Skip to content
Snippets Groups Projects
Select Git revision
  • ae9e9c6aeea6f91ccb4fb369d7dd8f1a8b5f6a58
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

extents.c

Blame
  • extents.c 155.65 KiB
    /*
     * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
     * Written by Alex Tomas <alex@clusterfs.com>
     *
     * Architecture independence:
     *   Copyright (c) 2005, Bull S.A.
     *   Written by Pierre Peiffer <pierre.peiffer@bull.net>
     *
     * This program is free software; you can redistribute it and/or modify
     * it under the terms of the GNU General Public License version 2 as
     * published by the Free Software Foundation.
     *
     * This program is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     * GNU General Public License for more details.
     *
     * You should have received a copy of the GNU General Public Licens
     * along with this program; if not, write to the Free Software
     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
     */
    
    /*
     * Extents support for EXT4
     *
     * TODO:
     *   - ext4*_error() should be used in some situations
     *   - analyze all BUG()/BUG_ON(), use -EIO where appropriate
     *   - smart tree reduction
     */
    
    #include <linux/fs.h>
    #include <linux/time.h>
    #include <linux/jbd2.h>
    #include <linux/highuid.h>
    #include <linux/pagemap.h>
    #include <linux/quotaops.h>
    #include <linux/string.h>
    #include <linux/slab.h>
    #include <asm/uaccess.h>
    #include <linux/fiemap.h>
    #include "ext4_jbd2.h"
    #include "ext4_extents.h"
    #include "xattr.h"
    
    #include <trace/events/ext4.h>
    
    /*
     * used by extent splitting.
     */
    #define EXT4_EXT_MAY_ZEROOUT	0x1  /* safe to zeroout if split fails \
    					due to ENOSPC */
    #define EXT4_EXT_MARK_UNWRIT1	0x2  /* mark first half unwritten */
    #define EXT4_EXT_MARK_UNWRIT2	0x4  /* mark second half unwritten */
    
    #define EXT4_EXT_DATA_VALID1	0x8  /* first half contains valid data */
    #define EXT4_EXT_DATA_VALID2	0x10 /* second half contains valid data */
    
    static __le32 ext4_extent_block_csum(struct inode *inode,
    				     struct ext4_extent_header *eh)
    {
    	struct ext4_inode_info *ei = EXT4_I(inode);
    	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
    	__u32 csum;
    
    	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh,
    			   EXT4_EXTENT_TAIL_OFFSET(eh));
    	return cpu_to_le32(csum);
    }
    
    static int ext4_extent_block_csum_verify(struct inode *inode,
    					 struct ext4_extent_header *eh)
    {
    	struct ext4_extent_tail *et;
    
    	if (!ext4_has_metadata_csum(inode->i_sb))
    		return 1;
    
    	et = find_ext4_extent_tail(eh);
    	if (et->et_checksum != ext4_extent_block_csum(inode, eh))
    		return 0;
    	return 1;
    }
    
    static void ext4_extent_block_csum_set(struct inode *inode,
    				       struct ext4_extent_header *eh)
    {
    	struct ext4_extent_tail *et;
    
    	if (!ext4_has_metadata_csum(inode->i_sb))
    		return;
    
    	et = find_ext4_extent_tail(eh);
    	et->et_checksum = ext4_extent_block_csum(inode, eh);
    }
    
    static int ext4_split_extent(handle_t *handle,
    				struct inode *inode,
    				struct ext4_ext_path **ppath,
    				struct ext4_map_blocks *map,
    				int split_flag,
    				int flags);
    
    static int ext4_split_extent_at(handle_t *handle,
    			     struct inode *inode,
    			     struct ext4_ext_path **ppath,
    			     ext4_lblk_t split,
    			     int split_flag,
    			     int flags);
    
    static int ext4_find_delayed_extent(struct inode *inode,
    				    struct extent_status *newes);
    
    static int ext4_ext_truncate_extend_restart(handle_t *handle,
    					    struct inode *inode,
    					    int needed)
    {
    	int err;
    
    	if (!ext4_handle_valid(handle))
    		return 0;
    	if (handle->h_buffer_credits > needed)
    		return 0;
    	err = ext4_journal_extend(handle, needed);
    	if (err <= 0)
    		return err;
    	err = ext4_truncate_restart_trans(handle, inode, needed);
    	if (err == 0)
    		err = -EAGAIN;
    
    	return err;
    }
    
    /*
     * could return:
     *  - EROFS
     *  - ENOMEM
     */
    static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
    				struct ext4_ext_path *path)
    {
    	if (path->p_bh) {
    		/* path points to block */
    		BUFFER_TRACE(path->p_bh, "get_write_access");
    		return ext4_journal_get_write_access(handle, path->p_bh);
    	}
    	/* path points to leaf/index in inode body */
    	/* we use in-core data, no need to protect them */
    	return 0;
    }
    
    /*
     * could return:
     *  - EROFS
     *  - ENOMEM
     *  - EIO
     */
    int __ext4_ext_dirty(const char *where, unsigned int line, handle_t *handle,
    		     struct inode *inode, struct ext4_ext_path *path)
    {
    	int err;
    
    	WARN_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem));
    	if (path->p_bh) {
    		ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh));
    		/* path points to block */
    		err = __ext4_handle_dirty_metadata(where, line, handle,
    						   inode, path->p_bh);
    	} else {
    		/* path points to leaf/index in inode body */
    		err = ext4_mark_inode_dirty(handle, inode);
    	}
    	return err;
    }
    
    static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
    			      struct ext4_ext_path *path,
    			      ext4_lblk_t block)
    {
    	if (path) {
    		int depth = path->p_depth;
    		struct ext4_extent *ex;
    
    		/*
    		 * Try to predict block placement assuming that we are
    		 * filling in a file which will eventually be
    		 * non-sparse --- i.e., in the case of libbfd writing
    		 * an ELF object sections out-of-order but in a way
    		 * the eventually results in a contiguous object or
    		 * executable file, or some database extending a table
    		 * space file.  However, this is actually somewhat
    		 * non-ideal if we are writing a sparse file such as
    		 * qemu or KVM writing a raw image file that is going
    		 * to stay fairly sparse, since it will end up
    		 * fragmenting the file system's free space.  Maybe we
    		 * should have some hueristics or some way to allow
    		 * userspace to pass a hint to file system,
    		 * especially if the latter case turns out to be
    		 * common.
    		 */
    		ex = path[depth].p_ext;
    		if (ex) {
    			ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
    			ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
    
    			if (block > ext_block)
    				return ext_pblk + (block - ext_block);
    			else
    				return ext_pblk - (ext_block - block);
    		}
    
    		/* it looks like index is empty;
    		 * try to find starting block from index itself */
    		if (path[depth].p_bh)
    			return path[depth].p_bh->b_blocknr;
    	}
    
    	/* OK. use inode's group */
    	return ext4_inode_to_goal_block(inode);
    }
    
    /*
     * Allocation for a meta data block
     */
    static ext4_fsblk_t
    ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
    			struct ext4_ext_path *path,
    			struct ext4_extent *ex, int *err, unsigned int flags)
    {
    	ext4_fsblk_t goal, newblock;
    
    	goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
    	newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
    					NULL, err);
    	return newblock;
    }
    
    static inline int ext4_ext_space_block(struct inode *inode, int check)
    {
    	int size;
    
    	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
    			/ sizeof(struct ext4_extent);
    #ifdef AGGRESSIVE_TEST
    	if (!check && size > 6)
    		size = 6;
    #endif
    	return size;
    }
    
    static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
    {
    	int size;
    
    	size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
    			/ sizeof(struct ext4_extent_idx);
    #ifdef AGGRESSIVE_TEST
    	if (!check && size > 5)
    		size = 5;
    #endif
    	return size;
    }
    
    static inline int ext4_ext_space_root(struct inode *inode, int check)
    {
    	int size;
    
    	size = sizeof(EXT4_I(inode)->i_data);
    	size -= sizeof(struct ext4_extent_header);
    	size /= sizeof(struct ext4_extent);
    #ifdef AGGRESSIVE_TEST
    	if (!check && size > 3)
    		size = 3;
    #endif
    	return size;
    }
    
    static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
    {
    	int size;
    
    	size = sizeof(EXT4_I(inode)->i_data);
    	size -= sizeof(struct ext4_extent_header);
    	size /= sizeof(struct ext4_extent_idx);
    #ifdef AGGRESSIVE_TEST
    	if (!check && size > 4)
    		size = 4;
    #endif
    	return size;
    }
    
    static inline int
    ext4_force_split_extent_at(handle_t *handle, struct inode *inode,
    			   struct ext4_ext_path **ppath, ext4_lblk_t lblk,
    			   int nofail)
    {
    	struct ext4_ext_path *path = *ppath;
    	int unwritten = ext4_ext_is_unwritten(path[path->p_depth].p_ext);
    
    	return ext4_split_extent_at(handle, inode, ppath, lblk, unwritten ?
    			EXT4_EXT_MARK_UNWRIT1|EXT4_EXT_MARK_UNWRIT2 : 0,
    			EXT4_EX_NOCACHE | EXT4_GET_BLOCKS_PRE_IO |
    			(nofail ? EXT4_GET_BLOCKS_METADATA_NOFAIL:0));
    }
    
    /*
     * Calculate the number of metadata blocks needed
     * to allocate @blocks
     * Worse case is one block per extent
     */
    int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
    {
    	struct ext4_inode_info *ei = EXT4_I(inode);
    	int idxs;
    
    	idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
    		/ sizeof(struct ext4_extent_idx));
    
    	/*
    	 * If the new delayed allocation block is contiguous with the
    	 * previous da block, it can share index blocks with the
    	 * previous block, so we only need to allocate a new index
    	 * block every idxs leaf blocks.  At ldxs**2 blocks, we need
    	 * an additional index block, and at ldxs**3 blocks, yet
    	 * another index blocks.
    	 */
    	if (ei->i_da_metadata_calc_len &&
    	    ei->i_da_metadata_calc_last_lblock+1 == lblock) {
    		int num = 0;
    
    		if ((ei->i_da_metadata_calc_len % idxs) == 0)
    			num++;
    		if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
    			num++;
    		if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
    			num++;
    			ei->i_da_metadata_calc_len = 0;
    		} else
    			ei->i_da_metadata_calc_len++;
    		ei->i_da_metadata_calc_last_lblock++;
    		return num;
    	}
    
    	/*
    	 * In the worst case we need a new set of index blocks at
    	 * every level of the inode's extent tree.
    	 */
    	ei->i_da_metadata_calc_len = 1;
    	ei->i_da_metadata_calc_last_lblock = lblock;
    	return ext_depth(inode) + 1;
    }
    
    static int
    ext4_ext_max_entries(struct inode *inode, int depth)
    {
    	int max;
    
    	if (depth == ext_depth(inode)) {
    		if (depth == 0)
    			max = ext4_ext_space_root(inode, 1);
    		else
    			max = ext4_ext_space_root_idx(inode, 1);
    	} else {
    		if (depth == 0)
    			max = ext4_ext_space_block(inode, 1);
    		else
    			max = ext4_ext_space_block_idx(inode, 1);
    	}
    
    	return max;
    }
    
    static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
    {
    	ext4_fsblk_t block = ext4_ext_pblock(ext);
    	int len = ext4_ext_get_actual_len(ext);
    	ext4_lblk_t lblock = le32_to_cpu(ext->ee_block);
    	ext4_lblk_t last = lblock + len - 1;
    
    	if (lblock > last)
    		return 0;
    	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
    }
    
    static int ext4_valid_extent_idx(struct inode *inode,
    				struct ext4_extent_idx *ext_idx)
    {
    	ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
    
    	return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
    }
    
    static int ext4_valid_extent_entries(struct inode *inode,
    				struct ext4_extent_header *eh,
    				int depth)
    {
    	unsigned short entries;
    	if (eh->eh_entries == 0)
    		return 1;
    
    	entries = le16_to_cpu(eh->eh_entries);
    
    	if (depth == 0) {
    		/* leaf entries */
    		struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
    		struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
    		ext4_fsblk_t pblock = 0;
    		ext4_lblk_t lblock = 0;
    		ext4_lblk_t prev = 0;
    		int len = 0;
    		while (entries) {
    			if (!ext4_valid_extent(inode, ext))
    				return 0;
    
    			/* Check for overlapping extents */
    			lblock = le32_to_cpu(ext->ee_block);
    			len = ext4_ext_get_actual_len(ext);
    			if ((lblock <= prev) && prev) {
    				pblock = ext4_ext_pblock(ext);
    				es->s_last_error_block = cpu_to_le64(pblock);
    				return 0;
    			}
    			ext++;
    			entries--;
    			prev = lblock + len - 1;
    		}
    	} else {
    		struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
    		while (entries) {
    			if (!ext4_valid_extent_idx(inode, ext_idx))
    				return 0;
    			ext_idx++;
    			entries--;
    		}
    	}
    	return 1;
    }
    
    static int __ext4_ext_check(const char *function, unsigned int line,
    			    struct inode *inode, struct ext4_extent_header *eh,
    			    int depth, ext4_fsblk_t pblk)
    {
    	const char *error_msg;
    	int max = 0;
    
    	if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
    		error_msg = "invalid magic";
    		goto corrupted;
    	}
    	if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
    		error_msg = "unexpected eh_depth";
    		goto corrupted;
    	}
    	if (unlikely(eh->eh_max == 0)) {
    		error_msg = "invalid eh_max";
    		goto corrupted;
    	}
    	max = ext4_ext_max_entries(inode, depth);
    	if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
    		error_msg = "too large eh_max";
    		goto corrupted;
    	}
    	if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
    		error_msg = "invalid eh_entries";
    		goto corrupted;
    	}
    	if (!ext4_valid_extent_entries(inode, eh, depth)) {
    		error_msg = "invalid extent entries";
    		goto corrupted;
    	}
    	/* Verify checksum on non-root extent tree nodes */
    	if (ext_depth(inode) != depth &&
    	    !ext4_extent_block_csum_verify(inode, eh)) {
    		error_msg = "extent tree corrupted";
    		goto corrupted;
    	}
    	return 0;
    
    corrupted:
    	ext4_error_inode(inode, function, line, 0,
    			 "pblk %llu bad header/extent: %s - magic %x, "
    			 "entries %u, max %u(%u), depth %u(%u)",
    			 (unsigned long long) pblk, error_msg,
    			 le16_to_cpu(eh->eh_magic),
    			 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
    			 max, le16_to_cpu(eh->eh_depth), depth);
    	return -EIO;
    }
    
    #define ext4_ext_check(inode, eh, depth, pblk)			\
    	__ext4_ext_check(__func__, __LINE__, (inode), (eh), (depth), (pblk))
    
    int ext4_ext_check_inode(struct inode *inode)
    {
    	return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode), 0);
    }
    
    static struct buffer_head *
    __read_extent_tree_block(const char *function, unsigned int line,
    			 struct inode *inode, ext4_fsblk_t pblk, int depth,
    			 int flags)
    {
    	struct buffer_head		*bh;
    	int				err;
    
    	bh = sb_getblk(inode->i_sb, pblk);
    	if (unlikely(!bh))
    		return ERR_PTR(-ENOMEM);
    
    	if (!bh_uptodate_or_lock(bh)) {
    		trace_ext4_ext_load_extent(inode, pblk, _RET_IP_);
    		err = bh_submit_read(bh);
    		if (err < 0)
    			goto errout;
    	}
    	if (buffer_verified(bh) && !(flags & EXT4_EX_FORCE_CACHE))
    		return bh;
    	err = __ext4_ext_check(function, line, inode,
    			       ext_block_hdr(bh), depth, pblk);
    	if (err)
    		goto errout;
    	set_buffer_verified(bh);
    	/*
    	 * If this is a leaf block, cache all of its entries
    	 */
    	if (!(flags & EXT4_EX_NOCACHE) && depth == 0) {
    		struct ext4_extent_header *eh = ext_block_hdr(bh);
    		struct ext4_extent *ex = EXT_FIRST_EXTENT(eh);
    		ext4_lblk_t prev = 0;
    		int i;
    
    		for (i = le16_to_cpu(eh->eh_entries); i > 0; i--, ex++) {
    			unsigned int status = EXTENT_STATUS_WRITTEN;
    			ext4_lblk_t lblk = le32_to_cpu(ex->ee_block);
    			int len = ext4_ext_get_actual_len(ex);
    
    			if (prev && (prev != lblk))
    				ext4_es_cache_extent(inode, prev,
    						     lblk - prev, ~0,
    						     EXTENT_STATUS_HOLE);
    
    			if (ext4_ext_is_unwritten(ex))
    				status = EXTENT_STATUS_UNWRITTEN;
    			ext4_es_cache_extent(inode, lblk, len,
    					     ext4_ext_pblock(ex), status);
    			prev = lblk + len;
    		}
    	}
    	return bh;
    errout:
    	put_bh(bh);
    	return ERR_PTR(err);
    
    }
    
    #define read_extent_tree_block(inode, pblk, depth, flags)		\
    	__read_extent_tree_block(__func__, __LINE__, (inode), (pblk),   \
    				 (depth), (flags))
    
    /*
     * This function is called to cache a file's extent information in the
     * extent status tree
     */
    int ext4_ext_precache(struct inode *inode)
    {
    	struct ext4_inode_info *ei = EXT4_I(inode);
    	struct ext4_ext_path *path = NULL;
    	struct buffer_head *bh;
    	int i = 0, depth, ret = 0;
    
    	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
    		return 0;	/* not an extent-mapped inode */
    
    	down_read(&ei->i_data_sem);
    	depth = ext_depth(inode);
    
    	path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
    		       GFP_NOFS);
    	if (path == NULL) {
    		up_read(&ei->i_data_sem);
    		return -ENOMEM;
    	}
    
    	/* Don't cache anything if there are no external extent blocks */
    	if (depth == 0)
    		goto out;
    	path[0].p_hdr = ext_inode_hdr(inode);
    	ret = ext4_ext_check(inode, path[0].p_hdr, depth, 0);
    	if (ret)
    		goto out;
    	path[0].p_idx = EXT_FIRST_INDEX(path[0].p_hdr);
    	while (i >= 0) {
    		/*
    		 * If this is a leaf block or we've reached the end of
    		 * the index block, go up
    		 */
    		if ((i == depth) ||
    		    path[i].p_idx > EXT_LAST_INDEX(path[i].p_hdr)) {
    			brelse(path[i].p_bh);
    			path[i].p_bh = NULL;
    			i--;
    			continue;
    		}
    		bh = read_extent_tree_block(inode,
    					    ext4_idx_pblock(path[i].p_idx++),
    					    depth - i - 1,
    					    EXT4_EX_FORCE_CACHE);
    		if (IS_ERR(bh)) {
    			ret = PTR_ERR(bh);
    			break;
    		}
    		i++;
    		path[i].p_bh = bh;
    		path[i].p_hdr = ext_block_hdr(bh);
    		path[i].p_idx = EXT_FIRST_INDEX(path[i].p_hdr);
    	}
    	ext4_set_inode_state(inode, EXT4_STATE_EXT_PRECACHED);
    out:
    	up_read(&ei->i_data_sem);
    	ext4_ext_drop_refs(path);
    	kfree(path);
    	return ret;
    }
    
    #ifdef EXT_DEBUG
    static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
    {
    	int k, l = path->p_depth;
    
    	ext_debug("path:");
    	for (k = 0; k <= l; k++, path++) {
    		if (path->p_idx) {
    		  ext_debug("  %d->%llu", le32_to_cpu(path->p_idx->ei_block),
    			    ext4_idx_pblock(path->p_idx));
    		} else if (path->p_ext) {
    			ext_debug("  %d:[%d]%d:%llu ",
    				  le32_to_cpu(path->p_ext->ee_block),
    				  ext4_ext_is_unwritten(path->p_ext),
    				  ext4_ext_get_actual_len(path->p_ext),
    				  ext4_ext_pblock(path->p_ext));
    		} else
    			ext_debug("  []");
    	}
    	ext_debug("\n");
    }
    
    static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
    {
    	int depth = ext_depth(inode);
    	struct ext4_extent_header *eh;
    	struct ext4_extent *ex;
    	int i;
    
    	if (!path)
    		return;
    
    	eh = path[depth].p_hdr;
    	ex = EXT_FIRST_EXTENT(eh);
    
    	ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
    
    	for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
    		ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
    			  ext4_ext_is_unwritten(ex),
    			  ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
    	}
    	ext_debug("\n");
    }
    
    static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
    			ext4_fsblk_t newblock, int level)
    {
    	int depth = ext_depth(inode);
    	struct ext4_extent *ex;
    
    	if (depth != level) {
    		struct ext4_extent_idx *idx;
    		idx = path[level].p_idx;
    		while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
    			ext_debug("%d: move %d:%llu in new index %llu\n", level,
    					le32_to_cpu(idx->ei_block),
    					ext4_idx_pblock(idx),
    					newblock);
    			idx++;
    		}
    
    		return;
    	}
    
    	ex = path[depth].p_ext;
    	while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
    		ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
    				le32_to_cpu(ex->ee_block),
    				ext4_ext_pblock(ex),
    				ext4_ext_is_unwritten(ex),
    				ext4_ext_get_actual_len(ex),
    				newblock);
    		ex++;
    	}
    }
    
    #else
    #define ext4_ext_show_path(inode, path)
    #define ext4_ext_show_leaf(inode, path)
    #define ext4_ext_show_move(inode, path, newblock, level)
    #endif
    
    void ext4_ext_drop_refs(struct ext4_ext_path *path)
    {
    	int depth, i;
    
    	if (!path)
    		return;
    	depth = path->p_depth;
    	for (i = 0; i <= depth; i++, path++)
    		if (path->p_bh) {
    			brelse(path->p_bh);
    			path->p_bh = NULL;
    		}
    }
    
    /*
     * ext4_ext_binsearch_idx:
     * binary search for the closest index of the given block
     * the header must be checked before calling this
     */
    static void
    ext4_ext_binsearch_idx(struct inode *inode,
    			struct ext4_ext_path *path, ext4_lblk_t block)
    {
    	struct ext4_extent_header *eh = path->p_hdr;
    	struct ext4_extent_idx *r, *l, *m;
    
    
    	ext_debug("binsearch for %u(idx):  ", block);
    
    	l = EXT_FIRST_INDEX(eh) + 1;
    	r = EXT_LAST_INDEX(eh);
    	while (l <= r) {
    		m = l + (r - l) / 2;
    		if (block < le32_to_cpu(m->ei_block))
    			r = m - 1;
    		else
    			l = m + 1;
    		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
    				m, le32_to_cpu(m->ei_block),
    				r, le32_to_cpu(r->ei_block));
    	}
    
    	path->p_idx = l - 1;
    	ext_debug("  -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block),
    		  ext4_idx_pblock(path->p_idx));
    
    #ifdef CHECK_BINSEARCH
    	{
    		struct ext4_extent_idx *chix, *ix;
    		int k;
    
    		chix = ix = EXT_FIRST_INDEX(eh);
    		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
    		  if (k != 0 &&
    		      le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
    				printk(KERN_DEBUG "k=%d, ix=0x%p, "
    				       "first=0x%p\n", k,
    				       ix, EXT_FIRST_INDEX(eh));
    				printk(KERN_DEBUG "%u <= %u\n",
    				       le32_to_cpu(ix->ei_block),
    				       le32_to_cpu(ix[-1].ei_block));
    			}
    			BUG_ON(k && le32_to_cpu(ix->ei_block)
    					   <= le32_to_cpu(ix[-1].ei_block));
    			if (block < le32_to_cpu(ix->ei_block))
    				break;
    			chix = ix;
    		}
    		BUG_ON(chix != path->p_idx);
    	}
    #endif
    
    }
    
    /*
     * ext4_ext_binsearch:
     * binary search for closest extent of the given block
     * the header must be checked before calling this
     */
    static void
    ext4_ext_binsearch(struct inode *inode,
    		struct ext4_ext_path *path, ext4_lblk_t block)
    {
    	struct ext4_extent_header *eh = path->p_hdr;
    	struct ext4_extent *r, *l, *m;
    
    	if (eh->eh_entries == 0) {
    		/*
    		 * this leaf is empty:
    		 * we get such a leaf in split/add case
    		 */
    		return;
    	}
    
    	ext_debug("binsearch for %u:  ", block);
    
    	l = EXT_FIRST_EXTENT(eh) + 1;
    	r = EXT_LAST_EXTENT(eh);
    
    	while (l <= r) {
    		m = l + (r - l) / 2;
    		if (block < le32_to_cpu(m->ee_block))
    			r = m - 1;
    		else
    			l = m + 1;
    		ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
    				m, le32_to_cpu(m->ee_block),
    				r, le32_to_cpu(r->ee_block));
    	}
    
    	path->p_ext = l - 1;
    	ext_debug("  -> %d:%llu:[%d]%d ",
    			le32_to_cpu(path->p_ext->ee_block),
    			ext4_ext_pblock(path->p_ext),
    			ext4_ext_is_unwritten(path->p_ext),
    			ext4_ext_get_actual_len(path->p_ext));
    
    #ifdef CHECK_BINSEARCH
    	{
    		struct ext4_extent *chex, *ex;
    		int k;
    
    		chex = ex = EXT_FIRST_EXTENT(eh);
    		for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
    			BUG_ON(k && le32_to_cpu(ex->ee_block)
    					  <= le32_to_cpu(ex[-1].ee_block));
    			if (block < le32_to_cpu(ex->ee_block))
    				break;
    			chex = ex;
    		}
    		BUG_ON(chex != path->p_ext);
    	}
    #endif
    
    }
    
    int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
    {
    	struct ext4_extent_header *eh;
    
    	eh = ext_inode_hdr(inode);
    	eh->eh_depth = 0;
    	eh->eh_entries = 0;
    	eh->eh_magic = EXT4_EXT_MAGIC;
    	eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
    	ext4_mark_inode_dirty(handle, inode);
    	return 0;
    }
    
    struct ext4_ext_path *
    ext4_find_extent(struct inode *inode, ext4_lblk_t block,
    		 struct ext4_ext_path **orig_path, int flags)
    {
    	struct ext4_extent_header *eh;
    	struct buffer_head *bh;
    	struct ext4_ext_path *path = orig_path ? *orig_path : NULL;
    	short int depth, i, ppos = 0;
    	int ret;
    
    	eh = ext_inode_hdr(inode);
    	depth = ext_depth(inode);
    
    	if (path) {
    		ext4_ext_drop_refs(path);
    		if (depth > path[0].p_maxdepth) {
    			kfree(path);
    			*orig_path = path = NULL;
    		}
    	}
    	if (!path) {
    		/* account possible depth increase */
    		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
    				GFP_NOFS);
    		if (unlikely(!path))
    			return ERR_PTR(-ENOMEM);
    		path[0].p_maxdepth = depth + 1;
    	}
    	path[0].p_hdr = eh;
    	path[0].p_bh = NULL;
    
    	i = depth;
    	/* walk through the tree */
    	while (i) {
    		ext_debug("depth %d: num %d, max %d\n",
    			  ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
    
    		ext4_ext_binsearch_idx(inode, path + ppos, block);
    		path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
    		path[ppos].p_depth = i;
    		path[ppos].p_ext = NULL;
    
    		bh = read_extent_tree_block(inode, path[ppos].p_block, --i,
    					    flags);
    		if (unlikely(IS_ERR(bh))) {
    			ret = PTR_ERR(bh);
    			goto err;
    		}
    
    		eh = ext_block_hdr(bh);
    		ppos++;
    		if (unlikely(ppos > depth)) {
    			put_bh(bh);
    			EXT4_ERROR_INODE(inode,
    					 "ppos %d > depth %d", ppos, depth);
    			ret = -EIO;
    			goto err;
    		}
    		path[ppos].p_bh = bh;
    		path[ppos].p_hdr = eh;
    	}
    
    	path[ppos].p_depth = i;
    	path[ppos].p_ext = NULL;
    	path[ppos].p_idx = NULL;
    
    	/* find extent */
    	ext4_ext_binsearch(inode, path + ppos, block);
    	/* if not an empty leaf */
    	if (path[ppos].p_ext)
    		path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
    
    	ext4_ext_show_path(inode, path);
    
    	return path;
    
    err:
    	ext4_ext_drop_refs(path);
    	kfree(path);
    	if (orig_path)
    		*orig_path = NULL;
    	return ERR_PTR(ret);
    }
    
    /*
     * ext4_ext_insert_index:
     * insert new index [@logical;@ptr] into the block at @curp;
     * check where to insert: before @curp or after @curp
     */
    static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
    				 struct ext4_ext_path *curp,
    				 int logical, ext4_fsblk_t ptr)
    {
    	struct ext4_extent_idx *ix;
    	int len, err;
    
    	err = ext4_ext_get_access(handle, inode, curp);
    	if (err)
    		return err;
    
    	if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
    		EXT4_ERROR_INODE(inode,
    				 "logical %d == ei_block %d!",
    				 logical, le32_to_cpu(curp->p_idx->ei_block));
    		return -EIO;
    	}
    
    	if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
    			     >= le16_to_cpu(curp->p_hdr->eh_max))) {
    		EXT4_ERROR_INODE(inode,
    				 "eh_entries %d >= eh_max %d!",
    				 le16_to_cpu(curp->p_hdr->eh_entries),
    				 le16_to_cpu(curp->p_hdr->eh_max));
    		return -EIO;
    	}
    
    	if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
    		/* insert after */
    		ext_debug("insert new index %d after: %llu\n", logical, ptr);
    		ix = curp->p_idx + 1;
    	} else {
    		/* insert before */
    		ext_debug("insert new index %d before: %llu\n", logical, ptr);
    		ix = curp->p_idx;
    	}
    
    	len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
    	BUG_ON(len < 0);
    	if (len > 0) {
    		ext_debug("insert new index %d: "
    				"move %d indices from 0x%p to 0x%p\n",
    				logical, len, ix, ix + 1);
    		memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
    	}
    
    	if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
    		EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
    		return -EIO;
    	}
    
    	ix->ei_block = cpu_to_le32(logical);
    	ext4_idx_store_pblock(ix, ptr);
    	le16_add_cpu(&curp->p_hdr->eh_entries, 1);
    
    	if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
    		EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
    		return -EIO;
    	}
    
    	err = ext4_ext_dirty(handle, inode, curp);
    	ext4_std_error(inode->i_sb, err);
    
    	return err;
    }
    
    /*
     * ext4_ext_split:
     * inserts new subtree into the path, using free index entry
     * at depth @at:
     * - allocates all needed blocks (new leaf and all intermediate index blocks)
     * - makes decision where to split
     * - moves remaining extents and index entries (right to the split point)
     *   into the newly allocated blocks
     * - initializes subtree
     */
    static int ext4_ext_split(handle_t *handle, struct inode *inode,
    			  unsigned int flags,
    			  struct ext4_ext_path *path,
    			  struct ext4_extent *newext, int at)
    {
    	struct buffer_head *bh = NULL;
    	int depth = ext_depth(inode);
    	struct ext4_extent_header *neh;
    	struct ext4_extent_idx *fidx;
    	int i = at, k, m, a;
    	ext4_fsblk_t newblock, oldblock;
    	__le32 border;
    	ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
    	int err = 0;
    
    	/* make decision: where to split? */
    	/* FIXME: now decision is simplest: at current extent */
    
    	/* if current leaf will be split, then we should use
    	 * border from split point */
    	if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
    		EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
    		return -EIO;
    	}
    	if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
    		border = path[depth].p_ext[1].ee_block;
    		ext_debug("leaf will be split."
    				" next leaf starts at %d\n",
    				  le32_to_cpu(border));
    	} else {
    		border = newext->ee_block;
    		ext_debug("leaf will be added."
    				" next leaf starts at %d\n",
    				le32_to_cpu(border));
    	}
    
    	/*
    	 * If error occurs, then we break processing
    	 * and mark filesystem read-only. index won't
    	 * be inserted and tree will be in consistent
    	 * state. Next mount will repair buffers too.
    	 */
    
    	/*
    	 * Get array to track all allocated blocks.
    	 * We need this to handle errors and free blocks
    	 * upon them.
    	 */
    	ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
    	if (!ablocks)
    		return -ENOMEM;
    
    	/* allocate all needed blocks */
    	ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
    	for (a = 0; a < depth - at; a++) {
    		newblock = ext4_ext_new_meta_block(handle, inode, path,
    						   newext, &err, flags);
    		if (newblock == 0)
    			goto cleanup;
    		ablocks[a] = newblock;
    	}
    
    	/* initialize new leaf */
    	newblock = ablocks[--a];
    	if (unlikely(newblock == 0)) {
    		EXT4_ERROR_INODE(inode, "newblock == 0!");
    		err = -EIO;
    		goto cleanup;
    	}
    	bh = sb_getblk(inode->i_sb, newblock);
    	if (unlikely(!bh)) {
    		err = -ENOMEM;
    		goto cleanup;
    	}
    	lock_buffer(bh);
    
    	err = ext4_journal_get_create_access(handle, bh);
    	if (err)
    		goto cleanup;
    
    	neh = ext_block_hdr(bh);
    	neh->eh_entries = 0;
    	neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
    	neh->eh_magic = EXT4_EXT_MAGIC;
    	neh->eh_depth = 0;
    
    	/* move remainder of path[depth] to the new leaf */
    	if (unlikely(path[depth].p_hdr->eh_entries !=
    		     path[depth].p_hdr->eh_max)) {
    		EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
    				 path[depth].p_hdr->eh_entries,
    				 path[depth].p_hdr->eh_max);
    		err = -EIO;
    		goto cleanup;
    	}
    	/* start copy from next extent */
    	m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
    	ext4_ext_show_move(inode, path, newblock, depth);
    	if (m) {
    		struct ext4_extent *ex;
    		ex = EXT_FIRST_EXTENT(neh);
    		memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
    		le16_add_cpu(&neh->eh_entries, m);
    	}
    
    	ext4_extent_block_csum_set(inode, neh);
    	set_buffer_uptodate(bh);
    	unlock_buffer(bh);
    
    	err = ext4_handle_dirty_metadata(handle, inode, bh);
    	if (err)
    		goto cleanup;
    	brelse(bh);
    	bh = NULL;
    
    	/* correct old leaf */
    	if (m) {
    		err = ext4_ext_get_access(handle, inode, path + depth);
    		if (err)
    			goto cleanup;
    		le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
    		err = ext4_ext_dirty(handle, inode, path + depth);
    		if (err)
    			goto cleanup;
    
    	}
    
    	/* create intermediate indexes */
    	k = depth - at - 1;
    	if (unlikely(k < 0)) {
    		EXT4_ERROR_INODE(inode, "k %d < 0!", k);
    		err = -EIO;
    		goto cleanup;
    	}
    	if (k)
    		ext_debug("create %d intermediate indices\n", k);
    	/* insert new index into current index block */
    	/* current depth stored in i var */
    	i = depth - 1;
    	while (k--) {
    		oldblock = newblock;
    		newblock = ablocks[--a];
    		bh = sb_getblk(inode->i_sb, newblock);
    		if (unlikely(!bh)) {
    			err = -ENOMEM;
    			goto cleanup;
    		}
    		lock_buffer(bh);
    
    		err = ext4_journal_get_create_access(handle, bh);
    		if (err)
    			goto cleanup;
    
    		neh = ext_block_hdr(bh);
    		neh->eh_entries = cpu_to_le16(1);
    		neh->eh_magic = EXT4_EXT_MAGIC;
    		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
    		neh->eh_depth = cpu_to_le16(depth - i);
    		fidx = EXT_FIRST_INDEX(neh);
    		fidx->ei_block = border;
    		ext4_idx_store_pblock(fidx, oldblock);
    
    		ext_debug("int.index at %d (block %llu): %u -> %llu\n",
    				i, newblock, le32_to_cpu(border), oldblock);
    
    		/* move remainder of path[i] to the new index block */
    		if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
    					EXT_LAST_INDEX(path[i].p_hdr))) {
    			EXT4_ERROR_INODE(inode,
    					 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
    					 le32_to_cpu(path[i].p_ext->ee_block));
    			err = -EIO;
    			goto cleanup;
    		}
    		/* start copy indexes */
    		m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
    		ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
    				EXT_MAX_INDEX(path[i].p_hdr));
    		ext4_ext_show_move(inode, path, newblock, i);
    		if (m) {
    			memmove(++fidx, path[i].p_idx,
    				sizeof(struct ext4_extent_idx) * m);
    			le16_add_cpu(&neh->eh_entries, m);
    		}
    		ext4_extent_block_csum_set(inode, neh);
    		set_buffer_uptodate(bh);
    		unlock_buffer(bh);
    
    		err = ext4_handle_dirty_metadata(handle, inode, bh);
    		if (err)
    			goto cleanup;
    		brelse(bh);
    		bh = NULL;
    
    		/* correct old index */
    		if (m) {
    			err = ext4_ext_get_access(handle, inode, path + i);
    			if (err)
    				goto cleanup;
    			le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
    			err = ext4_ext_dirty(handle, inode, path + i);
    			if (err)
    				goto cleanup;
    		}
    
    		i--;
    	}
    
    	/* insert new index */
    	err = ext4_ext_insert_index(handle, inode, path + at,
    				    le32_to_cpu(border), newblock);
    
    cleanup:
    	if (bh) {
    		if (buffer_locked(bh))
    			unlock_buffer(bh);
    		brelse(bh);
    	}
    
    	if (err) {
    		/* free all allocated blocks in error case */
    		for (i = 0; i < depth; i++) {
    			if (!ablocks[i])
    				continue;
    			ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
    					 EXT4_FREE_BLOCKS_METADATA);
    		}
    	}
    	kfree(ablocks);
    
    	return err;
    }
    
    /*
     * ext4_ext_grow_indepth:
     * implements tree growing procedure:
     * - allocates new block
     * - moves top-level data (index block or leaf) into the new block
     * - initializes new top-level, creating index that points to the
     *   just created block
     */
    static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
    				 unsigned int flags)
    {
    	struct ext4_extent_header *neh;
    	struct buffer_head *bh;
    	ext4_fsblk_t newblock, goal = 0;
    	struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
    	int err = 0;
    
    	/* Try to prepend new index to old one */
    	if (ext_depth(inode))
    		goal = ext4_idx_pblock(EXT_FIRST_INDEX(ext_inode_hdr(inode)));
    	if (goal > le32_to_cpu(es->s_first_data_block)) {
    		flags |= EXT4_MB_HINT_TRY_GOAL;
    		goal--;
    	} else
    		goal = ext4_inode_to_goal_block(inode);
    	newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
    					NULL, &err);
    	if (newblock == 0)
    		return err;
    
    	bh = sb_getblk(inode->i_sb, newblock);
    	if (unlikely(!bh))
    		return -ENOMEM;
    	lock_buffer(bh);
    
    	err = ext4_journal_get_create_access(handle, bh);
    	if (err) {
    		unlock_buffer(bh);
    		goto out;
    	}
    
    	/* move top-level index/leaf into new block */
    	memmove(bh->b_data, EXT4_I(inode)->i_data,
    		sizeof(EXT4_I(inode)->i_data));
    
    	/* set size of new block */
    	neh = ext_block_hdr(bh);
    	/* old root could have indexes or leaves
    	 * so calculate e_max right way */
    	if (ext_depth(inode))
    		neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
    	else
    		neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
    	neh->eh_magic = EXT4_EXT_MAGIC;
    	ext4_extent_block_csum_set(inode, neh);
    	set_buffer_uptodate(bh);
    	unlock_buffer(bh);
    
    	err = ext4_handle_dirty_metadata(handle, inode, bh);
    	if (err)
    		goto out;
    
    	/* Update top-level index: num,max,pointer */
    	neh = ext_inode_hdr(inode);
    	neh->eh_entries = cpu_to_le16(1);
    	ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
    	if (neh->eh_depth == 0) {
    		/* Root extent block becomes index block */
    		neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
    		EXT_FIRST_INDEX(neh)->ei_block =
    			EXT_FIRST_EXTENT(neh)->ee_block;
    	}
    	ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
    		  le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
    		  le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
    		  ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
    
    	le16_add_cpu(&neh->eh_depth, 1);
    	ext4_mark_inode_dirty(handle, inode);
    out:
    	brelse(bh);
    
    	return err;
    }
    
    /*
     * ext4_ext_create_new_leaf:
     * finds empty index and adds new leaf.
     * if no free index is found, then it requests in-depth growing.
     */
    static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
    				    unsigned int mb_flags,
    				    unsigned int gb_flags,
    				    struct ext4_ext_path **ppath,
    				    struct ext4_extent *newext)
    {
    	struct ext4_ext_path *path = *ppath;
    	struct ext4_ext_path *curp;
    	int depth, i, err = 0;
    
    repeat:
    	i = depth = ext_depth(inode);
    
    	/* walk up to the tree and look for free index entry */
    	curp = path + depth;
    	while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
    		i--;
    		curp--;
    	}
    
    	/* we use already allocated block for index block,
    	 * so subsequent data blocks should be contiguous */
    	if (EXT_HAS_FREE_INDEX(curp)) {
    		/* if we found index with free entry, then use that
    		 * entry: create all needed subtree and add new leaf */
    		err = ext4_ext_split(handle, inode, mb_flags, path, newext, i);
    		if (err)
    			goto out;
    
    		/* refill path */
    		path = ext4_find_extent(inode,
    				    (ext4_lblk_t)le32_to_cpu(newext->ee_block),
    				    ppath, gb_flags);
    		if (IS_ERR(path))
    			err = PTR_ERR(path);
    	} else {
    		/* tree is full, time to grow in depth */
    		err = ext4_ext_grow_indepth(handle, inode, mb_flags);
    		if (err)
    			goto out;
    
    		/* refill path */
    		path = ext4_find_extent(inode,
    				   (ext4_lblk_t)le32_to_cpu(newext->ee_block),
    				    ppath, gb_flags);
    		if (IS_ERR(path)) {
    			err = PTR_ERR(path);
    			goto out;
    		}
    
    		/*
    		 * only first (depth 0 -> 1) produces free space;
    		 * in all other cases we have to split the grown tree
    		 */
    		depth = ext_depth(inode);
    		if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
    			/* now we need to split */
    			goto repeat;
    		}
    	}
    
    out:
    	return err;
    }
    
    /*
     * search the closest allocated block to the left for *logical
     * and returns it at @logical + it's physical address at @phys
     * if *logical is the smallest allocated block, the function
     * returns 0 at @phys
     * return value contains 0 (success) or error code
     */
    static int ext4_ext_search_left(struct inode *inode,
    				struct ext4_ext_path *path,
    				ext4_lblk_t *logical, ext4_fsblk_t *phys)
    {
    	struct ext4_extent_idx *ix;
    	struct ext4_extent *ex;
    	int depth, ee_len;
    
    	if (unlikely(path == NULL)) {
    		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
    		return -EIO;
    	}
    	depth = path->p_depth;
    	*phys = 0;
    
    	if (depth == 0 && path->p_ext == NULL)
    		return 0;
    
    	/* usually extent in the path covers blocks smaller
    	 * then *logical, but it can be that extent is the
    	 * first one in the file */
    
    	ex = path[depth].p_ext;
    	ee_len = ext4_ext_get_actual_len(ex);
    	if (*logical < le32_to_cpu(ex->ee_block)) {
    		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
    			EXT4_ERROR_INODE(inode,
    					 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
    					 *logical, le32_to_cpu(ex->ee_block));
    			return -EIO;
    		}
    		while (--depth >= 0) {
    			ix = path[depth].p_idx;
    			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
    				EXT4_ERROR_INODE(inode,
    				  "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
    				  ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
    				  EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
    		le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
    				  depth);
    				return -EIO;
    			}
    		}
    		return 0;
    	}
    
    	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
    		EXT4_ERROR_INODE(inode,
    				 "logical %d < ee_block %d + ee_len %d!",
    				 *logical, le32_to_cpu(ex->ee_block), ee_len);
    		return -EIO;
    	}
    
    	*logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
    	*phys = ext4_ext_pblock(ex) + ee_len - 1;
    	return 0;
    }
    
    /*
     * search the closest allocated block to the right for *logical
     * and returns it at @logical + it's physical address at @phys
     * if *logical is the largest allocated block, the function
     * returns 0 at @phys
     * return value contains 0 (success) or error code
     */
    static int ext4_ext_search_right(struct inode *inode,
    				 struct ext4_ext_path *path,
    				 ext4_lblk_t *logical, ext4_fsblk_t *phys,
    				 struct ext4_extent **ret_ex)
    {
    	struct buffer_head *bh = NULL;
    	struct ext4_extent_header *eh;
    	struct ext4_extent_idx *ix;
    	struct ext4_extent *ex;
    	ext4_fsblk_t block;
    	int depth;	/* Note, NOT eh_depth; depth from top of tree */
    	int ee_len;
    
    	if (unlikely(path == NULL)) {
    		EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
    		return -EIO;
    	}
    	depth = path->p_depth;
    	*phys = 0;
    
    	if (depth == 0 && path->p_ext == NULL)
    		return 0;
    
    	/* usually extent in the path covers blocks smaller
    	 * then *logical, but it can be that extent is the
    	 * first one in the file */
    
    	ex = path[depth].p_ext;
    	ee_len = ext4_ext_get_actual_len(ex);
    	if (*logical < le32_to_cpu(ex->ee_block)) {
    		if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
    			EXT4_ERROR_INODE(inode,
    					 "first_extent(path[%d].p_hdr) != ex",
    					 depth);
    			return -EIO;
    		}
    		while (--depth >= 0) {
    			ix = path[depth].p_idx;
    			if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
    				EXT4_ERROR_INODE(inode,
    						 "ix != EXT_FIRST_INDEX *logical %d!",
    						 *logical);
    				return -EIO;
    			}
    		}
    		goto found_extent;
    	}
    
    	if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
    		EXT4_ERROR_INODE(inode,
    				 "logical %d < ee_block %d + ee_len %d!",
    				 *logical, le32_to_cpu(ex->ee_block), ee_len);
    		return -EIO;
    	}
    
    	if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
    		/* next allocated block in this leaf */
    		ex++;
    		goto found_extent;
    	}
    
    	/* go up and search for index to the right */
    	while (--depth >= 0) {
    		ix = path[depth].p_idx;
    		if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
    			goto got_index;
    	}
    
    	/* we've gone up to the root and found no index to the right */
    	return 0;
    
    got_index:
    	/* we've found index to the right, let's
    	 * follow it and find the closest allocated
    	 * block to the right */
    	ix++;
    	block = ext4_idx_pblock(ix);
    	while (++depth < path->p_depth) {
    		/* subtract from p_depth to get proper eh_depth */
    		bh = read_extent_tree_block(inode, block,
    					    path->p_depth - depth, 0);
    		if (IS_ERR(bh))
    			return PTR_ERR(bh);
    		eh = ext_block_hdr(bh);
    		ix = EXT_FIRST_INDEX(eh);
    		block = ext4_idx_pblock(ix);
    		put_bh(bh);
    	}
    
    	bh = read_extent_tree_block(inode, block, path->p_depth - depth, 0);
    	if (IS_ERR(bh))
    		return PTR_ERR(bh);
    	eh = ext_block_hdr(bh);
    	ex = EXT_FIRST_EXTENT(eh);
    found_extent:
    	*logical = le32_to_cpu(ex->ee_block);
    	*phys = ext4_ext_pblock(ex);
    	*ret_ex = ex;
    	if (bh)
    		put_bh(bh);
    	return 0;
    }
    
    /*
     * ext4_ext_next_allocated_block:
     * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
     * NOTE: it considers block number from index entry as
     * allocated block. Thus, index entries have to be consistent
     * with leaves.
     */
    ext4_lblk_t
    ext4_ext_next_allocated_block(struct ext4_ext_path *path)
    {
    	int depth;
    
    	BUG_ON(path == NULL);
    	depth = path->p_depth;
    
    	if (depth == 0 && path->p_ext == NULL)
    		return EXT_MAX_BLOCKS;
    
    	while (depth >= 0) {
    		if (depth == path->p_depth) {
    			/* leaf */
    			if (path[depth].p_ext &&
    				path[depth].p_ext !=
    					EXT_LAST_EXTENT(path[depth].p_hdr))
    			  return le32_to_cpu(path[depth].p_ext[1].ee_block);
    		} else {
    			/* index */
    			if (path[depth].p_idx !=
    					EXT_LAST_INDEX(path[depth].p_hdr))
    			  return le32_to_cpu(path[depth].p_idx[1].ei_block);
    		}
    		depth--;
    	}
    
    	return EXT_MAX_BLOCKS;
    }
    
    /*
     * ext4_ext_next_leaf_block:
     * returns first allocated block from next leaf or EXT_MAX_BLOCKS
     */
    static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
    {
    	int depth;
    
    	BUG_ON(path == NULL);
    	depth = path->p_depth;
    
    	/* zero-tree has no leaf blocks at all */
    	if (depth == 0)
    		return EXT_MAX_BLOCKS;
    
    	/* go to index block */
    	depth--;
    
    	while (depth >= 0) {
    		if (path[depth].p_idx !=
    				EXT_LAST_INDEX(path[depth].p_hdr))
    			return (ext4_lblk_t)
    				le32_to_cpu(path[depth].p_idx[1].ei_block);
    		depth--;
    	}
    
    	return EXT_MAX_BLOCKS;
    }
    
    /*
     * ext4_ext_correct_indexes:
     * if leaf gets modified and modified extent is first in the leaf,
     * then we have to correct all indexes above.
     * TODO: do we need to correct tree in all cases?
     */
    static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
    				struct ext4_ext_path *path)
    {
    	struct ext4_extent_header *eh;
    	int depth = ext_depth(inode);
    	struct ext4_extent *ex;
    	__le32 border;
    	int k, err = 0;
    
    	eh = path[depth].p_hdr;
    	ex = path[depth].p_ext;
    
    	if (unlikely(ex == NULL || eh == NULL)) {
    		EXT4_ERROR_INODE(inode,
    				 "ex %p == NULL or eh %p == NULL", ex, eh);
    		return -EIO;
    	}
    
    	if (depth == 0) {
    		/* there is no tree at all */
    		return 0;
    	}
    
    	if (ex != EXT_FIRST_EXTENT(eh)) {
    		/* we correct tree if first leaf got modified only */
    		return 0;
    	}
    
    	/*
    	 * TODO: we need correction if border is smaller than current one
    	 */
    	k = depth - 1;
    	border = path[depth].p_ext->ee_block;
    	err = ext4_ext_get_access(handle, inode, path + k);
    	if (err)
    		return err;
    	path[k].p_idx->ei_block = border;
    	err = ext4_ext_dirty(handle, inode, path + k);
    	if (err)
    		return err;
    
    	while (k--) {
    		/* change all left-side indexes */
    		if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
    			break;
    		err = ext4_ext_get_access(handle, inode, path + k);
    		if (err)
    			break;
    		path[k].p_idx->ei_block = border;
    		err = ext4_ext_dirty(handle, inode, path + k);
    		if (err)
    			break;
    	}
    
    	return err;
    }
    
    int
    ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
    				struct ext4_extent *ex2)
    {
    	unsigned short ext1_ee_len, ext2_ee_len;
    
    	/*
    	 * Make sure that both extents are initialized. We don't merge
    	 * unwritten extents so that we can be sure that end_io code has
    	 * the extent that was written properly split out and conversion to
    	 * initialized is trivial.
    	 */
    	if (ext4_ext_is_unwritten(ex1) != ext4_ext_is_unwritten(ex2))
    		return 0;
    
    	ext1_ee_len = ext4_ext_get_actual_len(ex1);
    	ext2_ee_len = ext4_ext_get_actual_len(ex2);
    
    	if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
    			le32_to_cpu(ex2->ee_block))
    		return 0;
    
    	/*
    	 * To allow future support for preallocated extents to be added
    	 * as an RO_COMPAT feature, refuse to merge to extents if
    	 * this can result in the top bit of ee_len being set.
    	 */
    	if (ext1_ee_len + ext2_ee_len > EXT_INIT_MAX_LEN)
    		return 0;
    	if (ext4_ext_is_unwritten(ex1) &&
    	    (ext4_test_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN) ||
    	     atomic_read(&EXT4_I(inode)->i_unwritten) ||
    	     (ext1_ee_len + ext2_ee_len > EXT_UNWRITTEN_MAX_LEN)))
    		return 0;
    #ifdef AGGRESSIVE_TEST
    	if (ext1_ee_len >= 4)
    		return 0;
    #endif
    
    	if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
    		return 1;
    	return 0;
    }
    
    /*
     * This function tries to merge the "ex" extent to the next extent in the tree.
     * It always tries to merge towards right. If you want to merge towards
     * left, pass "ex - 1" as argument instead of "ex".
     * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
     * 1 if they got merged.
     */
    static int ext4_ext_try_to_merge_right(struct inode *inode,
    				 struct ext4_ext_path *path,
    				 struct ext4_extent *ex)
    {
    	struct ext4_extent_header *eh;
    	unsigned int depth, len;
    	int merge_done = 0, unwritten;
    
    	depth = ext_depth(inode);
    	BUG_ON(path[depth].p_hdr == NULL);
    	eh = path[depth].p_hdr;
    
    	while (ex < EXT_LAST_EXTENT(eh)) {
    		if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
    			break;
    		/* merge with next extent! */
    		unwritten = ext4_ext_is_unwritten(ex);
    		ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
    				+ ext4_ext_get_actual_len(ex + 1));
    		if (unwritten)
    			ext4_ext_mark_unwritten(ex);
    
    		if (ex + 1 < EXT_LAST_EXTENT(eh)) {
    			len = (EXT_LAST_EXTENT(eh) - ex - 1)
    				* sizeof(struct ext4_extent);
    			memmove(ex + 1, ex + 2, len);
    		}
    		le16_add_cpu(&eh->eh_entries, -1);
    		merge_done = 1;
    		WARN_ON(eh->eh_entries == 0);
    		if (!eh->eh_entries)
    			EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
    	}
    
    	return merge_done;
    }
    
    /*
     * This function does a very simple check to see if we can collapse
     * an extent tree with a single extent tree leaf block into the inode.
     */
    static void ext4_ext_try_to_merge_up(handle_t *handle,
    				     struct inode *inode,
    				     struct ext4_ext_path *path)
    {
    	size_t s;
    	unsigned max_root = ext4_ext_space_root(inode, 0);
    	ext4_fsblk_t blk;
    
    	if ((path[0].p_depth != 1) ||
    	    (le16_to_cpu(path[0].p_hdr->eh_entries) != 1) ||
    	    (le16_to_cpu(path[1].p_hdr->eh_entries) > max_root))
    		return;
    
    	/*
    	 * We need to modify the block allocation bitmap and the block
    	 * group descriptor to release the extent tree block.  If we
    	 * can't get the journal credits, give up.
    	 */
    	if (ext4_journal_extend(handle, 2))
    		return;
    
    	/*
    	 * Copy the extent data up to the inode
    	 */
    	blk = ext4_idx_pblock(path[0].p_idx);
    	s = le16_to_cpu(path[1].p_hdr->eh_entries) *
    		sizeof(struct ext4_extent_idx);
    	s += sizeof(struct ext4_extent_header);
    
    	path[1].p_maxdepth = path[0].p_maxdepth;
    	memcpy(path[0].p_hdr, path[1].p_hdr, s);
    	path[0].p_depth = 0;
    	path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) +
    		(path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr));
    	path[0].p_hdr->eh_max = cpu_to_le16(max_root);
    
    	brelse(path[1].p_bh);
    	ext4_free_blocks(handle, inode, NULL, blk, 1,
    			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
    }
    
    /*
     * This function tries to merge the @ex extent to neighbours in the tree.
     * return 1 if merge left else 0.
     */
    static void ext4_ext_try_to_merge(handle_t *handle,
    				  struct inode *inode,
    				  struct ext4_ext_path *path,
    				  struct ext4_extent *ex) {
    	struct ext4_extent_header *eh;
    	unsigned int depth;
    	int merge_done = 0;
    
    	depth = ext_depth(inode);
    	BUG_ON(path[depth].p_hdr == NULL);
    	eh = path[depth].p_hdr;
    
    	if (ex > EXT_FIRST_EXTENT(eh))
    		merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
    
    	if (!merge_done)
    		(void) ext4_ext_try_to_merge_right(inode, path, ex);
    
    	ext4_ext_try_to_merge_up(handle, inode, path);
    }
    
    /*
     * check if a portion of the "newext" extent overlaps with an
     * existing extent.
     *
     * If there is an overlap discovered, it updates the length of the newext
     * such that there will be no overlap, and then returns 1.
     * If there is no overlap found, it returns 0.
     */
    static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
    					   struct inode *inode,
    					   struct ext4_extent *newext,
    					   struct ext4_ext_path *path)
    {
    	ext4_lblk_t b1, b2;
    	unsigned int depth, len1;
    	unsigned int ret = 0;
    
    	b1 = le32_to_cpu(newext->ee_block);
    	len1 = ext4_ext_get_actual_len(newext);
    	depth = ext_depth(inode);
    	if (!path[depth].p_ext)
    		goto out;
    	b2 = EXT4_LBLK_CMASK(sbi, le32_to_cpu(path[depth].p_ext->ee_block));
    
    	/*
    	 * get the next allocated block if the extent in the path
    	 * is before the requested block(s)
    	 */
    	if (b2 < b1) {
    		b2 = ext4_ext_next_allocated_block(path);
    		if (b2 == EXT_MAX_BLOCKS)
    			goto out;
    		b2 = EXT4_LBLK_CMASK(sbi, b2);
    	}
    
    	/* check for wrap through zero on extent logical start block*/
    	if (b1 + len1 < b1) {
    		len1 = EXT_MAX_BLOCKS - b1;
    		newext->ee_len = cpu_to_le16(len1);
    		ret = 1;
    	}
    
    	/* check for overlap */
    	if (b1 + len1 > b2) {
    		newext->ee_len = cpu_to_le16(b2 - b1);
    		ret = 1;
    	}
    out:
    	return ret;
    }
    
    /*
     * ext4_ext_insert_extent:
     * tries to merge requsted extent into the existing extent or
     * inserts requested extent as new one into the tree,
     * creating new leaf in the no-space case.
     */
    int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
    				struct ext4_ext_path **ppath,
    				struct ext4_extent *newext, int gb_flags)
    {
    	struct ext4_ext_path *path = *ppath;
    	struct ext4_extent_header *eh;
    	struct ext4_extent *ex, *fex;
    	struct ext4_extent *nearex; /* nearest extent */
    	struct ext4_ext_path *npath = NULL;
    	int depth, len, err;
    	ext4_lblk_t next;
    	int mb_flags = 0, unwritten;
    
    	if (gb_flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
    		mb_flags |= EXT4_MB_DELALLOC_RESERVED;
    	if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
    		EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
    		return -EIO;
    	}
    	depth = ext_depth(inode);
    	ex = path[depth].p_ext;
    	eh = path[depth].p_hdr;
    	if (unlikely(path[depth].p_hdr == NULL)) {
    		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
    		return -EIO;
    	}
    
    	/* try to insert block into found extent and return */
    	if (ex && !(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) {
    
    		/*
    		 * Try to see whether we should rather test the extent on
    		 * right from ex, or from the left of ex. This is because
    		 * ext4_find_extent() can return either extent on the
    		 * left, or on the right from the searched position. This
    		 * will make merging more effective.
    		 */
    		if (ex < EXT_LAST_EXTENT(eh) &&
    		    (le32_to_cpu(ex->ee_block) +
    		    ext4_ext_get_actual_len(ex) <
    		    le32_to_cpu(newext->ee_block))) {
    			ex += 1;
    			goto prepend;
    		} else if ((ex > EXT_FIRST_EXTENT(eh)) &&
    			   (le32_to_cpu(newext->ee_block) +
    			   ext4_ext_get_actual_len(newext) <
    			   le32_to_cpu(ex->ee_block)))
    			ex -= 1;
    
    		/* Try to append newex to the ex */
    		if (ext4_can_extents_be_merged(inode, ex, newext)) {
    			ext_debug("append [%d]%d block to %u:[%d]%d"
    				  "(from %llu)\n",
    				  ext4_ext_is_unwritten(newext),
    				  ext4_ext_get_actual_len(newext),
    				  le32_to_cpu(ex->ee_block),
    				  ext4_ext_is_unwritten(ex),
    				  ext4_ext_get_actual_len(ex),
    				  ext4_ext_pblock(ex));
    			err = ext4_ext_get_access(handle, inode,
    						  path + depth);
    			if (err)
    				return err;
    			unwritten = ext4_ext_is_unwritten(ex);
    			ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
    					+ ext4_ext_get_actual_len(newext));
    			if (unwritten)
    				ext4_ext_mark_unwritten(ex);
    			eh = path[depth].p_hdr;
    			nearex = ex;
    			goto merge;
    		}
    
    prepend:
    		/* Try to prepend newex to the ex */
    		if (ext4_can_extents_be_merged(inode, newext, ex)) {
    			ext_debug("prepend %u[%d]%d block to %u:[%d]%d"
    				  "(from %llu)\n",
    				  le32_to_cpu(newext->ee_block),
    				  ext4_ext_is_unwritten(newext),
    				  ext4_ext_get_actual_len(newext),
    				  le32_to_cpu(ex->ee_block),
    				  ext4_ext_is_unwritten(ex),
    				  ext4_ext_get_actual_len(ex),
    				  ext4_ext_pblock(ex));
    			err = ext4_ext_get_access(handle, inode,
    						  path + depth);
    			if (err)
    				return err;
    
    			unwritten = ext4_ext_is_unwritten(ex);
    			ex->ee_block = newext->ee_block;
    			ext4_ext_store_pblock(ex, ext4_ext_pblock(newext));
    			ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
    					+ ext4_ext_get_actual_len(newext));
    			if (unwritten)
    				ext4_ext_mark_unwritten(ex);
    			eh = path[depth].p_hdr;
    			nearex = ex;
    			goto merge;
    		}
    	}
    
    	depth = ext_depth(inode);
    	eh = path[depth].p_hdr;
    	if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
    		goto has_space;
    
    	/* probably next leaf has space for us? */
    	fex = EXT_LAST_EXTENT(eh);
    	next = EXT_MAX_BLOCKS;
    	if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
    		next = ext4_ext_next_leaf_block(path);
    	if (next != EXT_MAX_BLOCKS) {
    		ext_debug("next leaf block - %u\n", next);
    		BUG_ON(npath != NULL);
    		npath = ext4_find_extent(inode, next, NULL, 0);
    		if (IS_ERR(npath))
    			return PTR_ERR(npath);
    		BUG_ON(npath->p_depth != path->p_depth);
    		eh = npath[depth].p_hdr;
    		if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
    			ext_debug("next leaf isn't full(%d)\n",
    				  le16_to_cpu(eh->eh_entries));
    			path = npath;
    			goto has_space;
    		}
    		ext_debug("next leaf has no free space(%d,%d)\n",
    			  le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
    	}
    
    	/*
    	 * There is no free space in the found leaf.
    	 * We're gonna add a new leaf in the tree.
    	 */
    	if (gb_flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
    		mb_flags |= EXT4_MB_USE_RESERVED;
    	err = ext4_ext_create_new_leaf(handle, inode, mb_flags, gb_flags,
    				       ppath, newext);
    	if (err)
    		goto cleanup;
    	depth = ext_depth(inode);
    	eh = path[depth].p_hdr;
    
    has_space:
    	nearex = path[depth].p_ext;
    
    	err = ext4_ext_get_access(handle, inode, path + depth);
    	if (err)
    		goto cleanup;
    
    	if (!nearex) {
    		/* there is no extent in this leaf, create first one */
    		ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
    				le32_to_cpu(newext->ee_block),
    				ext4_ext_pblock(newext),
    				ext4_ext_is_unwritten(newext),
    				ext4_ext_get_actual_len(newext));
    		nearex = EXT_FIRST_EXTENT(eh);
    	} else {
    		if (le32_to_cpu(newext->ee_block)
    			   > le32_to_cpu(nearex->ee_block)) {
    			/* Insert after */
    			ext_debug("insert %u:%llu:[%d]%d before: "
    					"nearest %p\n",
    					le32_to_cpu(newext->ee_block),
    					ext4_ext_pblock(newext),
    					ext4_ext_is_unwritten(newext),
    					ext4_ext_get_actual_len(newext),
    					nearex);
    			nearex++;
    		} else {
    			/* Insert before */
    			BUG_ON(newext->ee_block == nearex->ee_block);
    			ext_debug("insert %u:%llu:[%d]%d after: "
    					"nearest %p\n",
    					le32_to_cpu(newext->ee_block),
    					ext4_ext_pblock(newext),
    					ext4_ext_is_unwritten(newext),
    					ext4_ext_get_actual_len(newext),
    					nearex);
    		}
    		len = EXT_LAST_EXTENT(eh) - nearex + 1;
    		if (len > 0) {
    			ext_debug("insert %u:%llu:[%d]%d: "
    					"move %d extents from 0x%p to 0x%p\n",
    					le32_to_cpu(newext->ee_block),
    					ext4_ext_pblock(newext),
    					ext4_ext_is_unwritten(newext),
    					ext4_ext_get_actual_len(newext),
    					len, nearex, nearex + 1);
    			memmove(nearex + 1, nearex,
    				len * sizeof(struct ext4_extent));
    		}
    	}
    
    	le16_add_cpu(&eh->eh_entries, 1);
    	path[depth].p_ext = nearex;
    	nearex->ee_block = newext->ee_block;
    	ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
    	nearex->ee_len = newext->ee_len;
    
    merge:
    	/* try to merge extents */
    	if (!(gb_flags & EXT4_GET_BLOCKS_PRE_IO))
    		ext4_ext_try_to_merge(handle, inode, path, nearex);
    
    
    	/* time to correct all indexes above */
    	err = ext4_ext_correct_indexes(handle, inode, path);
    	if (err)
    		goto cleanup;
    
    	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
    
    cleanup:
    	ext4_ext_drop_refs(npath);
    	kfree(npath);
    	return err;
    }
    
    static int ext4_fill_fiemap_extents(struct inode *inode,
    				    ext4_lblk_t block, ext4_lblk_t num,
    				    struct fiemap_extent_info *fieinfo)
    {
    	struct ext4_ext_path *path = NULL;
    	struct ext4_extent *ex;
    	struct extent_status es;
    	ext4_lblk_t next, next_del, start = 0, end = 0;
    	ext4_lblk_t last = block + num;
    	int exists, depth = 0, err = 0;
    	unsigned int flags = 0;
    	unsigned char blksize_bits = inode->i_sb->s_blocksize_bits;
    
    	while (block < last && block != EXT_MAX_BLOCKS) {
    		num = last - block;
    		/* find extent for this block */
    		down_read(&EXT4_I(inode)->i_data_sem);
    
    		path = ext4_find_extent(inode, block, &path, 0);
    		if (IS_ERR(path)) {
    			up_read(&EXT4_I(inode)->i_data_sem);
    			err = PTR_ERR(path);
    			path = NULL;
    			break;
    		}
    
    		depth = ext_depth(inode);
    		if (unlikely(path[depth].p_hdr == NULL)) {
    			up_read(&EXT4_I(inode)->i_data_sem);
    			EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
    			err = -EIO;
    			break;
    		}
    		ex = path[depth].p_ext;
    		next = ext4_ext_next_allocated_block(path);
    
    		flags = 0;
    		exists = 0;
    		if (!ex) {
    			/* there is no extent yet, so try to allocate
    			 * all requested space */
    			start = block;
    			end = block + num;
    		} else if (le32_to_cpu(ex->ee_block) > block) {
    			/* need to allocate space before found extent */
    			start = block;
    			end = le32_to_cpu(ex->ee_block);
    			if (block + num < end)
    				end = block + num;
    		} else if (block >= le32_to_cpu(ex->ee_block)
    					+ ext4_ext_get_actual_len(ex)) {
    			/* need to allocate space after found extent */
    			start = block;
    			end = block + num;
    			if (end >= next)
    				end = next;
    		} else if (block >= le32_to_cpu(ex->ee_block)) {
    			/*
    			 * some part of requested space is covered
    			 * by found extent
    			 */
    			start = block;
    			end = le32_to_cpu(ex->ee_block)
    				+ ext4_ext_get_actual_len(ex);
    			if (block + num < end)
    				end = block + num;
    			exists = 1;
    		} else {
    			BUG();
    		}
    		BUG_ON(end <= start);
    
    		if (!exists) {
    			es.es_lblk = start;
    			es.es_len = end - start;
    			es.es_pblk = 0;
    		} else {
    			es.es_lblk = le32_to_cpu(ex->ee_block);
    			es.es_len = ext4_ext_get_actual_len(ex);
    			es.es_pblk = ext4_ext_pblock(ex);
    			if (ext4_ext_is_unwritten(ex))
    				flags |= FIEMAP_EXTENT_UNWRITTEN;
    		}
    
    		/*
    		 * Find delayed extent and update es accordingly. We call
    		 * it even in !exists case to find out whether es is the
    		 * last existing extent or not.
    		 */
    		next_del = ext4_find_delayed_extent(inode, &es);
    		if (!exists && next_del) {
    			exists = 1;
    			flags |= (FIEMAP_EXTENT_DELALLOC |
    				  FIEMAP_EXTENT_UNKNOWN);
    		}
    		up_read(&EXT4_I(inode)->i_data_sem);
    
    		if (unlikely(es.es_len == 0)) {
    			EXT4_ERROR_INODE(inode, "es.es_len == 0");
    			err = -EIO;
    			break;
    		}
    
    		/*
    		 * This is possible iff next == next_del == EXT_MAX_BLOCKS.
    		 * we need to check next == EXT_MAX_BLOCKS because it is
    		 * possible that an extent is with unwritten and delayed
    		 * status due to when an extent is delayed allocated and
    		 * is allocated by fallocate status tree will track both of
    		 * them in a extent.
    		 *
    		 * So we could return a unwritten and delayed extent, and
    		 * its block is equal to 'next'.
    		 */
    		if (next == next_del && next == EXT_MAX_BLOCKS) {
    			flags |= FIEMAP_EXTENT_LAST;
    			if (unlikely(next_del != EXT_MAX_BLOCKS ||
    				     next != EXT_MAX_BLOCKS)) {
    				EXT4_ERROR_INODE(inode,
    						 "next extent == %u, next "
    						 "delalloc extent = %u",
    						 next, next_del);
    				err = -EIO;
    				break;
    			}
    		}
    
    		if (exists) {
    			err = fiemap_fill_next_extent(fieinfo,
    				(__u64)es.es_lblk << blksize_bits,
    				(__u64)es.es_pblk << blksize_bits,
    				(__u64)es.es_len << blksize_bits,
    				flags);
    			if (err < 0)
    				break;
    			if (err == 1) {
    				err = 0;
    				break;
    			}
    		}
    
    		block = es.es_lblk + es.es_len;
    	}
    
    	ext4_ext_drop_refs(path);
    	kfree(path);
    	return err;
    }
    
    /*
     * ext4_ext_put_gap_in_cache:
     * calculate boundaries of the gap that the requested block fits into
     * and cache this gap
     */
    static void
    ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
    				ext4_lblk_t block)
    {
    	int depth = ext_depth(inode);
    	unsigned long len = 0;
    	ext4_lblk_t lblock = 0;
    	struct ext4_extent *ex;
    
    	ex = path[depth].p_ext;
    	if (ex == NULL) {
    		/*
    		 * there is no extent yet, so gap is [0;-] and we
    		 * don't cache it
    		 */
    		ext_debug("cache gap(whole file):");
    	} else if (block < le32_to_cpu(ex->ee_block)) {
    		lblock = block;
    		len = le32_to_cpu(ex->ee_block) - block;
    		ext_debug("cache gap(before): %u [%u:%u]",
    				block,
    				le32_to_cpu(ex->ee_block),
    				 ext4_ext_get_actual_len(ex));
    		if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1))
    			ext4_es_insert_extent(inode, lblock, len, ~0,
    					      EXTENT_STATUS_HOLE);
    	} else if (block >= le32_to_cpu(ex->ee_block)
    			+ ext4_ext_get_actual_len(ex)) {
    		ext4_lblk_t next;
    		lblock = le32_to_cpu(ex->ee_block)
    			+ ext4_ext_get_actual_len(ex);
    
    		next = ext4_ext_next_allocated_block(path);
    		ext_debug("cache gap(after): [%u:%u] %u",
    				le32_to_cpu(ex->ee_block),
    				ext4_ext_get_actual_len(ex),
    				block);
    		BUG_ON(next == lblock);
    		len = next - lblock;
    		if (!ext4_find_delalloc_range(inode, lblock, lblock + len - 1))
    			ext4_es_insert_extent(inode, lblock, len, ~0,
    					      EXTENT_STATUS_HOLE);
    	} else {
    		BUG();
    	}
    
    	ext_debug(" -> %u:%lu\n", lblock, len);
    }
    
    /*
     * ext4_ext_rm_idx:
     * removes index from the index block.
     */
    static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
    			struct ext4_ext_path *path, int depth)
    {
    	int err;
    	ext4_fsblk_t leaf;
    
    	/* free index block */
    	depth--;
    	path = path + depth;
    	leaf = ext4_idx_pblock(path->p_idx);
    	if (unlikely(path->p_hdr->eh_entries == 0)) {
    		EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
    		return -EIO;
    	}
    	err = ext4_ext_get_access(handle, inode, path);
    	if (err)
    		return err;
    
    	if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
    		int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
    		len *= sizeof(struct ext4_extent_idx);
    		memmove(path->p_idx, path->p_idx + 1, len);
    	}
    
    	le16_add_cpu(&path->p_hdr->eh_entries, -1);
    	err = ext4_ext_dirty(handle, inode, path);
    	if (err)
    		return err;
    	ext_debug("index is empty, remove it, free block %llu\n", leaf);
    	trace_ext4_ext_rm_idx(inode, leaf);
    
    	ext4_free_blocks(handle, inode, NULL, leaf, 1,
    			 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
    
    	while (--depth >= 0) {
    		if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr))
    			break;
    		path--;
    		err = ext4_ext_get_access(handle, inode, path);
    		if (err)
    			break;
    		path->p_idx->ei_block = (path+1)->p_idx->ei_block;
    		err = ext4_ext_dirty(handle, inode, path);
    		if (err)
    			break;
    	}
    	return err;
    }
    
    /*
     * ext4_ext_calc_credits_for_single_extent:
     * This routine returns max. credits that needed to insert an extent
     * to the extent tree.
     * When pass the actual path, the caller should calculate credits
     * under i_data_sem.
     */
    int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
    						struct ext4_ext_path *path)
    {
    	if (path) {
    		int depth = ext_depth(inode);
    		int ret = 0;
    
    		/* probably there is space in leaf? */
    		if (le16_to_cpu(path[depth].p_hdr->eh_entries)
    				< le16_to_cpu(path[depth].p_hdr->eh_max)) {
    
    			/*
    			 *  There are some space in the leaf tree, no
    			 *  need to account for leaf block credit
    			 *
    			 *  bitmaps and block group descriptor blocks
    			 *  and other metadata blocks still need to be
    			 *  accounted.
    			 */
    			/* 1 bitmap, 1 block group descriptor */
    			ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
    			return ret;
    		}
    	}
    
    	return ext4_chunk_trans_blocks(inode, nrblocks);
    }
    
    /*
     * How many index/leaf blocks need to change/allocate to add @extents extents?
     *
     * If we add a single extent, then in the worse case, each tree level
     * index/leaf need to be changed in case of the tree split.
     *
     * If more extents are inserted, they could cause the whole tree split more
     * than once, but this is really rare.
     */
    int ext4_ext_index_trans_blocks(struct inode *inode, int extents)
    {
    	int index;
    	int depth;
    
    	/* If we are converting the inline data, only one is needed here. */
    	if (ext4_has_inline_data(inode))
    		return 1;
    
    	depth = ext_depth(inode);
    
    	if (extents <= 1)
    		index = depth * 2;
    	else
    		index = depth * 3;
    
    	return index;
    }
    
    static inline int get_default_free_blocks_flags(struct inode *inode)
    {
    	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
    		return EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET;
    	else if (ext4_should_journal_data(inode))
    		return EXT4_FREE_BLOCKS_FORGET;
    	return 0;
    }
    
    static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
    			      struct ext4_extent *ex,
    			      long long *partial_cluster,
    			      ext4_lblk_t from, ext4_lblk_t to)
    {
    	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
    	unsigned short ee_len =  ext4_ext_get_actual_len(ex);
    	ext4_fsblk_t pblk;
    	int flags = get_default_free_blocks_flags(inode);
    
    	/*
    	 * For bigalloc file systems, we never free a partial cluster
    	 * at the beginning of the extent.  Instead, we make a note
    	 * that we tried freeing the cluster, and check to see if we
    	 * need to free it on a subsequent call to ext4_remove_blocks,
    	 * or at the end of the ext4_truncate() operation.
    	 */
    	flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
    
    	trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
    	/*
    	 * If we have a partial cluster, and it's different from the
    	 * cluster of the last block, we need to explicitly free the
    	 * partial cluster here.
    	 */
    	pblk = ext4_ext_pblock(ex) + ee_len - 1;
    	if ((*partial_cluster > 0) &&
    	    (EXT4_B2C(sbi, pblk) != *partial_cluster)) {
    		ext4_free_blocks(handle, inode, NULL,
    				 EXT4_C2B(sbi, *partial_cluster),
    				 sbi->s_cluster_ratio, flags);
    		*partial_cluster = 0;
    	}
    
    #ifdef EXTENTS_STATS
    	{
    		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
    		spin_lock(&sbi->s_ext_stats_lock);
    		sbi->s_ext_blocks += ee_len;
    		sbi->s_ext_extents++;
    		if (ee_len < sbi->s_ext_min)
    			sbi->s_ext_min = ee_len;
    		if (ee_len > sbi->s_ext_max)
    			sbi->s_ext_max = ee_len;
    		if (ext_depth(inode) > sbi->s_depth_max)
    			sbi->s_depth_max = ext_depth(inode);
    		spin_unlock(&sbi->s_ext_stats_lock);
    	}
    #endif
    	if (from >= le32_to_cpu(ex->ee_block)
    	    && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
    		/* tail removal */
    		ext4_lblk_t num;
    		unsigned int unaligned;
    
    		num = le32_to_cpu(ex->ee_block) + ee_len - from;
    		pblk = ext4_ext_pblock(ex) + ee_len - num;
    		/*
    		 * Usually we want to free partial cluster at the end of the
    		 * extent, except for the situation when the cluster is still
    		 * used by any other extent (partial_cluster is negative).
    		 */
    		if (*partial_cluster < 0 &&
    		    -(*partial_cluster) == EXT4_B2C(sbi, pblk + num - 1))
    			flags |= EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER;
    
    		ext_debug("free last %u blocks starting %llu partial %lld\n",
    			  num, pblk, *partial_cluster);
    		ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
    		/*
    		 * If the block range to be freed didn't start at the
    		 * beginning of a cluster, and we removed the entire
    		 * extent and the cluster is not used by any other extent,
    		 * save the partial cluster here, since we might need to
    		 * delete if we determine that the truncate operation has
    		 * removed all of the blocks in the cluster.
    		 *
    		 * On the other hand, if we did not manage to free the whole
    		 * extent, we have to mark the cluster as used (store negative
    		 * cluster number in partial_cluster).
    		 */
    		unaligned = EXT4_PBLK_COFF(sbi, pblk);
    		if (unaligned && (ee_len == num) &&
    		    (*partial_cluster != -((long long)EXT4_B2C(sbi, pblk))))
    			*partial_cluster = EXT4_B2C(sbi, pblk);
    		else if (unaligned)
    			*partial_cluster = -((long long)EXT4_B2C(sbi, pblk));
    		else if (*partial_cluster > 0)
    			*partial_cluster = 0;
    	} else
    		ext4_error(sbi->s_sb, "strange request: removal(2) "
    			   "%u-%u from %u:%u\n",
    			   from, to, le32_to_cpu(ex->ee_block), ee_len);
    	return 0;
    }
    
    
    /*
     * ext4_ext_rm_leaf() Removes the extents associated with the
     * blocks appearing between "start" and "end", and splits the extents
     * if "start" and "end" appear in the same extent
     *
     * @handle: The journal handle
     * @inode:  The files inode
     * @path:   The path to the leaf
     * @partial_cluster: The cluster which we'll have to free if all extents
     *                   has been released from it. It gets negative in case
     *                   that the cluster is still used.
     * @start:  The first block to remove
     * @end:   The last block to remove
     */
    static int
    ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
    		 struct ext4_ext_path *path,
    		 long long *partial_cluster,
    		 ext4_lblk_t start, ext4_lblk_t end)
    {
    	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
    	int err = 0, correct_index = 0;
    	int depth = ext_depth(inode), credits;
    	struct ext4_extent_header *eh;
    	ext4_lblk_t a, b;
    	unsigned num;
    	ext4_lblk_t ex_ee_block;
    	unsigned short ex_ee_len;
    	unsigned unwritten = 0;
    	struct ext4_extent *ex;
    	ext4_fsblk_t pblk;
    
    	/* the header must be checked already in ext4_ext_remove_space() */
    	ext_debug("truncate since %u in leaf to %u\n", start, end);
    	if (!path[depth].p_hdr)
    		path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
    	eh = path[depth].p_hdr;
    	if (unlikely(path[depth].p_hdr == NULL)) {
    		EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
    		return -EIO;
    	}
    	/* find where to start removing */
    	ex = path[depth].p_ext;
    	if (!ex)
    		ex = EXT_LAST_EXTENT(eh);
    
    	ex_ee_block = le32_to_cpu(ex->ee_block);
    	ex_ee_len = ext4_ext_get_actual_len(ex);
    
    	/*
    	 * If we're starting with an extent other than the last one in the
    	 * node, we need to see if it shares a cluster with the extent to
    	 * the right (towards the end of the file). If its leftmost cluster
    	 * is this extent's rightmost cluster and it is not cluster aligned,
    	 * we'll mark it as a partial that is not to be deallocated.
    	 */
    
    	if (ex != EXT_LAST_EXTENT(eh)) {
    		ext4_fsblk_t current_pblk, right_pblk;
    		long long current_cluster, right_cluster;
    
    		current_pblk = ext4_ext_pblock(ex) + ex_ee_len - 1;
    		current_cluster = (long long)EXT4_B2C(sbi, current_pblk);
    		right_pblk = ext4_ext_pblock(ex + 1);
    		right_cluster = (long long)EXT4_B2C(sbi, right_pblk);
    		if (current_cluster == right_cluster &&
    			EXT4_PBLK_COFF(sbi, right_pblk))
    			*partial_cluster = -right_cluster;
    	}
    
    	trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
    
    	while (ex >= EXT_FIRST_EXTENT(eh) &&
    			ex_ee_block + ex_ee_len > start) {
    
    		if (ext4_ext_is_unwritten(ex))
    			unwritten = 1;
    		else
    			unwritten = 0;
    
    		ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
    			  unwritten, ex_ee_len);
    		path[depth].p_ext = ex;
    
    		a = ex_ee_block > start ? ex_ee_block : start;
    		b = ex_ee_block+ex_ee_len - 1 < end ?
    			ex_ee_block+ex_ee_len - 1 : end;
    
    		ext_debug("  border %u:%u\n", a, b);
    
    		/* If this extent is beyond the end of the hole, skip it */
    		if (end < ex_ee_block) {
    			/*
    			 * We're going to skip this extent and move to another,
    			 * so if this extent is not cluster aligned we have
    			 * to mark the current cluster as used to avoid
    			 * accidentally freeing it later on
    			 */
    			pblk = ext4_ext_pblock(ex);
    			if (EXT4_PBLK_COFF(sbi, pblk))
    				*partial_cluster =
    					-((long long)EXT4_B2C(sbi, pblk));
    			ex--;
    			ex_ee_block = le32_to_cpu(ex->ee_block);
    			ex_ee_len = ext4_ext_get_actual_len(ex);
    			continue;
    		} else if (b != ex_ee_block + ex_ee_len - 1) {
    			EXT4_ERROR_INODE(inode,
    					 "can not handle truncate %u:%u "
    					 "on extent %u:%u",
    					 start, end, ex_ee_block,
    					 ex_ee_block + ex_ee_len - 1);
    			err = -EIO;
    			goto out;
    		} else if (a != ex_ee_block) {
    			/* remove tail of the extent */
    			num = a - ex_ee_block;
    		} else {
    			/* remove whole extent: excellent! */
    			num = 0;
    		}
    		/*
    		 * 3 for leaf, sb, and inode plus 2 (bmap and group
    		 * descriptor) for each block group; assume two block
    		 * groups plus ex_ee_len/blocks_per_block_group for
    		 * the worst case
    		 */
    		credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
    		if (ex == EXT_FIRST_EXTENT(eh)) {
    			correct_index = 1;
    			credits += (ext_depth(inode)) + 1;
    		}
    		credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
    
    		err = ext4_ext_truncate_extend_restart(handle, inode, credits);
    		if (err)
    			goto out;
    
    		err = ext4_ext_get_access(handle, inode, path + depth);
    		if (err)
    			goto out;
    
    		err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
    					 a, b);
    		if (err)
    			goto out;
    
    		if (num == 0)
    			/* this extent is removed; mark slot entirely unused */
    			ext4_ext_store_pblock(ex, 0);
    
    		ex->ee_len = cpu_to_le16(num);
    		/*
    		 * Do not mark unwritten if all the blocks in the
    		 * extent have been removed.
    		 */
    		if (unwritten && num)
    			ext4_ext_mark_unwritten(ex);
    		/*
    		 * If the extent was completely released,
    		 * we need to remove it from the leaf
    		 */
    		if (num == 0) {
    			if (end != EXT_MAX_BLOCKS - 1) {
    				/*
    				 * For hole punching, we need to scoot all the
    				 * extents up when an extent is removed so that
    				 * we dont have blank extents in the middle
    				 */
    				memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
    					sizeof(struct ext4_extent));
    
    				/* Now get rid of the one at the end */
    				memset(EXT_LAST_EXTENT(eh), 0,
    					sizeof(struct ext4_extent));
    			}
    			le16_add_cpu(&eh->eh_entries, -1);
    		} else if (*partial_cluster > 0)
    			*partial_cluster = 0;
    
    		err = ext4_ext_dirty(handle, inode, path + depth);
    		if (err)
    			goto out;
    
    		ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
    				ext4_ext_pblock(ex));
    		ex--;
    		ex_ee_block = le32_to_cpu(ex->ee_block);
    		ex_ee_len = ext4_ext_get_actual_len(ex);
    	}
    
    	if (correct_index && eh->eh_entries)
    		err = ext4_ext_correct_indexes(handle, inode, path);
    
    	/*
    	 * If there's a partial cluster and at least one extent remains in
    	 * the leaf, free the partial cluster if it isn't shared with the
    	 * current extent.  If there's a partial cluster and no extents
    	 * remain in the leaf, it can't be freed here.  It can only be
    	 * freed when it's possible to determine if it's not shared with
    	 * any other extent - when the next leaf is processed or when space
    	 * removal is complete.
    	 */
    	if (*partial_cluster > 0 && eh->eh_entries &&
    	    (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) !=
    	     *partial_cluster)) {
    		int flags = get_default_free_blocks_flags(inode);
    
    		ext4_free_blocks(handle, inode, NULL,
    				 EXT4_C2B(sbi, *partial_cluster),
    				 sbi->s_cluster_ratio, flags);
    		*partial_cluster = 0;
    	}
    
    	/* if this leaf is free, then we should
    	 * remove it from index block above */
    	if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
    		err = ext4_ext_rm_idx(handle, inode, path, depth);
    
    out:
    	return err;
    }
    
    /*
     * ext4_ext_more_to_rm:
     * returns 1 if current index has to be freed (even partial)
     */
    static int
    ext4_ext_more_to_rm(struct ext4_ext_path *path)
    {
    	BUG_ON(path->p_idx == NULL);
    
    	if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
    		return 0;
    
    	/*
    	 * if truncate on deeper level happened, it wasn't partial,
    	 * so we have to consider current index for truncation
    	 */
    	if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
    		return 0;
    	return 1;
    }
    
    int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
    			  ext4_lblk_t end)
    {
    	struct super_block *sb = inode->i_sb;
    	int depth = ext_depth(inode);
    	struct ext4_ext_path *path = NULL;
    	long long partial_cluster = 0;
    	handle_t *handle;
    	int i = 0, err = 0;
    
    	ext_debug("truncate since %u to %u\n", start, end);
    
    	/* probably first extent we're gonna free will be last in block */
    	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, depth + 1);
    	if (IS_ERR(handle))
    		return PTR_ERR(handle);
    
    again:
    	trace_ext4_ext_remove_space(inode, start, end, depth);
    
    	/*
    	 * Check if we are removing extents inside the extent tree. If that
    	 * is the case, we are going to punch a hole inside the extent tree
    	 * so we have to check whether we need to split the extent covering
    	 * the last block to remove so we can easily remove the part of it
    	 * in ext4_ext_rm_leaf().
    	 */
    	if (end < EXT_MAX_BLOCKS - 1) {
    		struct ext4_extent *ex;
    		ext4_lblk_t ee_block;
    
    		/* find extent for this block */
    		path = ext4_find_extent(inode, end, NULL, EXT4_EX_NOCACHE);
    		if (IS_ERR(path)) {
    			ext4_journal_stop(handle);
    			return PTR_ERR(path);
    		}
    		depth = ext_depth(inode);
    		/* Leaf not may not exist only if inode has no blocks at all */
    		ex = path[depth].p_ext;
    		if (!ex) {
    			if (depth) {
    				EXT4_ERROR_INODE(inode,
    						 "path[%d].p_hdr == NULL",
    						 depth);
    				err = -EIO;
    			}
    			goto out;
    		}
    
    		ee_block = le32_to_cpu(ex->ee_block);
    
    		/*
    		 * See if the last block is inside the extent, if so split
    		 * the extent at 'end' block so we can easily remove the
    		 * tail of the first part of the split extent in
    		 * ext4_ext_rm_leaf().
    		 */
    		if (end >= ee_block &&
    		    end < ee_block + ext4_ext_get_actual_len(ex) - 1) {
    			/*
    			 * Split the extent in two so that 'end' is the last
    			 * block in the first new extent. Also we should not
    			 * fail removing space due to ENOSPC so try to use
    			 * reserved block if that happens.
    			 */
    			err = ext4_force_split_extent_at(handle, inode, &path,
    							 end + 1, 1);
    			if (err < 0)
    				goto out;
    		}
    	}
    	/*
    	 * We start scanning from right side, freeing all the blocks
    	 * after i_size and walking into the tree depth-wise.
    	 */
    	depth = ext_depth(inode);
    	if (path) {
    		int k = i = depth;
    		while (--k > 0)
    			path[k].p_block =
    				le16_to_cpu(path[k].p_hdr->eh_entries)+1;
    	} else {
    		path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
    			       GFP_NOFS);
    		if (path == NULL) {
    			ext4_journal_stop(handle);
    			return -ENOMEM;
    		}
    		path[0].p_maxdepth = path[0].p_depth = depth;
    		path[0].p_hdr = ext_inode_hdr(inode);
    		i = 0;
    
    		if (ext4_ext_check(inode, path[0].p_hdr, depth, 0)) {
    			err = -EIO;
    			goto out;
    		}
    	}
    	err = 0;
    
    	while (i >= 0 && err == 0) {
    		if (i == depth) {
    			/* this is leaf block */
    			err = ext4_ext_rm_leaf(handle, inode, path,
    					       &partial_cluster, start,
    					       end);
    			/* root level has p_bh == NULL, brelse() eats this */
    			brelse(path[i].p_bh);
    			path[i].p_bh = NULL;
    			i--;
    			continue;
    		}
    
    		/* this is index block */
    		if (!path[i].p_hdr) {
    			ext_debug("initialize header\n");
    			path[i].p_hdr = ext_block_hdr(path[i].p_bh);
    		}
    
    		if (!path[i].p_idx) {
    			/* this level hasn't been touched yet */
    			path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
    			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
    			ext_debug("init index ptr: hdr 0x%p, num %d\n",
    				  path[i].p_hdr,
    				  le16_to_cpu(path[i].p_hdr->eh_entries));
    		} else {
    			/* we were already here, see at next index */
    			path[i].p_idx--;
    		}
    
    		ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
    				i, EXT_FIRST_INDEX(path[i].p_hdr),
    				path[i].p_idx);
    		if (ext4_ext_more_to_rm(path + i)) {
    			struct buffer_head *bh;
    			/* go to the next level */
    			ext_debug("move to level %d (block %llu)\n",
    				  i + 1, ext4_idx_pblock(path[i].p_idx));
    			memset(path + i + 1, 0, sizeof(*path));
    			bh = read_extent_tree_block(inode,
    				ext4_idx_pblock(path[i].p_idx), depth - i - 1,
    				EXT4_EX_NOCACHE);
    			if (IS_ERR(bh)) {
    				/* should we reset i_size? */
    				err = PTR_ERR(bh);
    				break;
    			}
    			/* Yield here to deal with large extent trees.
    			 * Should be a no-op if we did IO above. */
    			cond_resched();
    			if (WARN_ON(i + 1 > depth)) {
    				err = -EIO;
    				break;
    			}
    			path[i + 1].p_bh = bh;
    
    			/* save actual number of indexes since this
    			 * number is changed at the next iteration */
    			path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
    			i++;
    		} else {
    			/* we finished processing this index, go up */
    			if (path[i].p_hdr->eh_entries == 0 && i > 0) {
    				/* index is empty, remove it;
    				 * handle must be already prepared by the
    				 * truncatei_leaf() */
    				err = ext4_ext_rm_idx(handle, inode, path, i);
    			}
    			/* root level has p_bh == NULL, brelse() eats this */
    			brelse(path[i].p_bh);
    			path[i].p_bh = NULL;
    			i--;
    			ext_debug("return to level %d\n", i);
    		}
    	}
    
    	trace_ext4_ext_remove_space_done(inode, start, end, depth,
    			partial_cluster, path->p_hdr->eh_entries);
    
    	/* If we still have something in the partial cluster and we have removed
    	 * even the first extent, then we should free the blocks in the partial
    	 * cluster as well. */
    	if (partial_cluster > 0 && path->p_hdr->eh_entries == 0) {
    		int flags = get_default_free_blocks_flags(inode);
    
    		ext4_free_blocks(handle, inode, NULL,
    				 EXT4_C2B(EXT4_SB(sb), partial_cluster),
    				 EXT4_SB(sb)->s_cluster_ratio, flags);
    		partial_cluster = 0;
    	}
    
    	/* TODO: flexible tree reduction should be here */
    	if (path->p_hdr->eh_entries == 0) {
    		/*
    		 * truncate to zero freed all the tree,
    		 * so we need to correct eh_depth
    		 */
    		err = ext4_ext_get_access(handle, inode, path);
    		if (err == 0) {
    			ext_inode_hdr(inode)->eh_depth = 0;
    			ext_inode_hdr(inode)->eh_max =
    				cpu_to_le16(ext4_ext_space_root(inode, 0));
    			err = ext4_ext_dirty(handle, inode, path);
    		}
    	}
    out:
    	ext4_ext_drop_refs(path);
    	kfree(path);
    	path = NULL;
    	if (err == -EAGAIN)
    		goto again;
    	ext4_journal_stop(handle);
    
    	return err;
    }
    
    /*
     * called at mount time
     */
    void ext4_ext_init(struct super_block *sb)
    {
    	/*
    	 * possible initialization would be here
    	 */
    
    	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
    #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
    		printk(KERN_INFO "EXT4-fs: file extents enabled"
    #ifdef AGGRESSIVE_TEST
    		       ", aggressive tests"
    #endif
    #ifdef CHECK_BINSEARCH
    		       ", check binsearch"
    #endif
    #ifdef EXTENTS_STATS
    		       ", stats"
    #endif
    		       "\n");
    #endif
    #ifdef EXTENTS_STATS
    		spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
    		EXT4_SB(sb)->s_ext_min = 1 << 30;
    		EXT4_SB(sb)->s_ext_max = 0;
    #endif
    	}
    }
    
    /*
     * called at umount time
     */
    void ext4_ext_release(struct super_block *sb)
    {
    	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
    		return;
    
    #ifdef EXTENTS_STATS
    	if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
    		struct ext4_sb_info *sbi = EXT4_SB(sb);
    		printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
    			sbi->s_ext_blocks, sbi->s_ext_extents,
    			sbi->s_ext_blocks / sbi->s_ext_extents);
    		printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
    			sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
    	}
    #endif
    }
    
    static int ext4_zeroout_es(struct inode *inode, struct ext4_extent *ex)
    {
    	ext4_lblk_t  ee_block;
    	ext4_fsblk_t ee_pblock;
    	unsigned int ee_len;
    
    	ee_block  = le32_to_cpu(ex->ee_block);
    	ee_len    = ext4_ext_get_actual_len(ex);
    	ee_pblock = ext4_ext_pblock(ex);
    
    	if (ee_len == 0)
    		return 0;
    
    	return ext4_es_insert_extent(inode, ee_block, ee_len, ee_pblock,
    				     EXTENT_STATUS_WRITTEN);
    }
    
    /* FIXME!! we need to try to merge to left or right after zero-out  */
    static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
    {
    	ext4_fsblk_t ee_pblock;
    	unsigned int ee_len;
    	int ret;
    
    	ee_len    = ext4_ext_get_actual_len(ex);
    	ee_pblock = ext4_ext_pblock(ex);
    
    	ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
    	if (ret > 0)
    		ret = 0;
    
    	return ret;
    }
    
    /*
     * ext4_split_extent_at() splits an extent at given block.
     *
     * @handle: the journal handle
     * @inode: the file inode
     * @path: the path to the extent
     * @split: the logical block where the extent is splitted.
     * @split_flags: indicates if the extent could be zeroout if split fails, and
     *		 the states(init or unwritten) of new extents.
     * @flags: flags used to insert new extent to extent tree.
     *
     *
     * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
     * of which are deterimined by split_flag.
     *
     * There are two cases:
     *  a> the extent are splitted into two extent.
     *  b> split is not needed, and just mark the extent.
     *
     * return 0 on success.
     */
    static int ext4_split_extent_at(handle_t *handle,
    			     struct inode *inode,
    			     struct ext4_ext_path **ppath,
    			     ext4_lblk_t split,
    			     int split_flag,
    			     int flags)
    {
    	struct ext4_ext_path *path = *ppath;
    	ext4_fsblk_t newblock;
    	ext4_lblk_t ee_block;
    	struct ext4_extent *ex, newex, orig_ex, zero_ex;
    	struct ext4_extent *ex2 = NULL;
    	unsigned int ee_len, depth;
    	int err = 0;
    
    	BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) ==
    	       (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2));
    
    	ext_debug("ext4_split_extents_at: inode %lu, logical"
    		"block %llu\n", inode->i_ino, (unsigned long long)split);
    
    	ext4_ext_show_leaf(inode, path);
    
    	depth = ext_depth(inode);
    	ex = path[depth].p_ext;
    	ee_block = le32_to_cpu(ex->ee_block);
    	ee_len = ext4_ext_get_actual_len(ex);
    	newblock = split - ee_block + ext4_ext_pblock(ex);
    
    	BUG_ON(split < ee_block || split >= (ee_block + ee_len));
    	BUG_ON(!ext4_ext_is_unwritten(ex) &&
    	       split_flag & (EXT4_EXT_MAY_ZEROOUT |
    			     EXT4_EXT_MARK_UNWRIT1 |
    			     EXT4_EXT_MARK_UNWRIT2));
    
    	err = ext4_ext_get_access(handle, inode, path + depth);
    	if (err)
    		goto out;
    
    	if (split == ee_block) {
    		/*
    		 * case b: block @split is the block that the extent begins with
    		 * then we just change the state of the extent, and splitting
    		 * is not needed.
    		 */
    		if (split_flag & EXT4_EXT_MARK_UNWRIT2)
    			ext4_ext_mark_unwritten(ex);
    		else
    			ext4_ext_mark_initialized(ex);
    
    		if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
    			ext4_ext_try_to_merge(handle, inode, path, ex);
    
    		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
    		goto out;
    	}
    
    	/* case a */
    	memcpy(&orig_ex, ex, sizeof(orig_ex));
    	ex->ee_len = cpu_to_le16(split - ee_block);
    	if (split_flag & EXT4_EXT_MARK_UNWRIT1)
    		ext4_ext_mark_unwritten(ex);
    
    	/*
    	 * path may lead to new leaf, not to original leaf any more
    	 * after ext4_ext_insert_extent() returns,
    	 */
    	err = ext4_ext_dirty(handle, inode, path + depth);
    	if (err)
    		goto fix_extent_len;
    
    	ex2 = &newex;
    	ex2->ee_block = cpu_to_le32(split);
    	ex2->ee_len   = cpu_to_le16(ee_len - (split - ee_block));
    	ext4_ext_store_pblock(ex2, newblock);
    	if (split_flag & EXT4_EXT_MARK_UNWRIT2)
    		ext4_ext_mark_unwritten(ex2);
    
    	err = ext4_ext_insert_extent(handle, inode, ppath, &newex, flags);
    	if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
    		if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) {
    			if (split_flag & EXT4_EXT_DATA_VALID1) {
    				err = ext4_ext_zeroout(inode, ex2);
    				zero_ex.ee_block = ex2->ee_block;
    				zero_ex.ee_len = cpu_to_le16(
    						ext4_ext_get_actual_len(ex2));
    				ext4_ext_store_pblock(&zero_ex,
    						      ext4_ext_pblock(ex2));
    			} else {
    				err = ext4_ext_zeroout(inode, ex);
    				zero_ex.ee_block = ex->ee_block;
    				zero_ex.ee_len = cpu_to_le16(
    						ext4_ext_get_actual_len(ex));
    				ext4_ext_store_pblock(&zero_ex,
    						      ext4_ext_pblock(ex));
    			}
    		} else {
    			err = ext4_ext_zeroout(inode, &orig_ex);
    			zero_ex.ee_block = orig_ex.ee_block;
    			zero_ex.ee_len = cpu_to_le16(
    						ext4_ext_get_actual_len(&orig_ex));
    			ext4_ext_store_pblock(&zero_ex,
    					      ext4_ext_pblock(&orig_ex));
    		}
    
    		if (err)
    			goto fix_extent_len;
    		/* update the extent length and mark as initialized */
    		ex->ee_len = cpu_to_le16(ee_len);
    		ext4_ext_try_to_merge(handle, inode, path, ex);
    		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
    		if (err)
    			goto fix_extent_len;
    
    		/* update extent status tree */
    		err = ext4_zeroout_es(inode, &zero_ex);
    
    		goto out;
    	} else if (err)
    		goto fix_extent_len;
    
    out:
    	ext4_ext_show_leaf(inode, path);
    	return err;
    
    fix_extent_len:
    	ex->ee_len = orig_ex.ee_len;
    	ext4_ext_dirty(handle, inode, path + path->p_depth);
    	return err;
    }
    
    /*
     * ext4_split_extents() splits an extent and mark extent which is covered
     * by @map as split_flags indicates
     *
     * It may result in splitting the extent into multiple extents (up to three)
     * There are three possibilities:
     *   a> There is no split required
     *   b> Splits in two extents: Split is happening at either end of the extent
     *   c> Splits in three extents: Somone is splitting in middle of the extent
     *
     */
    static int ext4_split_extent(handle_t *handle,
    			      struct inode *inode,
    			      struct ext4_ext_path **ppath,
    			      struct ext4_map_blocks *map,
    			      int split_flag,
    			      int flags)
    {
    	struct ext4_ext_path *path = *ppath;
    	ext4_lblk_t ee_block;
    	struct ext4_extent *ex;
    	unsigned int ee_len, depth;
    	int err = 0;
    	int unwritten;
    	int split_flag1, flags1;
    	int allocated = map->m_len;
    
    	depth = ext_depth(inode);
    	ex = path[depth].p_ext;
    	ee_block = le32_to_cpu(ex->ee_block);
    	ee_len = ext4_ext_get_actual_len(ex);
    	unwritten = ext4_ext_is_unwritten(ex);
    
    	if (map->m_lblk + map->m_len < ee_block + ee_len) {
    		split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT;
    		flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
    		if (unwritten)
    			split_flag1 |= EXT4_EXT_MARK_UNWRIT1 |
    				       EXT4_EXT_MARK_UNWRIT2;
    		if (split_flag & EXT4_EXT_DATA_VALID2)
    			split_flag1 |= EXT4_EXT_DATA_VALID1;
    		err = ext4_split_extent_at(handle, inode, ppath,
    				map->m_lblk + map->m_len, split_flag1, flags1);
    		if (err)
    			goto out;
    	} else {
    		allocated = ee_len - (map->m_lblk - ee_block);
    	}
    	/*
    	 * Update path is required because previous ext4_split_extent_at() may
    	 * result in split of original leaf or extent zeroout.
    	 */
    	path = ext4_find_extent(inode, map->m_lblk, ppath, 0);
    	if (IS_ERR(path))
    		return PTR_ERR(path);
    	depth = ext_depth(inode);
    	ex = path[depth].p_ext;
    	if (!ex) {
    		EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
    				 (unsigned long) map->m_lblk);
    		return -EIO;
    	}
    	unwritten = ext4_ext_is_unwritten(ex);
    	split_flag1 = 0;
    
    	if (map->m_lblk >= ee_block) {
    		split_flag1 = split_flag & EXT4_EXT_DATA_VALID2;
    		if (unwritten) {
    			split_flag1 |= EXT4_EXT_MARK_UNWRIT1;
    			split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT |
    						     EXT4_EXT_MARK_UNWRIT2);
    		}
    		err = ext4_split_extent_at(handle, inode, ppath,
    				map->m_lblk, split_flag1, flags);
    		if (err)
    			goto out;
    	}
    
    	ext4_ext_show_leaf(inode, path);
    out:
    	return err ? err : allocated;
    }
    
    /*
     * This function is called by ext4_ext_map_blocks() if someone tries to write
     * to an unwritten extent. It may result in splitting the unwritten
     * extent into multiple extents (up to three - one initialized and two
     * unwritten).
     * There are three possibilities:
     *   a> There is no split required: Entire extent should be initialized
     *   b> Splits in two extents: Write is happening at either end of the extent
     *   c> Splits in three extents: Somone is writing in middle of the extent
     *
     * Pre-conditions:
     *  - The extent pointed to by 'path' is unwritten.
     *  - The extent pointed to by 'path' contains a superset
     *    of the logical span [map->m_lblk, map->m_lblk + map->m_len).
     *
     * Post-conditions on success:
     *  - the returned value is the number of blocks beyond map->l_lblk
     *    that are allocated and initialized.
     *    It is guaranteed to be >= map->m_len.
     */
    static int ext4_ext_convert_to_initialized(handle_t *handle,
    					   struct inode *inode,
    					   struct ext4_map_blocks *map,
    					   struct ext4_ext_path **ppath,
    					   int flags)
    {
    	struct ext4_ext_path *path = *ppath;
    	struct ext4_sb_info *sbi;
    	struct ext4_extent_header *eh;
    	struct ext4_map_blocks split_map;
    	struct ext4_extent zero_ex;
    	struct ext4_extent *ex, *abut_ex;
    	ext4_lblk_t ee_block, eof_block;
    	unsigned int ee_len, depth, map_len = map->m_len;
    	int allocated = 0, max_zeroout = 0;
    	int err = 0;
    	int split_flag = 0;
    
    	ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
    		"block %llu, max_blocks %u\n", inode->i_ino,
    		(unsigned long long)map->m_lblk, map_len);
    
    	sbi = EXT4_SB(inode->i_sb);
    	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
    		inode->i_sb->s_blocksize_bits;
    	if (eof_block < map->m_lblk + map_len)
    		eof_block = map->m_lblk + map_len;
    
    	depth = ext_depth(inode);
    	eh = path[depth].p_hdr;
    	ex = path[depth].p_ext;
    	ee_block = le32_to_cpu(ex->ee_block);
    	ee_len = ext4_ext_get_actual_len(ex);
    	zero_ex.ee_len = 0;
    
    	trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
    
    	/* Pre-conditions */
    	BUG_ON(!ext4_ext_is_unwritten(ex));
    	BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
    
    	/*
    	 * Attempt to transfer newly initialized blocks from the currently
    	 * unwritten extent to its neighbor. This is much cheaper
    	 * than an insertion followed by a merge as those involve costly
    	 * memmove() calls. Transferring to the left is the common case in
    	 * steady state for workloads doing fallocate(FALLOC_FL_KEEP_SIZE)
    	 * followed by append writes.
    	 *
    	 * Limitations of the current logic:
    	 *  - L1: we do not deal with writes covering the whole extent.
    	 *    This would require removing the extent if the transfer
    	 *    is possible.
    	 *  - L2: we only attempt to merge with an extent stored in the
    	 *    same extent tree node.
    	 */
    	if ((map->m_lblk == ee_block) &&
    		/* See if we can merge left */
    		(map_len < ee_len) &&		/*L1*/
    		(ex > EXT_FIRST_EXTENT(eh))) {	/*L2*/
    		ext4_lblk_t prev_lblk;
    		ext4_fsblk_t prev_pblk, ee_pblk;
    		unsigned int prev_len;
    
    		abut_ex = ex - 1;
    		prev_lblk = le32_to_cpu(abut_ex->ee_block);
    		prev_len = ext4_ext_get_actual_len(abut_ex);
    		prev_pblk = ext4_ext_pblock(abut_ex);
    		ee_pblk = ext4_ext_pblock(ex);
    
    		/*
    		 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
    		 * upon those conditions:
    		 * - C1: abut_ex is initialized,
    		 * - C2: abut_ex is logically abutting ex,
    		 * - C3: abut_ex is physically abutting ex,
    		 * - C4: abut_ex can receive the additional blocks without
    		 *   overflowing the (initialized) length limit.
    		 */
    		if ((!ext4_ext_is_unwritten(abut_ex)) &&		/*C1*/
    			((prev_lblk + prev_len) == ee_block) &&		/*C2*/
    			((prev_pblk + prev_len) == ee_pblk) &&		/*C3*/
    			(prev_len < (EXT_INIT_MAX_LEN - map_len))) {	/*C4*/
    			err = ext4_ext_get_access(handle, inode, path + depth);
    			if (err)
    				goto out;
    
    			trace_ext4_ext_convert_to_initialized_fastpath(inode,
    				map, ex, abut_ex);
    
    			/* Shift the start of ex by 'map_len' blocks */
    			ex->ee_block = cpu_to_le32(ee_block + map_len);
    			ext4_ext_store_pblock(ex, ee_pblk + map_len);
    			ex->ee_len = cpu_to_le16(ee_len - map_len);
    			ext4_ext_mark_unwritten(ex); /* Restore the flag */
    
    			/* Extend abut_ex by 'map_len' blocks */
    			abut_ex->ee_len = cpu_to_le16(prev_len + map_len);
    
    			/* Result: number of initialized blocks past m_lblk */
    			allocated = map_len;
    		}
    	} else if (((map->m_lblk + map_len) == (ee_block + ee_len)) &&
    		   (map_len < ee_len) &&	/*L1*/
    		   ex < EXT_LAST_EXTENT(eh)) {	/*L2*/
    		/* See if we can merge right */
    		ext4_lblk_t next_lblk;
    		ext4_fsblk_t next_pblk, ee_pblk;
    		unsigned int next_len;
    
    		abut_ex = ex + 1;
    		next_lblk = le32_to_cpu(abut_ex->ee_block);
    		next_len = ext4_ext_get_actual_len(abut_ex);
    		next_pblk = ext4_ext_pblock(abut_ex);
    		ee_pblk = ext4_ext_pblock(ex);
    
    		/*
    		 * A transfer of blocks from 'ex' to 'abut_ex' is allowed
    		 * upon those conditions:
    		 * - C1: abut_ex is initialized,
    		 * - C2: abut_ex is logically abutting ex,
    		 * - C3: abut_ex is physically abutting ex,
    		 * - C4: abut_ex can receive the additional blocks without
    		 *   overflowing the (initialized) length limit.
    		 */
    		if ((!ext4_ext_is_unwritten(abut_ex)) &&		/*C1*/
    		    ((map->m_lblk + map_len) == next_lblk) &&		/*C2*/
    		    ((ee_pblk + ee_len) == next_pblk) &&		/*C3*/
    		    (next_len < (EXT_INIT_MAX_LEN - map_len))) {	/*C4*/
    			err = ext4_ext_get_access(handle, inode, path + depth);
    			if (err)
    				goto out;
    
    			trace_ext4_ext_convert_to_initialized_fastpath(inode,
    				map, ex, abut_ex);
    
    			/* Shift the start of abut_ex by 'map_len' blocks */
    			abut_ex->ee_block = cpu_to_le32(next_lblk - map_len);
    			ext4_ext_store_pblock(abut_ex, next_pblk - map_len);
    			ex->ee_len = cpu_to_le16(ee_len - map_len);
    			ext4_ext_mark_unwritten(ex); /* Restore the flag */
    
    			/* Extend abut_ex by 'map_len' blocks */
    			abut_ex->ee_len = cpu_to_le16(next_len + map_len);
    
    			/* Result: number of initialized blocks past m_lblk */
    			allocated = map_len;
    		}
    	}
    	if (allocated) {
    		/* Mark the block containing both extents as dirty */
    		ext4_ext_dirty(handle, inode, path + depth);
    
    		/* Update path to point to the right extent */
    		path[depth].p_ext = abut_ex;
    		goto out;
    	} else
    		allocated = ee_len - (map->m_lblk - ee_block);
    
    	WARN_ON(map->m_lblk < ee_block);
    	/*
    	 * It is safe to convert extent to initialized via explicit
    	 * zeroout only if extent is fully inside i_size or new_size.
    	 */
    	split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
    
    	if (EXT4_EXT_MAY_ZEROOUT & split_flag)
    		max_zeroout = sbi->s_extent_max_zeroout_kb >>
    			(inode->i_sb->s_blocksize_bits - 10);
    
    	/* If extent is less than s_max_zeroout_kb, zeroout directly */
    	if (max_zeroout && (ee_len <= max_zeroout)) {
    		err = ext4_ext_zeroout(inode, ex);
    		if (err)
    			goto out;
    		zero_ex.ee_block = ex->ee_block;
    		zero_ex.ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex));
    		ext4_ext_store_pblock(&zero_ex, ext4_ext_pblock(ex));
    
    		err = ext4_ext_get_access(handle, inode, path + depth);
    		if (err)
    			goto out;
    		ext4_ext_mark_initialized(ex);
    		ext4_ext_try_to_merge(handle, inode, path, ex);
    		err = ext4_ext_dirty(handle, inode, path + path->p_depth);
    		goto out;
    	}
    
    	/*
    	 * four cases:
    	 * 1. split the extent into three extents.
    	 * 2. split the extent into two extents, zeroout the first half.
    	 * 3. split the extent into two extents, zeroout the second half.
    	 * 4. split the extent into two extents with out zeroout.
    	 */
    	split_map.m_lblk = map->m_lblk;
    	split_map.m_len = map->m_len;
    
    	if (max_zeroout && (allocated > map->m_len)) {
    		if (allocated <= max_zeroout) {
    			/* case 3 */
    			zero_ex.ee_block =
    					 cpu_to_le32(map->m_lblk);
    			zero_ex.ee_len = cpu_to_le16(allocated);
    			ext4_ext_store_pblock(&zero_ex,
    				ext4_ext_pblock(ex) + map->m_lblk - ee_block);
    			err = ext4_ext_zeroout(inode, &zero_ex);
    			if (err)
    				goto out;
    			split_map.m_lblk = map->m_lblk;
    			split_map.m_len = allocated;
    		} else if (map->m_lblk - ee_block + map->m_len < max_zeroout) {
    			/* case 2 */
    			if (map->m_lblk != ee_block) {
    				zero_ex.ee_block = ex->ee_block;
    				zero_ex.ee_len = cpu_to_le16(map->m_lblk -
    							ee_block);
    				ext4_ext_store_pblock(&zero_ex,
    						      ext4_ext_pblock(ex));
    				err = ext4_ext_zeroout(inode, &zero_ex);
    				if (err)
    					goto out;
    			}
    
    			split_map.m_lblk = ee_block;
    			split_map.m_len = map->m_lblk - ee_block + map->m_len;
    			allocated = map->m_len;
    		}
    	}
    
    	err = ext4_split_extent(handle, inode, ppath, &split_map, split_flag,
    				flags);
    	if (err > 0)
    		err = 0;
    out:
    	/* If we have gotten a failure, don't zero out status tree */
    	if (!err)
    		err = ext4_zeroout_es(inode, &zero_ex);
    	return err ? err : allocated;
    }
    
    /*
     * This function is called by ext4_ext_map_blocks() from
     * ext4_get_blocks_dio_write() when DIO to write
     * to an unwritten extent.
     *
     * Writing to an unwritten extent may result in splitting the unwritten
     * extent into multiple initialized/unwritten extents (up to three)
     * There are three possibilities:
     *   a> There is no split required: Entire extent should be unwritten
     *   b> Splits in two extents: Write is happening at either end of the extent
     *   c> Splits in three extents: Somone is writing in middle of the extent
     *
     * This works the same way in the case of initialized -> unwritten conversion.
     *
     * One of more index blocks maybe needed if the extent tree grow after
     * the unwritten extent split. To prevent ENOSPC occur at the IO
     * complete, we need to split the unwritten extent before DIO submit
     * the IO. The unwritten extent called at this time will be split
     * into three unwritten extent(at most). After IO complete, the part
     * being filled will be convert to initialized by the end_io callback function
     * via ext4_convert_unwritten_extents().
     *
     * Returns the size of unwritten extent to be written on success.
     */
    static int ext4_split_convert_extents(handle_t *handle,
    					struct inode *inode,
    					struct ext4_map_blocks *map,
    					struct ext4_ext_path **ppath,
    					int flags)
    {
    	struct ext4_ext_path *path = *ppath;
    	ext4_lblk_t eof_block;
    	ext4_lblk_t ee_block;
    	struct ext4_extent *ex;
    	unsigned int ee_len;
    	int split_flag = 0, depth;
    
    	ext_debug("%s: inode %lu, logical block %llu, max_blocks %u\n",
    		  __func__, inode->i_ino,
    		  (unsigned long long)map->m_lblk, map->m_len);
    
    	eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
    		inode->i_sb->s_blocksize_bits;
    	if (eof_block < map->m_lblk + map->m_len)
    		eof_block = map->m_lblk + map->m_len;
    	/*
    	 * It is safe to convert extent to initialized via explicit
    	 * zeroout only if extent is fully insde i_size or new_size.
    	 */
    	depth = ext_depth(inode);
    	ex = path[depth].p_ext;
    	ee_block = le32_to_cpu(ex->ee_block);
    	ee_len = ext4_ext_get_actual_len(ex);
    
    	/* Convert to unwritten */
    	if (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN) {
    		split_flag |= EXT4_EXT_DATA_VALID1;
    	/* Convert to initialized */
    	} else if (flags & EXT4_GET_BLOCKS_CONVERT) {
    		split_flag |= ee_block + ee_len <= eof_block ?
    			      EXT4_EXT_MAY_ZEROOUT : 0;
    		split_flag |= (EXT4_EXT_MARK_UNWRIT2 | EXT4_EXT_DATA_VALID2);
    	}
    	flags |= EXT4_GET_BLOCKS_PRE_IO;
    	return ext4_split_extent(handle, inode, ppath, map, split_flag, flags);
    }
    
    static int ext4_convert_unwritten_extents_endio(handle_t *handle,
    						struct inode *inode,
    						struct ext4_map_blocks *map,
    						struct ext4_ext_path **ppath)
    {
    	struct ext4_ext_path *path = *ppath;
    	struct ext4_extent *ex;
    	ext4_lblk_t ee_block;
    	unsigned int ee_len;
    	int depth;
    	int err = 0;
    
    	depth = ext_depth(inode);
    	ex = path[depth].p_ext;
    	ee_block = le32_to_cpu(ex->ee_block);
    	ee_len = ext4_ext_get_actual_len(ex);
    
    	ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
    		"block %llu, max_blocks %u\n", inode->i_ino,
    		  (unsigned long long)ee_block, ee_len);
    
    	/* If extent is larger than requested it is a clear sign that we still
    	 * have some extent state machine issues left. So extent_split is still
    	 * required.
    	 * TODO: Once all related issues will be fixed this situation should be
    	 * illegal.
    	 */
    	if (ee_block != map->m_lblk || ee_len > map->m_len) {
    #ifdef EXT4_DEBUG
    		ext4_warning("Inode (%ld) finished: extent logical block %llu,"
    			     " len %u; IO logical block %llu, len %u\n",
    			     inode->i_ino, (unsigned long long)ee_block, ee_len,
    			     (unsigned long long)map->m_lblk, map->m_len);
    #endif
    		err = ext4_split_convert_extents(handle, inode, map, ppath,
    						 EXT4_GET_BLOCKS_CONVERT);
    		if (err < 0)
    			return err;
    		path = ext4_find_extent(inode, map->m_lblk, ppath, 0);
    		if (IS_ERR(path))
    			return PTR_ERR(path);
    		depth = ext_depth(inode);
    		ex = path[depth].p_ext;
    	}
    
    	err = ext4_ext_get_access(handle, inode, path + depth);
    	if (err)
    		goto out;
    	/* first mark the extent as initialized */
    	ext4_ext_mark_initialized(ex);
    
    	/* note: ext4_ext_correct_indexes() isn't needed here because
    	 * borders are not changed
    	 */
    	ext4_ext_try_to_merge(handle, inode, path, ex);
    
    	/* Mark modified extent as dirty */
    	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
    out:
    	ext4_ext_show_leaf(inode, path);
    	return err;
    }
    
    static void unmap_underlying_metadata_blocks(struct block_device *bdev,
    			sector_t block, int count)
    {
    	int i;
    	for (i = 0; i < count; i++)
                    unmap_underlying_metadata(bdev, block + i);
    }
    
    /*
     * Handle EOFBLOCKS_FL flag, clearing it if necessary
     */
    static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
    			      ext4_lblk_t lblk,
    			      struct ext4_ext_path *path,
    			      unsigned int len)
    {
    	int i, depth;
    	struct ext4_extent_header *eh;
    	struct ext4_extent *last_ex;
    
    	if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
    		return 0;
    
    	depth = ext_depth(inode);
    	eh = path[depth].p_hdr;
    
    	/*
    	 * We're going to remove EOFBLOCKS_FL entirely in future so we
    	 * do not care for this case anymore. Simply remove the flag
    	 * if there are no extents.
    	 */
    	if (unlikely(!eh->eh_entries))
    		goto out;
    	last_ex = EXT_LAST_EXTENT(eh);
    	/*
    	 * We should clear the EOFBLOCKS_FL flag if we are writing the
    	 * last block in the last extent in the file.  We test this by
    	 * first checking to see if the caller to
    	 * ext4_ext_get_blocks() was interested in the last block (or
    	 * a block beyond the last block) in the current extent.  If
    	 * this turns out to be false, we can bail out from this
    	 * function immediately.
    	 */
    	if (lblk + len < le32_to_cpu(last_ex->ee_block) +
    	    ext4_ext_get_actual_len(last_ex))
    		return 0;
    	/*
    	 * If the caller does appear to be planning to write at or
    	 * beyond the end of the current extent, we then test to see
    	 * if the current extent is the last extent in the file, by
    	 * checking to make sure it was reached via the rightmost node
    	 * at each level of the tree.
    	 */
    	for (i = depth-1; i >= 0; i--)
    		if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
    			return 0;
    out:
    	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
    	return ext4_mark_inode_dirty(handle, inode);
    }
    
    /**
     * ext4_find_delalloc_range: find delayed allocated block in the given range.
     *
     * Return 1 if there is a delalloc block in the range, otherwise 0.
     */
    int ext4_find_delalloc_range(struct inode *inode,
    			     ext4_lblk_t lblk_start,
    			     ext4_lblk_t lblk_end)
    {
    	struct extent_status es;
    
    	ext4_es_find_delayed_extent_range(inode, lblk_start, lblk_end, &es);
    	if (es.es_len == 0)
    		return 0; /* there is no delay extent in this tree */
    	else if (es.es_lblk <= lblk_start &&
    		 lblk_start < es.es_lblk + es.es_len)
    		return 1;
    	else if (lblk_start <= es.es_lblk && es.es_lblk <= lblk_end)
    		return 1;
    	else
    		return 0;
    }
    
    int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk)
    {
    	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
    	ext4_lblk_t lblk_start, lblk_end;
    	lblk_start = EXT4_LBLK_CMASK(sbi, lblk);
    	lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
    
    	return ext4_find_delalloc_range(inode, lblk_start, lblk_end);
    }
    
    /**
     * Determines how many complete clusters (out of those specified by the 'map')
     * are under delalloc and were reserved quota for.
     * This function is called when we are writing out the blocks that were
     * originally written with their allocation delayed, but then the space was
     * allocated using fallocate() before the delayed allocation could be resolved.
     * The cases to look for are:
     * ('=' indicated delayed allocated blocks
     *  '-' indicates non-delayed allocated blocks)
     * (a) partial clusters towards beginning and/or end outside of allocated range
     *     are not delalloc'ed.
     *	Ex:
     *	|----c---=|====c====|====c====|===-c----|
     *	         |++++++ allocated ++++++|
     *	==> 4 complete clusters in above example
     *
     * (b) partial cluster (outside of allocated range) towards either end is
     *     marked for delayed allocation. In this case, we will exclude that
     *     cluster.
     *	Ex:
     *	|----====c========|========c========|
     *	     |++++++ allocated ++++++|
     *	==> 1 complete clusters in above example
     *
     *	Ex:
     *	|================c================|
     *            |++++++ allocated ++++++|
     *	==> 0 complete clusters in above example
     *
     * The ext4_da_update_reserve_space will be called only if we
     * determine here that there were some "entire" clusters that span
     * this 'allocated' range.
     * In the non-bigalloc case, this function will just end up returning num_blks
     * without ever calling ext4_find_delalloc_range.
     */
    static unsigned int
    get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
    			   unsigned int num_blks)
    {
    	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
    	ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
    	ext4_lblk_t lblk_from, lblk_to, c_offset;
    	unsigned int allocated_clusters = 0;
    
    	alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
    	alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
    
    	/* max possible clusters for this allocation */
    	allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
    
    	trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
    
    	/* Check towards left side */
    	c_offset = EXT4_LBLK_COFF(sbi, lblk_start);
    	if (c_offset) {
    		lblk_from = EXT4_LBLK_CMASK(sbi, lblk_start);
    		lblk_to = lblk_from + c_offset - 1;
    
    		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
    			allocated_clusters--;
    	}
    
    	/* Now check towards right. */
    	c_offset = EXT4_LBLK_COFF(sbi, lblk_start + num_blks);
    	if (allocated_clusters && c_offset) {
    		lblk_from = lblk_start + num_blks;
    		lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
    
    		if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
    			allocated_clusters--;
    	}
    
    	return allocated_clusters;
    }
    
    static int
    convert_initialized_extent(handle_t *handle, struct inode *inode,
    			   struct ext4_map_blocks *map,
    			   struct ext4_ext_path **ppath, int flags,
    			   unsigned int allocated, ext4_fsblk_t newblock)
    {
    	struct ext4_ext_path *path = *ppath;
    	struct ext4_extent *ex;
    	ext4_lblk_t ee_block;
    	unsigned int ee_len;
    	int depth;
    	int err = 0;
    
    	/*
    	 * Make sure that the extent is no bigger than we support with
    	 * unwritten extent
    	 */
    	if (map->m_len > EXT_UNWRITTEN_MAX_LEN)
    		map->m_len = EXT_UNWRITTEN_MAX_LEN / 2;
    
    	depth = ext_depth(inode);
    	ex = path[depth].p_ext;
    	ee_block = le32_to_cpu(ex->ee_block);
    	ee_len = ext4_ext_get_actual_len(ex);
    
    	ext_debug("%s: inode %lu, logical"
    		"block %llu, max_blocks %u\n", __func__, inode->i_ino,
    		  (unsigned long long)ee_block, ee_len);
    
    	if (ee_block != map->m_lblk || ee_len > map->m_len) {
    		err = ext4_split_convert_extents(handle, inode, map, ppath,
    				EXT4_GET_BLOCKS_CONVERT_UNWRITTEN);
    		if (err < 0)
    			return err;
    		path = ext4_find_extent(inode, map->m_lblk, ppath, 0);
    		if (IS_ERR(path))
    			return PTR_ERR(path);
    		depth = ext_depth(inode);
    		ex = path[depth].p_ext;
    		if (!ex) {
    			EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
    					 (unsigned long) map->m_lblk);
    			return -EIO;
    		}
    	}
    
    	err = ext4_ext_get_access(handle, inode, path + depth);
    	if (err)
    		return err;
    	/* first mark the extent as unwritten */
    	ext4_ext_mark_unwritten(ex);
    
    	/* note: ext4_ext_correct_indexes() isn't needed here because
    	 * borders are not changed
    	 */
    	ext4_ext_try_to_merge(handle, inode, path, ex);
    
    	/* Mark modified extent as dirty */
    	err = ext4_ext_dirty(handle, inode, path + path->p_depth);
    	if (err)
    		return err;
    	ext4_ext_show_leaf(inode, path);
    
    	ext4_update_inode_fsync_trans(handle, inode, 1);
    	err = check_eofblocks_fl(handle, inode, map->m_lblk, path, map->m_len);
    	if (err)
    		return err;
    	map->m_flags |= EXT4_MAP_UNWRITTEN;
    	if (allocated > map->m_len)
    		allocated = map->m_len;
    	map->m_len = allocated;
    	return allocated;
    }
    
    static int
    ext4_ext_handle_unwritten_extents(handle_t *handle, struct inode *inode,
    			struct ext4_map_blocks *map,
    			struct ext4_ext_path **ppath, int flags,
    			unsigned int allocated, ext4_fsblk_t newblock)
    {
    	struct ext4_ext_path *path = *ppath;
    	int ret = 0;
    	int err = 0;
    	ext4_io_end_t *io = ext4_inode_aio(inode);
    
    	ext_debug("ext4_ext_handle_unwritten_extents: inode %lu, logical "
    		  "block %llu, max_blocks %u, flags %x, allocated %u\n",
    		  inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
    		  flags, allocated);
    	ext4_ext_show_leaf(inode, path);
    
    	/*
    	 * When writing into unwritten space, we should not fail to
    	 * allocate metadata blocks for the new extent block if needed.
    	 */
    	flags |= EXT4_GET_BLOCKS_METADATA_NOFAIL;
    
    	trace_ext4_ext_handle_unwritten_extents(inode, map, flags,
    						    allocated, newblock);
    
    	/* get_block() before submit the IO, split the extent */
    	if (flags & EXT4_GET_BLOCKS_PRE_IO) {
    		ret = ext4_split_convert_extents(handle, inode, map, ppath,
    					 flags | EXT4_GET_BLOCKS_CONVERT);
    		if (ret <= 0)
    			goto out;
    		/*
    		 * Flag the inode(non aio case) or end_io struct (aio case)
    		 * that this IO needs to conversion to written when IO is
    		 * completed
    		 */
    		if (io)
    			ext4_set_io_unwritten_flag(inode, io);
    		else
    			ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
    		map->m_flags |= EXT4_MAP_UNWRITTEN;
    		goto out;
    	}
    	/* IO end_io complete, convert the filled extent to written */
    	if (flags & EXT4_GET_BLOCKS_CONVERT) {
    		ret = ext4_convert_unwritten_extents_endio(handle, inode, map,
    							   ppath);
    		if (ret >= 0) {
    			ext4_update_inode_fsync_trans(handle, inode, 1);
    			err = check_eofblocks_fl(handle, inode, map->m_lblk,
    						 path, map->m_len);
    		} else
    			err = ret;
    		map->m_flags |= EXT4_MAP_MAPPED;
    		map->m_pblk = newblock;
    		if (allocated > map->m_len)
    			allocated = map->m_len;
    		map->m_len = allocated;
    		goto out2;
    	}
    	/* buffered IO case */
    	/*
    	 * repeat fallocate creation request
    	 * we already have an unwritten extent
    	 */
    	if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT) {
    		map->m_flags |= EXT4_MAP_UNWRITTEN;
    		goto map_out;
    	}
    
    	/* buffered READ or buffered write_begin() lookup */
    	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
    		/*
    		 * We have blocks reserved already.  We
    		 * return allocated blocks so that delalloc
    		 * won't do block reservation for us.  But
    		 * the buffer head will be unmapped so that
    		 * a read from the block returns 0s.
    		 */
    		map->m_flags |= EXT4_MAP_UNWRITTEN;
    		goto out1;
    	}
    
    	/* buffered write, writepage time, convert*/
    	ret = ext4_ext_convert_to_initialized(handle, inode, map, ppath, flags);
    	if (ret >= 0)
    		ext4_update_inode_fsync_trans(handle, inode, 1);
    out:
    	if (ret <= 0) {
    		err = ret;
    		goto out2;
    	} else
    		allocated = ret;
    	map->m_flags |= EXT4_MAP_NEW;
    	/*
    	 * if we allocated more blocks than requested
    	 * we need to make sure we unmap the extra block
    	 * allocated. The actual needed block will get
    	 * unmapped later when we find the buffer_head marked
    	 * new.
    	 */
    	if (allocated > map->m_len) {
    		unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
    					newblock + map->m_len,
    					allocated - map->m_len);
    		allocated = map->m_len;
    	}
    	map->m_len = allocated;
    
    	/*
    	 * If we have done fallocate with the offset that is already
    	 * delayed allocated, we would have block reservation
    	 * and quota reservation done in the delayed write path.
    	 * But fallocate would have already updated quota and block
    	 * count for this offset. So cancel these reservation
    	 */
    	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
    		unsigned int reserved_clusters;
    		reserved_clusters = get_reserved_cluster_alloc(inode,
    				map->m_lblk, map->m_len);
    		if (reserved_clusters)
    			ext4_da_update_reserve_space(inode,
    						     reserved_clusters,
    						     0);
    	}
    
    map_out:
    	map->m_flags |= EXT4_MAP_MAPPED;
    	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
    		err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
    					 map->m_len);
    		if (err < 0)
    			goto out2;
    	}
    out1:
    	if (allocated > map->m_len)
    		allocated = map->m_len;
    	ext4_ext_show_leaf(inode, path);
    	map->m_pblk = newblock;
    	map->m_len = allocated;
    out2:
    	return err ? err : allocated;
    }
    
    /*
     * get_implied_cluster_alloc - check to see if the requested
     * allocation (in the map structure) overlaps with a cluster already
     * allocated in an extent.
     *	@sb	The filesystem superblock structure
     *	@map	The requested lblk->pblk mapping
     *	@ex	The extent structure which might contain an implied
     *			cluster allocation
     *
     * This function is called by ext4_ext_map_blocks() after we failed to
     * find blocks that were already in the inode's extent tree.  Hence,
     * we know that the beginning of the requested region cannot overlap
     * the extent from the inode's extent tree.  There are three cases we
     * want to catch.  The first is this case:
     *
     *		 |--- cluster # N--|
     *    |--- extent ---|	|---- requested region ---|
     *			|==========|
     *
     * The second case that we need to test for is this one:
     *
     *   |--------- cluster # N ----------------|
     *	   |--- requested region --|   |------- extent ----|
     *	   |=======================|
     *
     * The third case is when the requested region lies between two extents
     * within the same cluster:
     *          |------------- cluster # N-------------|
     * |----- ex -----|                  |---- ex_right ----|
     *                  |------ requested region ------|
     *                  |================|
     *
     * In each of the above cases, we need to set the map->m_pblk and
     * map->m_len so it corresponds to the return the extent labelled as
     * "|====|" from cluster #N, since it is already in use for data in
     * cluster EXT4_B2C(sbi, map->m_lblk).	We will then return 1 to
     * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
     * as a new "allocated" block region.  Otherwise, we will return 0 and
     * ext4_ext_map_blocks() will then allocate one or more new clusters
     * by calling ext4_mb_new_blocks().
     */
    static int get_implied_cluster_alloc(struct super_block *sb,
    				     struct ext4_map_blocks *map,
    				     struct ext4_extent *ex,
    				     struct ext4_ext_path *path)
    {
    	struct ext4_sb_info *sbi = EXT4_SB(sb);
    	ext4_lblk_t c_offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
    	ext4_lblk_t ex_cluster_start, ex_cluster_end;
    	ext4_lblk_t rr_cluster_start;
    	ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
    	ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
    	unsigned short ee_len = ext4_ext_get_actual_len(ex);
    
    	/* The extent passed in that we are trying to match */
    	ex_cluster_start = EXT4_B2C(sbi, ee_block);
    	ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
    
    	/* The requested region passed into ext4_map_blocks() */
    	rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
    
    	if ((rr_cluster_start == ex_cluster_end) ||
    	    (rr_cluster_start == ex_cluster_start)) {
    		if (rr_cluster_start == ex_cluster_end)
    			ee_start += ee_len - 1;
    		map->m_pblk = EXT4_PBLK_CMASK(sbi, ee_start) + c_offset;
    		map->m_len = min(map->m_len,
    				 (unsigned) sbi->s_cluster_ratio - c_offset);
    		/*
    		 * Check for and handle this case:
    		 *
    		 *   |--------- cluster # N-------------|
    		 *		       |------- extent ----|
    		 *	   |--- requested region ---|
    		 *	   |===========|
    		 */
    
    		if (map->m_lblk < ee_block)
    			map->m_len = min(map->m_len, ee_block - map->m_lblk);
    
    		/*
    		 * Check for the case where there is already another allocated
    		 * block to the right of 'ex' but before the end of the cluster.
    		 *
    		 *          |------------- cluster # N-------------|
    		 * |----- ex -----|                  |---- ex_right ----|
    		 *                  |------ requested region ------|
    		 *                  |================|
    		 */
    		if (map->m_lblk > ee_block) {
    			ext4_lblk_t next = ext4_ext_next_allocated_block(path);
    			map->m_len = min(map->m_len, next - map->m_lblk);
    		}
    
    		trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
    		return 1;
    	}
    
    	trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
    	return 0;
    }
    
    
    /*
     * Block allocation/map/preallocation routine for extents based files
     *
     *
     * Need to be called with
     * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
     * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
     *
     * return > 0, number of of blocks already mapped/allocated
     *          if create == 0 and these are pre-allocated blocks
     *          	buffer head is unmapped
     *          otherwise blocks are mapped
     *
     * return = 0, if plain look up failed (blocks have not been allocated)
     *          buffer head is unmapped
     *
     * return < 0, error case.
     */
    int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
    			struct ext4_map_blocks *map, int flags)
    {
    	struct ext4_ext_path *path = NULL;
    	struct ext4_extent newex, *ex, *ex2;
    	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
    	ext4_fsblk_t newblock = 0;
    	int free_on_err = 0, err = 0, depth, ret;
    	unsigned int allocated = 0, offset = 0;
    	unsigned int allocated_clusters = 0;
    	struct ext4_allocation_request ar;
    	ext4_io_end_t *io = ext4_inode_aio(inode);
    	ext4_lblk_t cluster_offset;
    	int set_unwritten = 0;
    
    	ext_debug("blocks %u/%u requested for inode %lu\n",
    		  map->m_lblk, map->m_len, inode->i_ino);
    	trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
    
    	/* find extent for this block */
    	path = ext4_find_extent(inode, map->m_lblk, NULL, 0);
    	if (IS_ERR(path)) {
    		err = PTR_ERR(path);
    		path = NULL;
    		goto out2;
    	}
    
    	depth = ext_depth(inode);
    
    	/*
    	 * consistent leaf must not be empty;
    	 * this situation is possible, though, _during_ tree modification;
    	 * this is why assert can't be put in ext4_find_extent()
    	 */
    	if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
    		EXT4_ERROR_INODE(inode, "bad extent address "
    				 "lblock: %lu, depth: %d pblock %lld",
    				 (unsigned long) map->m_lblk, depth,
    				 path[depth].p_block);
    		err = -EIO;
    		goto out2;
    	}
    
    	ex = path[depth].p_ext;
    	if (ex) {
    		ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
    		ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
    		unsigned short ee_len;
    
    
    		/*
    		 * unwritten extents are treated as holes, except that
    		 * we split out initialized portions during a write.
    		 */
    		ee_len = ext4_ext_get_actual_len(ex);
    
    		trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
    
    		/* if found extent covers block, simply return it */
    		if (in_range(map->m_lblk, ee_block, ee_len)) {
    			newblock = map->m_lblk - ee_block + ee_start;
    			/* number of remaining blocks in the extent */
    			allocated = ee_len - (map->m_lblk - ee_block);
    			ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
    				  ee_block, ee_len, newblock);
    
    			/*
    			 * If the extent is initialized check whether the
    			 * caller wants to convert it to unwritten.
    			 */
    			if ((!ext4_ext_is_unwritten(ex)) &&
    			    (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) {
    				allocated = convert_initialized_extent(
    						handle, inode, map, &path,
    						flags, allocated, newblock);
    				goto out2;
    			} else if (!ext4_ext_is_unwritten(ex))
    				goto out;
    
    			ret = ext4_ext_handle_unwritten_extents(
    				handle, inode, map, &path, flags,
    				allocated, newblock);
    			if (ret < 0)
    				err = ret;
    			else
    				allocated = ret;
    			goto out2;
    		}
    	}
    
    	if ((sbi->s_cluster_ratio > 1) &&
    	    ext4_find_delalloc_cluster(inode, map->m_lblk))
    		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
    
    	/*
    	 * requested block isn't allocated yet;
    	 * we couldn't try to create block if create flag is zero
    	 */
    	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
    		/*
    		 * put just found gap into cache to speed up
    		 * subsequent requests
    		 */
    		if ((flags & EXT4_GET_BLOCKS_NO_PUT_HOLE) == 0)
    			ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
    		goto out2;
    	}
    
    	/*
    	 * Okay, we need to do block allocation.
    	 */
    	map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
    	newex.ee_block = cpu_to_le32(map->m_lblk);
    	cluster_offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
    
    	/*
    	 * If we are doing bigalloc, check to see if the extent returned
    	 * by ext4_find_extent() implies a cluster we can use.
    	 */
    	if (cluster_offset && ex &&
    	    get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
    		ar.len = allocated = map->m_len;
    		newblock = map->m_pblk;
    		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
    		goto got_allocated_blocks;
    	}
    
    	/* find neighbour allocated blocks */
    	ar.lleft = map->m_lblk;
    	err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
    	if (err)
    		goto out2;
    	ar.lright = map->m_lblk;
    	ex2 = NULL;
    	err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
    	if (err)
    		goto out2;
    
    	/* Check if the extent after searching to the right implies a
    	 * cluster we can use. */
    	if ((sbi->s_cluster_ratio > 1) && ex2 &&
    	    get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
    		ar.len = allocated = map->m_len;
    		newblock = map->m_pblk;
    		map->m_flags |= EXT4_MAP_FROM_CLUSTER;
    		goto got_allocated_blocks;
    	}
    
    	/*
    	 * See if request is beyond maximum number of blocks we can have in
    	 * a single extent. For an initialized extent this limit is
    	 * EXT_INIT_MAX_LEN and for an unwritten extent this limit is
    	 * EXT_UNWRITTEN_MAX_LEN.
    	 */
    	if (map->m_len > EXT_INIT_MAX_LEN &&
    	    !(flags & EXT4_GET_BLOCKS_UNWRIT_EXT))
    		map->m_len = EXT_INIT_MAX_LEN;
    	else if (map->m_len > EXT_UNWRITTEN_MAX_LEN &&
    		 (flags & EXT4_GET_BLOCKS_UNWRIT_EXT))
    		map->m_len = EXT_UNWRITTEN_MAX_LEN;
    
    	/* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
    	newex.ee_len = cpu_to_le16(map->m_len);
    	err = ext4_ext_check_overlap(sbi, inode, &newex, path);
    	if (err)
    		allocated = ext4_ext_get_actual_len(&newex);
    	else
    		allocated = map->m_len;
    
    	/* allocate new block */
    	ar.inode = inode;
    	ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
    	ar.logical = map->m_lblk;
    	/*
    	 * We calculate the offset from the beginning of the cluster
    	 * for the logical block number, since when we allocate a
    	 * physical cluster, the physical block should start at the
    	 * same offset from the beginning of the cluster.  This is
    	 * needed so that future calls to get_implied_cluster_alloc()
    	 * work correctly.
    	 */
    	offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
    	ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
    	ar.goal -= offset;
    	ar.logical -= offset;
    	if (S_ISREG(inode->i_mode))
    		ar.flags = EXT4_MB_HINT_DATA;
    	else
    		/* disable in-core preallocation for non-regular files */
    		ar.flags = 0;
    	if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
    		ar.flags |= EXT4_MB_HINT_NOPREALLOC;
    	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
    		ar.flags |= EXT4_MB_DELALLOC_RESERVED;
    	newblock = ext4_mb_new_blocks(handle, &ar, &err);
    	if (!newblock)
    		goto out2;
    	ext_debug("allocate new block: goal %llu, found %llu/%u\n",
    		  ar.goal, newblock, allocated);
    	free_on_err = 1;
    	allocated_clusters = ar.len;
    	ar.len = EXT4_C2B(sbi, ar.len) - offset;
    	if (ar.len > allocated)
    		ar.len = allocated;
    
    got_allocated_blocks:
    	/* try to insert new extent into found leaf and return */
    	ext4_ext_store_pblock(&newex, newblock + offset);
    	newex.ee_len = cpu_to_le16(ar.len);
    	/* Mark unwritten */
    	if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT){
    		ext4_ext_mark_unwritten(&newex);
    		map->m_flags |= EXT4_MAP_UNWRITTEN;
    		/*
    		 * io_end structure was created for every IO write to an
    		 * unwritten extent. To avoid unnecessary conversion,
    		 * here we flag the IO that really needs the conversion.
    		 * For non asycn direct IO case, flag the inode state
    		 * that we need to perform conversion when IO is done.
    		 */
    		if (flags & EXT4_GET_BLOCKS_PRE_IO)
    			set_unwritten = 1;
    	}
    
    	err = 0;
    	if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
    		err = check_eofblocks_fl(handle, inode, map->m_lblk,
    					 path, ar.len);
    	if (!err)
    		err = ext4_ext_insert_extent(handle, inode, &path,
    					     &newex, flags);
    
    	if (!err && set_unwritten) {
    		if (io)
    			ext4_set_io_unwritten_flag(inode, io);
    		else
    			ext4_set_inode_state(inode,
    					     EXT4_STATE_DIO_UNWRITTEN);
    	}
    
    	if (err && free_on_err) {
    		int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
    			EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
    		/* free data blocks we just allocated */
    		/* not a good idea to call discard here directly,
    		 * but otherwise we'd need to call it every free() */
    		ext4_discard_preallocations(inode);
    		ext4_free_blocks(handle, inode, NULL, newblock,
    				 EXT4_C2B(sbi, allocated_clusters), fb_flags);
    		goto out2;
    	}
    
    	/* previous routine could use block we allocated */
    	newblock = ext4_ext_pblock(&newex);
    	allocated = ext4_ext_get_actual_len(&newex);
    	if (allocated > map->m_len)
    		allocated = map->m_len;
    	map->m_flags |= EXT4_MAP_NEW;
    
    	/*
    	 * Update reserved blocks/metadata blocks after successful
    	 * block allocation which had been deferred till now.
    	 */
    	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
    		unsigned int reserved_clusters;
    		/*
    		 * Check how many clusters we had reserved this allocated range
    		 */
    		reserved_clusters = get_reserved_cluster_alloc(inode,
    						map->m_lblk, allocated);
    		if (map->m_flags & EXT4_MAP_FROM_CLUSTER) {
    			if (reserved_clusters) {
    				/*
    				 * We have clusters reserved for this range.
    				 * But since we are not doing actual allocation
    				 * and are simply using blocks from previously
    				 * allocated cluster, we should release the
    				 * reservation and not claim quota.
    				 */
    				ext4_da_update_reserve_space(inode,
    						reserved_clusters, 0);
    			}
    		} else {
    			BUG_ON(allocated_clusters < reserved_clusters);
    			if (reserved_clusters < allocated_clusters) {
    				struct ext4_inode_info *ei = EXT4_I(inode);
    				int reservation = allocated_clusters -
    						  reserved_clusters;
    				/*
    				 * It seems we claimed few clusters outside of
    				 * the range of this allocation. We should give
    				 * it back to the reservation pool. This can
    				 * happen in the following case:
    				 *
    				 * * Suppose s_cluster_ratio is 4 (i.e., each
    				 *   cluster has 4 blocks. Thus, the clusters
    				 *   are [0-3],[4-7],[8-11]...
    				 * * First comes delayed allocation write for
    				 *   logical blocks 10 & 11. Since there were no
    				 *   previous delayed allocated blocks in the
    				 *   range [8-11], we would reserve 1 cluster
    				 *   for this write.
    				 * * Next comes write for logical blocks 3 to 8.
    				 *   In this case, we will reserve 2 clusters
    				 *   (for [0-3] and [4-7]; and not for [8-11] as
    				 *   that range has a delayed allocated blocks.
    				 *   Thus total reserved clusters now becomes 3.
    				 * * Now, during the delayed allocation writeout
    				 *   time, we will first write blocks [3-8] and
    				 *   allocate 3 clusters for writing these
    				 *   blocks. Also, we would claim all these
    				 *   three clusters above.
    				 * * Now when we come here to writeout the
    				 *   blocks [10-11], we would expect to claim
    				 *   the reservation of 1 cluster we had made
    				 *   (and we would claim it since there are no
    				 *   more delayed allocated blocks in the range
    				 *   [8-11]. But our reserved cluster count had
    				 *   already gone to 0.
    				 *
    				 *   Thus, at the step 4 above when we determine
    				 *   that there are still some unwritten delayed
    				 *   allocated blocks outside of our current
    				 *   block range, we should increment the
    				 *   reserved clusters count so that when the
    				 *   remaining blocks finally gets written, we
    				 *   could claim them.
    				 */
    				dquot_reserve_block(inode,
    						EXT4_C2B(sbi, reservation));
    				spin_lock(&ei->i_block_reservation_lock);
    				ei->i_reserved_data_blocks += reservation;
    				spin_unlock(&ei->i_block_reservation_lock);
    			}
    			/*
    			 * We will claim quota for all newly allocated blocks.
    			 * We're updating the reserved space *after* the
    			 * correction above so we do not accidentally free
    			 * all the metadata reservation because we might
    			 * actually need it later on.
    			 */
    			ext4_da_update_reserve_space(inode, allocated_clusters,
    							1);
    		}
    	}
    
    	/*
    	 * Cache the extent and update transaction to commit on fdatasync only
    	 * when it is _not_ an unwritten extent.
    	 */
    	if ((flags & EXT4_GET_BLOCKS_UNWRIT_EXT) == 0)
    		ext4_update_inode_fsync_trans(handle, inode, 1);
    	else
    		ext4_update_inode_fsync_trans(handle, inode, 0);
    out:
    	if (allocated > map->m_len)
    		allocated = map->m_len;
    	ext4_ext_show_leaf(inode, path);
    	map->m_flags |= EXT4_MAP_MAPPED;
    	map->m_pblk = newblock;
    	map->m_len = allocated;
    out2:
    	ext4_ext_drop_refs(path);
    	kfree(path);
    
    	trace_ext4_ext_map_blocks_exit(inode, flags, map,
    				       err ? err : allocated);
    	ext4_es_lru_add(inode);
    	return err ? err : allocated;
    }
    
    void ext4_ext_truncate(handle_t *handle, struct inode *inode)
    {
    	struct super_block *sb = inode->i_sb;
    	ext4_lblk_t last_block;
    	int err = 0;
    
    	/*
    	 * TODO: optimization is possible here.
    	 * Probably we need not scan at all,
    	 * because page truncation is enough.
    	 */
    
    	/* we have to know where to truncate from in crash case */
    	EXT4_I(inode)->i_disksize = inode->i_size;
    	ext4_mark_inode_dirty(handle, inode);
    
    	last_block = (inode->i_size + sb->s_blocksize - 1)
    			>> EXT4_BLOCK_SIZE_BITS(sb);
    retry:
    	err = ext4_es_remove_extent(inode, last_block,
    				    EXT_MAX_BLOCKS - last_block);
    	if (err == -ENOMEM) {
    		cond_resched();
    		congestion_wait(BLK_RW_ASYNC, HZ/50);
    		goto retry;
    	}
    	if (err) {
    		ext4_std_error(inode->i_sb, err);
    		return;
    	}
    	err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
    	ext4_std_error(inode->i_sb, err);
    }
    
    static int ext4_alloc_file_blocks(struct file *file, ext4_lblk_t offset,
    				  ext4_lblk_t len, loff_t new_size,
    				  int flags, int mode)
    {
    	struct inode *inode = file_inode(file);
    	handle_t *handle;
    	int ret = 0;
    	int ret2 = 0;
    	int retries = 0;
    	struct ext4_map_blocks map;
    	unsigned int credits;
    	loff_t epos;
    
    	map.m_lblk = offset;
    	map.m_len = len;
    	/*
    	 * Don't normalize the request if it can fit in one extent so
    	 * that it doesn't get unnecessarily split into multiple
    	 * extents.
    	 */
    	if (len <= EXT_UNWRITTEN_MAX_LEN)
    		flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
    
    	/*
    	 * credits to insert 1 extent into extent tree
    	 */
    	credits = ext4_chunk_trans_blocks(inode, len);
    
    retry:
    	while (ret >= 0 && len) {
    		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
    					    credits);
    		if (IS_ERR(handle)) {
    			ret = PTR_ERR(handle);
    			break;
    		}
    		ret = ext4_map_blocks(handle, inode, &map, flags);
    		if (ret <= 0) {
    			ext4_debug("inode #%lu: block %u: len %u: "
    				   "ext4_ext_map_blocks returned %d",
    				   inode->i_ino, map.m_lblk,
    				   map.m_len, ret);
    			ext4_mark_inode_dirty(handle, inode);
    			ret2 = ext4_journal_stop(handle);
    			break;
    		}
    		map.m_lblk += ret;
    		map.m_len = len = len - ret;
    		epos = (loff_t)map.m_lblk << inode->i_blkbits;
    		inode->i_ctime = ext4_current_time(inode);
    		if (new_size) {
    			if (epos > new_size)
    				epos = new_size;
    			if (ext4_update_inode_size(inode, epos) & 0x1)
    				inode->i_mtime = inode->i_ctime;
    		} else {
    			if (epos > inode->i_size)
    				ext4_set_inode_flag(inode,
    						    EXT4_INODE_EOFBLOCKS);
    		}
    		ext4_mark_inode_dirty(handle, inode);
    		ret2 = ext4_journal_stop(handle);
    		if (ret2)
    			break;
    	}
    	if (ret == -ENOSPC &&
    			ext4_should_retry_alloc(inode->i_sb, &retries)) {
    		ret = 0;
    		goto retry;
    	}
    
    	return ret > 0 ? ret2 : ret;
    }
    
    static long ext4_zero_range(struct file *file, loff_t offset,
    			    loff_t len, int mode)
    {
    	struct inode *inode = file_inode(file);
    	handle_t *handle = NULL;
    	unsigned int max_blocks;
    	loff_t new_size = 0;
    	int ret = 0;
    	int flags;
    	int credits;
    	int partial_begin, partial_end;
    	loff_t start, end;
    	ext4_lblk_t lblk;
    	struct address_space *mapping = inode->i_mapping;
    	unsigned int blkbits = inode->i_blkbits;
    
    	trace_ext4_zero_range(inode, offset, len, mode);
    
    	if (!S_ISREG(inode->i_mode))
    		return -EINVAL;
    
    	/* Call ext4_force_commit to flush all data in case of data=journal. */
    	if (ext4_should_journal_data(inode)) {
    		ret = ext4_force_commit(inode->i_sb);
    		if (ret)
    			return ret;
    	}
    
    	/*
    	 * Write out all dirty pages to avoid race conditions
    	 * Then release them.
    	 */
    	if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
    		ret = filemap_write_and_wait_range(mapping, offset,
    						   offset + len - 1);
    		if (ret)
    			return ret;
    	}
    
    	/*
    	 * Round up offset. This is not fallocate, we neet to zero out
    	 * blocks, so convert interior block aligned part of the range to
    	 * unwritten and possibly manually zero out unaligned parts of the
    	 * range.
    	 */
    	start = round_up(offset, 1 << blkbits);
    	end = round_down((offset + len), 1 << blkbits);
    
    	if (start < offset || end > offset + len)
    		return -EINVAL;
    	partial_begin = offset & ((1 << blkbits) - 1);
    	partial_end = (offset + len) & ((1 << blkbits) - 1);
    
    	lblk = start >> blkbits;
    	max_blocks = (end >> blkbits);
    	if (max_blocks < lblk)
    		max_blocks = 0;
    	else
    		max_blocks -= lblk;
    
    	flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT |
    		EXT4_GET_BLOCKS_CONVERT_UNWRITTEN |
    		EXT4_EX_NOCACHE;
    	if (mode & FALLOC_FL_KEEP_SIZE)
    		flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
    
    	mutex_lock(&inode->i_mutex);
    
    	/*
    	 * Indirect files do not support unwritten extnets
    	 */
    	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
    		ret = -EOPNOTSUPP;
    		goto out_mutex;
    	}
    
    	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
    	     offset + len > i_size_read(inode)) {
    		new_size = offset + len;
    		ret = inode_newsize_ok(inode, new_size);
    		if (ret)
    			goto out_mutex;
    		/*
    		 * If we have a partial block after EOF we have to allocate
    		 * the entire block.
    		 */
    		if (partial_end)
    			max_blocks += 1;
    	}
    
    	if (max_blocks > 0) {
    
    		/* Now release the pages and zero block aligned part of pages*/
    		truncate_pagecache_range(inode, start, end - 1);
    		inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
    
    		/* Wait all existing dio workers, newcomers will block on i_mutex */
    		ext4_inode_block_unlocked_dio(inode);
    		inode_dio_wait(inode);
    
    		ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size,
    					     flags, mode);
    		if (ret)
    			goto out_dio;
    		/*
    		 * Remove entire range from the extent status tree.
    		 *
    		 * ext4_es_remove_extent(inode, lblk, max_blocks) is
    		 * NOT sufficient.  I'm not sure why this is the case,
    		 * but let's be conservative and remove the extent
    		 * status tree for the entire inode.  There should be
    		 * no outstanding delalloc extents thanks to the
    		 * filemap_write_and_wait_range() call above.
    		 */
    		ret = ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
    		if (ret)
    			goto out_dio;
    	}
    	if (!partial_begin && !partial_end)
    		goto out_dio;
    
    	/*
    	 * In worst case we have to writeout two nonadjacent unwritten
    	 * blocks and update the inode
    	 */
    	credits = (2 * ext4_ext_index_trans_blocks(inode, 2)) + 1;
    	if (ext4_should_journal_data(inode))
    		credits += 2;
    	handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
    	if (IS_ERR(handle)) {
    		ret = PTR_ERR(handle);
    		ext4_std_error(inode->i_sb, ret);
    		goto out_dio;
    	}
    
    	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
    	if (new_size) {
    		ext4_update_inode_size(inode, new_size);
    	} else {
    		/*
    		* Mark that we allocate beyond EOF so the subsequent truncate
    		* can proceed even if the new size is the same as i_size.
    		*/
    		if ((offset + len) > i_size_read(inode))
    			ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
    	}
    	ext4_mark_inode_dirty(handle, inode);
    
    	/* Zero out partial block at the edges of the range */
    	ret = ext4_zero_partial_blocks(handle, inode, offset, len);
    
    	if (file->f_flags & O_SYNC)
    		ext4_handle_sync(handle);
    
    	ext4_journal_stop(handle);
    out_dio:
    	ext4_inode_resume_unlocked_dio(inode);
    out_mutex:
    	mutex_unlock(&inode->i_mutex);
    	return ret;
    }
    
    /*
     * preallocate space for a file. This implements ext4's fallocate file
     * operation, which gets called from sys_fallocate system call.
     * For block-mapped files, posix_fallocate should fall back to the method
     * of writing zeroes to the required new blocks (the same behavior which is
     * expected for file systems which do not support fallocate() system call).
     */
    long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
    {
    	struct inode *inode = file_inode(file);
    	loff_t new_size = 0;
    	unsigned int max_blocks;
    	int ret = 0;
    	int flags;
    	ext4_lblk_t lblk;
    	unsigned int blkbits = inode->i_blkbits;
    
    	/* Return error if mode is not supported */
    	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
    		     FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE))
    		return -EOPNOTSUPP;
    
    	if (mode & FALLOC_FL_PUNCH_HOLE)
    		return ext4_punch_hole(inode, offset, len);
    
    	ret = ext4_convert_inline_data(inode);
    	if (ret)
    		return ret;
    
    	/*
    	 * currently supporting (pre)allocate mode for extent-based
    	 * files _only_
    	 */
    	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
    		return -EOPNOTSUPP;
    
    	if (mode & FALLOC_FL_COLLAPSE_RANGE)
    		return ext4_collapse_range(inode, offset, len);
    
    	if (mode & FALLOC_FL_ZERO_RANGE)
    		return ext4_zero_range(file, offset, len, mode);
    
    	trace_ext4_fallocate_enter(inode, offset, len, mode);
    	lblk = offset >> blkbits;
    	/*
    	 * We can't just convert len to max_blocks because
    	 * If blocksize = 4096 offset = 3072 and len = 2048
    	 */
    	max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
    		- lblk;
    
    	flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT;
    	if (mode & FALLOC_FL_KEEP_SIZE)
    		flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
    
    	mutex_lock(&inode->i_mutex);
    
    	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
    	     offset + len > i_size_read(inode)) {
    		new_size = offset + len;
    		ret = inode_newsize_ok(inode, new_size);
    		if (ret)
    			goto out;
    	}
    
    	ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size,
    				     flags, mode);
    	if (ret)
    		goto out;
    
    	if (file->f_flags & O_SYNC && EXT4_SB(inode->i_sb)->s_journal) {
    		ret = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
    						EXT4_I(inode)->i_sync_tid);
    	}
    out:
    	mutex_unlock(&inode->i_mutex);
    	trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
    	return ret;
    }
    
    /*
     * This function convert a range of blocks to written extents
     * The caller of this function will pass the start offset and the size.
     * all unwritten extents within this range will be converted to
     * written extents.
     *
     * This function is called from the direct IO end io call back
     * function, to convert the fallocated extents after IO is completed.
     * Returns 0 on success.
     */
    int ext4_convert_unwritten_extents(handle_t *handle, struct inode *inode,
    				   loff_t offset, ssize_t len)
    {
    	unsigned int max_blocks;
    	int ret = 0;
    	int ret2 = 0;
    	struct ext4_map_blocks map;
    	unsigned int credits, blkbits = inode->i_blkbits;
    
    	map.m_lblk = offset >> blkbits;
    	/*
    	 * We can't just convert len to max_blocks because
    	 * If blocksize = 4096 offset = 3072 and len = 2048
    	 */
    	max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
    		      map.m_lblk);
    	/*
    	 * This is somewhat ugly but the idea is clear: When transaction is
    	 * reserved, everything goes into it. Otherwise we rather start several
    	 * smaller transactions for conversion of each extent separately.
    	 */
    	if (handle) {
    		handle = ext4_journal_start_reserved(handle,
    						     EXT4_HT_EXT_CONVERT);
    		if (IS_ERR(handle))
    			return PTR_ERR(handle);
    		credits = 0;
    	} else {
    		/*
    		 * credits to insert 1 extent into extent tree
    		 */
    		credits = ext4_chunk_trans_blocks(inode, max_blocks);
    	}
    	while (ret >= 0 && ret < max_blocks) {
    		map.m_lblk += ret;
    		map.m_len = (max_blocks -= ret);
    		if (credits) {
    			handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
    						    credits);
    			if (IS_ERR(handle)) {
    				ret = PTR_ERR(handle);
    				break;
    			}
    		}
    		ret = ext4_map_blocks(handle, inode, &map,
    				      EXT4_GET_BLOCKS_IO_CONVERT_EXT);
    		if (ret <= 0)
    			ext4_warning(inode->i_sb,
    				     "inode #%lu: block %u: len %u: "
    				     "ext4_ext_map_blocks returned %d",
    				     inode->i_ino, map.m_lblk,
    				     map.m_len, ret);
    		ext4_mark_inode_dirty(handle, inode);
    		if (credits)
    			ret2 = ext4_journal_stop(handle);
    		if (ret <= 0 || ret2)
    			break;
    	}
    	if (!credits)
    		ret2 = ext4_journal_stop(handle);
    	return ret > 0 ? ret2 : ret;
    }
    
    /*
     * If newes is not existing extent (newes->ec_pblk equals zero) find
     * delayed extent at start of newes and update newes accordingly and
     * return start of the next delayed extent.
     *
     * If newes is existing extent (newes->ec_pblk is not equal zero)
     * return start of next delayed extent or EXT_MAX_BLOCKS if no delayed
     * extent found. Leave newes unmodified.
     */
    static int ext4_find_delayed_extent(struct inode *inode,
    				    struct extent_status *newes)
    {
    	struct extent_status es;
    	ext4_lblk_t block, next_del;
    
    	if (newes->es_pblk == 0) {
    		ext4_es_find_delayed_extent_range(inode, newes->es_lblk,
    				newes->es_lblk + newes->es_len - 1, &es);
    
    		/*
    		 * No extent in extent-tree contains block @newes->es_pblk,
    		 * then the block may stay in 1)a hole or 2)delayed-extent.
    		 */
    		if (es.es_len == 0)
    			/* A hole found. */
    			return 0;
    
    		if (es.es_lblk > newes->es_lblk) {
    			/* A hole found. */
    			newes->es_len = min(es.es_lblk - newes->es_lblk,
    					    newes->es_len);
    			return 0;
    		}
    
    		newes->es_len = es.es_lblk + es.es_len - newes->es_lblk;
    	}
    
    	block = newes->es_lblk + newes->es_len;
    	ext4_es_find_delayed_extent_range(inode, block, EXT_MAX_BLOCKS, &es);
    	if (es.es_len == 0)
    		next_del = EXT_MAX_BLOCKS;
    	else
    		next_del = es.es_lblk;
    
    	return next_del;
    }
    /* fiemap flags we can handle specified here */
    #define EXT4_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
    
    static int ext4_xattr_fiemap(struct inode *inode,
    				struct fiemap_extent_info *fieinfo)
    {
    	__u64 physical = 0;
    	__u64 length;
    	__u32 flags = FIEMAP_EXTENT_LAST;
    	int blockbits = inode->i_sb->s_blocksize_bits;
    	int error = 0;
    
    	/* in-inode? */
    	if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
    		struct ext4_iloc iloc;
    		int offset;	/* offset of xattr in inode */
    
    		error = ext4_get_inode_loc(inode, &iloc);
    		if (error)
    			return error;
    		physical = (__u64)iloc.bh->b_blocknr << blockbits;
    		offset = EXT4_GOOD_OLD_INODE_SIZE +
    				EXT4_I(inode)->i_extra_isize;
    		physical += offset;
    		length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
    		flags |= FIEMAP_EXTENT_DATA_INLINE;
    		brelse(iloc.bh);
    	} else { /* external block */
    		physical = (__u64)EXT4_I(inode)->i_file_acl << blockbits;
    		length = inode->i_sb->s_blocksize;
    	}
    
    	if (physical)
    		error = fiemap_fill_next_extent(fieinfo, 0, physical,
    						length, flags);
    	return (error < 0 ? error : 0);
    }
    
    int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
    		__u64 start, __u64 len)
    {
    	ext4_lblk_t start_blk;
    	int error = 0;
    
    	if (ext4_has_inline_data(inode)) {
    		int has_inline = 1;
    
    		error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline);
    
    		if (has_inline)
    			return error;
    	}
    
    	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
    		error = ext4_ext_precache(inode);
    		if (error)
    			return error;
    	}
    
    	/* fallback to generic here if not in extents fmt */
    	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
    		return generic_block_fiemap(inode, fieinfo, start, len,
    			ext4_get_block);
    
    	if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
    		return -EBADR;
    
    	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
    		error = ext4_xattr_fiemap(inode, fieinfo);
    	} else {
    		ext4_lblk_t len_blks;
    		__u64 last_blk;
    
    		start_blk = start >> inode->i_sb->s_blocksize_bits;
    		last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
    		if (last_blk >= EXT_MAX_BLOCKS)
    			last_blk = EXT_MAX_BLOCKS-1;
    		len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
    
    		/*
    		 * Walk the extent tree gathering extent information
    		 * and pushing extents back to the user.
    		 */
    		error = ext4_fill_fiemap_extents(inode, start_blk,
    						 len_blks, fieinfo);
    	}
    	ext4_es_lru_add(inode);
    	return error;
    }
    
    /*
     * ext4_access_path:
     * Function to access the path buffer for marking it dirty.
     * It also checks if there are sufficient credits left in the journal handle
     * to update path.
     */
    static int
    ext4_access_path(handle_t *handle, struct inode *inode,
    		struct ext4_ext_path *path)
    {
    	int credits, err;
    
    	if (!ext4_handle_valid(handle))
    		return 0;
    
    	/*
    	 * Check if need to extend journal credits
    	 * 3 for leaf, sb, and inode plus 2 (bmap and group
    	 * descriptor) for each block group; assume two block
    	 * groups
    	 */
    	if (handle->h_buffer_credits < 7) {
    		credits = ext4_writepage_trans_blocks(inode);
    		err = ext4_ext_truncate_extend_restart(handle, inode, credits);
    		/* EAGAIN is success */
    		if (err && err != -EAGAIN)
    			return err;
    	}
    
    	err = ext4_ext_get_access(handle, inode, path);
    	return err;
    }
    
    /*
     * ext4_ext_shift_path_extents:
     * Shift the extents of a path structure lying between path[depth].p_ext
     * and EXT_LAST_EXTENT(path[depth].p_hdr) downwards, by subtracting shift
     * from starting block for each extent.
     */
    static int
    ext4_ext_shift_path_extents(struct ext4_ext_path *path, ext4_lblk_t shift,
    			    struct inode *inode, handle_t *handle,
    			    ext4_lblk_t *start)
    {
    	int depth, err = 0;
    	struct ext4_extent *ex_start, *ex_last;
    	bool update = 0;
    	depth = path->p_depth;
    
    	while (depth >= 0) {
    		if (depth == path->p_depth) {
    			ex_start = path[depth].p_ext;
    			if (!ex_start)
    				return -EIO;
    
    			ex_last = EXT_LAST_EXTENT(path[depth].p_hdr);
    			if (!ex_last)
    				return -EIO;
    
    			err = ext4_access_path(handle, inode, path + depth);
    			if (err)
    				goto out;
    
    			if (ex_start == EXT_FIRST_EXTENT(path[depth].p_hdr))
    				update = 1;
    
    			*start = le32_to_cpu(ex_last->ee_block) +
    				ext4_ext_get_actual_len(ex_last);
    
    			while (ex_start <= ex_last) {
    				le32_add_cpu(&ex_start->ee_block, -shift);
    				/* Try to merge to the left. */
    				if ((ex_start >
    				     EXT_FIRST_EXTENT(path[depth].p_hdr)) &&
    				    ext4_ext_try_to_merge_right(inode,
    							path, ex_start - 1))
    					ex_last--;
    				else
    					ex_start++;
    			}
    			err = ext4_ext_dirty(handle, inode, path + depth);
    			if (err)
    				goto out;
    
    			if (--depth < 0 || !update)
    				break;
    		}
    
    		/* Update index too */
    		err = ext4_access_path(handle, inode, path + depth);
    		if (err)
    			goto out;
    
    		le32_add_cpu(&path[depth].p_idx->ei_block, -shift);
    		err = ext4_ext_dirty(handle, inode, path + depth);
    		if (err)
    			goto out;
    
    		/* we are done if current index is not a starting index */
    		if (path[depth].p_idx != EXT_FIRST_INDEX(path[depth].p_hdr))
    			break;
    
    		depth--;
    	}
    
    out:
    	return err;
    }
    
    /*
     * ext4_ext_shift_extents:
     * All the extents which lies in the range from start to the last allocated
     * block for the file are shifted downwards by shift blocks.
     * On success, 0 is returned, error otherwise.
     */
    static int
    ext4_ext_shift_extents(struct inode *inode, handle_t *handle,
    		       ext4_lblk_t start, ext4_lblk_t shift)
    {
    	struct ext4_ext_path *path;
    	int ret = 0, depth;
    	struct ext4_extent *extent;
    	ext4_lblk_t stop_block;
    	ext4_lblk_t ex_start, ex_end;
    
    	/* Let path point to the last extent */
    	path = ext4_find_extent(inode, EXT_MAX_BLOCKS - 1, NULL, 0);
    	if (IS_ERR(path))
    		return PTR_ERR(path);
    
    	depth = path->p_depth;
    	extent = path[depth].p_ext;
    	if (!extent)
    		goto out;
    
    	stop_block = le32_to_cpu(extent->ee_block) +
    			ext4_ext_get_actual_len(extent);
    
    	/* Nothing to shift, if hole is at the end of file */
    	if (start >= stop_block)
    		goto out;
    
    	/*
    	 * Don't start shifting extents until we make sure the hole is big
    	 * enough to accomodate the shift.
    	 */
    	path = ext4_find_extent(inode, start - 1, &path, 0);
    	if (IS_ERR(path))
    		return PTR_ERR(path);
    	depth = path->p_depth;
    	extent =  path[depth].p_ext;
    	if (extent) {
    		ex_start = le32_to_cpu(extent->ee_block);
    		ex_end = le32_to_cpu(extent->ee_block) +
    			ext4_ext_get_actual_len(extent);
    	} else {
    		ex_start = 0;
    		ex_end = 0;
    	}
    
    	if ((start == ex_start && shift > ex_start) ||
    	    (shift > start - ex_end))
    		return -EINVAL;
    
    	/* Its safe to start updating extents */
    	while (start < stop_block) {
    		path = ext4_find_extent(inode, start, &path, 0);
    		if (IS_ERR(path))
    			return PTR_ERR(path);
    		depth = path->p_depth;
    		extent = path[depth].p_ext;
    		if (!extent) {
    			EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
    					 (unsigned long) start);
    			return -EIO;
    		}
    		if (start > le32_to_cpu(extent->ee_block)) {
    			/* Hole, move to the next extent */
    			if (extent < EXT_LAST_EXTENT(path[depth].p_hdr)) {
    				path[depth].p_ext++;
    			} else {
    				start = ext4_ext_next_allocated_block(path);
    				continue;
    			}
    		}
    		ret = ext4_ext_shift_path_extents(path, shift, inode,
    				handle, &start);
    		if (ret)
    			break;
    	}
    out:
    	ext4_ext_drop_refs(path);
    	kfree(path);
    	return ret;
    }
    
    /*
     * ext4_collapse_range:
     * This implements the fallocate's collapse range functionality for ext4
     * Returns: 0 and non-zero on error.
     */
    int ext4_collapse_range(struct inode *inode, loff_t offset, loff_t len)
    {
    	struct super_block *sb = inode->i_sb;
    	ext4_lblk_t punch_start, punch_stop;
    	handle_t *handle;
    	unsigned int credits;
    	loff_t new_size, ioffset;
    	int ret;
    
    	/* Collapse range works only on fs block size aligned offsets. */
    	if (offset & (EXT4_CLUSTER_SIZE(sb) - 1) ||
    	    len & (EXT4_CLUSTER_SIZE(sb) - 1))
    		return -EINVAL;
    
    	if (!S_ISREG(inode->i_mode))
    		return -EINVAL;
    
    	trace_ext4_collapse_range(inode, offset, len);
    
    	punch_start = offset >> EXT4_BLOCK_SIZE_BITS(sb);
    	punch_stop = (offset + len) >> EXT4_BLOCK_SIZE_BITS(sb);
    
    	/* Call ext4_force_commit to flush all data in case of data=journal. */
    	if (ext4_should_journal_data(inode)) {
    		ret = ext4_force_commit(inode->i_sb);
    		if (ret)
    			return ret;
    	}
    
    	/*
    	 * Need to round down offset to be aligned with page size boundary
    	 * for page size > block size.
    	 */
    	ioffset = round_down(offset, PAGE_SIZE);
    
    	/* Write out all dirty pages */
    	ret = filemap_write_and_wait_range(inode->i_mapping, ioffset,
    					   LLONG_MAX);
    	if (ret)
    		return ret;
    
    	/* Take mutex lock */
    	mutex_lock(&inode->i_mutex);
    
    	/*
    	 * There is no need to overlap collapse range with EOF, in which case
    	 * it is effectively a truncate operation
    	 */
    	if (offset + len >= i_size_read(inode)) {
    		ret = -EINVAL;
    		goto out_mutex;
    	}
    
    	/* Currently just for extent based files */
    	if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
    		ret = -EOPNOTSUPP;
    		goto out_mutex;
    	}
    
    	truncate_pagecache(inode, ioffset);
    
    	/* Wait for existing dio to complete */
    	ext4_inode_block_unlocked_dio(inode);
    	inode_dio_wait(inode);
    
    	credits = ext4_writepage_trans_blocks(inode);
    	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
    	if (IS_ERR(handle)) {
    		ret = PTR_ERR(handle);
    		goto out_dio;
    	}
    
    	down_write(&EXT4_I(inode)->i_data_sem);
    	ext4_discard_preallocations(inode);
    
    	ret = ext4_es_remove_extent(inode, punch_start,
    				    EXT_MAX_BLOCKS - punch_start);
    	if (ret) {
    		up_write(&EXT4_I(inode)->i_data_sem);
    		goto out_stop;
    	}
    
    	ret = ext4_ext_remove_space(inode, punch_start, punch_stop - 1);
    	if (ret) {
    		up_write(&EXT4_I(inode)->i_data_sem);
    		goto out_stop;
    	}
    	ext4_discard_preallocations(inode);
    
    	ret = ext4_ext_shift_extents(inode, handle, punch_stop,
    				     punch_stop - punch_start);
    	if (ret) {
    		up_write(&EXT4_I(inode)->i_data_sem);
    		goto out_stop;
    	}
    
    	new_size = i_size_read(inode) - len;
    	i_size_write(inode, new_size);
    	EXT4_I(inode)->i_disksize = new_size;
    
    	up_write(&EXT4_I(inode)->i_data_sem);
    	if (IS_SYNC(inode))
    		ext4_handle_sync(handle);
    	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
    	ext4_mark_inode_dirty(handle, inode);
    
    out_stop:
    	ext4_journal_stop(handle);
    out_dio:
    	ext4_inode_resume_unlocked_dio(inode);
    out_mutex:
    	mutex_unlock(&inode->i_mutex);
    	return ret;
    }
    
    /**
     * ext4_swap_extents - Swap extents between two inodes
     *
     * @inode1:	First inode
     * @inode2:	Second inode
     * @lblk1:	Start block for first inode
     * @lblk2:	Start block for second inode
     * @count:	Number of blocks to swap
     * @mark_unwritten: Mark second inode's extents as unwritten after swap
     * @erp:	Pointer to save error value
     *
     * This helper routine does exactly what is promise "swap extents". All other
     * stuff such as page-cache locking consistency, bh mapping consistency or
     * extent's data copying must be performed by caller.
     * Locking:
     * 		i_mutex is held for both inodes
     * 		i_data_sem is locked for write for both inodes
     * Assumptions:
     *		All pages from requested range are locked for both inodes
     */
    int
    ext4_swap_extents(handle_t *handle, struct inode *inode1,
    		     struct inode *inode2, ext4_lblk_t lblk1, ext4_lblk_t lblk2,
    		  ext4_lblk_t count, int unwritten, int *erp)
    {
    	struct ext4_ext_path *path1 = NULL;
    	struct ext4_ext_path *path2 = NULL;
    	int replaced_count = 0;
    
    	BUG_ON(!rwsem_is_locked(&EXT4_I(inode1)->i_data_sem));
    	BUG_ON(!rwsem_is_locked(&EXT4_I(inode2)->i_data_sem));
    	BUG_ON(!mutex_is_locked(&inode1->i_mutex));
    	BUG_ON(!mutex_is_locked(&inode1->i_mutex));
    
    	*erp = ext4_es_remove_extent(inode1, lblk1, count);
    	if (unlikely(*erp))
    		return 0;
    	*erp = ext4_es_remove_extent(inode2, lblk2, count);
    	if (unlikely(*erp))
    		return 0;
    
    	while (count) {
    		struct ext4_extent *ex1, *ex2, tmp_ex;
    		ext4_lblk_t e1_blk, e2_blk;
    		int e1_len, e2_len, len;
    		int split = 0;
    
    		path1 = ext4_find_extent(inode1, lblk1, NULL, EXT4_EX_NOCACHE);
    		if (unlikely(IS_ERR(path1))) {
    			*erp = PTR_ERR(path1);
    			path1 = NULL;
    		finish:
    			count = 0;
    			goto repeat;
    		}
    		path2 = ext4_find_extent(inode2, lblk2, NULL, EXT4_EX_NOCACHE);
    		if (unlikely(IS_ERR(path2))) {
    			*erp = PTR_ERR(path2);
    			path2 = NULL;
    			goto finish;
    		}
    		ex1 = path1[path1->p_depth].p_ext;
    		ex2 = path2[path2->p_depth].p_ext;
    		/* Do we have somthing to swap ? */
    		if (unlikely(!ex2 || !ex1))
    			goto finish;
    
    		e1_blk = le32_to_cpu(ex1->ee_block);
    		e2_blk = le32_to_cpu(ex2->ee_block);
    		e1_len = ext4_ext_get_actual_len(ex1);
    		e2_len = ext4_ext_get_actual_len(ex2);
    
    		/* Hole handling */
    		if (!in_range(lblk1, e1_blk, e1_len) ||
    		    !in_range(lblk2, e2_blk, e2_len)) {
    			ext4_lblk_t next1, next2;
    
    			/* if hole after extent, then go to next extent */
    			next1 = ext4_ext_next_allocated_block(path1);
    			next2 = ext4_ext_next_allocated_block(path2);
    			/* If hole before extent, then shift to that extent */
    			if (e1_blk > lblk1)
    				next1 = e1_blk;
    			if (e2_blk > lblk2)
    				next2 = e1_blk;
    			/* Do we have something to swap */
    			if (next1 == EXT_MAX_BLOCKS || next2 == EXT_MAX_BLOCKS)
    				goto finish;
    			/* Move to the rightest boundary */
    			len = next1 - lblk1;
    			if (len < next2 - lblk2)
    				len = next2 - lblk2;
    			if (len > count)
    				len = count;
    			lblk1 += len;
    			lblk2 += len;
    			count -= len;
    			goto repeat;
    		}
    
    		/* Prepare left boundary */
    		if (e1_blk < lblk1) {
    			split = 1;
    			*erp = ext4_force_split_extent_at(handle, inode1,
    						&path1, lblk1, 0);
    			if (unlikely(*erp))
    				goto finish;
    		}
    		if (e2_blk < lblk2) {
    			split = 1;
    			*erp = ext4_force_split_extent_at(handle, inode2,
    						&path2,  lblk2, 0);
    			if (unlikely(*erp))
    				goto finish;
    		}
    		/* ext4_split_extent_at() may result in leaf extent split,
    		 * path must to be revalidated. */
    		if (split)
    			goto repeat;
    
    		/* Prepare right boundary */
    		len = count;
    		if (len > e1_blk + e1_len - lblk1)
    			len = e1_blk + e1_len - lblk1;
    		if (len > e2_blk + e2_len - lblk2)
    			len = e2_blk + e2_len - lblk2;
    
    		if (len != e1_len) {
    			split = 1;
    			*erp = ext4_force_split_extent_at(handle, inode1,
    						&path1, lblk1 + len, 0);
    			if (unlikely(*erp))
    				goto finish;
    		}
    		if (len != e2_len) {
    			split = 1;
    			*erp = ext4_force_split_extent_at(handle, inode2,
    						&path2, lblk2 + len, 0);
    			if (*erp)
    				goto finish;
    		}
    		/* ext4_split_extent_at() may result in leaf extent split,
    		 * path must to be revalidated. */
    		if (split)
    			goto repeat;
    
    		BUG_ON(e2_len != e1_len);
    		*erp = ext4_ext_get_access(handle, inode1, path1 + path1->p_depth);
    		if (unlikely(*erp))
    			goto finish;
    		*erp = ext4_ext_get_access(handle, inode2, path2 + path2->p_depth);
    		if (unlikely(*erp))
    			goto finish;
    
    		/* Both extents are fully inside boundaries. Swap it now */
    		tmp_ex = *ex1;
    		ext4_ext_store_pblock(ex1, ext4_ext_pblock(ex2));
    		ext4_ext_store_pblock(ex2, ext4_ext_pblock(&tmp_ex));
    		ex1->ee_len = cpu_to_le16(e2_len);
    		ex2->ee_len = cpu_to_le16(e1_len);
    		if (unwritten)
    			ext4_ext_mark_unwritten(ex2);
    		if (ext4_ext_is_unwritten(&tmp_ex))
    			ext4_ext_mark_unwritten(ex1);
    
    		ext4_ext_try_to_merge(handle, inode2, path2, ex2);
    		ext4_ext_try_to_merge(handle, inode1, path1, ex1);
    		*erp = ext4_ext_dirty(handle, inode2, path2 +
    				      path2->p_depth);
    		if (unlikely(*erp))
    			goto finish;
    		*erp = ext4_ext_dirty(handle, inode1, path1 +
    				      path1->p_depth);
    		/*
    		 * Looks scarry ah..? second inode already points to new blocks,
    		 * and it was successfully dirtied. But luckily error may happen
    		 * only due to journal error, so full transaction will be
    		 * aborted anyway.
    		 */
    		if (unlikely(*erp))
    			goto finish;
    		lblk1 += len;
    		lblk2 += len;
    		replaced_count += len;
    		count -= len;
    
    	repeat:
    		ext4_ext_drop_refs(path1);
    		kfree(path1);
    		ext4_ext_drop_refs(path2);
    		kfree(path2);
    		path1 = path2 = NULL;
    	}
    	return replaced_count;
    }