vma_alloc_fail:
    	vm_unacct_memory(len >> PAGE_SHIFT);
    	return -ENOMEM;
    
    mas_expand_failed:
    	if (vma->anon_vma) {
    		anon_vma_interval_tree_post_update_vma(vma);
    		anon_vma_unlock_write(vma->anon_vma);
    	}
    	return -ENOMEM;
    }
    
    int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
    {
    	struct mm_struct *mm = current->mm;
    	struct vm_area_struct *vma = NULL;
    	unsigned long len;
    	int ret;
    	bool populate;
    	LIST_HEAD(uf);
    	MA_STATE(mas, &mm->mm_mt, addr, addr);
    
    	len = PAGE_ALIGN(request);
    	if (len < request)
    		return -ENOMEM;
    	if (!len)
    		return 0;
    
    	if (mmap_write_lock_killable(mm))
    		return -EINTR;
    
    	/* Until we need other flags, refuse anything except VM_EXEC. */
    	if ((flags & (~VM_EXEC)) != 0)
    		return -EINVAL;
    
    	ret = check_brk_limits(addr, len);
    	if (ret)
    		goto limits_failed;
    
    	if (find_vma_intersection(mm, addr, addr + len))
    		ret = do_munmap(mm, addr, len, &uf);
    
    	if (ret)
    		goto munmap_failed;
    
    	vma = mas_prev(&mas, 0);
    	if (!vma || vma->vm_end != addr || vma_policy(vma) ||
    	    !can_vma_merge_after(vma, flags, NULL, NULL,
    				 addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL))
    		vma = NULL;
    
    	ret = do_brk_flags(&mas, vma, addr, len, flags);
    	populate = ((mm->def_flags & VM_LOCKED) != 0);
    	mmap_write_unlock(mm);
    	userfaultfd_unmap_complete(mm, &uf);
    	if (populate && !ret)
    		mm_populate(addr, len);
    	return ret;
    
    munmap_failed:
    limits_failed:
    	mmap_write_unlock(mm);
    	return ret;
    }
    EXPORT_SYMBOL(vm_brk_flags);
    
    int vm_brk(unsigned long addr, unsigned long len)
    {
    	return vm_brk_flags(addr, len, 0);
    }
    EXPORT_SYMBOL(vm_brk);
    
    /* Release all mmaps. */
    void exit_mmap(struct mm_struct *mm)
    {
    	struct mmu_gather tlb;
    	struct vm_area_struct *vma;
    	unsigned long nr_accounted = 0;
    
    	/* mm's last user has gone, and its about to be pulled down */
    	mmu_notifier_release(mm);
    
    	if (unlikely(mm_is_oom_victim(mm))) {
    		/*
    		 * Manually reap the mm to free as much memory as possible.
    		 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
    		 * this mm from further consideration.  Taking mm->mmap_lock for
    		 * write after setting MMF_OOM_SKIP will guarantee that the oom
    		 * reaper will not run on this mm again after mmap_lock is
    		 * dropped.
    		 *
    		 * Nothing can be holding mm->mmap_lock here and the above call
    		 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
    		 * __oom_reap_task_mm() will not block.
    		 */
    		(void)__oom_reap_task_mm(mm);
    		set_bit(MMF_OOM_SKIP, &mm->flags);
    	}
    
    	mmap_write_lock(mm);
    	arch_exit_mmap(mm);
    
    	vma = mm->mmap;
    	if (!vma) {
    		/* Can happen if dup_mmap() received an OOM */
    		mmap_write_unlock(mm);
    		return;
    	}
    
    	lru_add_drain();
    	flush_cache_mm(mm);
    	tlb_gather_mmu_fullmm(&tlb, mm);
    	/* update_hiwater_rss(mm) here? but nobody should be looking */
    	/* Use -1 here to ensure all VMAs in the mm are unmapped */
    	unmap_vmas(&tlb, vma, 0, -1);
    	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
    	tlb_finish_mmu(&tlb);
    
    	/* Walk the list again, actually closing and freeing it. */
    	while (vma) {
    		if (vma->vm_flags & VM_ACCOUNT)
    			nr_accounted += vma_pages(vma);
    		vma = remove_vma(vma);
    		cond_resched();
    	}
    
    	trace_exit_mmap(mm);
    	__mt_destroy(&mm->mm_mt);
    	mm->mmap = NULL;
    	mmap_write_unlock(mm);
    	vm_unacct_memory(nr_accounted);
    }
    
    /* Insert vm structure into process list sorted by address
     * and into the inode's i_mmap tree.  If vm_file is non-NULL
     * then i_mmap_rwsem is taken here.
     */
    int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
    {
    	struct vm_area_struct *prev;
    	unsigned long charged = vma_pages(vma);
    
    
    	if (range_has_overlap(mm, vma->vm_start, vma->vm_end, &prev))
    		return -ENOMEM;
    
    	if ((vma->vm_flags & VM_ACCOUNT) &&
    	     security_vm_enough_memory_mm(mm, charged))
    		return -ENOMEM;
    
    	/*
    	 * The vm_pgoff of a purely anonymous vma should be irrelevant
    	 * until its first write fault, when page's anon_vma and index
    	 * are set.  But now set the vm_pgoff it will almost certainly
    	 * end up with (unless mremap moves it elsewhere before that
    	 * first wfault), so /proc/pid/maps tells a consistent story.
    	 *
    	 * By setting it to reflect the virtual start address of the
    	 * vma, merges and splits can happen in a seamless way, just
    	 * using the existing file pgoff checks and manipulations.
    	 * Similarly in do_mmap and in do_brk_flags.
    	 */
    	if (vma_is_anonymous(vma)) {
    		BUG_ON(vma->anon_vma);
    		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
    	}
    
    	if (vma_link(mm, vma, prev)) {
    		vm_unacct_memory(charged);
    		return -ENOMEM;
    	}
    
    	return 0;
    }
    
    /*
     * Copy the vma structure to a new location in the same mm,
     * prior to moving page table entries, to effect an mremap move.
     */
    struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
    	unsigned long addr, unsigned long len, pgoff_t pgoff,
    	bool *need_rmap_locks)
    {
    	struct vm_area_struct *vma = *vmap;
    	unsigned long vma_start = vma->vm_start;
    	struct mm_struct *mm = vma->vm_mm;
    	struct vm_area_struct *new_vma, *prev;
    	bool faulted_in_anon_vma = true;
    
    	validate_mm_mt(mm);
    	/*
    	 * If anonymous vma has not yet been faulted, update new pgoff
    	 * to match new location, to increase its chance of merging.
    	 */
    	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
    		pgoff = addr >> PAGE_SHIFT;
    		faulted_in_anon_vma = false;
    	}
    
    	if (range_has_overlap(mm, addr, addr + len, &prev))
    		return NULL;	/* should never get here */
    
    	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
    			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
    			    vma->vm_userfaultfd_ctx, anon_vma_name(vma));
    	if (new_vma) {
    		/*
    		 * Source vma may have been merged into new_vma
    		 */
    		if (unlikely(vma_start >= new_vma->vm_start &&
    			     vma_start < new_vma->vm_end)) {
    			/*
    			 * The only way we can get a vma_merge with
    			 * self during an mremap is if the vma hasn't
    			 * been faulted in yet and we were allowed to
    			 * reset the dst vma->vm_pgoff to the
    			 * destination address of the mremap to allow
    			 * the merge to happen. mremap must change the
    			 * vm_pgoff linearity between src and dst vmas
    			 * (in turn preventing a vma_merge) to be
    			 * safe. It is only safe to keep the vm_pgoff
    			 * linear if there are no pages mapped yet.
    			 */
    			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
    			*vmap = vma = new_vma;
    		}
    		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
    	} else {
    		new_vma = vm_area_dup(vma);
    		if (!new_vma)
    			goto out;
    		new_vma->vm_start = addr;
    		new_vma->vm_end = addr + len;
    		new_vma->vm_pgoff = pgoff;
    		if (vma_dup_policy(vma, new_vma))
    			goto out_free_vma;
    		if (anon_vma_clone(new_vma, vma))
    			goto out_free_mempol;
    		if (new_vma->vm_file)
    			get_file(new_vma->vm_file);
    		if (new_vma->vm_ops && new_vma->vm_ops->open)
    			new_vma->vm_ops->open(new_vma);
    		if (vma_link(mm, new_vma, prev))
    			goto out_vma_link;
    		*need_rmap_locks = false;
    	}
    	validate_mm_mt(mm);
    	return new_vma;
    
    out_vma_link:
    	if (new_vma->vm_ops && new_vma->vm_ops->close)
    		new_vma->vm_ops->close(new_vma);
    out_free_mempol:
    	mpol_put(vma_policy(new_vma));
    out_free_vma:
    	vm_area_free(new_vma);
    out:
    	validate_mm_mt(mm);
    	return NULL;
    }
    
    /*
     * Return true if the calling process may expand its vm space by the passed
     * number of pages
     */
    bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
    {
    	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
    		return false;
    
    	if (is_data_mapping(flags) &&
    	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
    		/* Workaround for Valgrind */
    		if (rlimit(RLIMIT_DATA) == 0 &&
    		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
    			return true;
    
    		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
    			     current->comm, current->pid,
    			     (mm->data_vm + npages) << PAGE_SHIFT,
    			     rlimit(RLIMIT_DATA),
    			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
    
    		if (!ignore_rlimit_data)
    			return false;
    	}
    
    	return true;
    }
    
    void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
    {
    	WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
    
    	if (is_exec_mapping(flags))
    		mm->exec_vm += npages;
    	else if (is_stack_mapping(flags))
    		mm->stack_vm += npages;
    	else if (is_data_mapping(flags))
    		mm->data_vm += npages;
    }
    
    static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
    
    /*
     * Having a close hook prevents vma merging regardless of flags.
     */
    static void special_mapping_close(struct vm_area_struct *vma)
    {
    }
    
    static const char *special_mapping_name(struct vm_area_struct *vma)
    {
    	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
    }
    
    static int special_mapping_mremap(struct vm_area_struct *new_vma)
    {
    	struct vm_special_mapping *sm = new_vma->vm_private_data;
    
    	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
    		return -EFAULT;
    
    	if (sm->mremap)
    		return sm->mremap(sm, new_vma);
    
    	return 0;
    }
    
    static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
    {
    	/*
    	 * Forbid splitting special mappings - kernel has expectations over
    	 * the number of pages in mapping. Together with VM_DONTEXPAND
    	 * the size of vma should stay the same over the special mapping's
    	 * lifetime.
    	 */
    	return -EINVAL;
    }
    
    static const struct vm_operations_struct special_mapping_vmops = {
    	.close = special_mapping_close,
    	.fault = special_mapping_fault,
    	.mremap = special_mapping_mremap,
    	.name = special_mapping_name,
    	/* vDSO code relies that VVAR can't be accessed remotely */
    	.access = NULL,
    	.may_split = special_mapping_split,
    };
    
    static const struct vm_operations_struct legacy_special_mapping_vmops = {
    	.close = special_mapping_close,
    	.fault = special_mapping_fault,
    };
    
    static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
    {
    	struct vm_area_struct *vma = vmf->vma;
    	pgoff_t pgoff;
    	struct page **pages;
    
    	if (vma->vm_ops == &legacy_special_mapping_vmops) {
    		pages = vma->vm_private_data;
    	} else {
    		struct vm_special_mapping *sm = vma->vm_private_data;
    
    		if (sm->fault)
    			return sm->fault(sm, vmf->vma, vmf);
    
    		pages = sm->pages;
    	}
    
    	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
    		pgoff--;
    
    	if (*pages) {
    		struct page *page = *pages;
    		get_page(page);
    		vmf->page = page;
    		return 0;
    	}
    
    	return VM_FAULT_SIGBUS;
    }
    
    static struct vm_area_struct *__install_special_mapping(
    	struct mm_struct *mm,
    	unsigned long addr, unsigned long len,
    	unsigned long vm_flags, void *priv,
    	const struct vm_operations_struct *ops)
    {
    	int ret;
    	struct vm_area_struct *vma;
    
    	validate_mm_mt(mm);
    	vma = vm_area_alloc(mm);
    	if (unlikely(vma == NULL))
    		return ERR_PTR(-ENOMEM);
    
    	vma->vm_start = addr;
    	vma->vm_end = addr + len;
    
    	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
    	vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
    	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
    
    	vma->vm_ops = ops;
    	vma->vm_private_data = priv;
    
    	ret = insert_vm_struct(mm, vma);
    	if (ret)
    		goto out;
    
    	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
    
    	perf_event_mmap(vma);
    
    	validate_mm_mt(mm);
    	return vma;
    
    out:
    	vm_area_free(vma);
    	validate_mm_mt(mm);
    	return ERR_PTR(ret);
    }
    
    bool vma_is_special_mapping(const struct vm_area_struct *vma,
    	const struct vm_special_mapping *sm)
    {
    	return vma->vm_private_data == sm &&
    		(vma->vm_ops == &special_mapping_vmops ||
    		 vma->vm_ops == &legacy_special_mapping_vmops);
    }
    
    /*
     * Called with mm->mmap_lock held for writing.
     * Insert a new vma covering the given region, with the given flags.
     * Its pages are supplied by the given array of struct page *.
     * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
     * The region past the last page supplied will always produce SIGBUS.
     * The array pointer and the pages it points to are assumed to stay alive
     * for as long as this mapping might exist.
     */
    struct vm_area_struct *_install_special_mapping(
    	struct mm_struct *mm,
    	unsigned long addr, unsigned long len,
    	unsigned long vm_flags, const struct vm_special_mapping *spec)
    {
    	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
    					&special_mapping_vmops);
    }
    
    int install_special_mapping(struct mm_struct *mm,
    			    unsigned long addr, unsigned long len,
    			    unsigned long vm_flags, struct page **pages)
    {
    	struct vm_area_struct *vma = __install_special_mapping(
    		mm, addr, len, vm_flags, (void *)pages,
    		&legacy_special_mapping_vmops);
    
    	return PTR_ERR_OR_ZERO(vma);
    }
    
    static DEFINE_MUTEX(mm_all_locks_mutex);
    
    static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
    {
    	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
    		/*
    		 * The LSB of head.next can't change from under us
    		 * because we hold the mm_all_locks_mutex.
    		 */
    		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
    		/*
    		 * We can safely modify head.next after taking the
    		 * anon_vma->root->rwsem. If some other vma in this mm shares
    		 * the same anon_vma we won't take it again.
    		 *
    		 * No need of atomic instructions here, head.next
    		 * can't change from under us thanks to the
    		 * anon_vma->root->rwsem.
    		 */
    		if (__test_and_set_bit(0, (unsigned long *)
    				       &anon_vma->root->rb_root.rb_root.rb_node))
    			BUG();
    	}
    }
    
    static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
    {
    	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
    		/*
    		 * AS_MM_ALL_LOCKS can't change from under us because
    		 * we hold the mm_all_locks_mutex.
    		 *
    		 * Operations on ->flags have to be atomic because
    		 * even if AS_MM_ALL_LOCKS is stable thanks to the
    		 * mm_all_locks_mutex, there may be other cpus
    		 * changing other bitflags in parallel to us.
    		 */
    		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
    			BUG();
    		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
    	}
    }
    
    /*
     * This operation locks against the VM for all pte/vma/mm related
     * operations that could ever happen on a certain mm. This includes
     * vmtruncate, try_to_unmap, and all page faults.
     *
     * The caller must take the mmap_lock in write mode before calling
     * mm_take_all_locks(). The caller isn't allowed to release the
     * mmap_lock until mm_drop_all_locks() returns.
     *
     * mmap_lock in write mode is required in order to block all operations
     * that could modify pagetables and free pages without need of
     * altering the vma layout. It's also needed in write mode to avoid new
     * anon_vmas to be associated with existing vmas.
     *
     * A single task can't take more than one mm_take_all_locks() in a row
     * or it would deadlock.
     *
     * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
     * mapping->flags avoid to take the same lock twice, if more than one
     * vma in this mm is backed by the same anon_vma or address_space.
     *
     * We take locks in following order, accordingly to comment at beginning
     * of mm/rmap.c:
     *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
     *     hugetlb mapping);
     *   - all i_mmap_rwsem locks;
     *   - all anon_vma->rwseml
     *
     * We can take all locks within these types randomly because the VM code
     * doesn't nest them and we protected from parallel mm_take_all_locks() by
     * mm_all_locks_mutex.
     *
     * mm_take_all_locks() and mm_drop_all_locks are expensive operations
     * that may have to take thousand of locks.
     *
     * mm_take_all_locks() can fail if it's interrupted by signals.
     */
    int mm_take_all_locks(struct mm_struct *mm)
    {
    	struct vm_area_struct *vma;
    	struct anon_vma_chain *avc;
    
    	mmap_assert_write_locked(mm);
    
    	mutex_lock(&mm_all_locks_mutex);
    
    	for (vma = mm->mmap; vma; vma = vma->vm_next) {
    		if (signal_pending(current))
    			goto out_unlock;
    		if (vma->vm_file && vma->vm_file->f_mapping &&
    				is_vm_hugetlb_page(vma))
    			vm_lock_mapping(mm, vma->vm_file->f_mapping);
    	}
    
    	for (vma = mm->mmap; vma; vma = vma->vm_next) {
    		if (signal_pending(current))
    			goto out_unlock;
    		if (vma->vm_file && vma->vm_file->f_mapping &&
    				!is_vm_hugetlb_page(vma))
    			vm_lock_mapping(mm, vma->vm_file->f_mapping);
    	}
    
    	for (vma = mm->mmap; vma; vma = vma->vm_next) {
    		if (signal_pending(current))
    			goto out_unlock;
    		if (vma->anon_vma)
    			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
    				vm_lock_anon_vma(mm, avc->anon_vma);
    	}
    
    	return 0;
    
    out_unlock:
    	mm_drop_all_locks(mm);
    	return -EINTR;
    }
    
    static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
    {
    	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
    		/*
    		 * The LSB of head.next can't change to 0 from under
    		 * us because we hold the mm_all_locks_mutex.
    		 *
    		 * We must however clear the bitflag before unlocking
    		 * the vma so the users using the anon_vma->rb_root will
    		 * never see our bitflag.
    		 *
    		 * No need of atomic instructions here, head.next
    		 * can't change from under us until we release the
    		 * anon_vma->root->rwsem.
    		 */
    		if (!__test_and_clear_bit(0, (unsigned long *)
    					  &anon_vma->root->rb_root.rb_root.rb_node))
    			BUG();
    		anon_vma_unlock_write(anon_vma);
    	}
    }
    
    static void vm_unlock_mapping(struct address_space *mapping)
    {
    	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
    		/*
    		 * AS_MM_ALL_LOCKS can't change to 0 from under us
    		 * because we hold the mm_all_locks_mutex.
    		 */
    		i_mmap_unlock_write(mapping);
    		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
    					&mapping->flags))
    			BUG();
    	}
    }
    
    /*
     * The mmap_lock cannot be released by the caller until
     * mm_drop_all_locks() returns.
     */
    void mm_drop_all_locks(struct mm_struct *mm)
    {
    	struct vm_area_struct *vma;
    	struct anon_vma_chain *avc;
    
    	mmap_assert_write_locked(mm);
    	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
    
    	for (vma = mm->mmap; vma; vma = vma->vm_next) {
    		if (vma->anon_vma)
    			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
    				vm_unlock_anon_vma(avc->anon_vma);
    		if (vma->vm_file && vma->vm_file->f_mapping)
    			vm_unlock_mapping(vma->vm_file->f_mapping);
    	}
    
    	mutex_unlock(&mm_all_locks_mutex);
    }
    
    /*
     * initialise the percpu counter for VM
     */
    void __init mmap_init(void)
    {
    	int ret;
    
    	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
    	VM_BUG_ON(ret);
    }
    
    /*
     * Initialise sysctl_user_reserve_kbytes.
     *
     * This is intended to prevent a user from starting a single memory hogging
     * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
     * mode.
     *
     * The default value is min(3% of free memory, 128MB)
     * 128MB is enough to recover with sshd/login, bash, and top/kill.
     */
    static int init_user_reserve(void)
    {
    	unsigned long free_kbytes;
    
    	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
    
    	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
    	return 0;
    }
    subsys_initcall(init_user_reserve);
    
    /*
     * Initialise sysctl_admin_reserve_kbytes.
     *
     * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
     * to log in and kill a memory hogging process.
     *
     * Systems with more than 256MB will reserve 8MB, enough to recover
     * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
     * only reserve 3% of free pages by default.
     */
    static int init_admin_reserve(void)
    {
    	unsigned long free_kbytes;
    
    	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
    
    	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
    	return 0;
    }
    subsys_initcall(init_admin_reserve);
    
    /*
     * Reinititalise user and admin reserves if memory is added or removed.
     *
     * The default user reserve max is 128MB, and the default max for the
     * admin reserve is 8MB. These are usually, but not always, enough to
     * enable recovery from a memory hogging process using login/sshd, a shell,
     * and tools like top. It may make sense to increase or even disable the
     * reserve depending on the existence of swap or variations in the recovery
     * tools. So, the admin may have changed them.
     *
     * If memory is added and the reserves have been eliminated or increased above
     * the default max, then we'll trust the admin.
     *
     * If memory is removed and there isn't enough free memory, then we
     * need to reset the reserves.
     *
     * Otherwise keep the reserve set by the admin.
     */
    static int reserve_mem_notifier(struct notifier_block *nb,
    			     unsigned long action, void *data)
    {
    	unsigned long tmp, free_kbytes;
    
    	switch (action) {
    	case MEM_ONLINE:
    		/* Default max is 128MB. Leave alone if modified by operator. */
    		tmp = sysctl_user_reserve_kbytes;
    		if (0 < tmp && tmp < (1UL << 17))
    			init_user_reserve();
    
    		/* Default max is 8MB.  Leave alone if modified by operator. */
    		tmp = sysctl_admin_reserve_kbytes;
    		if (0 < tmp && tmp < (1UL << 13))
    			init_admin_reserve();
    
    		break;
    	case MEM_OFFLINE:
    		free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
    
    		if (sysctl_user_reserve_kbytes > free_kbytes) {
    			init_user_reserve();
    			pr_info("vm.user_reserve_kbytes reset to %lu\n",
    				sysctl_user_reserve_kbytes);
    		}
    
    		if (sysctl_admin_reserve_kbytes > free_kbytes) {
    			init_admin_reserve();
    			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
    				sysctl_admin_reserve_kbytes);
    		}
    		break;
    	default:
    		break;
    	}
    	return NOTIFY_OK;
    }
    
    static struct notifier_block reserve_mem_nb = {
    	.notifier_call = reserve_mem_notifier,
    };
    
    static int __meminit init_reserve_notifier(void)
    {
    	if (register_hotmemory_notifier(&reserve_mem_nb))
    		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
    
    	return 0;
    }
    subsys_initcall(init_reserve_notifier);