Skip to content
Snippets Groups Projects
Select Git revision
  • acda655fefae352a48eec87c8f8487de1608a48b
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

nettest.c

Blame
  • block.c 89.08 KiB
    /*
     * Block driver for media (i.e., flash cards)
     *
     * Copyright 2002 Hewlett-Packard Company
     * Copyright 2005-2008 Pierre Ossman
     *
     * Use consistent with the GNU GPL is permitted,
     * provided that this copyright notice is
     * preserved in its entirety in all copies and derived works.
     *
     * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
     * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
     * FITNESS FOR ANY PARTICULAR PURPOSE.
     *
     * Many thanks to Alessandro Rubini and Jonathan Corbet!
     *
     * Author:  Andrew Christian
     *          28 May 2002
     */
    #include <linux/moduleparam.h>
    #include <linux/module.h>
    #include <linux/init.h>
    
    #include <linux/kernel.h>
    #include <linux/fs.h>
    #include <linux/slab.h>
    #include <linux/errno.h>
    #include <linux/hdreg.h>
    #include <linux/kdev_t.h>
    #include <linux/blkdev.h>
    #include <linux/cdev.h>
    #include <linux/mutex.h>
    #include <linux/scatterlist.h>
    #include <linux/string_helpers.h>
    #include <linux/delay.h>
    #include <linux/capability.h>
    #include <linux/compat.h>
    #include <linux/pm_runtime.h>
    #include <linux/idr.h>
    #include <linux/debugfs.h>
    
    #include <linux/mmc/ioctl.h>
    #include <linux/mmc/card.h>
    #include <linux/mmc/host.h>
    #include <linux/mmc/mmc.h>
    #include <linux/mmc/sd.h>
    
    #include <linux/uaccess.h>
    
    #include "queue.h"
    #include "block.h"
    #include "core.h"
    #include "card.h"
    #include "host.h"
    #include "bus.h"
    #include "mmc_ops.h"
    #include "quirks.h"
    #include "sd_ops.h"
    
    MODULE_ALIAS("mmc:block");
    #ifdef MODULE_PARAM_PREFIX
    #undef MODULE_PARAM_PREFIX
    #endif
    #define MODULE_PARAM_PREFIX "mmcblk."
    
    #define MMC_BLK_TIMEOUT_MS  (10 * 60 * 1000)        /* 10 minute timeout */
    #define MMC_SANITIZE_REQ_TIMEOUT 240000
    #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
    
    #define mmc_req_rel_wr(req)	((req->cmd_flags & REQ_FUA) && \
    				  (rq_data_dir(req) == WRITE))
    static DEFINE_MUTEX(block_mutex);
    
    /*
     * The defaults come from config options but can be overriden by module
     * or bootarg options.
     */
    static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
    
    /*
     * We've only got one major, so number of mmcblk devices is
     * limited to (1 << 20) / number of minors per device.  It is also
     * limited by the MAX_DEVICES below.
     */
    static int max_devices;
    
    #define MAX_DEVICES 256
    
    static DEFINE_IDA(mmc_blk_ida);
    static DEFINE_IDA(mmc_rpmb_ida);
    
    /*
     * There is one mmc_blk_data per slot.
     */
    struct mmc_blk_data {
    	spinlock_t	lock;
    	struct device	*parent;
    	struct gendisk	*disk;
    	struct mmc_queue queue;
    	struct list_head part;
    	struct list_head rpmbs;
    
    	unsigned int	flags;
    #define MMC_BLK_CMD23	(1 << 0)	/* Can do SET_BLOCK_COUNT for multiblock */
    #define MMC_BLK_REL_WR	(1 << 1)	/* MMC Reliable write support */
    
    	unsigned int	usage;
    	unsigned int	read_only;
    	unsigned int	part_type;
    	unsigned int	reset_done;
    #define MMC_BLK_READ		BIT(0)
    #define MMC_BLK_WRITE		BIT(1)
    #define MMC_BLK_DISCARD		BIT(2)
    #define MMC_BLK_SECDISCARD	BIT(3)
    #define MMC_BLK_CQE_RECOVERY	BIT(4)
    
    	/*
    	 * Only set in main mmc_blk_data associated
    	 * with mmc_card with dev_set_drvdata, and keeps
    	 * track of the current selected device partition.
    	 */
    	unsigned int	part_curr;
    	struct device_attribute force_ro;
    	struct device_attribute power_ro_lock;
    	int	area_type;
    
    	/* debugfs files (only in main mmc_blk_data) */
    	struct dentry *status_dentry;
    	struct dentry *ext_csd_dentry;
    };
    
    /* Device type for RPMB character devices */
    static dev_t mmc_rpmb_devt;
    
    /* Bus type for RPMB character devices */
    static struct bus_type mmc_rpmb_bus_type = {
    	.name = "mmc_rpmb",
    };
    
    /**
     * struct mmc_rpmb_data - special RPMB device type for these areas
     * @dev: the device for the RPMB area
     * @chrdev: character device for the RPMB area
     * @id: unique device ID number
     * @part_index: partition index (0 on first)
     * @md: parent MMC block device
     * @node: list item, so we can put this device on a list
     */
    struct mmc_rpmb_data {
    	struct device dev;
    	struct cdev chrdev;
    	int id;
    	unsigned int part_index;
    	struct mmc_blk_data *md;
    	struct list_head node;
    };
    
    static DEFINE_MUTEX(open_lock);
    
    module_param(perdev_minors, int, 0444);
    MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
    
    static inline int mmc_blk_part_switch(struct mmc_card *card,
    				      unsigned int part_type);
    
    static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
    {
    	struct mmc_blk_data *md;
    
    	mutex_lock(&open_lock);
    	md = disk->private_data;
    	if (md && md->usage == 0)
    		md = NULL;
    	if (md)
    		md->usage++;
    	mutex_unlock(&open_lock);
    
    	return md;
    }
    
    static inline int mmc_get_devidx(struct gendisk *disk)
    {
    	int devidx = disk->first_minor / perdev_minors;
    	return devidx;
    }
    
    static void mmc_blk_put(struct mmc_blk_data *md)
    {
    	mutex_lock(&open_lock);
    	md->usage--;
    	if (md->usage == 0) {
    		int devidx = mmc_get_devidx(md->disk);
    		blk_put_queue(md->queue.queue);
    		ida_simple_remove(&mmc_blk_ida, devidx);
    		put_disk(md->disk);
    		kfree(md);
    	}
    	mutex_unlock(&open_lock);
    }
    
    static ssize_t power_ro_lock_show(struct device *dev,
    		struct device_attribute *attr, char *buf)
    {
    	int ret;
    	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
    	struct mmc_card *card = md->queue.card;
    	int locked = 0;
    
    	if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
    		locked = 2;
    	else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
    		locked = 1;
    
    	ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
    
    	mmc_blk_put(md);
    
    	return ret;
    }
    
    static ssize_t power_ro_lock_store(struct device *dev,
    		struct device_attribute *attr, const char *buf, size_t count)
    {
    	int ret;
    	struct mmc_blk_data *md, *part_md;
    	struct mmc_queue *mq;
    	struct request *req;
    	unsigned long set;
    
    	if (kstrtoul(buf, 0, &set))
    		return -EINVAL;
    
    	if (set != 1)
    		return count;
    
    	md = mmc_blk_get(dev_to_disk(dev));
    	mq = &md->queue;
    
    	/* Dispatch locking to the block layer */
    	req = blk_get_request(mq->queue, REQ_OP_DRV_OUT, __GFP_RECLAIM);
    	if (IS_ERR(req)) {
    		count = PTR_ERR(req);
    		goto out_put;
    	}
    	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
    	blk_execute_rq(mq->queue, NULL, req, 0);
    	ret = req_to_mmc_queue_req(req)->drv_op_result;
    	blk_put_request(req);
    
    	if (!ret) {
    		pr_info("%s: Locking boot partition ro until next power on\n",
    			md->disk->disk_name);
    		set_disk_ro(md->disk, 1);
    
    		list_for_each_entry(part_md, &md->part, part)
    			if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
    				pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
    				set_disk_ro(part_md->disk, 1);
    			}
    	}
    out_put:
    	mmc_blk_put(md);
    	return count;
    }
    
    static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
    			     char *buf)
    {
    	int ret;
    	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
    
    	ret = snprintf(buf, PAGE_SIZE, "%d\n",
    		       get_disk_ro(dev_to_disk(dev)) ^
    		       md->read_only);
    	mmc_blk_put(md);
    	return ret;
    }
    
    static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
    			      const char *buf, size_t count)
    {
    	int ret;
    	char *end;
    	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
    	unsigned long set = simple_strtoul(buf, &end, 0);
    	if (end == buf) {
    		ret = -EINVAL;
    		goto out;
    	}
    
    	set_disk_ro(dev_to_disk(dev), set || md->read_only);
    	ret = count;
    out:
    	mmc_blk_put(md);
    	return ret;
    }
    
    static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
    {
    	struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
    	int ret = -ENXIO;
    
    	mutex_lock(&block_mutex);
    	if (md) {
    		if (md->usage == 2)
    			check_disk_change(bdev);
    		ret = 0;
    
    		if ((mode & FMODE_WRITE) && md->read_only) {
    			mmc_blk_put(md);
    			ret = -EROFS;
    		}
    	}
    	mutex_unlock(&block_mutex);
    
    	return ret;
    }
    
    static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
    {
    	struct mmc_blk_data *md = disk->private_data;
    
    	mutex_lock(&block_mutex);
    	mmc_blk_put(md);
    	mutex_unlock(&block_mutex);
    }
    
    static int
    mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
    {
    	geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
    	geo->heads = 4;
    	geo->sectors = 16;
    	return 0;
    }
    
    struct mmc_blk_ioc_data {
    	struct mmc_ioc_cmd ic;
    	unsigned char *buf;
    	u64 buf_bytes;
    	struct mmc_rpmb_data *rpmb;
    };
    
    static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
    	struct mmc_ioc_cmd __user *user)
    {
    	struct mmc_blk_ioc_data *idata;
    	int err;
    
    	idata = kmalloc(sizeof(*idata), GFP_KERNEL);
    	if (!idata) {
    		err = -ENOMEM;
    		goto out;
    	}
    
    	if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
    		err = -EFAULT;
    		goto idata_err;
    	}
    
    	idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
    	if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
    		err = -EOVERFLOW;
    		goto idata_err;
    	}
    
    	if (!idata->buf_bytes) {
    		idata->buf = NULL;
    		return idata;
    	}
    
    	idata->buf = kmalloc(idata->buf_bytes, GFP_KERNEL);
    	if (!idata->buf) {
    		err = -ENOMEM;
    		goto idata_err;
    	}
    
    	if (copy_from_user(idata->buf, (void __user *)(unsigned long)
    					idata->ic.data_ptr, idata->buf_bytes)) {
    		err = -EFAULT;
    		goto copy_err;
    	}
    
    	return idata;
    
    copy_err:
    	kfree(idata->buf);
    idata_err:
    	kfree(idata);
    out:
    	return ERR_PTR(err);
    }
    
    static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
    				      struct mmc_blk_ioc_data *idata)
    {
    	struct mmc_ioc_cmd *ic = &idata->ic;
    
    	if (copy_to_user(&(ic_ptr->response), ic->response,
    			 sizeof(ic->response)))
    		return -EFAULT;
    
    	if (!idata->ic.write_flag) {
    		if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
    				 idata->buf, idata->buf_bytes))
    			return -EFAULT;
    	}
    
    	return 0;
    }
    
    static int ioctl_rpmb_card_status_poll(struct mmc_card *card, u32 *status,
    				       u32 retries_max)
    {
    	int err;
    	u32 retry_count = 0;
    
    	if (!status || !retries_max)
    		return -EINVAL;
    
    	do {
    		err = __mmc_send_status(card, status, 5);
    		if (err)
    			break;
    
    		if (!R1_STATUS(*status) &&
    				(R1_CURRENT_STATE(*status) != R1_STATE_PRG))
    			break; /* RPMB programming operation complete */
    
    		/*
    		 * Rechedule to give the MMC device a chance to continue
    		 * processing the previous command without being polled too
    		 * frequently.
    		 */
    		usleep_range(1000, 5000);
    	} while (++retry_count < retries_max);
    
    	if (retry_count == retries_max)
    		err = -EPERM;
    
    	return err;
    }
    
    static int ioctl_do_sanitize(struct mmc_card *card)
    {
    	int err;
    
    	if (!mmc_can_sanitize(card)) {
    			pr_warn("%s: %s - SANITIZE is not supported\n",
    				mmc_hostname(card->host), __func__);
    			err = -EOPNOTSUPP;
    			goto out;
    	}
    
    	pr_debug("%s: %s - SANITIZE IN PROGRESS...\n",
    		mmc_hostname(card->host), __func__);
    
    	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
    					EXT_CSD_SANITIZE_START, 1,
    					MMC_SANITIZE_REQ_TIMEOUT);
    
    	if (err)
    		pr_err("%s: %s - EXT_CSD_SANITIZE_START failed. err=%d\n",
    		       mmc_hostname(card->host), __func__, err);
    
    	pr_debug("%s: %s - SANITIZE COMPLETED\n", mmc_hostname(card->host),
    					     __func__);
    out:
    	return err;
    }
    
    static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
    			       struct mmc_blk_ioc_data *idata)
    {
    	struct mmc_command cmd = {};
    	struct mmc_data data = {};
    	struct mmc_request mrq = {};
    	struct scatterlist sg;
    	int err;
    	unsigned int target_part;
    	u32 status = 0;
    
    	if (!card || !md || !idata)
    		return -EINVAL;
    
    	/*
    	 * The RPMB accesses comes in from the character device, so we
    	 * need to target these explicitly. Else we just target the
    	 * partition type for the block device the ioctl() was issued
    	 * on.
    	 */
    	if (idata->rpmb) {
    		/* Support multiple RPMB partitions */
    		target_part = idata->rpmb->part_index;
    		target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
    	} else {
    		target_part = md->part_type;
    	}
    
    	cmd.opcode = idata->ic.opcode;
    	cmd.arg = idata->ic.arg;
    	cmd.flags = idata->ic.flags;
    
    	if (idata->buf_bytes) {
    		data.sg = &sg;
    		data.sg_len = 1;
    		data.blksz = idata->ic.blksz;
    		data.blocks = idata->ic.blocks;
    
    		sg_init_one(data.sg, idata->buf, idata->buf_bytes);
    
    		if (idata->ic.write_flag)
    			data.flags = MMC_DATA_WRITE;
    		else
    			data.flags = MMC_DATA_READ;
    
    		/* data.flags must already be set before doing this. */
    		mmc_set_data_timeout(&data, card);
    
    		/* Allow overriding the timeout_ns for empirical tuning. */
    		if (idata->ic.data_timeout_ns)
    			data.timeout_ns = idata->ic.data_timeout_ns;
    
    		if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
    			/*
    			 * Pretend this is a data transfer and rely on the
    			 * host driver to compute timeout.  When all host
    			 * drivers support cmd.cmd_timeout for R1B, this
    			 * can be changed to:
    			 *
    			 *     mrq.data = NULL;
    			 *     cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
    			 */
    			data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
    		}
    
    		mrq.data = &data;
    	}
    
    	mrq.cmd = &cmd;
    
    	err = mmc_blk_part_switch(card, target_part);
    	if (err)
    		return err;
    
    	if (idata->ic.is_acmd) {
    		err = mmc_app_cmd(card->host, card);
    		if (err)
    			return err;
    	}
    
    	if (idata->rpmb) {
    		err = mmc_set_blockcount(card, data.blocks,
    			idata->ic.write_flag & (1 << 31));
    		if (err)
    			return err;
    	}
    
    	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
    	    (cmd.opcode == MMC_SWITCH)) {
    		err = ioctl_do_sanitize(card);
    
    		if (err)
    			pr_err("%s: ioctl_do_sanitize() failed. err = %d",
    			       __func__, err);
    
    		return err;
    	}
    
    	mmc_wait_for_req(card->host, &mrq);
    
    	if (cmd.error) {
    		dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
    						__func__, cmd.error);
    		return cmd.error;
    	}
    	if (data.error) {
    		dev_err(mmc_dev(card->host), "%s: data error %d\n",
    						__func__, data.error);
    		return data.error;
    	}
    
    	/*
    	 * According to the SD specs, some commands require a delay after
    	 * issuing the command.
    	 */
    	if (idata->ic.postsleep_min_us)
    		usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
    
    	memcpy(&(idata->ic.response), cmd.resp, sizeof(cmd.resp));
    
    	if (idata->rpmb) {
    		/*
    		 * Ensure RPMB command has completed by polling CMD13
    		 * "Send Status".
    		 */
    		err = ioctl_rpmb_card_status_poll(card, &status, 5);
    		if (err)
    			dev_err(mmc_dev(card->host),
    					"%s: Card Status=0x%08X, error %d\n",
    					__func__, status, err);
    	}
    
    	return err;
    }
    
    static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
    			     struct mmc_ioc_cmd __user *ic_ptr,
    			     struct mmc_rpmb_data *rpmb)
    {
    	struct mmc_blk_ioc_data *idata;
    	struct mmc_blk_ioc_data *idatas[1];
    	struct mmc_queue *mq;
    	struct mmc_card *card;
    	int err = 0, ioc_err = 0;
    	struct request *req;
    
    	idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
    	if (IS_ERR(idata))
    		return PTR_ERR(idata);
    	/* This will be NULL on non-RPMB ioctl():s */
    	idata->rpmb = rpmb;
    
    	card = md->queue.card;
    	if (IS_ERR(card)) {
    		err = PTR_ERR(card);
    		goto cmd_done;
    	}
    
    	/*
    	 * Dispatch the ioctl() into the block request queue.
    	 */
    	mq = &md->queue;
    	req = blk_get_request(mq->queue,
    		idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
    		__GFP_RECLAIM);
    	if (IS_ERR(req)) {
    		err = PTR_ERR(req);
    		goto cmd_done;
    	}
    	idatas[0] = idata;
    	req_to_mmc_queue_req(req)->drv_op =
    		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
    	req_to_mmc_queue_req(req)->drv_op_data = idatas;
    	req_to_mmc_queue_req(req)->ioc_count = 1;
    	blk_execute_rq(mq->queue, NULL, req, 0);
    	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
    	err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
    	blk_put_request(req);
    
    cmd_done:
    	kfree(idata->buf);
    	kfree(idata);
    	return ioc_err ? ioc_err : err;
    }
    
    static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
    				   struct mmc_ioc_multi_cmd __user *user,
    				   struct mmc_rpmb_data *rpmb)
    {
    	struct mmc_blk_ioc_data **idata = NULL;
    	struct mmc_ioc_cmd __user *cmds = user->cmds;
    	struct mmc_card *card;
    	struct mmc_queue *mq;
    	int i, err = 0, ioc_err = 0;
    	__u64 num_of_cmds;
    	struct request *req;
    
    	if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
    			   sizeof(num_of_cmds)))
    		return -EFAULT;
    
    	if (!num_of_cmds)
    		return 0;
    
    	if (num_of_cmds > MMC_IOC_MAX_CMDS)
    		return -EINVAL;
    
    	idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL);
    	if (!idata)
    		return -ENOMEM;
    
    	for (i = 0; i < num_of_cmds; i++) {
    		idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
    		if (IS_ERR(idata[i])) {
    			err = PTR_ERR(idata[i]);
    			num_of_cmds = i;
    			goto cmd_err;
    		}
    		/* This will be NULL on non-RPMB ioctl():s */
    		idata[i]->rpmb = rpmb;
    	}
    
    	card = md->queue.card;
    	if (IS_ERR(card)) {
    		err = PTR_ERR(card);
    		goto cmd_err;
    	}
    
    
    	/*
    	 * Dispatch the ioctl()s into the block request queue.
    	 */
    	mq = &md->queue;
    	req = blk_get_request(mq->queue,
    		idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
    		__GFP_RECLAIM);
    	if (IS_ERR(req)) {
    		err = PTR_ERR(req);
    		goto cmd_err;
    	}
    	req_to_mmc_queue_req(req)->drv_op =
    		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
    	req_to_mmc_queue_req(req)->drv_op_data = idata;
    	req_to_mmc_queue_req(req)->ioc_count = num_of_cmds;
    	blk_execute_rq(mq->queue, NULL, req, 0);
    	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
    
    	/* copy to user if data and response */
    	for (i = 0; i < num_of_cmds && !err; i++)
    		err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
    
    	blk_put_request(req);
    
    cmd_err:
    	for (i = 0; i < num_of_cmds; i++) {
    		kfree(idata[i]->buf);
    		kfree(idata[i]);
    	}
    	kfree(idata);
    	return ioc_err ? ioc_err : err;
    }
    
    static int mmc_blk_check_blkdev(struct block_device *bdev)
    {
    	/*
    	 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
    	 * whole block device, not on a partition.  This prevents overspray
    	 * between sibling partitions.
    	 */
    	if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
    		return -EPERM;
    	return 0;
    }
    
    static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
    	unsigned int cmd, unsigned long arg)
    {
    	struct mmc_blk_data *md;
    	int ret;
    
    	switch (cmd) {
    	case MMC_IOC_CMD:
    		ret = mmc_blk_check_blkdev(bdev);
    		if (ret)
    			return ret;
    		md = mmc_blk_get(bdev->bd_disk);
    		if (!md)
    			return -EINVAL;
    		ret = mmc_blk_ioctl_cmd(md,
    					(struct mmc_ioc_cmd __user *)arg,
    					NULL);
    		mmc_blk_put(md);
    		return ret;
    	case MMC_IOC_MULTI_CMD:
    		ret = mmc_blk_check_blkdev(bdev);
    		if (ret)
    			return ret;
    		md = mmc_blk_get(bdev->bd_disk);
    		if (!md)
    			return -EINVAL;
    		ret = mmc_blk_ioctl_multi_cmd(md,
    					(struct mmc_ioc_multi_cmd __user *)arg,
    					NULL);
    		mmc_blk_put(md);
    		return ret;
    	default:
    		return -EINVAL;
    	}
    }
    
    #ifdef CONFIG_COMPAT
    static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
    	unsigned int cmd, unsigned long arg)
    {
    	return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
    }
    #endif
    
    static const struct block_device_operations mmc_bdops = {
    	.open			= mmc_blk_open,
    	.release		= mmc_blk_release,
    	.getgeo			= mmc_blk_getgeo,
    	.owner			= THIS_MODULE,
    	.ioctl			= mmc_blk_ioctl,
    #ifdef CONFIG_COMPAT
    	.compat_ioctl		= mmc_blk_compat_ioctl,
    #endif
    };
    
    static int mmc_blk_part_switch_pre(struct mmc_card *card,
    				   unsigned int part_type)
    {
    	int ret = 0;
    
    	if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
    		if (card->ext_csd.cmdq_en) {
    			ret = mmc_cmdq_disable(card);
    			if (ret)
    				return ret;
    		}
    		mmc_retune_pause(card->host);
    	}
    
    	return ret;
    }
    
    static int mmc_blk_part_switch_post(struct mmc_card *card,
    				    unsigned int part_type)
    {
    	int ret = 0;
    
    	if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
    		mmc_retune_unpause(card->host);
    		if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
    			ret = mmc_cmdq_enable(card);
    	}
    
    	return ret;
    }
    
    static inline int mmc_blk_part_switch(struct mmc_card *card,
    				      unsigned int part_type)
    {
    	int ret = 0;
    	struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
    
    	if (main_md->part_curr == part_type)
    		return 0;
    
    	if (mmc_card_mmc(card)) {
    		u8 part_config = card->ext_csd.part_config;
    
    		ret = mmc_blk_part_switch_pre(card, part_type);
    		if (ret)
    			return ret;
    
    		part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
    		part_config |= part_type;
    
    		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
    				 EXT_CSD_PART_CONFIG, part_config,
    				 card->ext_csd.part_time);
    		if (ret) {
    			mmc_blk_part_switch_post(card, part_type);
    			return ret;
    		}
    
    		card->ext_csd.part_config = part_config;
    
    		ret = mmc_blk_part_switch_post(card, main_md->part_curr);
    	}
    
    	main_md->part_curr = part_type;
    	return ret;
    }
    
    static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
    {
    	int err;
    	u32 result;
    	__be32 *blocks;
    
    	struct mmc_request mrq = {};
    	struct mmc_command cmd = {};
    	struct mmc_data data = {};
    
    	struct scatterlist sg;
    
    	cmd.opcode = MMC_APP_CMD;
    	cmd.arg = card->rca << 16;
    	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
    
    	err = mmc_wait_for_cmd(card->host, &cmd, 0);
    	if (err)
    		return err;
    	if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
    		return -EIO;
    
    	memset(&cmd, 0, sizeof(struct mmc_command));
    
    	cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
    	cmd.arg = 0;
    	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
    
    	data.blksz = 4;
    	data.blocks = 1;
    	data.flags = MMC_DATA_READ;
    	data.sg = &sg;
    	data.sg_len = 1;
    	mmc_set_data_timeout(&data, card);
    
    	mrq.cmd = &cmd;
    	mrq.data = &data;
    
    	blocks = kmalloc(4, GFP_KERNEL);
    	if (!blocks)
    		return -ENOMEM;
    
    	sg_init_one(&sg, blocks, 4);
    
    	mmc_wait_for_req(card->host, &mrq);
    
    	result = ntohl(*blocks);
    	kfree(blocks);
    
    	if (cmd.error || data.error)
    		return -EIO;
    
    	*written_blocks = result;
    
    	return 0;
    }
    
    static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms,
    		bool hw_busy_detect, struct request *req, bool *gen_err)
    {
    	unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
    	int err = 0;
    	u32 status;
    
    	do {
    		err = __mmc_send_status(card, &status, 5);
    		if (err) {
    			pr_err("%s: error %d requesting status\n",
    			       req->rq_disk->disk_name, err);
    			return err;
    		}
    
    		if (status & R1_ERROR) {
    			pr_err("%s: %s: error sending status cmd, status %#x\n",
    				req->rq_disk->disk_name, __func__, status);
    			*gen_err = true;
    		}
    
    		/* We may rely on the host hw to handle busy detection.*/
    		if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) &&
    			hw_busy_detect)
    			break;
    
    		/*
    		 * Timeout if the device never becomes ready for data and never
    		 * leaves the program state.
    		 */
    		if (time_after(jiffies, timeout)) {
    			pr_err("%s: Card stuck in programming state! %s %s\n",
    				mmc_hostname(card->host),
    				req->rq_disk->disk_name, __func__);
    			return -ETIMEDOUT;
    		}
    
    		/*
    		 * Some cards mishandle the status bits,
    		 * so make sure to check both the busy
    		 * indication and the card state.
    		 */
    	} while (!(status & R1_READY_FOR_DATA) ||
    		 (R1_CURRENT_STATE(status) == R1_STATE_PRG));
    
    	return err;
    }
    
    static int send_stop(struct mmc_card *card, unsigned int timeout_ms,
    		struct request *req, bool *gen_err, u32 *stop_status)
    {
    	struct mmc_host *host = card->host;
    	struct mmc_command cmd = {};
    	int err;
    	bool use_r1b_resp = rq_data_dir(req) == WRITE;
    
    	/*
    	 * Normally we use R1B responses for WRITE, but in cases where the host
    	 * has specified a max_busy_timeout we need to validate it. A failure
    	 * means we need to prevent the host from doing hw busy detection, which
    	 * is done by converting to a R1 response instead.
    	 */
    	if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout))
    		use_r1b_resp = false;
    
    	cmd.opcode = MMC_STOP_TRANSMISSION;
    	if (use_r1b_resp) {
    		cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
    		cmd.busy_timeout = timeout_ms;
    	} else {
    		cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
    	}
    
    	err = mmc_wait_for_cmd(host, &cmd, 5);
    	if (err)
    		return err;
    
    	*stop_status = cmd.resp[0];
    
    	/* No need to check card status in case of READ. */
    	if (rq_data_dir(req) == READ)
    		return 0;
    
    	if (!mmc_host_is_spi(host) &&
    		(*stop_status & R1_ERROR)) {
    		pr_err("%s: %s: general error sending stop command, resp %#x\n",
    			req->rq_disk->disk_name, __func__, *stop_status);
    		*gen_err = true;
    	}
    
    	return card_busy_detect(card, timeout_ms, use_r1b_resp, req, gen_err);
    }
    
    #define ERR_NOMEDIUM	3
    #define ERR_RETRY	2
    #define ERR_ABORT	1
    #define ERR_CONTINUE	0
    
    static int mmc_blk_cmd_error(struct request *req, const char *name, int error,
    	bool status_valid, u32 status)
    {
    	switch (error) {
    	case -EILSEQ:
    		/* response crc error, retry the r/w cmd */
    		pr_err("%s: %s sending %s command, card status %#x\n",
    			req->rq_disk->disk_name, "response CRC error",
    			name, status);
    		return ERR_RETRY;
    
    	case -ETIMEDOUT:
    		pr_err("%s: %s sending %s command, card status %#x\n",
    			req->rq_disk->disk_name, "timed out", name, status);
    
    		/* If the status cmd initially failed, retry the r/w cmd */
    		if (!status_valid) {
    			pr_err("%s: status not valid, retrying timeout\n",
    				req->rq_disk->disk_name);
    			return ERR_RETRY;
    		}
    
    		/*
    		 * If it was a r/w cmd crc error, or illegal command
    		 * (eg, issued in wrong state) then retry - we should
    		 * have corrected the state problem above.
    		 */
    		if (status & (R1_COM_CRC_ERROR | R1_ILLEGAL_COMMAND)) {
    			pr_err("%s: command error, retrying timeout\n",
    				req->rq_disk->disk_name);
    			return ERR_RETRY;
    		}
    
    		/* Otherwise abort the command */
    		return ERR_ABORT;
    
    	default:
    		/* We don't understand the error code the driver gave us */
    		pr_err("%s: unknown error %d sending read/write command, card status %#x\n",
    		       req->rq_disk->disk_name, error, status);
    		return ERR_ABORT;
    	}
    }
    
    /*
     * Initial r/w and stop cmd error recovery.
     * We don't know whether the card received the r/w cmd or not, so try to
     * restore things back to a sane state.  Essentially, we do this as follows:
     * - Obtain card status.  If the first attempt to obtain card status fails,
     *   the status word will reflect the failed status cmd, not the failed
     *   r/w cmd.  If we fail to obtain card status, it suggests we can no
     *   longer communicate with the card.
     * - Check the card state.  If the card received the cmd but there was a
     *   transient problem with the response, it might still be in a data transfer
     *   mode.  Try to send it a stop command.  If this fails, we can't recover.
     * - If the r/w cmd failed due to a response CRC error, it was probably
     *   transient, so retry the cmd.
     * - If the r/w cmd timed out, but we didn't get the r/w cmd status, retry.
     * - If the r/w cmd timed out, and the r/w cmd failed due to CRC error or
     *   illegal cmd, retry.
     * Otherwise we don't understand what happened, so abort.
     */
    static int mmc_blk_cmd_recovery(struct mmc_card *card, struct request *req,
    	struct mmc_blk_request *brq, bool *ecc_err, bool *gen_err)
    {
    	bool prev_cmd_status_valid = true;
    	u32 status, stop_status = 0;
    	int err, retry;
    
    	if (mmc_card_removed(card))
    		return ERR_NOMEDIUM;
    
    	/*
    	 * Try to get card status which indicates both the card state
    	 * and why there was no response.  If the first attempt fails,
    	 * we can't be sure the returned status is for the r/w command.
    	 */
    	for (retry = 2; retry >= 0; retry--) {
    		err = __mmc_send_status(card, &status, 0);
    		if (!err)
    			break;
    
    		/* Re-tune if needed */
    		mmc_retune_recheck(card->host);
    
    		prev_cmd_status_valid = false;
    		pr_err("%s: error %d sending status command, %sing\n",
    		       req->rq_disk->disk_name, err, retry ? "retry" : "abort");
    	}
    
    	/* We couldn't get a response from the card.  Give up. */
    	if (err) {
    		/* Check if the card is removed */
    		if (mmc_detect_card_removed(card->host))
    			return ERR_NOMEDIUM;
    		return ERR_ABORT;
    	}
    
    	/* Flag ECC errors */
    	if ((status & R1_CARD_ECC_FAILED) ||
    	    (brq->stop.resp[0] & R1_CARD_ECC_FAILED) ||
    	    (brq->cmd.resp[0] & R1_CARD_ECC_FAILED))
    		*ecc_err = true;
    
    	/* Flag General errors */
    	if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ)
    		if ((status & R1_ERROR) ||
    			(brq->stop.resp[0] & R1_ERROR)) {
    			pr_err("%s: %s: general error sending stop or status command, stop cmd response %#x, card status %#x\n",
    			       req->rq_disk->disk_name, __func__,
    			       brq->stop.resp[0], status);
    			*gen_err = true;
    		}
    
    	/*
    	 * Check the current card state.  If it is in some data transfer
    	 * mode, tell it to stop (and hopefully transition back to TRAN.)
    	 */
    	if (R1_CURRENT_STATE(status) == R1_STATE_DATA ||
    	    R1_CURRENT_STATE(status) == R1_STATE_RCV) {
    		err = send_stop(card,
    			DIV_ROUND_UP(brq->data.timeout_ns, 1000000),
    			req, gen_err, &stop_status);
    		if (err) {
    			pr_err("%s: error %d sending stop command\n",
    			       req->rq_disk->disk_name, err);
    			/*
    			 * If the stop cmd also timed out, the card is probably
    			 * not present, so abort. Other errors are bad news too.
    			 */
    			return ERR_ABORT;
    		}
    
    		if (stop_status & R1_CARD_ECC_FAILED)
    			*ecc_err = true;
    	}
    
    	/* Check for set block count errors */
    	if (brq->sbc.error)
    		return mmc_blk_cmd_error(req, "SET_BLOCK_COUNT", brq->sbc.error,
    				prev_cmd_status_valid, status);
    
    	/* Check for r/w command errors */
    	if (brq->cmd.error)
    		return mmc_blk_cmd_error(req, "r/w cmd", brq->cmd.error,
    				prev_cmd_status_valid, status);
    
    	/* Data errors */
    	if (!brq->stop.error)
    		return ERR_CONTINUE;
    
    	/* Now for stop errors.  These aren't fatal to the transfer. */
    	pr_info("%s: error %d sending stop command, original cmd response %#x, card status %#x\n",
    	       req->rq_disk->disk_name, brq->stop.error,
    	       brq->cmd.resp[0], status);
    
    	/*
    	 * Subsitute in our own stop status as this will give the error
    	 * state which happened during the execution of the r/w command.
    	 */
    	if (stop_status) {
    		brq->stop.resp[0] = stop_status;
    		brq->stop.error = 0;
    	}
    	return ERR_CONTINUE;
    }
    
    static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
    			 int type)
    {
    	int err;
    
    	if (md->reset_done & type)
    		return -EEXIST;
    
    	md->reset_done |= type;
    	err = mmc_hw_reset(host);
    	/* Ensure we switch back to the correct partition */
    	if (err != -EOPNOTSUPP) {
    		struct mmc_blk_data *main_md =
    			dev_get_drvdata(&host->card->dev);
    		int part_err;
    
    		main_md->part_curr = main_md->part_type;
    		part_err = mmc_blk_part_switch(host->card, md->part_type);
    		if (part_err) {
    			/*
    			 * We have failed to get back into the correct
    			 * partition, so we need to abort the whole request.
    			 */
    			return -ENODEV;
    		}
    	}
    	return err;
    }
    
    static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
    {
    	md->reset_done &= ~type;
    }
    
    static void mmc_blk_end_request(struct request *req, blk_status_t error)
    {
    	if (req->mq_ctx)
    		blk_mq_end_request(req, error);
    	else
    		blk_end_request_all(req, error);
    }
    
    /*
     * The non-block commands come back from the block layer after it queued it and
     * processed it with all other requests and then they get issued in this
     * function.
     */
    static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
    {
    	struct mmc_queue_req *mq_rq;
    	struct mmc_card *card = mq->card;
    	struct mmc_blk_data *md = mq->blkdata;
    	struct mmc_blk_ioc_data **idata;
    	bool rpmb_ioctl;
    	u8 **ext_csd;
    	u32 status;
    	int ret;
    	int i;
    
    	mq_rq = req_to_mmc_queue_req(req);
    	rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
    
    	switch (mq_rq->drv_op) {
    	case MMC_DRV_OP_IOCTL:
    	case MMC_DRV_OP_IOCTL_RPMB:
    		idata = mq_rq->drv_op_data;
    		for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
    			ret = __mmc_blk_ioctl_cmd(card, md, idata[i]);
    			if (ret)
    				break;
    		}
    		/* Always switch back to main area after RPMB access */
    		if (rpmb_ioctl)
    			mmc_blk_part_switch(card, 0);
    		break;
    	case MMC_DRV_OP_BOOT_WP:
    		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
    				 card->ext_csd.boot_ro_lock |
    				 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
    				 card->ext_csd.part_time);
    		if (ret)
    			pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
    			       md->disk->disk_name, ret);
    		else
    			card->ext_csd.boot_ro_lock |=
    				EXT_CSD_BOOT_WP_B_PWR_WP_EN;
    		break;
    	case MMC_DRV_OP_GET_CARD_STATUS:
    		ret = mmc_send_status(card, &status);
    		if (!ret)
    			ret = status;
    		break;
    	case MMC_DRV_OP_GET_EXT_CSD:
    		ext_csd = mq_rq->drv_op_data;
    		ret = mmc_get_ext_csd(card, ext_csd);
    		break;
    	default:
    		pr_err("%s: unknown driver specific operation\n",
    		       md->disk->disk_name);
    		ret = -EINVAL;
    		break;
    	}
    	mq_rq->drv_op_result = ret;
    	mmc_blk_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
    }
    
    static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
    {
    	struct mmc_blk_data *md = mq->blkdata;
    	struct mmc_card *card = md->queue.card;
    	unsigned int from, nr, arg;
    	int err = 0, type = MMC_BLK_DISCARD;
    	blk_status_t status = BLK_STS_OK;
    
    	if (!mmc_can_erase(card)) {
    		status = BLK_STS_NOTSUPP;
    		goto fail;
    	}
    
    	from = blk_rq_pos(req);
    	nr = blk_rq_sectors(req);
    
    	if (mmc_can_discard(card))
    		arg = MMC_DISCARD_ARG;
    	else if (mmc_can_trim(card))
    		arg = MMC_TRIM_ARG;
    	else
    		arg = MMC_ERASE_ARG;
    	do {
    		err = 0;
    		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
    			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
    					 INAND_CMD38_ARG_EXT_CSD,
    					 arg == MMC_TRIM_ARG ?
    					 INAND_CMD38_ARG_TRIM :
    					 INAND_CMD38_ARG_ERASE,
    					 0);
    		}
    		if (!err)
    			err = mmc_erase(card, from, nr, arg);
    	} while (err == -EIO && !mmc_blk_reset(md, card->host, type));
    	if (err)
    		status = BLK_STS_IOERR;
    	else
    		mmc_blk_reset_success(md, type);
    fail:
    	mmc_blk_end_request(req, status);
    }
    
    static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
    				       struct request *req)
    {
    	struct mmc_blk_data *md = mq->blkdata;
    	struct mmc_card *card = md->queue.card;
    	unsigned int from, nr, arg;
    	int err = 0, type = MMC_BLK_SECDISCARD;
    	blk_status_t status = BLK_STS_OK;
    
    	if (!(mmc_can_secure_erase_trim(card))) {
    		status = BLK_STS_NOTSUPP;
    		goto out;
    	}
    
    	from = blk_rq_pos(req);
    	nr = blk_rq_sectors(req);
    
    	if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
    		arg = MMC_SECURE_TRIM1_ARG;
    	else
    		arg = MMC_SECURE_ERASE_ARG;
    
    retry:
    	if (card->quirks & MMC_QUIRK_INAND_CMD38) {
    		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
    				 INAND_CMD38_ARG_EXT_CSD,
    				 arg == MMC_SECURE_TRIM1_ARG ?
    				 INAND_CMD38_ARG_SECTRIM1 :
    				 INAND_CMD38_ARG_SECERASE,
    				 0);
    		if (err)
    			goto out_retry;
    	}
    
    	err = mmc_erase(card, from, nr, arg);
    	if (err == -EIO)
    		goto out_retry;
    	if (err) {
    		status = BLK_STS_IOERR;
    		goto out;
    	}
    
    	if (arg == MMC_SECURE_TRIM1_ARG) {
    		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
    			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
    					 INAND_CMD38_ARG_EXT_CSD,
    					 INAND_CMD38_ARG_SECTRIM2,
    					 0);
    			if (err)
    				goto out_retry;
    		}
    
    		err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
    		if (err == -EIO)
    			goto out_retry;
    		if (err) {
    			status = BLK_STS_IOERR;
    			goto out;
    		}
    	}
    
    out_retry:
    	if (err && !mmc_blk_reset(md, card->host, type))
    		goto retry;
    	if (!err)
    		mmc_blk_reset_success(md, type);
    out:
    	mmc_blk_end_request(req, status);
    }
    
    static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
    {
    	struct mmc_blk_data *md = mq->blkdata;
    	struct mmc_card *card = md->queue.card;
    	int ret = 0;
    
    	ret = mmc_flush_cache(card);
    	mmc_blk_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
    }
    
    /*
     * Reformat current write as a reliable write, supporting
     * both legacy and the enhanced reliable write MMC cards.
     * In each transfer we'll handle only as much as a single
     * reliable write can handle, thus finish the request in
     * partial completions.
     */
    static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
    				    struct mmc_card *card,
    				    struct request *req)
    {
    	if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
    		/* Legacy mode imposes restrictions on transfers. */
    		if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
    			brq->data.blocks = 1;
    
    		if (brq->data.blocks > card->ext_csd.rel_sectors)
    			brq->data.blocks = card->ext_csd.rel_sectors;
    		else if (brq->data.blocks < card->ext_csd.rel_sectors)
    			brq->data.blocks = 1;
    	}
    }
    
    #define CMD_ERRORS							\
    	(R1_OUT_OF_RANGE |	/* Command argument out of range */	\
    	 R1_ADDRESS_ERROR |	/* Misaligned address */		\
    	 R1_BLOCK_LEN_ERROR |	/* Transferred block length incorrect */\
    	 R1_WP_VIOLATION |	/* Tried to write to protected block */	\
    	 R1_CARD_ECC_FAILED |	/* Card ECC failed */			\
    	 R1_CC_ERROR |		/* Card controller error */		\
    	 R1_ERROR)		/* General/unknown error */
    
    static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
    {
    	u32 val;
    
    	/*
    	 * Per the SD specification(physical layer version 4.10)[1],
    	 * section 4.3.3, it explicitly states that "When the last
    	 * block of user area is read using CMD18, the host should
    	 * ignore OUT_OF_RANGE error that may occur even the sequence
    	 * is correct". And JESD84-B51 for eMMC also has a similar
    	 * statement on section 6.8.3.
    	 *
    	 * Multiple block read/write could be done by either predefined
    	 * method, namely CMD23, or open-ending mode. For open-ending mode,
    	 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
    	 *
    	 * However the spec[1] doesn't tell us whether we should also
    	 * ignore that for predefined method. But per the spec[1], section
    	 * 4.15 Set Block Count Command, it says"If illegal block count
    	 * is set, out of range error will be indicated during read/write
    	 * operation (For example, data transfer is stopped at user area
    	 * boundary)." In another word, we could expect a out of range error
    	 * in the response for the following CMD18/25. And if argument of
    	 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
    	 * we could also expect to get a -ETIMEDOUT or any error number from
    	 * the host drivers due to missing data response(for write)/data(for
    	 * read), as the cards will stop the data transfer by itself per the
    	 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
    	 */
    
    	if (!brq->stop.error) {
    		bool oor_with_open_end;
    		/* If there is no error yet, check R1 response */
    
    		val = brq->stop.resp[0] & CMD_ERRORS;
    		oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
    
    		if (val && !oor_with_open_end)
    			brq->stop.error = -EIO;
    	}
    }
    
    static enum mmc_blk_status __mmc_blk_err_check(struct mmc_card *card,
    					       struct mmc_queue_req *mq_mrq)
    {
    	struct mmc_blk_request *brq = &mq_mrq->brq;
    	struct request *req = mmc_queue_req_to_req(mq_mrq);
    	int need_retune = card->host->need_retune;
    	bool ecc_err = false;
    	bool gen_err = false;
    
    	/*
    	 * sbc.error indicates a problem with the set block count
    	 * command.  No data will have been transferred.
    	 *
    	 * cmd.error indicates a problem with the r/w command.  No
    	 * data will have been transferred.
    	 *
    	 * stop.error indicates a problem with the stop command.  Data
    	 * may have been transferred, or may still be transferring.
    	 */
    
    	mmc_blk_eval_resp_error(brq);
    
    	if (brq->sbc.error || brq->cmd.error ||
    	    brq->stop.error || brq->data.error) {
    		switch (mmc_blk_cmd_recovery(card, req, brq, &ecc_err, &gen_err)) {
    		case ERR_RETRY:
    			return MMC_BLK_RETRY;
    		case ERR_ABORT:
    			return MMC_BLK_ABORT;
    		case ERR_NOMEDIUM:
    			return MMC_BLK_NOMEDIUM;
    		case ERR_CONTINUE:
    			break;
    		}
    	}
    
    	/*
    	 * Check for errors relating to the execution of the
    	 * initial command - such as address errors.  No data
    	 * has been transferred.
    	 */
    	if (brq->cmd.resp[0] & CMD_ERRORS) {
    		pr_err("%s: r/w command failed, status = %#x\n",
    		       req->rq_disk->disk_name, brq->cmd.resp[0]);
    		return MMC_BLK_ABORT;
    	}
    
    	/*
    	 * Everything else is either success, or a data error of some
    	 * kind.  If it was a write, we may have transitioned to
    	 * program mode, which we have to wait for it to complete.
    	 */
    	if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ) {
    		int err;
    
    		/* Check stop command response */
    		if (brq->stop.resp[0] & R1_ERROR) {
    			pr_err("%s: %s: general error sending stop command, stop cmd response %#x\n",
    			       req->rq_disk->disk_name, __func__,
    			       brq->stop.resp[0]);
    			gen_err = true;
    		}
    
    		err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, false, req,
    					&gen_err);
    		if (err)
    			return MMC_BLK_CMD_ERR;
    	}
    
    	/* if general error occurs, retry the write operation. */
    	if (gen_err) {
    		pr_warn("%s: retrying write for general error\n",
    				req->rq_disk->disk_name);
    		return MMC_BLK_RETRY;
    	}
    
    	/* Some errors (ECC) are flagged on the next commmand, so check stop, too */
    	if (brq->data.error || brq->stop.error) {
    		if (need_retune && !brq->retune_retry_done) {
    			pr_debug("%s: retrying because a re-tune was needed\n",
    				 req->rq_disk->disk_name);
    			brq->retune_retry_done = 1;
    			return MMC_BLK_RETRY;
    		}
    		pr_err("%s: error %d transferring data, sector %u, nr %u, cmd response %#x, card status %#x\n",
    		       req->rq_disk->disk_name, brq->data.error ?: brq->stop.error,
    		       (unsigned)blk_rq_pos(req),
    		       (unsigned)blk_rq_sectors(req),
    		       brq->cmd.resp[0], brq->stop.resp[0]);
    
    		if (rq_data_dir(req) == READ) {
    			if (ecc_err)
    				return MMC_BLK_ECC_ERR;
    			return MMC_BLK_DATA_ERR;
    		} else {
    			return MMC_BLK_CMD_ERR;
    		}
    	}
    
    	if (!brq->data.bytes_xfered)
    		return MMC_BLK_RETRY;
    
    	if (blk_rq_bytes(req) != brq->data.bytes_xfered)
    		return MMC_BLK_PARTIAL;
    
    	return MMC_BLK_SUCCESS;
    }
    
    static enum mmc_blk_status mmc_blk_err_check(struct mmc_card *card,
    					     struct mmc_async_req *areq)
    {
    	struct mmc_queue_req *mq_mrq = container_of(areq, struct mmc_queue_req,
    						    areq);
    
    	return __mmc_blk_err_check(card, mq_mrq);
    }
    
    static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
    			      int disable_multi, bool *do_rel_wr_p,
    			      bool *do_data_tag_p)
    {
    	struct mmc_blk_data *md = mq->blkdata;
    	struct mmc_card *card = md->queue.card;
    	struct mmc_blk_request *brq = &mqrq->brq;
    	struct request *req = mmc_queue_req_to_req(mqrq);
    	bool do_rel_wr, do_data_tag;
    
    	/*
    	 * Reliable writes are used to implement Forced Unit Access and
    	 * are supported only on MMCs.
    	 */
    	do_rel_wr = (req->cmd_flags & REQ_FUA) &&
    		    rq_data_dir(req) == WRITE &&
    		    (md->flags & MMC_BLK_REL_WR);
    
    	memset(brq, 0, sizeof(struct mmc_blk_request));
    
    	brq->mrq.data = &brq->data;
    	brq->mrq.tag = req->tag;
    
    	brq->stop.opcode = MMC_STOP_TRANSMISSION;
    	brq->stop.arg = 0;
    
    	if (rq_data_dir(req) == READ) {
    		brq->data.flags = MMC_DATA_READ;
    		brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
    	} else {
    		brq->data.flags = MMC_DATA_WRITE;
    		brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
    	}
    
    	brq->data.blksz = 512;
    	brq->data.blocks = blk_rq_sectors(req);
    	brq->data.blk_addr = blk_rq_pos(req);
    
    	/*
    	 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
    	 * The eMMC will give "high" priority tasks priority over "simple"
    	 * priority tasks. Here we always set "simple" priority by not setting
    	 * MMC_DATA_PRIO.
    	 */
    
    	/*
    	 * The block layer doesn't support all sector count
    	 * restrictions, so we need to be prepared for too big
    	 * requests.
    	 */
    	if (brq->data.blocks > card->host->max_blk_count)
    		brq->data.blocks = card->host->max_blk_count;
    
    	if (brq->data.blocks > 1) {
    		/*
    		 * After a read error, we redo the request one sector
    		 * at a time in order to accurately determine which
    		 * sectors can be read successfully.
    		 */
    		if (disable_multi)
    			brq->data.blocks = 1;
    
    		/*
    		 * Some controllers have HW issues while operating
    		 * in multiple I/O mode
    		 */
    		if (card->host->ops->multi_io_quirk)
    			brq->data.blocks = card->host->ops->multi_io_quirk(card,
    						(rq_data_dir(req) == READ) ?
    						MMC_DATA_READ : MMC_DATA_WRITE,
    						brq->data.blocks);
    	}
    
    	if (do_rel_wr) {
    		mmc_apply_rel_rw(brq, card, req);
    		brq->data.flags |= MMC_DATA_REL_WR;
    	}
    
    	/*
    	 * Data tag is used only during writing meta data to speed
    	 * up write and any subsequent read of this meta data
    	 */
    	do_data_tag = card->ext_csd.data_tag_unit_size &&
    		      (req->cmd_flags & REQ_META) &&
    		      (rq_data_dir(req) == WRITE) &&
    		      ((brq->data.blocks * brq->data.blksz) >=
    		       card->ext_csd.data_tag_unit_size);
    
    	if (do_data_tag)
    		brq->data.flags |= MMC_DATA_DAT_TAG;
    
    	mmc_set_data_timeout(&brq->data, card);
    
    	brq->data.sg = mqrq->sg;
    	brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
    
    	/*
    	 * Adjust the sg list so it is the same size as the
    	 * request.
    	 */
    	if (brq->data.blocks != blk_rq_sectors(req)) {
    		int i, data_size = brq->data.blocks << 9;
    		struct scatterlist *sg;
    
    		for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
    			data_size -= sg->length;
    			if (data_size <= 0) {
    				sg->length += data_size;
    				i++;
    				break;
    			}
    		}
    		brq->data.sg_len = i;
    	}
    
    	mqrq->areq.mrq = &brq->mrq;
    
    	if (do_rel_wr_p)
    		*do_rel_wr_p = do_rel_wr;
    
    	if (do_data_tag_p)
    		*do_data_tag_p = do_data_tag;
    }
    
    #define MMC_CQE_RETRIES 2
    
    static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
    {
    	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
    	struct mmc_request *mrq = &mqrq->brq.mrq;
    	struct request_queue *q = req->q;
    	struct mmc_host *host = mq->card->host;
    	unsigned long flags;
    	bool put_card;
    	int err;
    
    	mmc_cqe_post_req(host, mrq);
    
    	if (mrq->cmd && mrq->cmd->error)
    		err = mrq->cmd->error;
    	else if (mrq->data && mrq->data->error)
    		err = mrq->data->error;
    	else
    		err = 0;
    
    	if (err) {
    		if (mqrq->retries++ < MMC_CQE_RETRIES)
    			blk_mq_requeue_request(req, true);
    		else
    			blk_mq_end_request(req, BLK_STS_IOERR);
    	} else if (mrq->data) {
    		if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
    			blk_mq_requeue_request(req, true);
    		else
    			__blk_mq_end_request(req, BLK_STS_OK);
    	} else {
    		blk_mq_end_request(req, BLK_STS_OK);
    	}
    
    	spin_lock_irqsave(q->queue_lock, flags);
    
    	mq->in_flight[mmc_issue_type(mq, req)] -= 1;
    
    	put_card = (mmc_tot_in_flight(mq) == 0);
    
    	mmc_cqe_check_busy(mq);
    
    	spin_unlock_irqrestore(q->queue_lock, flags);
    
    	if (!mq->cqe_busy)
    		blk_mq_run_hw_queues(q, true);
    
    	if (put_card)
    		mmc_put_card(mq->card, &mq->ctx);
    }
    
    void mmc_blk_cqe_recovery(struct mmc_queue *mq)
    {
    	struct mmc_card *card = mq->card;
    	struct mmc_host *host = card->host;
    	int err;
    
    	pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
    
    	err = mmc_cqe_recovery(host);
    	if (err)
    		mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
    	else
    		mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
    
    	pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
    }
    
    static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
    {
    	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
    						  brq.mrq);
    	struct request *req = mmc_queue_req_to_req(mqrq);
    	struct request_queue *q = req->q;
    	struct mmc_queue *mq = q->queuedata;
    
    	/*
    	 * Block layer timeouts race with completions which means the normal
    	 * completion path cannot be used during recovery.
    	 */
    	if (mq->in_recovery)
    		mmc_blk_cqe_complete_rq(mq, req);
    	else
    		blk_mq_complete_request(req);
    }
    
    static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
    {
    	mrq->done		= mmc_blk_cqe_req_done;
    	mrq->recovery_notifier	= mmc_cqe_recovery_notifier;
    
    	return mmc_cqe_start_req(host, mrq);
    }
    
    static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
    						 struct request *req)
    {
    	struct mmc_blk_request *brq = &mqrq->brq;
    
    	memset(brq, 0, sizeof(*brq));
    
    	brq->mrq.cmd = &brq->cmd;
    	brq->mrq.tag = req->tag;
    
    	return &brq->mrq;
    }
    
    static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
    {
    	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
    	struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
    
    	mrq->cmd->opcode = MMC_SWITCH;
    	mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
    			(EXT_CSD_FLUSH_CACHE << 16) |
    			(1 << 8) |
    			EXT_CSD_CMD_SET_NORMAL;
    	mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
    
    	return mmc_blk_cqe_start_req(mq->card->host, mrq);
    }
    
    static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
    {
    	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
    
    	mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
    
    	return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
    }
    
    static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
    			       struct mmc_card *card,
    			       int disable_multi,
    			       struct mmc_queue *mq)
    {
    	u32 readcmd, writecmd;
    	struct mmc_blk_request *brq = &mqrq->brq;
    	struct request *req = mmc_queue_req_to_req(mqrq);
    	struct mmc_blk_data *md = mq->blkdata;
    	bool do_rel_wr, do_data_tag;
    
    	mmc_blk_data_prep(mq, mqrq, disable_multi, &do_rel_wr, &do_data_tag);
    
    	brq->mrq.cmd = &brq->cmd;
    
    	brq->cmd.arg = blk_rq_pos(req);
    	if (!mmc_card_blockaddr(card))
    		brq->cmd.arg <<= 9;
    	brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
    
    	if (brq->data.blocks > 1 || do_rel_wr) {
    		/* SPI multiblock writes terminate using a special
    		 * token, not a STOP_TRANSMISSION request.
    		 */
    		if (!mmc_host_is_spi(card->host) ||
    		    rq_data_dir(req) == READ)
    			brq->mrq.stop = &brq->stop;
    		readcmd = MMC_READ_MULTIPLE_BLOCK;
    		writecmd = MMC_WRITE_MULTIPLE_BLOCK;
    	} else {
    		brq->mrq.stop = NULL;
    		readcmd = MMC_READ_SINGLE_BLOCK;
    		writecmd = MMC_WRITE_BLOCK;
    	}
    	brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
    
    	/*
    	 * Pre-defined multi-block transfers are preferable to
    	 * open ended-ones (and necessary for reliable writes).
    	 * However, it is not sufficient to just send CMD23,
    	 * and avoid the final CMD12, as on an error condition
    	 * CMD12 (stop) needs to be sent anyway. This, coupled
    	 * with Auto-CMD23 enhancements provided by some
    	 * hosts, means that the complexity of dealing
    	 * with this is best left to the host. If CMD23 is
    	 * supported by card and host, we'll fill sbc in and let
    	 * the host deal with handling it correctly. This means
    	 * that for hosts that don't expose MMC_CAP_CMD23, no
    	 * change of behavior will be observed.
    	 *
    	 * N.B: Some MMC cards experience perf degradation.
    	 * We'll avoid using CMD23-bounded multiblock writes for
    	 * these, while retaining features like reliable writes.
    	 */
    	if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
    	    (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
    	     do_data_tag)) {
    		brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
    		brq->sbc.arg = brq->data.blocks |
    			(do_rel_wr ? (1 << 31) : 0) |
    			(do_data_tag ? (1 << 29) : 0);
    		brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
    		brq->mrq.sbc = &brq->sbc;
    	}
    
    	mqrq->areq.err_check = mmc_blk_err_check;
    }
    
    #define MMC_MAX_RETRIES		5
    #define MMC_NO_RETRIES		(MMC_MAX_RETRIES + 1)
    
    #define MMC_READ_SINGLE_RETRIES	2
    
    /* Single sector read during recovery */
    static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
    {
    	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
    	struct mmc_request *mrq = &mqrq->brq.mrq;
    	struct mmc_card *card = mq->card;
    	struct mmc_host *host = card->host;
    	blk_status_t error = BLK_STS_OK;
    	int retries = 0;
    
    	do {
    		u32 status;
    		int err;
    
    		mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
    
    		mmc_wait_for_req(host, mrq);
    
    		err = mmc_send_status(card, &status);
    		if (err)
    			goto error_exit;
    
    		if (!mmc_host_is_spi(host) &&
    		    R1_CURRENT_STATE(status) != R1_STATE_TRAN) {
    			u32 stop_status = 0;
    			bool gen_err = false;
    
    			err = send_stop(card,
    					DIV_ROUND_UP(mrq->data->timeout_ns,
    						     1000000),
    					req, &gen_err, &stop_status);
    			if (err)
    				goto error_exit;
    		}
    
    		if (mrq->cmd->error && retries++ < MMC_READ_SINGLE_RETRIES)
    			continue;
    
    		retries = 0;
    
    		if (mrq->cmd->error ||
    		    mrq->data->error ||
    		    (!mmc_host_is_spi(host) &&
    		     (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
    			error = BLK_STS_IOERR;
    		else
    			error = BLK_STS_OK;
    
    	} while (blk_update_request(req, error, 512));
    
    	return;
    
    error_exit:
    	mrq->data->bytes_xfered = 0;
    	blk_update_request(req, BLK_STS_IOERR, 512);
    	/* Let it try the remaining request again */
    	if (mqrq->retries > MMC_MAX_RETRIES - 1)
    		mqrq->retries = MMC_MAX_RETRIES - 1;
    }
    
    static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
    {
    	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
    	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
    	struct mmc_blk_request *brq = &mqrq->brq;
    	struct mmc_blk_data *md = mq->blkdata;
    	struct mmc_card *card = mq->card;
    	static enum mmc_blk_status status;
    
    	brq->retune_retry_done = mqrq->retries;
    
    	status = __mmc_blk_err_check(card, mqrq);
    
    	mmc_retune_release(card->host);
    
    	/*
    	 * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
    	 * policy:
    	 * 1. A request that has transferred at least some data is considered
    	 * successful and will be requeued if there is remaining data to
    	 * transfer.
    	 * 2. Otherwise the number of retries is incremented and the request
    	 * will be requeued if there are remaining retries.
    	 * 3. Otherwise the request will be errored out.
    	 * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
    	 * mqrq->retries. So there are only 4 possible actions here:
    	 *	1. do not accept the bytes_xfered value i.e. set it to zero
    	 *	2. change mqrq->retries to determine the number of retries
    	 *	3. try to reset the card
    	 *	4. read one sector at a time
    	 */
    	switch (status) {
    	case MMC_BLK_SUCCESS:
    	case MMC_BLK_PARTIAL:
    		/* Reset success, and accept bytes_xfered */
    		mmc_blk_reset_success(md, type);
    		break;
    	case MMC_BLK_CMD_ERR:
    		/*
    		 * For SD cards, get bytes written, but do not accept
    		 * bytes_xfered if that fails. For MMC cards accept
    		 * bytes_xfered. Then try to reset. If reset fails then
    		 * error out the remaining request, otherwise retry
    		 * once (N.B mmc_blk_reset() will not succeed twice in a
    		 * row).
    		 */
    		if (mmc_card_sd(card)) {
    			u32 blocks;
    			int err;
    
    			err = mmc_sd_num_wr_blocks(card, &blocks);
    			if (err)
    				brq->data.bytes_xfered = 0;
    			else
    				brq->data.bytes_xfered = blocks << 9;
    		}
    		if (mmc_blk_reset(md, card->host, type))
    			mqrq->retries = MMC_NO_RETRIES;
    		else
    			mqrq->retries = MMC_MAX_RETRIES - 1;
    		break;
    	case MMC_BLK_RETRY:
    		/*
    		 * Do not accept bytes_xfered, but retry up to 5 times,
    		 * otherwise same as abort.
    		 */
    		brq->data.bytes_xfered = 0;
    		if (mqrq->retries < MMC_MAX_RETRIES)
    			break;
    		/* Fall through */
    	case MMC_BLK_ABORT:
    		/*
    		 * Do not accept bytes_xfered, but try to reset. If
    		 * reset succeeds, try once more, otherwise error out
    		 * the request.
    		 */
    		brq->data.bytes_xfered = 0;
    		if (mmc_blk_reset(md, card->host, type))
    			mqrq->retries = MMC_NO_RETRIES;
    		else
    			mqrq->retries = MMC_MAX_RETRIES - 1;
    		break;
    	case MMC_BLK_DATA_ERR: {
    		int err;
    
    		/*
    		 * Do not accept bytes_xfered, but try to reset. If
    		 * reset succeeds, try once more. If reset fails with
    		 * ENODEV which means the partition is wrong, then error
    		 * out the request. Otherwise attempt to read one sector
    		 * at a time.
    		 */
    		brq->data.bytes_xfered = 0;
    		err = mmc_blk_reset(md, card->host, type);
    		if (!err) {
    			mqrq->retries = MMC_MAX_RETRIES - 1;
    			break;
    		}
    		if (err == -ENODEV) {
    			mqrq->retries = MMC_NO_RETRIES;
    			break;
    		}
    		/* Fall through */
    	}
    	case MMC_BLK_ECC_ERR:
    		/*
    		 * Do not accept bytes_xfered. If reading more than one
    		 * sector, try reading one sector at a time.
    		 */
    		brq->data.bytes_xfered = 0;
    		/* FIXME: Missing single sector read for large sector size */
    		if (brq->data.blocks > 1 && !mmc_large_sector(card)) {
    			/* Redo read one sector at a time */
    			pr_warn("%s: retrying using single block read\n",
    				req->rq_disk->disk_name);
    			mmc_blk_read_single(mq, req);
    		} else {
    			mqrq->retries = MMC_NO_RETRIES;
    		}
    		break;
    	case MMC_BLK_NOMEDIUM:
    		/* Do not accept bytes_xfered. Error out the request */
    		brq->data.bytes_xfered = 0;
    		mqrq->retries = MMC_NO_RETRIES;
    		break;
    	default:
    		/* Do not accept bytes_xfered. Error out the request */
    		brq->data.bytes_xfered = 0;
    		mqrq->retries = MMC_NO_RETRIES;
    		pr_err("%s: Unhandled return value (%d)",
    		       req->rq_disk->disk_name, status);
    		break;
    	}
    }
    
    static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
    {
    	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
    	unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
    
    	if (nr_bytes) {
    		if (blk_update_request(req, BLK_STS_OK, nr_bytes))
    			blk_mq_requeue_request(req, true);
    		else
    			__blk_mq_end_request(req, BLK_STS_OK);
    	} else if (!blk_rq_bytes(req)) {
    		__blk_mq_end_request(req, BLK_STS_IOERR);
    	} else if (mqrq->retries++ < MMC_MAX_RETRIES) {
    		blk_mq_requeue_request(req, true);
    	} else {
    		if (mmc_card_removed(mq->card))
    			req->rq_flags |= RQF_QUIET;
    		blk_mq_end_request(req, BLK_STS_IOERR);
    	}
    }
    
    static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
    					struct mmc_queue_req *mqrq)
    {
    	return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
    	       (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
    		mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
    }
    
    static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
    				 struct mmc_queue_req *mqrq)
    {
    	if (mmc_blk_urgent_bkops_needed(mq, mqrq))
    		mmc_start_bkops(mq->card, true);
    }
    
    void mmc_blk_mq_complete(struct request *req)
    {
    	struct mmc_queue *mq = req->q->queuedata;
    
    	if (mq->use_cqe)
    		mmc_blk_cqe_complete_rq(mq, req);
    	else
    		mmc_blk_mq_complete_rq(mq, req);
    }
    
    static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
    				       struct request *req)
    {
    	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
    
    	mmc_blk_mq_rw_recovery(mq, req);
    
    	mmc_blk_urgent_bkops(mq, mqrq);
    }
    
    static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req)
    {
    	struct request_queue *q = req->q;
    	unsigned long flags;
    	bool put_card;
    
    	spin_lock_irqsave(q->queue_lock, flags);
    
    	mq->in_flight[mmc_issue_type(mq, req)] -= 1;
    
    	put_card = (mmc_tot_in_flight(mq) == 0);
    
    	spin_unlock_irqrestore(q->queue_lock, flags);
    
    	if (put_card)
    		mmc_put_card(mq->card, &mq->ctx);
    }
    
    static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req)
    {
    	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
    	struct mmc_request *mrq = &mqrq->brq.mrq;
    	struct mmc_host *host = mq->card->host;
    
    	mmc_post_req(host, mrq, 0);
    
    	blk_mq_complete_request(req);
    
    	mmc_blk_mq_dec_in_flight(mq, req);
    }
    
    static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
    					 struct request **prev_req)
    {
    	mutex_lock(&mq->complete_lock);
    
    	if (!mq->complete_req)
    		goto out_unlock;
    
    	mmc_blk_mq_poll_completion(mq, mq->complete_req);
    
    	if (prev_req)
    		*prev_req = mq->complete_req;
    	else
    		mmc_blk_mq_post_req(mq, mq->complete_req);
    
    	mq->complete_req = NULL;
    
    out_unlock:
    	mutex_unlock(&mq->complete_lock);
    }
    
    void mmc_blk_mq_complete_work(struct work_struct *work)
    {
    	struct mmc_queue *mq = container_of(work, struct mmc_queue,
    					    complete_work);
    
    	mmc_blk_mq_complete_prev_req(mq, NULL);
    }
    
    static void mmc_blk_mq_req_done(struct mmc_request *mrq)
    {
    	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
    						  brq.mrq);
    	struct request *req = mmc_queue_req_to_req(mqrq);
    	struct request_queue *q = req->q;
    	struct mmc_queue *mq = q->queuedata;
    	unsigned long flags;
    	bool waiting;
    
    	/*
    	 * We cannot complete the request in this context, so record that there
    	 * is a request to complete, and that a following request does not need
    	 * to wait (although it does need to complete complete_req first).
    	 */
    	spin_lock_irqsave(q->queue_lock, flags);
    	mq->complete_req = req;
    	mq->rw_wait = false;
    	waiting = mq->waiting;
    	spin_unlock_irqrestore(q->queue_lock, flags);
    
    	/*
    	 * If 'waiting' then the waiting task will complete this request,
    	 * otherwise queue a work to do it. Note that complete_work may still
    	 * race with the dispatch of a following request.
    	 */
    	if (waiting)
    		wake_up(&mq->wait);
    	else
    		kblockd_schedule_work(&mq->complete_work);
    }
    
    static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
    {
    	struct request_queue *q = mq->queue;
    	unsigned long flags;
    	bool done;
    
    	/*
    	 * Wait while there is another request in progress. Also indicate that
    	 * there is a request waiting to start.
    	 */
    	spin_lock_irqsave(q->queue_lock, flags);
    	done = !mq->rw_wait;
    	mq->waiting = !done;
    	spin_unlock_irqrestore(q->queue_lock, flags);
    
    	return done;
    }
    
    static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
    {
    	int err = 0;
    
    	wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
    
    	/* Always complete the previous request if there is one */
    	mmc_blk_mq_complete_prev_req(mq, prev_req);
    
    	return err;
    }
    
    static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
    				  struct request *req)
    {
    	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
    	struct mmc_host *host = mq->card->host;
    	struct request *prev_req = NULL;
    	int err = 0;
    
    	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
    
    	mqrq->brq.mrq.done = mmc_blk_mq_req_done;
    
    	mmc_pre_req(host, &mqrq->brq.mrq);
    
    	err = mmc_blk_rw_wait(mq, &prev_req);
    	if (err)
    		goto out_post_req;
    
    	mq->rw_wait = true;
    
    	err = mmc_start_request(host, &mqrq->brq.mrq);
    
    	if (prev_req)
    		mmc_blk_mq_post_req(mq, prev_req);
    
    	if (err) {
    		mq->rw_wait = false;
    		mmc_retune_release(host);
    	}
    
    out_post_req:
    	if (err)
    		mmc_post_req(host, &mqrq->brq.mrq, err);
    
    	return err;
    }
    
    static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
    {
    	if (mq->use_cqe)
    		return host->cqe_ops->cqe_wait_for_idle(host);
    
    	return mmc_blk_rw_wait(mq, NULL);
    }
    
    enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
    {
    	struct mmc_blk_data *md = mq->blkdata;
    	struct mmc_card *card = md->queue.card;
    	struct mmc_host *host = card->host;
    	int ret;
    
    	ret = mmc_blk_part_switch(card, md->part_type);
    	if (ret)
    		return MMC_REQ_FAILED_TO_START;
    
    	switch (mmc_issue_type(mq, req)) {
    	case MMC_ISSUE_SYNC:
    		ret = mmc_blk_wait_for_idle(mq, host);
    		if (ret)
    			return MMC_REQ_BUSY;
    		switch (req_op(req)) {
    		case REQ_OP_DRV_IN:
    		case REQ_OP_DRV_OUT:
    			mmc_blk_issue_drv_op(mq, req);
    			break;
    		case REQ_OP_DISCARD:
    			mmc_blk_issue_discard_rq(mq, req);
    			break;
    		case REQ_OP_SECURE_ERASE:
    			mmc_blk_issue_secdiscard_rq(mq, req);
    			break;
    		case REQ_OP_FLUSH:
    			mmc_blk_issue_flush(mq, req);
    			break;
    		default:
    			WARN_ON_ONCE(1);
    			return MMC_REQ_FAILED_TO_START;
    		}
    		return MMC_REQ_FINISHED;
    	case MMC_ISSUE_DCMD:
    	case MMC_ISSUE_ASYNC:
    		switch (req_op(req)) {
    		case REQ_OP_FLUSH:
    			ret = mmc_blk_cqe_issue_flush(mq, req);
    			break;
    		case REQ_OP_READ:
    		case REQ_OP_WRITE:
    			if (mq->use_cqe)
    				ret = mmc_blk_cqe_issue_rw_rq(mq, req);
    			else
    				ret = mmc_blk_mq_issue_rw_rq(mq, req);
    			break;
    		default:
    			WARN_ON_ONCE(1);
    			ret = -EINVAL;
    		}
    		if (!ret)
    			return MMC_REQ_STARTED;
    		return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
    	default:
    		WARN_ON_ONCE(1);
    		return MMC_REQ_FAILED_TO_START;
    	}
    }
    
    static bool mmc_blk_rw_cmd_err(struct mmc_blk_data *md, struct mmc_card *card,
    			       struct mmc_blk_request *brq, struct request *req,
    			       bool old_req_pending)
    {
    	bool req_pending;
    
    	/*
    	 * If this is an SD card and we're writing, we can first
    	 * mark the known good sectors as ok.
    	 *
    	 * If the card is not SD, we can still ok written sectors
    	 * as reported by the controller (which might be less than
    	 * the real number of written sectors, but never more).
    	 */
    	if (mmc_card_sd(card)) {
    		u32 blocks;
    		int err;
    
    		err = mmc_sd_num_wr_blocks(card, &blocks);
    		if (err)
    			req_pending = old_req_pending;
    		else
    			req_pending = blk_end_request(req, BLK_STS_OK, blocks << 9);
    	} else {
    		req_pending = blk_end_request(req, BLK_STS_OK, brq->data.bytes_xfered);
    	}
    	return req_pending;
    }
    
    static void mmc_blk_rw_cmd_abort(struct mmc_queue *mq, struct mmc_card *card,
    				 struct request *req,
    				 struct mmc_queue_req *mqrq)
    {
    	if (mmc_card_removed(card))
    		req->rq_flags |= RQF_QUIET;
    	while (blk_end_request(req, BLK_STS_IOERR, blk_rq_cur_bytes(req)));
    	mq->qcnt--;
    }
    
    /**
     * mmc_blk_rw_try_restart() - tries to restart the current async request
     * @mq: the queue with the card and host to restart
     * @req: a new request that want to be started after the current one
     */
    static void mmc_blk_rw_try_restart(struct mmc_queue *mq, struct request *req,
    				   struct mmc_queue_req *mqrq)
    {
    	if (!req)
    		return;
    
    	/*
    	 * If the card was removed, just cancel everything and return.
    	 */
    	if (mmc_card_removed(mq->card)) {
    		req->rq_flags |= RQF_QUIET;
    		blk_end_request_all(req, BLK_STS_IOERR);
    		mq->qcnt--; /* FIXME: just set to 0? */
    		return;
    	}
    	/* Else proceed and try to restart the current async request */
    	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
    	mmc_start_areq(mq->card->host, &mqrq->areq, NULL);
    }
    
    static void mmc_blk_issue_rw_rq(struct mmc_queue *mq, struct request *new_req)
    {
    	struct mmc_blk_data *md = mq->blkdata;
    	struct mmc_card *card = md->queue.card;
    	struct mmc_blk_request *brq;
    	int disable_multi = 0, retry = 0, type, retune_retry_done = 0;
    	enum mmc_blk_status status;
    	struct mmc_queue_req *mqrq_cur = NULL;
    	struct mmc_queue_req *mq_rq;
    	struct request *old_req;
    	struct mmc_async_req *new_areq;
    	struct mmc_async_req *old_areq;
    	bool req_pending = true;
    
    	if (new_req) {
    		mqrq_cur = req_to_mmc_queue_req(new_req);
    		mq->qcnt++;
    	}
    
    	if (!mq->qcnt)
    		return;
    
    	do {
    		if (new_req) {
    			/*
    			 * When 4KB native sector is enabled, only 8 blocks
    			 * multiple read or write is allowed
    			 */
    			if (mmc_large_sector(card) &&
    				!IS_ALIGNED(blk_rq_sectors(new_req), 8)) {
    				pr_err("%s: Transfer size is not 4KB sector size aligned\n",
    					new_req->rq_disk->disk_name);
    				mmc_blk_rw_cmd_abort(mq, card, new_req, mqrq_cur);
    				return;
    			}
    
    			mmc_blk_rw_rq_prep(mqrq_cur, card, 0, mq);
    			new_areq = &mqrq_cur->areq;
    		} else
    			new_areq = NULL;
    
    		old_areq = mmc_start_areq(card->host, new_areq, &status);
    		if (!old_areq) {
    			/*
    			 * We have just put the first request into the pipeline
    			 * and there is nothing more to do until it is
    			 * complete.
    			 */
    			return;
    		}
    
    		/*
    		 * An asynchronous request has been completed and we proceed
    		 * to handle the result of it.
    		 */
    		mq_rq =	container_of(old_areq, struct mmc_queue_req, areq);
    		brq = &mq_rq->brq;
    		old_req = mmc_queue_req_to_req(mq_rq);
    		type = rq_data_dir(old_req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
    
    		switch (status) {
    		case MMC_BLK_SUCCESS:
    		case MMC_BLK_PARTIAL:
    			/*
    			 * Reset success, and accept bytes_xfered. For
    			 * MMC_BLK_PARTIAL re-submit the remaining request. For
    			 * MMC_BLK_SUCCESS error out the remaining request (it
    			 * could not be re-submitted anyway if a next request
    			 * had already begun).
    			 */
    			mmc_blk_reset_success(md, type);
    
    			req_pending = blk_end_request(old_req, BLK_STS_OK,
    						      brq->data.bytes_xfered);
    			/*
    			 * If the blk_end_request function returns non-zero even
    			 * though all data has been transferred and no errors
    			 * were returned by the host controller, it's a bug.
    			 */
    			if (status == MMC_BLK_SUCCESS && req_pending) {
    				pr_err("%s BUG rq_tot %d d_xfer %d\n",
    				       __func__, blk_rq_bytes(old_req),
    				       brq->data.bytes_xfered);
    				mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq);
    				return;
    			}
    			break;
    		case MMC_BLK_CMD_ERR:
    			/*
    			 * For SD cards, get bytes written, but do not accept
    			 * bytes_xfered if that fails. For MMC cards accept
    			 * bytes_xfered. Then try to reset. If reset fails then
    			 * error out the remaining request, otherwise retry
    			 * once (N.B mmc_blk_reset() will not succeed twice in a
    			 * row).
    			 */
    			req_pending = mmc_blk_rw_cmd_err(md, card, brq, old_req, req_pending);
    			if (mmc_blk_reset(md, card->host, type)) {
    				if (req_pending)
    					mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq);
    				else
    					mq->qcnt--;
    				mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
    				return;
    			}
    			if (!req_pending) {
    				mq->qcnt--;
    				mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
    				return;
    			}
    			break;
    		case MMC_BLK_RETRY:
    			/*
    			 * Do not accept bytes_xfered, but retry up to 5 times,
    			 * otherwise same as abort.
    			 */
    			retune_retry_done = brq->retune_retry_done;
    			if (retry++ < 5)
    				break;
    			/* Fall through */
    		case MMC_BLK_ABORT:
    			/*
    			 * Do not accept bytes_xfered, but try to reset. If
    			 * reset succeeds, try once more, otherwise error out
    			 * the request.
    			 */
    			if (!mmc_blk_reset(md, card->host, type))
    				break;
    			mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq);
    			mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
    			return;
    		case MMC_BLK_DATA_ERR: {
    			int err;
    
    			/*
    			 * Do not accept bytes_xfered, but try to reset. If
    			 * reset succeeds, try once more. If reset fails with
    			 * ENODEV which means the partition is wrong, then error
    			 * out the request. Otherwise attempt to read one sector
    			 * at a time.
    			 */
    			err = mmc_blk_reset(md, card->host, type);
    			if (!err)
    				break;
    			if (err == -ENODEV) {
    				mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq);
    				mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
    				return;
    			}
    			/* Fall through */
    		}
    		case MMC_BLK_ECC_ERR:
    			/*
    			 * Do not accept bytes_xfered. If reading more than one
    			 * sector, try reading one sector at a time.
    			 */
    			if (brq->data.blocks > 1) {
    				/* Redo read one sector at a time */
    				pr_warn("%s: retrying using single block read\n",
    					old_req->rq_disk->disk_name);
    				disable_multi = 1;
    				break;
    			}
    			/*
    			 * After an error, we redo I/O one sector at a
    			 * time, so we only reach here after trying to
    			 * read a single sector.
    			 */
    			req_pending = blk_end_request(old_req, BLK_STS_IOERR,
    						      brq->data.blksz);
    			if (!req_pending) {
    				mq->qcnt--;
    				mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
    				return;
    			}
    			break;
    		case MMC_BLK_NOMEDIUM:
    			/* Do not accept bytes_xfered. Error out the request */
    			mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq);
    			mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
    			return;
    		default:
    			/* Do not accept bytes_xfered. Error out the request */
    			pr_err("%s: Unhandled return value (%d)",
    					old_req->rq_disk->disk_name, status);
    			mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq);
    			mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
    			return;
    		}
    
    		if (req_pending) {
    			/*
    			 * In case of a incomplete request
    			 * prepare it again and resend.
    			 */
    			mmc_blk_rw_rq_prep(mq_rq, card,
    					disable_multi, mq);
    			mmc_start_areq(card->host,
    					&mq_rq->areq, NULL);
    			mq_rq->brq.retune_retry_done = retune_retry_done;
    		}
    	} while (req_pending);
    
    	mq->qcnt--;
    }
    
    void mmc_blk_issue_rq(struct mmc_queue *mq, struct request *req)
    {
    	int ret;
    	struct mmc_blk_data *md = mq->blkdata;
    	struct mmc_card *card = md->queue.card;
    
    	if (req && !mq->qcnt)
    		/* claim host only for the first request */
    		mmc_get_card(card, NULL);
    
    	ret = mmc_blk_part_switch(card, md->part_type);
    	if (ret) {
    		if (req) {
    			blk_end_request_all(req, BLK_STS_IOERR);
    		}
    		goto out;
    	}
    
    	if (req) {
    		switch (req_op(req)) {
    		case REQ_OP_DRV_IN:
    		case REQ_OP_DRV_OUT:
    			/*
    			 * Complete ongoing async transfer before issuing
    			 * ioctl()s
    			 */
    			if (mq->qcnt)
    				mmc_blk_issue_rw_rq(mq, NULL);
    			mmc_blk_issue_drv_op(mq, req);
    			break;
    		case REQ_OP_DISCARD:
    			/*
    			 * Complete ongoing async transfer before issuing
    			 * discard.
    			 */
    			if (mq->qcnt)
    				mmc_blk_issue_rw_rq(mq, NULL);
    			mmc_blk_issue_discard_rq(mq, req);
    			break;
    		case REQ_OP_SECURE_ERASE:
    			/*
    			 * Complete ongoing async transfer before issuing
    			 * secure erase.
    			 */
    			if (mq->qcnt)
    				mmc_blk_issue_rw_rq(mq, NULL);
    			mmc_blk_issue_secdiscard_rq(mq, req);
    			break;
    		case REQ_OP_FLUSH:
    			/*
    			 * Complete ongoing async transfer before issuing
    			 * flush.
    			 */
    			if (mq->qcnt)
    				mmc_blk_issue_rw_rq(mq, NULL);
    			mmc_blk_issue_flush(mq, req);
    			break;
    		default:
    			/* Normal request, just issue it */
    			mmc_blk_issue_rw_rq(mq, req);
    			card->host->context_info.is_waiting_last_req = false;
    			break;
    		}
    	} else {
    		/* No request, flushing the pipeline with NULL */
    		mmc_blk_issue_rw_rq(mq, NULL);
    		card->host->context_info.is_waiting_last_req = false;
    	}
    
    out:
    	if (!mq->qcnt)
    		mmc_put_card(card, NULL);
    }
    
    static inline int mmc_blk_readonly(struct mmc_card *card)
    {
    	return mmc_card_readonly(card) ||
    	       !(card->csd.cmdclass & CCC_BLOCK_WRITE);
    }
    
    static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
    					      struct device *parent,
    					      sector_t size,
    					      bool default_ro,
    					      const char *subname,
    					      int area_type)
    {
    	struct mmc_blk_data *md;
    	int devidx, ret;
    
    	devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
    	if (devidx < 0) {
    		/*
    		 * We get -ENOSPC because there are no more any available
    		 * devidx. The reason may be that, either userspace haven't yet
    		 * unmounted the partitions, which postpones mmc_blk_release()
    		 * from being called, or the device has more partitions than
    		 * what we support.
    		 */
    		if (devidx == -ENOSPC)
    			dev_err(mmc_dev(card->host),
    				"no more device IDs available\n");
    
    		return ERR_PTR(devidx);
    	}
    
    	md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
    	if (!md) {
    		ret = -ENOMEM;
    		goto out;
    	}
    
    	md->area_type = area_type;
    
    	/*
    	 * Set the read-only status based on the supported commands
    	 * and the write protect switch.
    	 */
    	md->read_only = mmc_blk_readonly(card);
    
    	md->disk = alloc_disk(perdev_minors);
    	if (md->disk == NULL) {
    		ret = -ENOMEM;
    		goto err_kfree;
    	}
    
    	spin_lock_init(&md->lock);
    	INIT_LIST_HEAD(&md->part);
    	INIT_LIST_HEAD(&md->rpmbs);
    	md->usage = 1;
    
    	ret = mmc_init_queue(&md->queue, card, &md->lock, subname);
    	if (ret)
    		goto err_putdisk;
    
    	md->queue.blkdata = md;
    
    	/*
    	 * Keep an extra reference to the queue so that we can shutdown the
    	 * queue (i.e. call blk_cleanup_queue()) while there are still
    	 * references to the 'md'. The corresponding blk_put_queue() is in
    	 * mmc_blk_put().
    	 */
    	if (!blk_get_queue(md->queue.queue)) {
    		mmc_cleanup_queue(&md->queue);
    		goto err_putdisk;
    	}
    
    	md->disk->major	= MMC_BLOCK_MAJOR;
    	md->disk->first_minor = devidx * perdev_minors;
    	md->disk->fops = &mmc_bdops;
    	md->disk->private_data = md;
    	md->disk->queue = md->queue.queue;
    	md->parent = parent;
    	set_disk_ro(md->disk, md->read_only || default_ro);
    	md->disk->flags = GENHD_FL_EXT_DEVT;
    	if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
    		md->disk->flags |= GENHD_FL_NO_PART_SCAN;
    
    	/*
    	 * As discussed on lkml, GENHD_FL_REMOVABLE should:
    	 *
    	 * - be set for removable media with permanent block devices
    	 * - be unset for removable block devices with permanent media
    	 *
    	 * Since MMC block devices clearly fall under the second
    	 * case, we do not set GENHD_FL_REMOVABLE.  Userspace
    	 * should use the block device creation/destruction hotplug
    	 * messages to tell when the card is present.
    	 */
    
    	snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
    		 "mmcblk%u%s", card->host->index, subname ? subname : "");
    
    	if (mmc_card_mmc(card))
    		blk_queue_logical_block_size(md->queue.queue,
    					     card->ext_csd.data_sector_size);
    	else
    		blk_queue_logical_block_size(md->queue.queue, 512);
    
    	set_capacity(md->disk, size);
    
    	if (mmc_host_cmd23(card->host)) {
    		if ((mmc_card_mmc(card) &&
    		     card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
    		    (mmc_card_sd(card) &&
    		     card->scr.cmds & SD_SCR_CMD23_SUPPORT))
    			md->flags |= MMC_BLK_CMD23;
    	}
    
    	if (mmc_card_mmc(card) &&
    	    md->flags & MMC_BLK_CMD23 &&
    	    ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
    	     card->ext_csd.rel_sectors)) {
    		md->flags |= MMC_BLK_REL_WR;
    		blk_queue_write_cache(md->queue.queue, true, true);
    	}
    
    	return md;
    
     err_putdisk:
    	put_disk(md->disk);
     err_kfree:
    	kfree(md);
     out:
    	ida_simple_remove(&mmc_blk_ida, devidx);
    	return ERR_PTR(ret);
    }
    
    static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
    {
    	sector_t size;
    
    	if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
    		/*
    		 * The EXT_CSD sector count is in number or 512 byte
    		 * sectors.
    		 */
    		size = card->ext_csd.sectors;
    	} else {
    		/*
    		 * The CSD capacity field is in units of read_blkbits.
    		 * set_capacity takes units of 512 bytes.
    		 */
    		size = (typeof(sector_t))card->csd.capacity
    			<< (card->csd.read_blkbits - 9);
    	}
    
    	return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
    					MMC_BLK_DATA_AREA_MAIN);
    }
    
    static int mmc_blk_alloc_part(struct mmc_card *card,
    			      struct mmc_blk_data *md,
    			      unsigned int part_type,
    			      sector_t size,
    			      bool default_ro,
    			      const char *subname,
    			      int area_type)
    {
    	char cap_str[10];
    	struct mmc_blk_data *part_md;
    
    	part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
    				    subname, area_type);
    	if (IS_ERR(part_md))
    		return PTR_ERR(part_md);
    	part_md->part_type = part_type;
    	list_add(&part_md->part, &md->part);
    
    	string_get_size((u64)get_capacity(part_md->disk), 512, STRING_UNITS_2,
    			cap_str, sizeof(cap_str));
    	pr_info("%s: %s %s partition %u %s\n",
    	       part_md->disk->disk_name, mmc_card_id(card),
    	       mmc_card_name(card), part_md->part_type, cap_str);
    	return 0;
    }
    
    /**
     * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
     * @filp: the character device file
     * @cmd: the ioctl() command
     * @arg: the argument from userspace
     *
     * This will essentially just redirect the ioctl()s coming in over to
     * the main block device spawning the RPMB character device.
     */
    static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
    			   unsigned long arg)
    {
    	struct mmc_rpmb_data *rpmb = filp->private_data;
    	int ret;
    
    	switch (cmd) {
    	case MMC_IOC_CMD:
    		ret = mmc_blk_ioctl_cmd(rpmb->md,
    					(struct mmc_ioc_cmd __user *)arg,
    					rpmb);
    		break;
    	case MMC_IOC_MULTI_CMD:
    		ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
    					(struct mmc_ioc_multi_cmd __user *)arg,
    					rpmb);
    		break;
    	default:
    		ret = -EINVAL;
    		break;
    	}
    
    	return 0;
    }
    
    #ifdef CONFIG_COMPAT
    static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
    			      unsigned long arg)
    {
    	return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
    }
    #endif
    
    static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
    {
    	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
    						  struct mmc_rpmb_data, chrdev);
    
    	get_device(&rpmb->dev);
    	filp->private_data = rpmb;
    	mmc_blk_get(rpmb->md->disk);
    
    	return nonseekable_open(inode, filp);
    }
    
    static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
    {
    	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
    						  struct mmc_rpmb_data, chrdev);
    
    	put_device(&rpmb->dev);
    	mmc_blk_put(rpmb->md);
    
    	return 0;
    }
    
    static const struct file_operations mmc_rpmb_fileops = {
    	.release = mmc_rpmb_chrdev_release,
    	.open = mmc_rpmb_chrdev_open,
    	.owner = THIS_MODULE,
    	.llseek = no_llseek,
    	.unlocked_ioctl = mmc_rpmb_ioctl,
    #ifdef CONFIG_COMPAT
    	.compat_ioctl = mmc_rpmb_ioctl_compat,
    #endif
    };
    
    static void mmc_blk_rpmb_device_release(struct device *dev)
    {
    	struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
    
    	ida_simple_remove(&mmc_rpmb_ida, rpmb->id);
    	kfree(rpmb);
    }
    
    static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
    				   struct mmc_blk_data *md,
    				   unsigned int part_index,
    				   sector_t size,
    				   const char *subname)
    {
    	int devidx, ret;
    	char rpmb_name[DISK_NAME_LEN];
    	char cap_str[10];
    	struct mmc_rpmb_data *rpmb;
    
    	/* This creates the minor number for the RPMB char device */
    	devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL);
    	if (devidx < 0)
    		return devidx;
    
    	rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
    	if (!rpmb) {
    		ida_simple_remove(&mmc_rpmb_ida, devidx);
    		return -ENOMEM;
    	}
    
    	snprintf(rpmb_name, sizeof(rpmb_name),
    		 "mmcblk%u%s", card->host->index, subname ? subname : "");
    
    	rpmb->id = devidx;
    	rpmb->part_index = part_index;
    	rpmb->dev.init_name = rpmb_name;
    	rpmb->dev.bus = &mmc_rpmb_bus_type;
    	rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
    	rpmb->dev.parent = &card->dev;
    	rpmb->dev.release = mmc_blk_rpmb_device_release;
    	device_initialize(&rpmb->dev);
    	dev_set_drvdata(&rpmb->dev, rpmb);
    	rpmb->md = md;
    
    	cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
    	rpmb->chrdev.owner = THIS_MODULE;
    	ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
    	if (ret) {
    		pr_err("%s: could not add character device\n", rpmb_name);
    		goto out_put_device;
    	}
    
    	list_add(&rpmb->node, &md->rpmbs);
    
    	string_get_size((u64)size, 512, STRING_UNITS_2,
    			cap_str, sizeof(cap_str));
    
    	pr_info("%s: %s %s partition %u %s, chardev (%d:%d)\n",
    		rpmb_name, mmc_card_id(card),
    		mmc_card_name(card), EXT_CSD_PART_CONFIG_ACC_RPMB, cap_str,
    		MAJOR(mmc_rpmb_devt), rpmb->id);
    
    	return 0;
    
    out_put_device:
    	put_device(&rpmb->dev);
    	return ret;
    }
    
    static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
    
    {
    	cdev_device_del(&rpmb->chrdev, &rpmb->dev);
    	put_device(&rpmb->dev);
    }
    
    /* MMC Physical partitions consist of two boot partitions and
     * up to four general purpose partitions.
     * For each partition enabled in EXT_CSD a block device will be allocatedi
     * to provide access to the partition.
     */
    
    static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
    {
    	int idx, ret;
    
    	if (!mmc_card_mmc(card))
    		return 0;
    
    	for (idx = 0; idx < card->nr_parts; idx++) {
    		if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
    			/*
    			 * RPMB partitions does not provide block access, they
    			 * are only accessed using ioctl():s. Thus create
    			 * special RPMB block devices that do not have a
    			 * backing block queue for these.
    			 */
    			ret = mmc_blk_alloc_rpmb_part(card, md,
    				card->part[idx].part_cfg,
    				card->part[idx].size >> 9,
    				card->part[idx].name);
    			if (ret)
    				return ret;
    		} else if (card->part[idx].size) {
    			ret = mmc_blk_alloc_part(card, md,
    				card->part[idx].part_cfg,
    				card->part[idx].size >> 9,
    				card->part[idx].force_ro,
    				card->part[idx].name,
    				card->part[idx].area_type);
    			if (ret)
    				return ret;
    		}
    	}
    
    	return 0;
    }
    
    static void mmc_blk_remove_req(struct mmc_blk_data *md)
    {
    	struct mmc_card *card;
    
    	if (md) {
    		/*
    		 * Flush remaining requests and free queues. It
    		 * is freeing the queue that stops new requests
    		 * from being accepted.
    		 */
    		card = md->queue.card;
    		mmc_cleanup_queue(&md->queue);
    		if (md->disk->flags & GENHD_FL_UP) {
    			device_remove_file(disk_to_dev(md->disk), &md->force_ro);
    			if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
    					card->ext_csd.boot_ro_lockable)
    				device_remove_file(disk_to_dev(md->disk),
    					&md->power_ro_lock);
    
    			del_gendisk(md->disk);
    		}
    		mmc_blk_put(md);
    	}
    }
    
    static void mmc_blk_remove_parts(struct mmc_card *card,
    				 struct mmc_blk_data *md)
    {
    	struct list_head *pos, *q;
    	struct mmc_blk_data *part_md;
    	struct mmc_rpmb_data *rpmb;
    
    	/* Remove RPMB partitions */
    	list_for_each_safe(pos, q, &md->rpmbs) {
    		rpmb = list_entry(pos, struct mmc_rpmb_data, node);
    		list_del(pos);
    		mmc_blk_remove_rpmb_part(rpmb);
    	}
    	/* Remove block partitions */
    	list_for_each_safe(pos, q, &md->part) {
    		part_md = list_entry(pos, struct mmc_blk_data, part);
    		list_del(pos);
    		mmc_blk_remove_req(part_md);
    	}
    }
    
    static int mmc_add_disk(struct mmc_blk_data *md)
    {
    	int ret;
    	struct mmc_card *card = md->queue.card;
    
    	device_add_disk(md->parent, md->disk);
    	md->force_ro.show = force_ro_show;
    	md->force_ro.store = force_ro_store;
    	sysfs_attr_init(&md->force_ro.attr);
    	md->force_ro.attr.name = "force_ro";
    	md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
    	ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
    	if (ret)
    		goto force_ro_fail;
    
    	if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
    	     card->ext_csd.boot_ro_lockable) {
    		umode_t mode;
    
    		if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
    			mode = S_IRUGO;
    		else
    			mode = S_IRUGO | S_IWUSR;
    
    		md->power_ro_lock.show = power_ro_lock_show;
    		md->power_ro_lock.store = power_ro_lock_store;
    		sysfs_attr_init(&md->power_ro_lock.attr);
    		md->power_ro_lock.attr.mode = mode;
    		md->power_ro_lock.attr.name =
    					"ro_lock_until_next_power_on";
    		ret = device_create_file(disk_to_dev(md->disk),
    				&md->power_ro_lock);
    		if (ret)
    			goto power_ro_lock_fail;
    	}
    	return ret;
    
    power_ro_lock_fail:
    	device_remove_file(disk_to_dev(md->disk), &md->force_ro);
    force_ro_fail:
    	del_gendisk(md->disk);
    
    	return ret;
    }
    
    #ifdef CONFIG_DEBUG_FS
    
    static int mmc_dbg_card_status_get(void *data, u64 *val)
    {
    	struct mmc_card *card = data;
    	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
    	struct mmc_queue *mq = &md->queue;
    	struct request *req;
    	int ret;
    
    	/* Ask the block layer about the card status */
    	req = blk_get_request(mq->queue, REQ_OP_DRV_IN, __GFP_RECLAIM);
    	if (IS_ERR(req))
    		return PTR_ERR(req);
    	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
    	blk_execute_rq(mq->queue, NULL, req, 0);
    	ret = req_to_mmc_queue_req(req)->drv_op_result;
    	if (ret >= 0) {
    		*val = ret;
    		ret = 0;
    	}
    	blk_put_request(req);
    
    	return ret;
    }
    DEFINE_SIMPLE_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
    		NULL, "%08llx\n");
    
    /* That is two digits * 512 + 1 for newline */
    #define EXT_CSD_STR_LEN 1025
    
    static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
    {
    	struct mmc_card *card = inode->i_private;
    	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
    	struct mmc_queue *mq = &md->queue;
    	struct request *req;
    	char *buf;
    	ssize_t n = 0;
    	u8 *ext_csd;
    	int err, i;
    
    	buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
    	if (!buf)
    		return -ENOMEM;
    
    	/* Ask the block layer for the EXT CSD */
    	req = blk_get_request(mq->queue, REQ_OP_DRV_IN, __GFP_RECLAIM);
    	if (IS_ERR(req)) {
    		err = PTR_ERR(req);
    		goto out_free;
    	}
    	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
    	req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
    	blk_execute_rq(mq->queue, NULL, req, 0);
    	err = req_to_mmc_queue_req(req)->drv_op_result;
    	blk_put_request(req);
    	if (err) {
    		pr_err("FAILED %d\n", err);
    		goto out_free;
    	}
    
    	for (i = 0; i < 512; i++)
    		n += sprintf(buf + n, "%02x", ext_csd[i]);
    	n += sprintf(buf + n, "\n");
    
    	if (n != EXT_CSD_STR_LEN) {
    		err = -EINVAL;
    		goto out_free;
    	}
    
    	filp->private_data = buf;
    	kfree(ext_csd);
    	return 0;
    
    out_free:
    	kfree(buf);
    	return err;
    }
    
    static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
    				size_t cnt, loff_t *ppos)
    {
    	char *buf = filp->private_data;
    
    	return simple_read_from_buffer(ubuf, cnt, ppos,
    				       buf, EXT_CSD_STR_LEN);
    }
    
    static int mmc_ext_csd_release(struct inode *inode, struct file *file)
    {
    	kfree(file->private_data);
    	return 0;
    }
    
    static const struct file_operations mmc_dbg_ext_csd_fops = {
    	.open		= mmc_ext_csd_open,
    	.read		= mmc_ext_csd_read,
    	.release	= mmc_ext_csd_release,
    	.llseek		= default_llseek,
    };
    
    static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
    {
    	struct dentry *root;
    
    	if (!card->debugfs_root)
    		return 0;
    
    	root = card->debugfs_root;
    
    	if (mmc_card_mmc(card) || mmc_card_sd(card)) {
    		md->status_dentry =
    			debugfs_create_file("status", S_IRUSR, root, card,
    					    &mmc_dbg_card_status_fops);
    		if (!md->status_dentry)
    			return -EIO;
    	}
    
    	if (mmc_card_mmc(card)) {
    		md->ext_csd_dentry =
    			debugfs_create_file("ext_csd", S_IRUSR, root, card,
    					    &mmc_dbg_ext_csd_fops);
    		if (!md->ext_csd_dentry)
    			return -EIO;
    	}
    
    	return 0;
    }
    
    static void mmc_blk_remove_debugfs(struct mmc_card *card,
    				   struct mmc_blk_data *md)
    {
    	if (!card->debugfs_root)
    		return;
    
    	if (!IS_ERR_OR_NULL(md->status_dentry)) {
    		debugfs_remove(md->status_dentry);
    		md->status_dentry = NULL;
    	}
    
    	if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) {
    		debugfs_remove(md->ext_csd_dentry);
    		md->ext_csd_dentry = NULL;
    	}
    }
    
    #else
    
    static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
    {
    	return 0;
    }
    
    static void mmc_blk_remove_debugfs(struct mmc_card *card,
    				   struct mmc_blk_data *md)
    {
    }
    
    #endif /* CONFIG_DEBUG_FS */
    
    static int mmc_blk_probe(struct mmc_card *card)
    {
    	struct mmc_blk_data *md, *part_md;
    	char cap_str[10];
    
    	/*
    	 * Check that the card supports the command class(es) we need.
    	 */
    	if (!(card->csd.cmdclass & CCC_BLOCK_READ))
    		return -ENODEV;
    
    	mmc_fixup_device(card, mmc_blk_fixups);
    
    	md = mmc_blk_alloc(card);
    	if (IS_ERR(md))
    		return PTR_ERR(md);
    
    	string_get_size((u64)get_capacity(md->disk), 512, STRING_UNITS_2,
    			cap_str, sizeof(cap_str));
    	pr_info("%s: %s %s %s %s\n",
    		md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
    		cap_str, md->read_only ? "(ro)" : "");
    
    	if (mmc_blk_alloc_parts(card, md))
    		goto out;
    
    	dev_set_drvdata(&card->dev, md);
    
    	if (mmc_add_disk(md))
    		goto out;
    
    	list_for_each_entry(part_md, &md->part, part) {
    		if (mmc_add_disk(part_md))
    			goto out;
    	}
    
    	/* Add two debugfs entries */
    	mmc_blk_add_debugfs(card, md);
    
    	pm_runtime_set_autosuspend_delay(&card->dev, 3000);
    	pm_runtime_use_autosuspend(&card->dev);
    
    	/*
    	 * Don't enable runtime PM for SD-combo cards here. Leave that
    	 * decision to be taken during the SDIO init sequence instead.
    	 */
    	if (card->type != MMC_TYPE_SD_COMBO) {
    		pm_runtime_set_active(&card->dev);
    		pm_runtime_enable(&card->dev);
    	}
    
    	return 0;
    
     out:
    	mmc_blk_remove_parts(card, md);
    	mmc_blk_remove_req(md);
    	return 0;
    }
    
    static void mmc_blk_remove(struct mmc_card *card)
    {
    	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
    
    	mmc_blk_remove_debugfs(card, md);
    	mmc_blk_remove_parts(card, md);
    	pm_runtime_get_sync(&card->dev);
    	mmc_claim_host(card->host);
    	mmc_blk_part_switch(card, md->part_type);
    	mmc_release_host(card->host);
    	if (card->type != MMC_TYPE_SD_COMBO)
    		pm_runtime_disable(&card->dev);
    	pm_runtime_put_noidle(&card->dev);
    	mmc_blk_remove_req(md);
    	dev_set_drvdata(&card->dev, NULL);
    }
    
    static int _mmc_blk_suspend(struct mmc_card *card)
    {
    	struct mmc_blk_data *part_md;
    	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
    
    	if (md) {
    		mmc_queue_suspend(&md->queue);
    		list_for_each_entry(part_md, &md->part, part) {
    			mmc_queue_suspend(&part_md->queue);
    		}
    	}
    	return 0;
    }
    
    static void mmc_blk_shutdown(struct mmc_card *card)
    {
    	_mmc_blk_suspend(card);
    }
    
    #ifdef CONFIG_PM_SLEEP
    static int mmc_blk_suspend(struct device *dev)
    {
    	struct mmc_card *card = mmc_dev_to_card(dev);
    
    	return _mmc_blk_suspend(card);
    }
    
    static int mmc_blk_resume(struct device *dev)
    {
    	struct mmc_blk_data *part_md;
    	struct mmc_blk_data *md = dev_get_drvdata(dev);
    
    	if (md) {
    		/*
    		 * Resume involves the card going into idle state,
    		 * so current partition is always the main one.
    		 */
    		md->part_curr = md->part_type;
    		mmc_queue_resume(&md->queue);
    		list_for_each_entry(part_md, &md->part, part) {
    			mmc_queue_resume(&part_md->queue);
    		}
    	}
    	return 0;
    }
    #endif
    
    static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
    
    static struct mmc_driver mmc_driver = {
    	.drv		= {
    		.name	= "mmcblk",
    		.pm	= &mmc_blk_pm_ops,
    	},
    	.probe		= mmc_blk_probe,
    	.remove		= mmc_blk_remove,
    	.shutdown	= mmc_blk_shutdown,
    };
    
    static int __init mmc_blk_init(void)
    {
    	int res;
    
    	res  = bus_register(&mmc_rpmb_bus_type);
    	if (res < 0) {
    		pr_err("mmcblk: could not register RPMB bus type\n");
    		return res;
    	}
    	res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
    	if (res < 0) {
    		pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
    		goto out_bus_unreg;
    	}
    
    	if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
    		pr_info("mmcblk: using %d minors per device\n", perdev_minors);
    
    	max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
    
    	res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
    	if (res)
    		goto out_chrdev_unreg;
    
    	res = mmc_register_driver(&mmc_driver);
    	if (res)
    		goto out_blkdev_unreg;
    
    	return 0;
    
    out_blkdev_unreg:
    	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
    out_chrdev_unreg:
    	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
    out_bus_unreg:
    	bus_unregister(&mmc_rpmb_bus_type);
    	return res;
    }
    
    static void __exit mmc_blk_exit(void)
    {
    	mmc_unregister_driver(&mmc_driver);
    	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
    	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
    }
    
    module_init(mmc_blk_init);
    module_exit(mmc_blk_exit);
    
    MODULE_LICENSE("GPL");
    MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");