Skip to content
Snippets Groups Projects
Select Git revision
  • b00c600e91531df00aaa551049382416c4db745d
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

amdgpu_fb.c

Blame
  • class.c 12.22 KiB
    // SPDX-License-Identifier: GPL-2.0
    /*
     * RTC subsystem, base class
     *
     * Copyright (C) 2005 Tower Technologies
     * Author: Alessandro Zummo <a.zummo@towertech.it>
     *
     * class skeleton from drivers/hwmon/hwmon.c
     */
    
    #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
    
    #include <linux/module.h>
    #include <linux/of.h>
    #include <linux/rtc.h>
    #include <linux/kdev_t.h>
    #include <linux/idr.h>
    #include <linux/slab.h>
    #include <linux/workqueue.h>
    
    #include "rtc-core.h"
    
    static DEFINE_IDA(rtc_ida);
    struct class *rtc_class;
    
    static void rtc_device_release(struct device *dev)
    {
    	struct rtc_device *rtc = to_rtc_device(dev);
    
    	ida_simple_remove(&rtc_ida, rtc->id);
    	kfree(rtc);
    }
    
    #ifdef CONFIG_RTC_HCTOSYS_DEVICE
    /* Result of the last RTC to system clock attempt. */
    int rtc_hctosys_ret = -ENODEV;
    
    /* IMPORTANT: the RTC only stores whole seconds. It is arbitrary
     * whether it stores the most close value or the value with partial
     * seconds truncated. However, it is important that we use it to store
     * the truncated value. This is because otherwise it is necessary,
     * in an rtc sync function, to read both xtime.tv_sec and
     * xtime.tv_nsec. On some processors (i.e. ARM), an atomic read
     * of >32bits is not possible. So storing the most close value would
     * slow down the sync API. So here we have the truncated value and
     * the best guess is to add 0.5s.
     */
    
    static void rtc_hctosys(struct rtc_device *rtc)
    {
    	int err;
    	struct rtc_time tm;
    	struct timespec64 tv64 = {
    		.tv_nsec = NSEC_PER_SEC >> 1,
    	};
    
    	err = rtc_read_time(rtc, &tm);
    	if (err) {
    		dev_err(rtc->dev.parent,
    			"hctosys: unable to read the hardware clock\n");
    		goto err_read;
    	}
    
    	tv64.tv_sec = rtc_tm_to_time64(&tm);
    
    #if BITS_PER_LONG == 32
    	if (tv64.tv_sec > INT_MAX) {
    		err = -ERANGE;
    		goto err_read;
    	}
    #endif
    
    	err = do_settimeofday64(&tv64);
    
    	dev_info(rtc->dev.parent, "setting system clock to %ptR UTC (%lld)\n",
    		 &tm, (long long)tv64.tv_sec);
    
    err_read:
    	rtc_hctosys_ret = err;
    }
    #endif
    
    #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
    /*
     * On suspend(), measure the delta between one RTC and the
     * system's wall clock; restore it on resume().
     */
    
    static struct timespec64 old_rtc, old_system, old_delta;
    
    static int rtc_suspend(struct device *dev)
    {
    	struct rtc_device	*rtc = to_rtc_device(dev);
    	struct rtc_time		tm;
    	struct timespec64	delta, delta_delta;
    	int err;
    
    	if (timekeeping_rtc_skipsuspend())
    		return 0;
    
    	if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0)
    		return 0;
    
    	/* snapshot the current RTC and system time at suspend*/
    	err = rtc_read_time(rtc, &tm);
    	if (err < 0) {
    		pr_debug("%s:  fail to read rtc time\n", dev_name(&rtc->dev));
    		return 0;
    	}
    
    	ktime_get_real_ts64(&old_system);
    	old_rtc.tv_sec = rtc_tm_to_time64(&tm);
    
    	/*
    	 * To avoid drift caused by repeated suspend/resumes,
    	 * which each can add ~1 second drift error,
    	 * try to compensate so the difference in system time
    	 * and rtc time stays close to constant.
    	 */
    	delta = timespec64_sub(old_system, old_rtc);
    	delta_delta = timespec64_sub(delta, old_delta);
    	if (delta_delta.tv_sec < -2 || delta_delta.tv_sec >= 2) {
    		/*
    		 * if delta_delta is too large, assume time correction
    		 * has occurred and set old_delta to the current delta.
    		 */
    		old_delta = delta;
    	} else {
    		/* Otherwise try to adjust old_system to compensate */
    		old_system = timespec64_sub(old_system, delta_delta);
    	}
    
    	return 0;
    }
    
    static int rtc_resume(struct device *dev)
    {
    	struct rtc_device	*rtc = to_rtc_device(dev);
    	struct rtc_time		tm;
    	struct timespec64	new_system, new_rtc;
    	struct timespec64	sleep_time;
    	int err;
    
    	if (timekeeping_rtc_skipresume())
    		return 0;
    
    	rtc_hctosys_ret = -ENODEV;
    	if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0)
    		return 0;
    
    	/* snapshot the current rtc and system time at resume */
    	ktime_get_real_ts64(&new_system);
    	err = rtc_read_time(rtc, &tm);
    	if (err < 0) {
    		pr_debug("%s:  fail to read rtc time\n", dev_name(&rtc->dev));
    		return 0;
    	}
    
    	new_rtc.tv_sec = rtc_tm_to_time64(&tm);
    	new_rtc.tv_nsec = 0;
    
    	if (new_rtc.tv_sec < old_rtc.tv_sec) {
    		pr_debug("%s:  time travel!\n", dev_name(&rtc->dev));
    		return 0;
    	}
    
    	/* calculate the RTC time delta (sleep time)*/
    	sleep_time = timespec64_sub(new_rtc, old_rtc);
    
    	/*
    	 * Since these RTC suspend/resume handlers are not called
    	 * at the very end of suspend or the start of resume,
    	 * some run-time may pass on either sides of the sleep time
    	 * so subtract kernel run-time between rtc_suspend to rtc_resume
    	 * to keep things accurate.
    	 */
    	sleep_time = timespec64_sub(sleep_time,
    				    timespec64_sub(new_system, old_system));
    
    	if (sleep_time.tv_sec >= 0)
    		timekeeping_inject_sleeptime64(&sleep_time);
    	rtc_hctosys_ret = 0;
    	return 0;
    }
    
    static SIMPLE_DEV_PM_OPS(rtc_class_dev_pm_ops, rtc_suspend, rtc_resume);
    #define RTC_CLASS_DEV_PM_OPS	(&rtc_class_dev_pm_ops)
    #else
    #define RTC_CLASS_DEV_PM_OPS	NULL
    #endif
    
    /* Ensure the caller will set the id before releasing the device */
    static struct rtc_device *rtc_allocate_device(void)
    {
    	struct rtc_device *rtc;
    
    	rtc = kzalloc(sizeof(*rtc), GFP_KERNEL);
    	if (!rtc)
    		return NULL;
    
    	device_initialize(&rtc->dev);
    
    	/* Drivers can revise this default after allocating the device. */
    	rtc->set_offset_nsec =  NSEC_PER_SEC / 2;
    
    	rtc->irq_freq = 1;
    	rtc->max_user_freq = 64;
    	rtc->dev.class = rtc_class;
    	rtc->dev.groups = rtc_get_dev_attribute_groups();
    	rtc->dev.release = rtc_device_release;
    
    	mutex_init(&rtc->ops_lock);
    	spin_lock_init(&rtc->irq_lock);
    	init_waitqueue_head(&rtc->irq_queue);
    
    	/* Init timerqueue */
    	timerqueue_init_head(&rtc->timerqueue);
    	INIT_WORK(&rtc->irqwork, rtc_timer_do_work);
    	/* Init aie timer */
    	rtc_timer_init(&rtc->aie_timer, rtc_aie_update_irq, rtc);
    	/* Init uie timer */
    	rtc_timer_init(&rtc->uie_rtctimer, rtc_uie_update_irq, rtc);
    	/* Init pie timer */
    	hrtimer_init(&rtc->pie_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
    	rtc->pie_timer.function = rtc_pie_update_irq;
    	rtc->pie_enabled = 0;
    
    	return rtc;
    }
    
    static int rtc_device_get_id(struct device *dev)
    {
    	int of_id = -1, id = -1;
    
    	if (dev->of_node)
    		of_id = of_alias_get_id(dev->of_node, "rtc");
    	else if (dev->parent && dev->parent->of_node)
    		of_id = of_alias_get_id(dev->parent->of_node, "rtc");
    
    	if (of_id >= 0) {
    		id = ida_simple_get(&rtc_ida, of_id, of_id + 1, GFP_KERNEL);
    		if (id < 0)
    			dev_warn(dev, "/aliases ID %d not available\n", of_id);
    	}
    
    	if (id < 0)
    		id = ida_simple_get(&rtc_ida, 0, 0, GFP_KERNEL);
    
    	return id;
    }
    
    static void rtc_device_get_offset(struct rtc_device *rtc)
    {
    	time64_t range_secs;
    	u32 start_year;
    	int ret;
    
    	/*
    	 * If RTC driver did not implement the range of RTC hardware device,
    	 * then we can not expand the RTC range by adding or subtracting one
    	 * offset.
    	 */
    	if (rtc->range_min == rtc->range_max)
    		return;
    
    	ret = device_property_read_u32(rtc->dev.parent, "start-year",
    				       &start_year);
    	if (!ret) {
    		rtc->start_secs = mktime64(start_year, 1, 1, 0, 0, 0);
    		rtc->set_start_time = true;
    	}
    
    	/*
    	 * If user did not implement the start time for RTC driver, then no
    	 * need to expand the RTC range.
    	 */
    	if (!rtc->set_start_time)
    		return;
    
    	range_secs = rtc->range_max - rtc->range_min + 1;
    
    	/*
    	 * If the start_secs is larger than the maximum seconds (rtc->range_max)
    	 * supported by RTC hardware or the maximum seconds of new expanded
    	 * range (start_secs + rtc->range_max - rtc->range_min) is less than
    	 * rtc->range_min, which means the minimum seconds (rtc->range_min) of
    	 * RTC hardware will be mapped to start_secs by adding one offset, so
    	 * the offset seconds calculation formula should be:
    	 * rtc->offset_secs = rtc->start_secs - rtc->range_min;
    	 *
    	 * If the start_secs is larger than the minimum seconds (rtc->range_min)
    	 * supported by RTC hardware, then there is one region is overlapped
    	 * between the original RTC hardware range and the new expanded range,
    	 * and this overlapped region do not need to be mapped into the new
    	 * expanded range due to it is valid for RTC device. So the minimum
    	 * seconds of RTC hardware (rtc->range_min) should be mapped to
    	 * rtc->range_max + 1, then the offset seconds formula should be:
    	 * rtc->offset_secs = rtc->range_max - rtc->range_min + 1;
    	 *
    	 * If the start_secs is less than the minimum seconds (rtc->range_min),
    	 * which is similar to case 2. So the start_secs should be mapped to
    	 * start_secs + rtc->range_max - rtc->range_min + 1, then the
    	 * offset seconds formula should be:
    	 * rtc->offset_secs = -(rtc->range_max - rtc->range_min + 1);
    	 *
    	 * Otherwise the offset seconds should be 0.
    	 */
    	if (rtc->start_secs > rtc->range_max ||
    	    rtc->start_secs + range_secs - 1 < rtc->range_min)
    		rtc->offset_secs = rtc->start_secs - rtc->range_min;
    	else if (rtc->start_secs > rtc->range_min)
    		rtc->offset_secs = range_secs;
    	else if (rtc->start_secs < rtc->range_min)
    		rtc->offset_secs = -range_secs;
    	else
    		rtc->offset_secs = 0;
    }
    
    /**
     * rtc_device_unregister - removes the previously registered RTC class device
     *
     * @rtc: the RTC class device to destroy
     */
    static void rtc_device_unregister(struct rtc_device *rtc)
    {
    	mutex_lock(&rtc->ops_lock);
    	/*
    	 * Remove innards of this RTC, then disable it, before
    	 * letting any rtc_class_open() users access it again
    	 */
    	rtc_proc_del_device(rtc);
    	cdev_device_del(&rtc->char_dev, &rtc->dev);
    	rtc->ops = NULL;
    	mutex_unlock(&rtc->ops_lock);
    	put_device(&rtc->dev);
    }
    
    static void devm_rtc_release_device(struct device *dev, void *res)
    {
    	struct rtc_device *rtc = *(struct rtc_device **)res;
    
    	rtc_nvmem_unregister(rtc);
    
    	if (rtc->registered)
    		rtc_device_unregister(rtc);
    	else
    		put_device(&rtc->dev);
    }
    
    struct rtc_device *devm_rtc_allocate_device(struct device *dev)
    {
    	struct rtc_device **ptr, *rtc;
    	int id, err;
    
    	id = rtc_device_get_id(dev);
    	if (id < 0)
    		return ERR_PTR(id);
    
    	ptr = devres_alloc(devm_rtc_release_device, sizeof(*ptr), GFP_KERNEL);
    	if (!ptr) {
    		err = -ENOMEM;
    		goto exit_ida;
    	}
    
    	rtc = rtc_allocate_device();
    	if (!rtc) {
    		err = -ENOMEM;
    		goto exit_devres;
    	}
    
    	*ptr = rtc;
    	devres_add(dev, ptr);
    
    	rtc->id = id;
    	rtc->dev.parent = dev;
    	dev_set_name(&rtc->dev, "rtc%d", id);
    
    	return rtc;
    
    exit_devres:
    	devres_free(ptr);
    exit_ida:
    	ida_simple_remove(&rtc_ida, id);
    	return ERR_PTR(err);
    }
    EXPORT_SYMBOL_GPL(devm_rtc_allocate_device);
    
    int __rtc_register_device(struct module *owner, struct rtc_device *rtc)
    {
    	struct rtc_wkalrm alrm;
    	int err;
    
    	if (!rtc->ops) {
    		dev_dbg(&rtc->dev, "no ops set\n");
    		return -EINVAL;
    	}
    
    	rtc->owner = owner;
    	rtc_device_get_offset(rtc);
    
    	/* Check to see if there is an ALARM already set in hw */
    	err = __rtc_read_alarm(rtc, &alrm);
    	if (!err && !rtc_valid_tm(&alrm.time))
    		rtc_initialize_alarm(rtc, &alrm);
    
    	rtc_dev_prepare(rtc);
    
    	err = cdev_device_add(&rtc->char_dev, &rtc->dev);
    	if (err)
    		dev_warn(rtc->dev.parent, "failed to add char device %d:%d\n",
    			 MAJOR(rtc->dev.devt), rtc->id);
    	else
    		dev_dbg(rtc->dev.parent, "char device (%d:%d)\n",
    			MAJOR(rtc->dev.devt), rtc->id);
    
    	rtc_proc_add_device(rtc);
    
    	rtc->registered = true;
    	dev_info(rtc->dev.parent, "registered as %s\n",
    		 dev_name(&rtc->dev));
    
    #ifdef CONFIG_RTC_HCTOSYS_DEVICE
    	if (!strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE))
    		rtc_hctosys(rtc);
    #endif
    
    	return 0;
    }
    EXPORT_SYMBOL_GPL(__rtc_register_device);
    
    /**
     * devm_rtc_device_register - resource managed rtc_device_register()
     * @dev: the device to register
     * @name: the name of the device (unused)
     * @ops: the rtc operations structure
     * @owner: the module owner
     *
     * @return a struct rtc on success, or an ERR_PTR on error
     *
     * Managed rtc_device_register(). The rtc_device returned from this function
     * are automatically freed on driver detach.
     * This function is deprecated, use devm_rtc_allocate_device and
     * rtc_register_device instead
     */
    struct rtc_device *devm_rtc_device_register(struct device *dev,
    					    const char *name,
    					    const struct rtc_class_ops *ops,
    					    struct module *owner)
    {
    	struct rtc_device *rtc;
    	int err;
    
    	rtc = devm_rtc_allocate_device(dev);
    	if (IS_ERR(rtc))
    		return rtc;
    
    	rtc->ops = ops;
    
    	err = __rtc_register_device(owner, rtc);
    	if (err)
    		return ERR_PTR(err);
    
    	return rtc;
    }
    EXPORT_SYMBOL_GPL(devm_rtc_device_register);
    
    static int __init rtc_init(void)
    {
    	rtc_class = class_create(THIS_MODULE, "rtc");
    	if (IS_ERR(rtc_class)) {
    		pr_err("couldn't create class\n");
    		return PTR_ERR(rtc_class);
    	}
    	rtc_class->pm = RTC_CLASS_DEV_PM_OPS;
    	rtc_dev_init();
    	return 0;
    }
    subsys_initcall(rtc_init);