Skip to content
Snippets Groups Projects
Select Git revision
  • b10effb92e272051dd1ec0d7be56bf9ca85ab927
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

netdev.c

Blame
  • netdev.c 214.00 KiB
    /* Intel PRO/1000 Linux driver
     * Copyright(c) 1999 - 2015 Intel Corporation.
     *
     * This program is free software; you can redistribute it and/or modify it
     * under the terms and conditions of the GNU General Public License,
     * version 2, as published by the Free Software Foundation.
     *
     * This program is distributed in the hope it will be useful, but WITHOUT
     * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
     * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
     * more details.
     *
     * The full GNU General Public License is included in this distribution in
     * the file called "COPYING".
     *
     * Contact Information:
     * Linux NICS <linux.nics@intel.com>
     * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
     * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
     */
    
    #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
    
    #include <linux/module.h>
    #include <linux/types.h>
    #include <linux/init.h>
    #include <linux/pci.h>
    #include <linux/vmalloc.h>
    #include <linux/pagemap.h>
    #include <linux/delay.h>
    #include <linux/netdevice.h>
    #include <linux/interrupt.h>
    #include <linux/tcp.h>
    #include <linux/ipv6.h>
    #include <linux/slab.h>
    #include <net/checksum.h>
    #include <net/ip6_checksum.h>
    #include <linux/ethtool.h>
    #include <linux/if_vlan.h>
    #include <linux/cpu.h>
    #include <linux/smp.h>
    #include <linux/pm_qos.h>
    #include <linux/pm_runtime.h>
    #include <linux/aer.h>
    #include <linux/prefetch.h>
    
    #include "e1000.h"
    
    #define DRV_EXTRAVERSION "-k"
    
    #define DRV_VERSION "3.2.6" DRV_EXTRAVERSION
    char e1000e_driver_name[] = "e1000e";
    const char e1000e_driver_version[] = DRV_VERSION;
    
    #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
    static int debug = -1;
    module_param(debug, int, 0);
    MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
    
    static const struct e1000_info *e1000_info_tbl[] = {
    	[board_82571]		= &e1000_82571_info,
    	[board_82572]		= &e1000_82572_info,
    	[board_82573]		= &e1000_82573_info,
    	[board_82574]		= &e1000_82574_info,
    	[board_82583]		= &e1000_82583_info,
    	[board_80003es2lan]	= &e1000_es2_info,
    	[board_ich8lan]		= &e1000_ich8_info,
    	[board_ich9lan]		= &e1000_ich9_info,
    	[board_ich10lan]	= &e1000_ich10_info,
    	[board_pchlan]		= &e1000_pch_info,
    	[board_pch2lan]		= &e1000_pch2_info,
    	[board_pch_lpt]		= &e1000_pch_lpt_info,
    	[board_pch_spt]		= &e1000_pch_spt_info,
    	[board_pch_cnp]		= &e1000_pch_cnp_info,
    };
    
    struct e1000_reg_info {
    	u32 ofs;
    	char *name;
    };
    
    static const struct e1000_reg_info e1000_reg_info_tbl[] = {
    	/* General Registers */
    	{E1000_CTRL, "CTRL"},
    	{E1000_STATUS, "STATUS"},
    	{E1000_CTRL_EXT, "CTRL_EXT"},
    
    	/* Interrupt Registers */
    	{E1000_ICR, "ICR"},
    
    	/* Rx Registers */
    	{E1000_RCTL, "RCTL"},
    	{E1000_RDLEN(0), "RDLEN"},
    	{E1000_RDH(0), "RDH"},
    	{E1000_RDT(0), "RDT"},
    	{E1000_RDTR, "RDTR"},
    	{E1000_RXDCTL(0), "RXDCTL"},
    	{E1000_ERT, "ERT"},
    	{E1000_RDBAL(0), "RDBAL"},
    	{E1000_RDBAH(0), "RDBAH"},
    	{E1000_RDFH, "RDFH"},
    	{E1000_RDFT, "RDFT"},
    	{E1000_RDFHS, "RDFHS"},
    	{E1000_RDFTS, "RDFTS"},
    	{E1000_RDFPC, "RDFPC"},
    
    	/* Tx Registers */
    	{E1000_TCTL, "TCTL"},
    	{E1000_TDBAL(0), "TDBAL"},
    	{E1000_TDBAH(0), "TDBAH"},
    	{E1000_TDLEN(0), "TDLEN"},
    	{E1000_TDH(0), "TDH"},
    	{E1000_TDT(0), "TDT"},
    	{E1000_TIDV, "TIDV"},
    	{E1000_TXDCTL(0), "TXDCTL"},
    	{E1000_TADV, "TADV"},
    	{E1000_TARC(0), "TARC"},
    	{E1000_TDFH, "TDFH"},
    	{E1000_TDFT, "TDFT"},
    	{E1000_TDFHS, "TDFHS"},
    	{E1000_TDFTS, "TDFTS"},
    	{E1000_TDFPC, "TDFPC"},
    
    	/* List Terminator */
    	{0, NULL}
    };
    
    /**
     * __ew32_prepare - prepare to write to MAC CSR register on certain parts
     * @hw: pointer to the HW structure
     *
     * When updating the MAC CSR registers, the Manageability Engine (ME) could
     * be accessing the registers at the same time.  Normally, this is handled in
     * h/w by an arbiter but on some parts there is a bug that acknowledges Host
     * accesses later than it should which could result in the register to have
     * an incorrect value.  Workaround this by checking the FWSM register which
     * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
     * and try again a number of times.
     **/
    s32 __ew32_prepare(struct e1000_hw *hw)
    {
    	s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
    
    	while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
    		udelay(50);
    
    	return i;
    }
    
    void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
    {
    	if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
    		__ew32_prepare(hw);
    
    	writel(val, hw->hw_addr + reg);
    }
    
    /**
     * e1000_regdump - register printout routine
     * @hw: pointer to the HW structure
     * @reginfo: pointer to the register info table
     **/
    static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
    {
    	int n = 0;
    	char rname[16];
    	u32 regs[8];
    
    	switch (reginfo->ofs) {
    	case E1000_RXDCTL(0):
    		for (n = 0; n < 2; n++)
    			regs[n] = __er32(hw, E1000_RXDCTL(n));
    		break;
    	case E1000_TXDCTL(0):
    		for (n = 0; n < 2; n++)
    			regs[n] = __er32(hw, E1000_TXDCTL(n));
    		break;
    	case E1000_TARC(0):
    		for (n = 0; n < 2; n++)
    			regs[n] = __er32(hw, E1000_TARC(n));
    		break;
    	default:
    		pr_info("%-15s %08x\n",
    			reginfo->name, __er32(hw, reginfo->ofs));
    		return;
    	}
    
    	snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
    	pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
    }
    
    static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
    				 struct e1000_buffer *bi)
    {
    	int i;
    	struct e1000_ps_page *ps_page;
    
    	for (i = 0; i < adapter->rx_ps_pages; i++) {
    		ps_page = &bi->ps_pages[i];
    
    		if (ps_page->page) {
    			pr_info("packet dump for ps_page %d:\n", i);
    			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
    				       16, 1, page_address(ps_page->page),
    				       PAGE_SIZE, true);
    		}
    	}
    }
    
    /**
     * e1000e_dump - Print registers, Tx-ring and Rx-ring
     * @adapter: board private structure
     **/
    static void e1000e_dump(struct e1000_adapter *adapter)
    {
    	struct net_device *netdev = adapter->netdev;
    	struct e1000_hw *hw = &adapter->hw;
    	struct e1000_reg_info *reginfo;
    	struct e1000_ring *tx_ring = adapter->tx_ring;
    	struct e1000_tx_desc *tx_desc;
    	struct my_u0 {
    		__le64 a;
    		__le64 b;
    	} *u0;
    	struct e1000_buffer *buffer_info;
    	struct e1000_ring *rx_ring = adapter->rx_ring;
    	union e1000_rx_desc_packet_split *rx_desc_ps;
    	union e1000_rx_desc_extended *rx_desc;
    	struct my_u1 {
    		__le64 a;
    		__le64 b;
    		__le64 c;
    		__le64 d;
    	} *u1;
    	u32 staterr;
    	int i = 0;
    
    	if (!netif_msg_hw(adapter))
    		return;
    
    	/* Print netdevice Info */
    	if (netdev) {
    		dev_info(&adapter->pdev->dev, "Net device Info\n");
    		pr_info("Device Name     state            trans_start\n");
    		pr_info("%-15s %016lX %016lX\n", netdev->name,
    			netdev->state, dev_trans_start(netdev));
    	}
    
    	/* Print Registers */
    	dev_info(&adapter->pdev->dev, "Register Dump\n");
    	pr_info(" Register Name   Value\n");
    	for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
    	     reginfo->name; reginfo++) {
    		e1000_regdump(hw, reginfo);
    	}
    
    	/* Print Tx Ring Summary */
    	if (!netdev || !netif_running(netdev))
    		return;
    
    	dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
    	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
    	buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
    	pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
    		0, tx_ring->next_to_use, tx_ring->next_to_clean,
    		(unsigned long long)buffer_info->dma,
    		buffer_info->length,
    		buffer_info->next_to_watch,
    		(unsigned long long)buffer_info->time_stamp);
    
    	/* Print Tx Ring */
    	if (!netif_msg_tx_done(adapter))
    		goto rx_ring_summary;
    
    	dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
    
    	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
    	 *
    	 * Legacy Transmit Descriptor
    	 *   +--------------------------------------------------------------+
    	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
    	 *   +--------------------------------------------------------------+
    	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
    	 *   +--------------------------------------------------------------+
    	 *   63       48 47        36 35    32 31     24 23    16 15        0
    	 *
    	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
    	 *   63      48 47    40 39       32 31             16 15    8 7      0
    	 *   +----------------------------------------------------------------+
    	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
    	 *   +----------------------------------------------------------------+
    	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
    	 *   +----------------------------------------------------------------+
    	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
    	 *
    	 * Extended Data Descriptor (DTYP=0x1)
    	 *   +----------------------------------------------------------------+
    	 * 0 |                     Buffer Address [63:0]                      |
    	 *   +----------------------------------------------------------------+
    	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
    	 *   +----------------------------------------------------------------+
    	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
    	 */
    	pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
    	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
    	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
    	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
    		const char *next_desc;
    		tx_desc = E1000_TX_DESC(*tx_ring, i);
    		buffer_info = &tx_ring->buffer_info[i];
    		u0 = (struct my_u0 *)tx_desc;
    		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
    			next_desc = " NTC/U";
    		else if (i == tx_ring->next_to_use)
    			next_desc = " NTU";
    		else if (i == tx_ring->next_to_clean)
    			next_desc = " NTC";
    		else
    			next_desc = "";
    		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
    			(!(le64_to_cpu(u0->b) & BIT(29)) ? 'l' :
    			 ((le64_to_cpu(u0->b) & BIT(20)) ? 'd' : 'c')),
    			i,
    			(unsigned long long)le64_to_cpu(u0->a),
    			(unsigned long long)le64_to_cpu(u0->b),
    			(unsigned long long)buffer_info->dma,
    			buffer_info->length, buffer_info->next_to_watch,
    			(unsigned long long)buffer_info->time_stamp,
    			buffer_info->skb, next_desc);
    
    		if (netif_msg_pktdata(adapter) && buffer_info->skb)
    			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
    				       16, 1, buffer_info->skb->data,
    				       buffer_info->skb->len, true);
    	}
    
    	/* Print Rx Ring Summary */
    rx_ring_summary:
    	dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
    	pr_info("Queue [NTU] [NTC]\n");
    	pr_info(" %5d %5X %5X\n",
    		0, rx_ring->next_to_use, rx_ring->next_to_clean);
    
    	/* Print Rx Ring */
    	if (!netif_msg_rx_status(adapter))
    		return;
    
    	dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
    	switch (adapter->rx_ps_pages) {
    	case 1:
    	case 2:
    	case 3:
    		/* [Extended] Packet Split Receive Descriptor Format
    		 *
    		 *    +-----------------------------------------------------+
    		 *  0 |                Buffer Address 0 [63:0]              |
    		 *    +-----------------------------------------------------+
    		 *  8 |                Buffer Address 1 [63:0]              |
    		 *    +-----------------------------------------------------+
    		 * 16 |                Buffer Address 2 [63:0]              |
    		 *    +-----------------------------------------------------+
    		 * 24 |                Buffer Address 3 [63:0]              |
    		 *    +-----------------------------------------------------+
    		 */
    		pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
    		/* [Extended] Receive Descriptor (Write-Back) Format
    		 *
    		 *   63       48 47    32 31     13 12    8 7    4 3        0
    		 *   +------------------------------------------------------+
    		 * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
    		 *   | Checksum | Ident  |         | Queue |      |  Type   |
    		 *   +------------------------------------------------------+
    		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
    		 *   +------------------------------------------------------+
    		 *   63       48 47    32 31            20 19               0
    		 */
    		pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
    		for (i = 0; i < rx_ring->count; i++) {
    			const char *next_desc;
    			buffer_info = &rx_ring->buffer_info[i];
    			rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
    			u1 = (struct my_u1 *)rx_desc_ps;
    			staterr =
    			    le32_to_cpu(rx_desc_ps->wb.middle.status_error);
    
    			if (i == rx_ring->next_to_use)
    				next_desc = " NTU";
    			else if (i == rx_ring->next_to_clean)
    				next_desc = " NTC";
    			else
    				next_desc = "";
    
    			if (staterr & E1000_RXD_STAT_DD) {
    				/* Descriptor Done */
    				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
    					"RWB", i,
    					(unsigned long long)le64_to_cpu(u1->a),
    					(unsigned long long)le64_to_cpu(u1->b),
    					(unsigned long long)le64_to_cpu(u1->c),
    					(unsigned long long)le64_to_cpu(u1->d),
    					buffer_info->skb, next_desc);
    			} else {
    				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
    					"R  ", i,
    					(unsigned long long)le64_to_cpu(u1->a),
    					(unsigned long long)le64_to_cpu(u1->b),
    					(unsigned long long)le64_to_cpu(u1->c),
    					(unsigned long long)le64_to_cpu(u1->d),
    					(unsigned long long)buffer_info->dma,
    					buffer_info->skb, next_desc);
    
    				if (netif_msg_pktdata(adapter))
    					e1000e_dump_ps_pages(adapter,
    							     buffer_info);
    			}
    		}
    		break;
    	default:
    	case 0:
    		/* Extended Receive Descriptor (Read) Format
    		 *
    		 *   +-----------------------------------------------------+
    		 * 0 |                Buffer Address [63:0]                |
    		 *   +-----------------------------------------------------+
    		 * 8 |                      Reserved                       |
    		 *   +-----------------------------------------------------+
    		 */
    		pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
    		/* Extended Receive Descriptor (Write-Back) Format
    		 *
    		 *   63       48 47    32 31    24 23            4 3        0
    		 *   +------------------------------------------------------+
    		 *   |     RSS Hash      |        |               |         |
    		 * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
    		 *   | Packet   | IP     |        |               |  Type   |
    		 *   | Checksum | Ident  |        |               |         |
    		 *   +------------------------------------------------------+
    		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
    		 *   +------------------------------------------------------+
    		 *   63       48 47    32 31            20 19               0
    		 */
    		pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
    
    		for (i = 0; i < rx_ring->count; i++) {
    			const char *next_desc;
    
    			buffer_info = &rx_ring->buffer_info[i];
    			rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
    			u1 = (struct my_u1 *)rx_desc;
    			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
    
    			if (i == rx_ring->next_to_use)
    				next_desc = " NTU";
    			else if (i == rx_ring->next_to_clean)
    				next_desc = " NTC";
    			else
    				next_desc = "";
    
    			if (staterr & E1000_RXD_STAT_DD) {
    				/* Descriptor Done */
    				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
    					"RWB", i,
    					(unsigned long long)le64_to_cpu(u1->a),
    					(unsigned long long)le64_to_cpu(u1->b),
    					buffer_info->skb, next_desc);
    			} else {
    				pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
    					"R  ", i,
    					(unsigned long long)le64_to_cpu(u1->a),
    					(unsigned long long)le64_to_cpu(u1->b),
    					(unsigned long long)buffer_info->dma,
    					buffer_info->skb, next_desc);
    
    				if (netif_msg_pktdata(adapter) &&
    				    buffer_info->skb)
    					print_hex_dump(KERN_INFO, "",
    						       DUMP_PREFIX_ADDRESS, 16,
    						       1,
    						       buffer_info->skb->data,
    						       adapter->rx_buffer_len,
    						       true);
    			}
    		}
    	}
    }
    
    /**
     * e1000_desc_unused - calculate if we have unused descriptors
     **/
    static int e1000_desc_unused(struct e1000_ring *ring)
    {
    	if (ring->next_to_clean > ring->next_to_use)
    		return ring->next_to_clean - ring->next_to_use - 1;
    
    	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
    }
    
    /**
     * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
     * @adapter: board private structure
     * @hwtstamps: time stamp structure to update
     * @systim: unsigned 64bit system time value.
     *
     * Convert the system time value stored in the RX/TXSTMP registers into a
     * hwtstamp which can be used by the upper level time stamping functions.
     *
     * The 'systim_lock' spinlock is used to protect the consistency of the
     * system time value. This is needed because reading the 64 bit time
     * value involves reading two 32 bit registers. The first read latches the
     * value.
     **/
    static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
    				      struct skb_shared_hwtstamps *hwtstamps,
    				      u64 systim)
    {
    	u64 ns;
    	unsigned long flags;
    
    	spin_lock_irqsave(&adapter->systim_lock, flags);
    	ns = timecounter_cyc2time(&adapter->tc, systim);
    	spin_unlock_irqrestore(&adapter->systim_lock, flags);
    
    	memset(hwtstamps, 0, sizeof(*hwtstamps));
    	hwtstamps->hwtstamp = ns_to_ktime(ns);
    }
    
    /**
     * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
     * @adapter: board private structure
     * @status: descriptor extended error and status field
     * @skb: particular skb to include time stamp
     *
     * If the time stamp is valid, convert it into the timecounter ns value
     * and store that result into the shhwtstamps structure which is passed
     * up the network stack.
     **/
    static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
    			       struct sk_buff *skb)
    {
    	struct e1000_hw *hw = &adapter->hw;
    	u64 rxstmp;
    
    	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
    	    !(status & E1000_RXDEXT_STATERR_TST) ||
    	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
    		return;
    
    	/* The Rx time stamp registers contain the time stamp.  No other
    	 * received packet will be time stamped until the Rx time stamp
    	 * registers are read.  Because only one packet can be time stamped
    	 * at a time, the register values must belong to this packet and
    	 * therefore none of the other additional attributes need to be
    	 * compared.
    	 */
    	rxstmp = (u64)er32(RXSTMPL);
    	rxstmp |= (u64)er32(RXSTMPH) << 32;
    	e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
    
    	adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
    }
    
    /**
     * e1000_receive_skb - helper function to handle Rx indications
     * @adapter: board private structure
     * @staterr: descriptor extended error and status field as written by hardware
     * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
     * @skb: pointer to sk_buff to be indicated to stack
     **/
    static void e1000_receive_skb(struct e1000_adapter *adapter,
    			      struct net_device *netdev, struct sk_buff *skb,
    			      u32 staterr, __le16 vlan)
    {
    	u16 tag = le16_to_cpu(vlan);
    
    	e1000e_rx_hwtstamp(adapter, staterr, skb);
    
    	skb->protocol = eth_type_trans(skb, netdev);
    
    	if (staterr & E1000_RXD_STAT_VP)
    		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
    
    	napi_gro_receive(&adapter->napi, skb);
    }
    
    /**
     * e1000_rx_checksum - Receive Checksum Offload
     * @adapter: board private structure
     * @status_err: receive descriptor status and error fields
     * @csum: receive descriptor csum field
     * @sk_buff: socket buffer with received data
     **/
    static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
    			      struct sk_buff *skb)
    {
    	u16 status = (u16)status_err;
    	u8 errors = (u8)(status_err >> 24);
    
    	skb_checksum_none_assert(skb);
    
    	/* Rx checksum disabled */
    	if (!(adapter->netdev->features & NETIF_F_RXCSUM))
    		return;
    
    	/* Ignore Checksum bit is set */
    	if (status & E1000_RXD_STAT_IXSM)
    		return;
    
    	/* TCP/UDP checksum error bit or IP checksum error bit is set */
    	if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
    		/* let the stack verify checksum errors */
    		adapter->hw_csum_err++;
    		return;
    	}
    
    	/* TCP/UDP Checksum has not been calculated */
    	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
    		return;
    
    	/* It must be a TCP or UDP packet with a valid checksum */
    	skb->ip_summed = CHECKSUM_UNNECESSARY;
    	adapter->hw_csum_good++;
    }
    
    static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
    {
    	struct e1000_adapter *adapter = rx_ring->adapter;
    	struct e1000_hw *hw = &adapter->hw;
    	s32 ret_val = __ew32_prepare(hw);
    
    	writel(i, rx_ring->tail);
    
    	if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) {
    		u32 rctl = er32(RCTL);
    
    		ew32(RCTL, rctl & ~E1000_RCTL_EN);
    		e_err("ME firmware caused invalid RDT - resetting\n");
    		schedule_work(&adapter->reset_task);
    	}
    }
    
    static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
    {
    	struct e1000_adapter *adapter = tx_ring->adapter;
    	struct e1000_hw *hw = &adapter->hw;
    	s32 ret_val = __ew32_prepare(hw);
    
    	writel(i, tx_ring->tail);
    
    	if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) {
    		u32 tctl = er32(TCTL);
    
    		ew32(TCTL, tctl & ~E1000_TCTL_EN);
    		e_err("ME firmware caused invalid TDT - resetting\n");
    		schedule_work(&adapter->reset_task);
    	}
    }
    
    /**
     * e1000_alloc_rx_buffers - Replace used receive buffers
     * @rx_ring: Rx descriptor ring
     **/
    static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
    				   int cleaned_count, gfp_t gfp)
    {
    	struct e1000_adapter *adapter = rx_ring->adapter;
    	struct net_device *netdev = adapter->netdev;
    	struct pci_dev *pdev = adapter->pdev;
    	union e1000_rx_desc_extended *rx_desc;
    	struct e1000_buffer *buffer_info;
    	struct sk_buff *skb;
    	unsigned int i;
    	unsigned int bufsz = adapter->rx_buffer_len;
    
    	i = rx_ring->next_to_use;
    	buffer_info = &rx_ring->buffer_info[i];
    
    	while (cleaned_count--) {
    		skb = buffer_info->skb;
    		if (skb) {
    			skb_trim(skb, 0);
    			goto map_skb;
    		}
    
    		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
    		if (!skb) {
    			/* Better luck next round */
    			adapter->alloc_rx_buff_failed++;
    			break;
    		}
    
    		buffer_info->skb = skb;
    map_skb:
    		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
    						  adapter->rx_buffer_len,
    						  DMA_FROM_DEVICE);
    		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
    			dev_err(&pdev->dev, "Rx DMA map failed\n");
    			adapter->rx_dma_failed++;
    			break;
    		}
    
    		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
    		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
    
    		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
    			/* Force memory writes to complete before letting h/w
    			 * know there are new descriptors to fetch.  (Only
    			 * applicable for weak-ordered memory model archs,
    			 * such as IA-64).
    			 */
    			wmb();
    			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
    				e1000e_update_rdt_wa(rx_ring, i);
    			else
    				writel(i, rx_ring->tail);
    		}
    		i++;
    		if (i == rx_ring->count)
    			i = 0;
    		buffer_info = &rx_ring->buffer_info[i];
    	}
    
    	rx_ring->next_to_use = i;
    }
    
    /**
     * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
     * @rx_ring: Rx descriptor ring
     **/
    static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
    				      int cleaned_count, gfp_t gfp)
    {
    	struct e1000_adapter *adapter = rx_ring->adapter;
    	struct net_device *netdev = adapter->netdev;
    	struct pci_dev *pdev = adapter->pdev;
    	union e1000_rx_desc_packet_split *rx_desc;
    	struct e1000_buffer *buffer_info;
    	struct e1000_ps_page *ps_page;
    	struct sk_buff *skb;
    	unsigned int i, j;
    
    	i = rx_ring->next_to_use;
    	buffer_info = &rx_ring->buffer_info[i];
    
    	while (cleaned_count--) {
    		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
    
    		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
    			ps_page = &buffer_info->ps_pages[j];
    			if (j >= adapter->rx_ps_pages) {
    				/* all unused desc entries get hw null ptr */
    				rx_desc->read.buffer_addr[j + 1] =
    				    ~cpu_to_le64(0);
    				continue;
    			}
    			if (!ps_page->page) {
    				ps_page->page = alloc_page(gfp);
    				if (!ps_page->page) {
    					adapter->alloc_rx_buff_failed++;
    					goto no_buffers;
    				}
    				ps_page->dma = dma_map_page(&pdev->dev,
    							    ps_page->page,
    							    0, PAGE_SIZE,
    							    DMA_FROM_DEVICE);
    				if (dma_mapping_error(&pdev->dev,
    						      ps_page->dma)) {
    					dev_err(&adapter->pdev->dev,
    						"Rx DMA page map failed\n");
    					adapter->rx_dma_failed++;
    					goto no_buffers;
    				}
    			}
    			/* Refresh the desc even if buffer_addrs
    			 * didn't change because each write-back
    			 * erases this info.
    			 */
    			rx_desc->read.buffer_addr[j + 1] =
    			    cpu_to_le64(ps_page->dma);
    		}
    
    		skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
    						  gfp);
    
    		if (!skb) {
    			adapter->alloc_rx_buff_failed++;
    			break;
    		}
    
    		buffer_info->skb = skb;
    		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
    						  adapter->rx_ps_bsize0,
    						  DMA_FROM_DEVICE);
    		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
    			dev_err(&pdev->dev, "Rx DMA map failed\n");
    			adapter->rx_dma_failed++;
    			/* cleanup skb */
    			dev_kfree_skb_any(skb);
    			buffer_info->skb = NULL;
    			break;
    		}
    
    		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
    
    		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
    			/* Force memory writes to complete before letting h/w
    			 * know there are new descriptors to fetch.  (Only
    			 * applicable for weak-ordered memory model archs,
    			 * such as IA-64).
    			 */
    			wmb();
    			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
    				e1000e_update_rdt_wa(rx_ring, i << 1);
    			else
    				writel(i << 1, rx_ring->tail);
    		}
    
    		i++;
    		if (i == rx_ring->count)
    			i = 0;
    		buffer_info = &rx_ring->buffer_info[i];
    	}
    
    no_buffers:
    	rx_ring->next_to_use = i;
    }
    
    /**
     * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
     * @rx_ring: Rx descriptor ring
     * @cleaned_count: number of buffers to allocate this pass
     **/
    
    static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
    					 int cleaned_count, gfp_t gfp)
    {
    	struct e1000_adapter *adapter = rx_ring->adapter;
    	struct net_device *netdev = adapter->netdev;
    	struct pci_dev *pdev = adapter->pdev;
    	union e1000_rx_desc_extended *rx_desc;
    	struct e1000_buffer *buffer_info;
    	struct sk_buff *skb;
    	unsigned int i;
    	unsigned int bufsz = 256 - 16;	/* for skb_reserve */
    
    	i = rx_ring->next_to_use;
    	buffer_info = &rx_ring->buffer_info[i];
    
    	while (cleaned_count--) {
    		skb = buffer_info->skb;
    		if (skb) {
    			skb_trim(skb, 0);
    			goto check_page;
    		}
    
    		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
    		if (unlikely(!skb)) {
    			/* Better luck next round */
    			adapter->alloc_rx_buff_failed++;
    			break;
    		}
    
    		buffer_info->skb = skb;
    check_page:
    		/* allocate a new page if necessary */
    		if (!buffer_info->page) {
    			buffer_info->page = alloc_page(gfp);
    			if (unlikely(!buffer_info->page)) {
    				adapter->alloc_rx_buff_failed++;
    				break;
    			}
    		}
    
    		if (!buffer_info->dma) {
    			buffer_info->dma = dma_map_page(&pdev->dev,
    							buffer_info->page, 0,
    							PAGE_SIZE,
    							DMA_FROM_DEVICE);
    			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
    				adapter->alloc_rx_buff_failed++;
    				break;
    			}
    		}
    
    		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
    		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
    
    		if (unlikely(++i == rx_ring->count))
    			i = 0;
    		buffer_info = &rx_ring->buffer_info[i];
    	}
    
    	if (likely(rx_ring->next_to_use != i)) {
    		rx_ring->next_to_use = i;
    		if (unlikely(i-- == 0))
    			i = (rx_ring->count - 1);
    
    		/* Force memory writes to complete before letting h/w
    		 * know there are new descriptors to fetch.  (Only
    		 * applicable for weak-ordered memory model archs,
    		 * such as IA-64).
    		 */
    		wmb();
    		if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
    			e1000e_update_rdt_wa(rx_ring, i);
    		else
    			writel(i, rx_ring->tail);
    	}
    }
    
    static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
    				 struct sk_buff *skb)
    {
    	if (netdev->features & NETIF_F_RXHASH)
    		skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
    }
    
    /**
     * e1000_clean_rx_irq - Send received data up the network stack
     * @rx_ring: Rx descriptor ring
     *
     * the return value indicates whether actual cleaning was done, there
     * is no guarantee that everything was cleaned
     **/
    static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
    			       int work_to_do)
    {
    	struct e1000_adapter *adapter = rx_ring->adapter;
    	struct net_device *netdev = adapter->netdev;
    	struct pci_dev *pdev = adapter->pdev;
    	struct e1000_hw *hw = &adapter->hw;
    	union e1000_rx_desc_extended *rx_desc, *next_rxd;
    	struct e1000_buffer *buffer_info, *next_buffer;
    	u32 length, staterr;
    	unsigned int i;
    	int cleaned_count = 0;
    	bool cleaned = false;
    	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
    
    	i = rx_ring->next_to_clean;
    	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
    	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
    	buffer_info = &rx_ring->buffer_info[i];
    
    	while (staterr & E1000_RXD_STAT_DD) {
    		struct sk_buff *skb;
    
    		if (*work_done >= work_to_do)
    			break;
    		(*work_done)++;
    		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
    
    		skb = buffer_info->skb;
    		buffer_info->skb = NULL;
    
    		prefetch(skb->data - NET_IP_ALIGN);
    
    		i++;
    		if (i == rx_ring->count)
    			i = 0;
    		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
    		prefetch(next_rxd);
    
    		next_buffer = &rx_ring->buffer_info[i];
    
    		cleaned = true;
    		cleaned_count++;
    		dma_unmap_single(&pdev->dev, buffer_info->dma,
    				 adapter->rx_buffer_len, DMA_FROM_DEVICE);
    		buffer_info->dma = 0;
    
    		length = le16_to_cpu(rx_desc->wb.upper.length);
    
    		/* !EOP means multiple descriptors were used to store a single
    		 * packet, if that's the case we need to toss it.  In fact, we
    		 * need to toss every packet with the EOP bit clear and the
    		 * next frame that _does_ have the EOP bit set, as it is by
    		 * definition only a frame fragment
    		 */
    		if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
    			adapter->flags2 |= FLAG2_IS_DISCARDING;
    
    		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
    			/* All receives must fit into a single buffer */
    			e_dbg("Receive packet consumed multiple buffers\n");
    			/* recycle */
    			buffer_info->skb = skb;
    			if (staterr & E1000_RXD_STAT_EOP)
    				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
    			goto next_desc;
    		}
    
    		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
    			     !(netdev->features & NETIF_F_RXALL))) {
    			/* recycle */
    			buffer_info->skb = skb;
    			goto next_desc;
    		}
    
    		/* adjust length to remove Ethernet CRC */
    		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
    			/* If configured to store CRC, don't subtract FCS,
    			 * but keep the FCS bytes out of the total_rx_bytes
    			 * counter
    			 */
    			if (netdev->features & NETIF_F_RXFCS)
    				total_rx_bytes -= 4;
    			else
    				length -= 4;
    		}
    
    		total_rx_bytes += length;
    		total_rx_packets++;
    
    		/* code added for copybreak, this should improve
    		 * performance for small packets with large amounts
    		 * of reassembly being done in the stack
    		 */
    		if (length < copybreak) {
    			struct sk_buff *new_skb =
    				napi_alloc_skb(&adapter->napi, length);
    			if (new_skb) {
    				skb_copy_to_linear_data_offset(new_skb,
    							       -NET_IP_ALIGN,
    							       (skb->data -
    								NET_IP_ALIGN),
    							       (length +
    								NET_IP_ALIGN));
    				/* save the skb in buffer_info as good */
    				buffer_info->skb = skb;
    				skb = new_skb;
    			}
    			/* else just continue with the old one */
    		}
    		/* end copybreak code */
    		skb_put(skb, length);
    
    		/* Receive Checksum Offload */
    		e1000_rx_checksum(adapter, staterr, skb);
    
    		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
    
    		e1000_receive_skb(adapter, netdev, skb, staterr,
    				  rx_desc->wb.upper.vlan);
    
    next_desc:
    		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
    
    		/* return some buffers to hardware, one at a time is too slow */
    		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
    			adapter->alloc_rx_buf(rx_ring, cleaned_count,
    					      GFP_ATOMIC);
    			cleaned_count = 0;
    		}
    
    		/* use prefetched values */
    		rx_desc = next_rxd;
    		buffer_info = next_buffer;
    
    		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
    	}
    	rx_ring->next_to_clean = i;
    
    	cleaned_count = e1000_desc_unused(rx_ring);
    	if (cleaned_count)
    		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
    
    	adapter->total_rx_bytes += total_rx_bytes;
    	adapter->total_rx_packets += total_rx_packets;
    	return cleaned;
    }
    
    static void e1000_put_txbuf(struct e1000_ring *tx_ring,
    			    struct e1000_buffer *buffer_info)
    {
    	struct e1000_adapter *adapter = tx_ring->adapter;
    
    	if (buffer_info->dma) {
    		if (buffer_info->mapped_as_page)
    			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
    				       buffer_info->length, DMA_TO_DEVICE);
    		else
    			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
    					 buffer_info->length, DMA_TO_DEVICE);
    		buffer_info->dma = 0;
    	}
    	if (buffer_info->skb) {
    		dev_kfree_skb_any(buffer_info->skb);
    		buffer_info->skb = NULL;
    	}
    	buffer_info->time_stamp = 0;
    }
    
    static void e1000_print_hw_hang(struct work_struct *work)
    {
    	struct e1000_adapter *adapter = container_of(work,
    						     struct e1000_adapter,
    						     print_hang_task);
    	struct net_device *netdev = adapter->netdev;
    	struct e1000_ring *tx_ring = adapter->tx_ring;
    	unsigned int i = tx_ring->next_to_clean;
    	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
    	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
    	struct e1000_hw *hw = &adapter->hw;
    	u16 phy_status, phy_1000t_status, phy_ext_status;
    	u16 pci_status;
    
    	if (test_bit(__E1000_DOWN, &adapter->state))
    		return;
    
    	if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
    		/* May be block on write-back, flush and detect again
    		 * flush pending descriptor writebacks to memory
    		 */
    		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
    		/* execute the writes immediately */
    		e1e_flush();
    		/* Due to rare timing issues, write to TIDV again to ensure
    		 * the write is successful
    		 */
    		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
    		/* execute the writes immediately */
    		e1e_flush();
    		adapter->tx_hang_recheck = true;
    		return;
    	}
    	adapter->tx_hang_recheck = false;
    
    	if (er32(TDH(0)) == er32(TDT(0))) {
    		e_dbg("false hang detected, ignoring\n");
    		return;
    	}
    
    	/* Real hang detected */
    	netif_stop_queue(netdev);
    
    	e1e_rphy(hw, MII_BMSR, &phy_status);
    	e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
    	e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
    
    	pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
    
    	/* detected Hardware unit hang */
    	e_err("Detected Hardware Unit Hang:\n"
    	      "  TDH                  <%x>\n"
    	      "  TDT                  <%x>\n"
    	      "  next_to_use          <%x>\n"
    	      "  next_to_clean        <%x>\n"
    	      "buffer_info[next_to_clean]:\n"
    	      "  time_stamp           <%lx>\n"
    	      "  next_to_watch        <%x>\n"
    	      "  jiffies              <%lx>\n"
    	      "  next_to_watch.status <%x>\n"
    	      "MAC Status             <%x>\n"
    	      "PHY Status             <%x>\n"
    	      "PHY 1000BASE-T Status  <%x>\n"
    	      "PHY Extended Status    <%x>\n"
    	      "PCI Status             <%x>\n",
    	      readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
    	      tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
    	      eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
    	      phy_status, phy_1000t_status, phy_ext_status, pci_status);
    
    	e1000e_dump(adapter);
    
    	/* Suggest workaround for known h/w issue */
    	if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
    		e_err("Try turning off Tx pause (flow control) via ethtool\n");
    }
    
    /**
     * e1000e_tx_hwtstamp_work - check for Tx time stamp
     * @work: pointer to work struct
     *
     * This work function polls the TSYNCTXCTL valid bit to determine when a
     * timestamp has been taken for the current stored skb.  The timestamp must
     * be for this skb because only one such packet is allowed in the queue.
     */
    static void e1000e_tx_hwtstamp_work(struct work_struct *work)
    {
    	struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
    						     tx_hwtstamp_work);
    	struct e1000_hw *hw = &adapter->hw;
    
    	if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
    		struct sk_buff *skb = adapter->tx_hwtstamp_skb;
    		struct skb_shared_hwtstamps shhwtstamps;
    		u64 txstmp;
    
    		txstmp = er32(TXSTMPL);
    		txstmp |= (u64)er32(TXSTMPH) << 32;
    
    		e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
    
    		/* Clear the global tx_hwtstamp_skb pointer and force writes
    		 * prior to notifying the stack of a Tx timestamp.
    		 */
    		adapter->tx_hwtstamp_skb = NULL;
    		wmb(); /* force write prior to skb_tstamp_tx */
    
    		skb_tstamp_tx(skb, &shhwtstamps);
    		dev_kfree_skb_any(skb);
    	} else if (time_after(jiffies, adapter->tx_hwtstamp_start
    			      + adapter->tx_timeout_factor * HZ)) {
    		dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
    		adapter->tx_hwtstamp_skb = NULL;
    		adapter->tx_hwtstamp_timeouts++;
    		e_warn("clearing Tx timestamp hang\n");
    	} else {
    		/* reschedule to check later */
    		schedule_work(&adapter->tx_hwtstamp_work);
    	}
    }
    
    /**
     * e1000_clean_tx_irq - Reclaim resources after transmit completes
     * @tx_ring: Tx descriptor ring
     *
     * the return value indicates whether actual cleaning was done, there
     * is no guarantee that everything was cleaned
     **/
    static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
    {
    	struct e1000_adapter *adapter = tx_ring->adapter;
    	struct net_device *netdev = adapter->netdev;
    	struct e1000_hw *hw = &adapter->hw;
    	struct e1000_tx_desc *tx_desc, *eop_desc;
    	struct e1000_buffer *buffer_info;
    	unsigned int i, eop;
    	unsigned int count = 0;
    	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
    	unsigned int bytes_compl = 0, pkts_compl = 0;
    
    	i = tx_ring->next_to_clean;
    	eop = tx_ring->buffer_info[i].next_to_watch;
    	eop_desc = E1000_TX_DESC(*tx_ring, eop);
    
    	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
    	       (count < tx_ring->count)) {
    		bool cleaned = false;
    
    		dma_rmb();		/* read buffer_info after eop_desc */
    		for (; !cleaned; count++) {
    			tx_desc = E1000_TX_DESC(*tx_ring, i);
    			buffer_info = &tx_ring->buffer_info[i];
    			cleaned = (i == eop);
    
    			if (cleaned) {
    				total_tx_packets += buffer_info->segs;
    				total_tx_bytes += buffer_info->bytecount;
    				if (buffer_info->skb) {
    					bytes_compl += buffer_info->skb->len;
    					pkts_compl++;
    				}
    			}
    
    			e1000_put_txbuf(tx_ring, buffer_info);
    			tx_desc->upper.data = 0;
    
    			i++;
    			if (i == tx_ring->count)
    				i = 0;
    		}
    
    		if (i == tx_ring->next_to_use)
    			break;
    		eop = tx_ring->buffer_info[i].next_to_watch;
    		eop_desc = E1000_TX_DESC(*tx_ring, eop);
    	}
    
    	tx_ring->next_to_clean = i;
    
    	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
    
    #define TX_WAKE_THRESHOLD 32
    	if (count && netif_carrier_ok(netdev) &&
    	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
    		/* Make sure that anybody stopping the queue after this
    		 * sees the new next_to_clean.
    		 */
    		smp_mb();
    
    		if (netif_queue_stopped(netdev) &&
    		    !(test_bit(__E1000_DOWN, &adapter->state))) {
    			netif_wake_queue(netdev);
    			++adapter->restart_queue;
    		}
    	}
    
    	if (adapter->detect_tx_hung) {
    		/* Detect a transmit hang in hardware, this serializes the
    		 * check with the clearing of time_stamp and movement of i
    		 */
    		adapter->detect_tx_hung = false;
    		if (tx_ring->buffer_info[i].time_stamp &&
    		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
    			       + (adapter->tx_timeout_factor * HZ)) &&
    		    !(er32(STATUS) & E1000_STATUS_TXOFF))
    			schedule_work(&adapter->print_hang_task);
    		else
    			adapter->tx_hang_recheck = false;
    	}
    	adapter->total_tx_bytes += total_tx_bytes;
    	adapter->total_tx_packets += total_tx_packets;
    	return count < tx_ring->count;
    }
    
    /**
     * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
     * @rx_ring: Rx descriptor ring
     *
     * the return value indicates whether actual cleaning was done, there
     * is no guarantee that everything was cleaned
     **/
    static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
    				  int work_to_do)
    {
    	struct e1000_adapter *adapter = rx_ring->adapter;
    	struct e1000_hw *hw = &adapter->hw;
    	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
    	struct net_device *netdev = adapter->netdev;
    	struct pci_dev *pdev = adapter->pdev;
    	struct e1000_buffer *buffer_info, *next_buffer;
    	struct e1000_ps_page *ps_page;
    	struct sk_buff *skb;
    	unsigned int i, j;
    	u32 length, staterr;
    	int cleaned_count = 0;
    	bool cleaned = false;
    	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
    
    	i = rx_ring->next_to_clean;
    	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
    	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
    	buffer_info = &rx_ring->buffer_info[i];
    
    	while (staterr & E1000_RXD_STAT_DD) {
    		if (*work_done >= work_to_do)
    			break;
    		(*work_done)++;
    		skb = buffer_info->skb;
    		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
    
    		/* in the packet split case this is header only */
    		prefetch(skb->data - NET_IP_ALIGN);
    
    		i++;
    		if (i == rx_ring->count)
    			i = 0;
    		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
    		prefetch(next_rxd);
    
    		next_buffer = &rx_ring->buffer_info[i];
    
    		cleaned = true;
    		cleaned_count++;
    		dma_unmap_single(&pdev->dev, buffer_info->dma,
    				 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
    		buffer_info->dma = 0;
    
    		/* see !EOP comment in other Rx routine */
    		if (!(staterr & E1000_RXD_STAT_EOP))
    			adapter->flags2 |= FLAG2_IS_DISCARDING;
    
    		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
    			e_dbg("Packet Split buffers didn't pick up the full packet\n");
    			dev_kfree_skb_irq(skb);
    			if (staterr & E1000_RXD_STAT_EOP)
    				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
    			goto next_desc;
    		}
    
    		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
    			     !(netdev->features & NETIF_F_RXALL))) {
    			dev_kfree_skb_irq(skb);
    			goto next_desc;
    		}
    
    		length = le16_to_cpu(rx_desc->wb.middle.length0);
    
    		if (!length) {
    			e_dbg("Last part of the packet spanning multiple descriptors\n");
    			dev_kfree_skb_irq(skb);
    			goto next_desc;
    		}
    
    		/* Good Receive */
    		skb_put(skb, length);
    
    		{
    			/* this looks ugly, but it seems compiler issues make
    			 * it more efficient than reusing j
    			 */
    			int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
    
    			/* page alloc/put takes too long and effects small
    			 * packet throughput, so unsplit small packets and
    			 * save the alloc/put only valid in softirq (napi)
    			 * context to call kmap_*
    			 */
    			if (l1 && (l1 <= copybreak) &&
    			    ((length + l1) <= adapter->rx_ps_bsize0)) {
    				u8 *vaddr;
    
    				ps_page = &buffer_info->ps_pages[0];
    
    				/* there is no documentation about how to call
    				 * kmap_atomic, so we can't hold the mapping
    				 * very long
    				 */
    				dma_sync_single_for_cpu(&pdev->dev,
    							ps_page->dma,
    							PAGE_SIZE,
    							DMA_FROM_DEVICE);
    				vaddr = kmap_atomic(ps_page->page);
    				memcpy(skb_tail_pointer(skb), vaddr, l1);
    				kunmap_atomic(vaddr);
    				dma_sync_single_for_device(&pdev->dev,
    							   ps_page->dma,
    							   PAGE_SIZE,
    							   DMA_FROM_DEVICE);
    
    				/* remove the CRC */
    				if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
    					if (!(netdev->features & NETIF_F_RXFCS))
    						l1 -= 4;
    				}
    
    				skb_put(skb, l1);
    				goto copydone;
    			}	/* if */
    		}
    
    		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
    			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
    			if (!length)
    				break;
    
    			ps_page = &buffer_info->ps_pages[j];
    			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
    				       DMA_FROM_DEVICE);
    			ps_page->dma = 0;
    			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
    			ps_page->page = NULL;
    			skb->len += length;
    			skb->data_len += length;
    			skb->truesize += PAGE_SIZE;
    		}
    
    		/* strip the ethernet crc, problem is we're using pages now so
    		 * this whole operation can get a little cpu intensive
    		 */
    		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
    			if (!(netdev->features & NETIF_F_RXFCS))
    				pskb_trim(skb, skb->len - 4);
    		}
    
    copydone:
    		total_rx_bytes += skb->len;
    		total_rx_packets++;
    
    		e1000_rx_checksum(adapter, staterr, skb);
    
    		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
    
    		if (rx_desc->wb.upper.header_status &
    		    cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
    			adapter->rx_hdr_split++;
    
    		e1000_receive_skb(adapter, netdev, skb, staterr,
    				  rx_desc->wb.middle.vlan);
    
    next_desc:
    		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
    		buffer_info->skb = NULL;
    
    		/* return some buffers to hardware, one at a time is too slow */
    		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
    			adapter->alloc_rx_buf(rx_ring, cleaned_count,
    					      GFP_ATOMIC);
    			cleaned_count = 0;
    		}
    
    		/* use prefetched values */
    		rx_desc = next_rxd;
    		buffer_info = next_buffer;
    
    		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
    	}
    	rx_ring->next_to_clean = i;
    
    	cleaned_count = e1000_desc_unused(rx_ring);
    	if (cleaned_count)
    		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
    
    	adapter->total_rx_bytes += total_rx_bytes;
    	adapter->total_rx_packets += total_rx_packets;
    	return cleaned;
    }
    
    /**
     * e1000_consume_page - helper function
     **/
    static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
    			       u16 length)
    {
    	bi->page = NULL;
    	skb->len += length;
    	skb->data_len += length;
    	skb->truesize += PAGE_SIZE;
    }
    
    /**
     * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
     * @adapter: board private structure
     *
     * the return value indicates whether actual cleaning was done, there
     * is no guarantee that everything was cleaned
     **/
    static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
    				     int work_to_do)
    {
    	struct e1000_adapter *adapter = rx_ring->adapter;
    	struct net_device *netdev = adapter->netdev;
    	struct pci_dev *pdev = adapter->pdev;
    	union e1000_rx_desc_extended *rx_desc, *next_rxd;
    	struct e1000_buffer *buffer_info, *next_buffer;
    	u32 length, staterr;
    	unsigned int i;
    	int cleaned_count = 0;
    	bool cleaned = false;
    	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
    	struct skb_shared_info *shinfo;
    
    	i = rx_ring->next_to_clean;
    	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
    	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
    	buffer_info = &rx_ring->buffer_info[i];
    
    	while (staterr & E1000_RXD_STAT_DD) {
    		struct sk_buff *skb;
    
    		if (*work_done >= work_to_do)
    			break;
    		(*work_done)++;
    		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
    
    		skb = buffer_info->skb;
    		buffer_info->skb = NULL;
    
    		++i;
    		if (i == rx_ring->count)
    			i = 0;
    		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
    		prefetch(next_rxd);
    
    		next_buffer = &rx_ring->buffer_info[i];
    
    		cleaned = true;
    		cleaned_count++;
    		dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
    			       DMA_FROM_DEVICE);
    		buffer_info->dma = 0;
    
    		length = le16_to_cpu(rx_desc->wb.upper.length);
    
    		/* errors is only valid for DD + EOP descriptors */
    		if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
    			     ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
    			      !(netdev->features & NETIF_F_RXALL)))) {
    			/* recycle both page and skb */
    			buffer_info->skb = skb;
    			/* an error means any chain goes out the window too */
    			if (rx_ring->rx_skb_top)
    				dev_kfree_skb_irq(rx_ring->rx_skb_top);
    			rx_ring->rx_skb_top = NULL;
    			goto next_desc;
    		}
    #define rxtop (rx_ring->rx_skb_top)
    		if (!(staterr & E1000_RXD_STAT_EOP)) {
    			/* this descriptor is only the beginning (or middle) */
    			if (!rxtop) {
    				/* this is the beginning of a chain */
    				rxtop = skb;
    				skb_fill_page_desc(rxtop, 0, buffer_info->page,
    						   0, length);
    			} else {
    				/* this is the middle of a chain */
    				shinfo = skb_shinfo(rxtop);
    				skb_fill_page_desc(rxtop, shinfo->nr_frags,
    						   buffer_info->page, 0,
    						   length);
    				/* re-use the skb, only consumed the page */
    				buffer_info->skb = skb;
    			}
    			e1000_consume_page(buffer_info, rxtop, length);
    			goto next_desc;
    		} else {
    			if (rxtop) {
    				/* end of the chain */
    				shinfo = skb_shinfo(rxtop);
    				skb_fill_page_desc(rxtop, shinfo->nr_frags,
    						   buffer_info->page, 0,
    						   length);
    				/* re-use the current skb, we only consumed the
    				 * page
    				 */
    				buffer_info->skb = skb;
    				skb = rxtop;
    				rxtop = NULL;
    				e1000_consume_page(buffer_info, skb, length);
    			} else {
    				/* no chain, got EOP, this buf is the packet
    				 * copybreak to save the put_page/alloc_page
    				 */
    				if (length <= copybreak &&
    				    skb_tailroom(skb) >= length) {
    					u8 *vaddr;
    					vaddr = kmap_atomic(buffer_info->page);
    					memcpy(skb_tail_pointer(skb), vaddr,
    					       length);
    					kunmap_atomic(vaddr);
    					/* re-use the page, so don't erase
    					 * buffer_info->page
    					 */
    					skb_put(skb, length);
    				} else {
    					skb_fill_page_desc(skb, 0,
    							   buffer_info->page, 0,
    							   length);
    					e1000_consume_page(buffer_info, skb,
    							   length);
    				}
    			}
    		}
    
    		/* Receive Checksum Offload */
    		e1000_rx_checksum(adapter, staterr, skb);
    
    		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
    
    		/* probably a little skewed due to removing CRC */
    		total_rx_bytes += skb->len;
    		total_rx_packets++;
    
    		/* eth type trans needs skb->data to point to something */
    		if (!pskb_may_pull(skb, ETH_HLEN)) {
    			e_err("pskb_may_pull failed.\n");
    			dev_kfree_skb_irq(skb);
    			goto next_desc;
    		}
    
    		e1000_receive_skb(adapter, netdev, skb, staterr,
    				  rx_desc->wb.upper.vlan);
    
    next_desc:
    		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
    
    		/* return some buffers to hardware, one at a time is too slow */
    		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
    			adapter->alloc_rx_buf(rx_ring, cleaned_count,
    					      GFP_ATOMIC);
    			cleaned_count = 0;
    		}
    
    		/* use prefetched values */
    		rx_desc = next_rxd;
    		buffer_info = next_buffer;
    
    		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
    	}
    	rx_ring->next_to_clean = i;
    
    	cleaned_count = e1000_desc_unused(rx_ring);
    	if (cleaned_count)
    		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
    
    	adapter->total_rx_bytes += total_rx_bytes;
    	adapter->total_rx_packets += total_rx_packets;
    	return cleaned;
    }
    
    /**
     * e1000_clean_rx_ring - Free Rx Buffers per Queue
     * @rx_ring: Rx descriptor ring
     **/
    static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
    {
    	struct e1000_adapter *adapter = rx_ring->adapter;
    	struct e1000_buffer *buffer_info;
    	struct e1000_ps_page *ps_page;
    	struct pci_dev *pdev = adapter->pdev;
    	unsigned int i, j;
    
    	/* Free all the Rx ring sk_buffs */
    	for (i = 0; i < rx_ring->count; i++) {
    		buffer_info = &rx_ring->buffer_info[i];
    		if (buffer_info->dma) {
    			if (adapter->clean_rx == e1000_clean_rx_irq)
    				dma_unmap_single(&pdev->dev, buffer_info->dma,
    						 adapter->rx_buffer_len,
    						 DMA_FROM_DEVICE);
    			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
    				dma_unmap_page(&pdev->dev, buffer_info->dma,
    					       PAGE_SIZE, DMA_FROM_DEVICE);
    			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
    				dma_unmap_single(&pdev->dev, buffer_info->dma,
    						 adapter->rx_ps_bsize0,
    						 DMA_FROM_DEVICE);
    			buffer_info->dma = 0;
    		}
    
    		if (buffer_info->page) {
    			put_page(buffer_info->page);
    			buffer_info->page = NULL;
    		}
    
    		if (buffer_info->skb) {
    			dev_kfree_skb(buffer_info->skb);
    			buffer_info->skb = NULL;
    		}
    
    		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
    			ps_page = &buffer_info->ps_pages[j];
    			if (!ps_page->page)
    				break;
    			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
    				       DMA_FROM_DEVICE);
    			ps_page->dma = 0;
    			put_page(ps_page->page);
    			ps_page->page = NULL;
    		}
    	}
    
    	/* there also may be some cached data from a chained receive */
    	if (rx_ring->rx_skb_top) {
    		dev_kfree_skb(rx_ring->rx_skb_top);
    		rx_ring->rx_skb_top = NULL;
    	}
    
    	/* Zero out the descriptor ring */
    	memset(rx_ring->desc, 0, rx_ring->size);
    
    	rx_ring->next_to_clean = 0;
    	rx_ring->next_to_use = 0;
    	adapter->flags2 &= ~FLAG2_IS_DISCARDING;
    }
    
    static void e1000e_downshift_workaround(struct work_struct *work)
    {
    	struct e1000_adapter *adapter = container_of(work,
    						     struct e1000_adapter,
    						     downshift_task);
    
    	if (test_bit(__E1000_DOWN, &adapter->state))
    		return;
    
    	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
    }
    
    /**
     * e1000_intr_msi - Interrupt Handler
     * @irq: interrupt number
     * @data: pointer to a network interface device structure
     **/
    static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
    {
    	struct net_device *netdev = data;
    	struct e1000_adapter *adapter = netdev_priv(netdev);
    	struct e1000_hw *hw = &adapter->hw;
    	u32 icr = er32(ICR);
    
    	/* read ICR disables interrupts using IAM */
    	if (icr & E1000_ICR_LSC) {
    		hw->mac.get_link_status = true;
    		/* ICH8 workaround-- Call gig speed drop workaround on cable
    		 * disconnect (LSC) before accessing any PHY registers
    		 */
    		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
    		    (!(er32(STATUS) & E1000_STATUS_LU)))
    			schedule_work(&adapter->downshift_task);
    
    		/* 80003ES2LAN workaround-- For packet buffer work-around on
    		 * link down event; disable receives here in the ISR and reset
    		 * adapter in watchdog
    		 */
    		if (netif_carrier_ok(netdev) &&
    		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
    			/* disable receives */
    			u32 rctl = er32(RCTL);
    
    			ew32(RCTL, rctl & ~E1000_RCTL_EN);
    			adapter->flags |= FLAG_RESTART_NOW;
    		}
    		/* guard against interrupt when we're going down */
    		if (!test_bit(__E1000_DOWN, &adapter->state))
    			mod_timer(&adapter->watchdog_timer, jiffies + 1);
    	}
    
    	/* Reset on uncorrectable ECC error */
    	if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
    		u32 pbeccsts = er32(PBECCSTS);
    
    		adapter->corr_errors +=
    		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
    		adapter->uncorr_errors +=
    		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
    		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
    
    		/* Do the reset outside of interrupt context */
    		schedule_work(&adapter->reset_task);
    
    		/* return immediately since reset is imminent */
    		return IRQ_HANDLED;
    	}
    
    	if (napi_schedule_prep(&adapter->napi)) {
    		adapter->total_tx_bytes = 0;
    		adapter->total_tx_packets = 0;
    		adapter->total_rx_bytes = 0;
    		adapter->total_rx_packets = 0;
    		__napi_schedule(&adapter->napi);
    	}
    
    	return IRQ_HANDLED;
    }
    
    /**
     * e1000_intr - Interrupt Handler
     * @irq: interrupt number
     * @data: pointer to a network interface device structure
     **/
    static irqreturn_t e1000_intr(int __always_unused irq, void *data)
    {
    	struct net_device *netdev = data;
    	struct e1000_adapter *adapter = netdev_priv(netdev);
    	struct e1000_hw *hw = &adapter->hw;
    	u32 rctl, icr = er32(ICR);
    
    	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
    		return IRQ_NONE;	/* Not our interrupt */
    
    	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
    	 * not set, then the adapter didn't send an interrupt
    	 */
    	if (!(icr & E1000_ICR_INT_ASSERTED))
    		return IRQ_NONE;
    
    	/* Interrupt Auto-Mask...upon reading ICR,
    	 * interrupts are masked.  No need for the
    	 * IMC write
    	 */
    
    	if (icr & E1000_ICR_LSC) {
    		hw->mac.get_link_status = true;
    		/* ICH8 workaround-- Call gig speed drop workaround on cable
    		 * disconnect (LSC) before accessing any PHY registers
    		 */
    		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
    		    (!(er32(STATUS) & E1000_STATUS_LU)))
    			schedule_work(&adapter->downshift_task);
    
    		/* 80003ES2LAN workaround--
    		 * For packet buffer work-around on link down event;
    		 * disable receives here in the ISR and
    		 * reset adapter in watchdog
    		 */
    		if (netif_carrier_ok(netdev) &&
    		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
    			/* disable receives */
    			rctl = er32(RCTL);
    			ew32(RCTL, rctl & ~E1000_RCTL_EN);
    			adapter->flags |= FLAG_RESTART_NOW;
    		}
    		/* guard against interrupt when we're going down */
    		if (!test_bit(__E1000_DOWN, &adapter->state))
    			mod_timer(&adapter->watchdog_timer, jiffies + 1);
    	}
    
    	/* Reset on uncorrectable ECC error */
    	if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
    		u32 pbeccsts = er32(PBECCSTS);
    
    		adapter->corr_errors +=
    		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
    		adapter->uncorr_errors +=
    		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
    		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
    
    		/* Do the reset outside of interrupt context */
    		schedule_work(&adapter->reset_task);
    
    		/* return immediately since reset is imminent */
    		return IRQ_HANDLED;
    	}
    
    	if (napi_schedule_prep(&adapter->napi)) {
    		adapter->total_tx_bytes = 0;
    		adapter->total_tx_packets = 0;
    		adapter->total_rx_bytes = 0;
    		adapter->total_rx_packets = 0;
    		__napi_schedule(&adapter->napi);
    	}
    
    	return IRQ_HANDLED;
    }
    
    static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
    {
    	struct net_device *netdev = data;
    	struct e1000_adapter *adapter = netdev_priv(netdev);
    	struct e1000_hw *hw = &adapter->hw;
    	u32 icr;
    	bool enable = true;
    
    	icr = er32(ICR);
    	if (icr & E1000_ICR_RXO) {
    		ew32(ICR, E1000_ICR_RXO);
    		enable = false;
    		/* napi poll will re-enable Other, make sure it runs */
    		if (napi_schedule_prep(&adapter->napi)) {
    			adapter->total_rx_bytes = 0;
    			adapter->total_rx_packets = 0;
    			__napi_schedule(&adapter->napi);
    		}
    	}
    	if (icr & E1000_ICR_LSC) {
    		ew32(ICR, E1000_ICR_LSC);
    		hw->mac.get_link_status = true;
    		/* guard against interrupt when we're going down */
    		if (!test_bit(__E1000_DOWN, &adapter->state))
    			mod_timer(&adapter->watchdog_timer, jiffies + 1);
    	}
    
    	if (enable && !test_bit(__E1000_DOWN, &adapter->state))
    		ew32(IMS, E1000_IMS_OTHER);
    
    	return IRQ_HANDLED;
    }
    
    static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
    {
    	struct net_device *netdev = data;
    	struct e1000_adapter *adapter = netdev_priv(netdev);
    	struct e1000_hw *hw = &adapter->hw;
    	struct e1000_ring *tx_ring = adapter->tx_ring;
    
    	adapter->total_tx_bytes = 0;
    	adapter->total_tx_packets = 0;
    
    	if (!e1000_clean_tx_irq(tx_ring))
    		/* Ring was not completely cleaned, so fire another interrupt */
    		ew32(ICS, tx_ring->ims_val);
    
    	if (!test_bit(__E1000_DOWN, &adapter->state))
    		ew32(IMS, adapter->tx_ring->ims_val);
    
    	return IRQ_HANDLED;
    }
    
    static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
    {
    	struct net_device *netdev = data;
    	struct e1000_adapter *adapter = netdev_priv(netdev);
    	struct e1000_ring *rx_ring = adapter->rx_ring;
    
    	/* Write the ITR value calculated at the end of the
    	 * previous interrupt.
    	 */
    	if (rx_ring->set_itr) {
    		u32 itr = rx_ring->itr_val ?
    			  1000000000 / (rx_ring->itr_val * 256) : 0;
    
    		writel(itr, rx_ring->itr_register);
    		rx_ring->set_itr = 0;
    	}
    
    	if (napi_schedule_prep(&adapter->napi)) {
    		adapter->total_rx_bytes = 0;
    		adapter->total_rx_packets = 0;
    		__napi_schedule(&adapter->napi);
    	}
    	return IRQ_HANDLED;
    }
    
    /**
     * e1000_configure_msix - Configure MSI-X hardware
     *
     * e1000_configure_msix sets up the hardware to properly
     * generate MSI-X interrupts.
     **/
    static void e1000_configure_msix(struct e1000_adapter *adapter)
    {
    	struct e1000_hw *hw = &adapter->hw;
    	struct e1000_ring *rx_ring = adapter->rx_ring;
    	struct e1000_ring *tx_ring = adapter->tx_ring;
    	int vector = 0;
    	u32 ctrl_ext, ivar = 0;
    
    	adapter->eiac_mask = 0;
    
    	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
    	if (hw->mac.type == e1000_82574) {
    		u32 rfctl = er32(RFCTL);
    
    		rfctl |= E1000_RFCTL_ACK_DIS;
    		ew32(RFCTL, rfctl);
    	}
    
    	/* Configure Rx vector */
    	rx_ring->ims_val = E1000_IMS_RXQ0;
    	adapter->eiac_mask |= rx_ring->ims_val;
    	if (rx_ring->itr_val)
    		writel(1000000000 / (rx_ring->itr_val * 256),
    		       rx_ring->itr_register);
    	else
    		writel(1, rx_ring->itr_register);
    	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
    
    	/* Configure Tx vector */
    	tx_ring->ims_val = E1000_IMS_TXQ0;
    	vector++;
    	if (tx_ring->itr_val)
    		writel(1000000000 / (tx_ring->itr_val * 256),
    		       tx_ring->itr_register);
    	else
    		writel(1, tx_ring->itr_register);
    	adapter->eiac_mask |= tx_ring->ims_val;
    	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
    
    	/* set vector for Other Causes, e.g. link changes */
    	vector++;
    	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
    	if (rx_ring->itr_val)
    		writel(1000000000 / (rx_ring->itr_val * 256),
    		       hw->hw_addr + E1000_EITR_82574(vector));
    	else
    		writel(1, hw->hw_addr + E1000_EITR_82574(vector));
    	adapter->eiac_mask |= E1000_IMS_OTHER;
    
    	/* Cause Tx interrupts on every write back */
    	ivar |= BIT(31);
    
    	ew32(IVAR, ivar);
    
    	/* enable MSI-X PBA support */
    	ctrl_ext = er32(CTRL_EXT) & ~E1000_CTRL_EXT_IAME;
    	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR | E1000_CTRL_EXT_EIAME;
    	ew32(CTRL_EXT, ctrl_ext);
    	e1e_flush();
    }
    
    void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
    {
    	if (adapter->msix_entries) {
    		pci_disable_msix(adapter->pdev);
    		kfree(adapter->msix_entries);
    		adapter->msix_entries = NULL;
    	} else if (adapter->flags & FLAG_MSI_ENABLED) {
    		pci_disable_msi(adapter->pdev);
    		adapter->flags &= ~FLAG_MSI_ENABLED;
    	}
    }
    
    /**
     * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
     *
     * Attempt to configure interrupts using the best available
     * capabilities of the hardware and kernel.
     **/
    void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
    {
    	int err;
    	int i;
    
    	switch (adapter->int_mode) {
    	case E1000E_INT_MODE_MSIX:
    		if (adapter->flags & FLAG_HAS_MSIX) {
    			adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
    			adapter->msix_entries = kcalloc(adapter->num_vectors,
    							sizeof(struct
    							       msix_entry),
    							GFP_KERNEL);
    			if (adapter->msix_entries) {
    				struct e1000_adapter *a = adapter;
    
    				for (i = 0; i < adapter->num_vectors; i++)
    					adapter->msix_entries[i].entry = i;
    
    				err = pci_enable_msix_range(a->pdev,
    							    a->msix_entries,
    							    a->num_vectors,
    							    a->num_vectors);
    				if (err > 0)
    					return;
    			}
    			/* MSI-X failed, so fall through and try MSI */
    			e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
    			e1000e_reset_interrupt_capability(adapter);
    		}
    		adapter->int_mode = E1000E_INT_MODE_MSI;
    		/* Fall through */
    	case E1000E_INT_MODE_MSI:
    		if (!pci_enable_msi(adapter->pdev)) {
    			adapter->flags |= FLAG_MSI_ENABLED;
    		} else {
    			adapter->int_mode = E1000E_INT_MODE_LEGACY;
    			e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
    		}
    		/* Fall through */
    	case E1000E_INT_MODE_LEGACY:
    		/* Don't do anything; this is the system default */
    		break;
    	}
    
    	/* store the number of vectors being used */
    	adapter->num_vectors = 1;
    }
    
    /**
     * e1000_request_msix - Initialize MSI-X interrupts
     *
     * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
     * kernel.
     **/
    static int e1000_request_msix(struct e1000_adapter *adapter)
    {
    	struct net_device *netdev = adapter->netdev;
    	int err = 0, vector = 0;
    
    	if (strlen(netdev->name) < (IFNAMSIZ - 5))
    		snprintf(adapter->rx_ring->name,
    			 sizeof(adapter->rx_ring->name) - 1,
    			 "%s-rx-0", netdev->name);
    	else
    		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
    	err = request_irq(adapter->msix_entries[vector].vector,
    			  e1000_intr_msix_rx, 0, adapter->rx_ring->name,
    			  netdev);
    	if (err)
    		return err;
    	adapter->rx_ring->itr_register = adapter->hw.hw_addr +
    	    E1000_EITR_82574(vector);
    	adapter->rx_ring->itr_val = adapter->itr;
    	vector++;
    
    	if (strlen(netdev->name) < (IFNAMSIZ - 5))
    		snprintf(adapter->tx_ring->name,
    			 sizeof(adapter->tx_ring->name) - 1,
    			 "%s-tx-0", netdev->name);
    	else
    		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
    	err = request_irq(adapter->msix_entries[vector].vector,
    			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
    			  netdev);
    	if (err)
    		return err;
    	adapter->tx_ring->itr_register = adapter->hw.hw_addr +
    	    E1000_EITR_82574(vector);
    	adapter->tx_ring->itr_val = adapter->itr;
    	vector++;
    
    	err = request_irq(adapter->msix_entries[vector].vector,
    			  e1000_msix_other, 0, netdev->name, netdev);
    	if (err)
    		return err;
    
    	e1000_configure_msix(adapter);
    
    	return 0;
    }
    
    /**
     * e1000_request_irq - initialize interrupts
     *
     * Attempts to configure interrupts using the best available
     * capabilities of the hardware and kernel.
     **/
    static int e1000_request_irq(struct e1000_adapter *adapter)
    {
    	struct net_device *netdev = adapter->netdev;
    	int err;
    
    	if (adapter->msix_entries) {
    		err = e1000_request_msix(adapter);
    		if (!err)
    			return err;
    		/* fall back to MSI */
    		e1000e_reset_interrupt_capability(adapter);
    		adapter->int_mode = E1000E_INT_MODE_MSI;
    		e1000e_set_interrupt_capability(adapter);
    	}
    	if (adapter->flags & FLAG_MSI_ENABLED) {
    		err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
    				  netdev->name, netdev);
    		if (!err)
    			return err;
    
    		/* fall back to legacy interrupt */
    		e1000e_reset_interrupt_capability(adapter);
    		adapter->int_mode = E1000E_INT_MODE_LEGACY;
    	}
    
    	err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
    			  netdev->name, netdev);
    	if (err)
    		e_err("Unable to allocate interrupt, Error: %d\n", err);
    
    	return err;
    }
    
    static void e1000_free_irq(struct e1000_adapter *adapter)
    {
    	struct net_device *netdev = adapter->netdev;
    
    	if (adapter->msix_entries) {
    		int vector = 0;
    
    		free_irq(adapter->msix_entries[vector].vector, netdev);
    		vector++;
    
    		free_irq(adapter->msix_entries[vector].vector, netdev);
    		vector++;
    
    		/* Other Causes interrupt vector */
    		free_irq(adapter->msix_entries[vector].vector, netdev);
    		return;
    	}
    
    	free_irq(adapter->pdev->irq, netdev);
    }
    
    /**
     * e1000_irq_disable - Mask off interrupt generation on the NIC
     **/
    static void e1000_irq_disable(struct e1000_adapter *adapter)
    {
    	struct e1000_hw *hw = &adapter->hw;
    
    	ew32(IMC, ~0);
    	if (adapter->msix_entries)
    		ew32(EIAC_82574, 0);
    	e1e_flush();
    
    	if (adapter->msix_entries) {
    		int i;
    
    		for (i = 0; i < adapter->num_vectors; i++)
    			synchronize_irq(adapter->msix_entries[i].vector);
    	} else {
    		synchronize_irq(adapter->pdev->irq);
    	}
    }
    
    /**
     * e1000_irq_enable - Enable default interrupt generation settings
     **/
    static void e1000_irq_enable(struct e1000_adapter *adapter)
    {
    	struct e1000_hw *hw = &adapter->hw;
    
    	if (adapter->msix_entries) {
    		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
    		ew32(IMS, adapter->eiac_mask | E1000_IMS_LSC);
    	} else if (hw->mac.type >= e1000_pch_lpt) {
    		ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
    	} else {
    		ew32(IMS, IMS_ENABLE_MASK);
    	}
    	e1e_flush();
    }
    
    /**
     * e1000e_get_hw_control - get control of the h/w from f/w
     * @adapter: address of board private structure
     *
     * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
     * For ASF and Pass Through versions of f/w this means that
     * the driver is loaded. For AMT version (only with 82573)
     * of the f/w this means that the network i/f is open.
     **/
    void e1000e_get_hw_control(struct e1000_adapter *adapter)
    {
    	struct e1000_hw *hw = &adapter->hw;
    	u32 ctrl_ext;
    	u32 swsm;
    
    	/* Let firmware know the driver has taken over */
    	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
    		swsm = er32(SWSM);
    		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
    	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
    		ctrl_ext = er32(CTRL_EXT);
    		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
    	}
    }
    
    /**
     * e1000e_release_hw_control - release control of the h/w to f/w
     * @adapter: address of board private structure
     *
     * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
     * For ASF and Pass Through versions of f/w this means that the
     * driver is no longer loaded. For AMT version (only with 82573) i
     * of the f/w this means that the network i/f is closed.
     *
     **/
    void e1000e_release_hw_control(struct e1000_adapter *adapter)
    {
    	struct e1000_hw *hw = &adapter->hw;
    	u32 ctrl_ext;
    	u32 swsm;
    
    	/* Let firmware taken over control of h/w */
    	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
    		swsm = er32(SWSM);
    		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
    	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
    		ctrl_ext = er32(CTRL_EXT);
    		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
    	}
    }
    
    /**
     * e1000_alloc_ring_dma - allocate memory for a ring structure
     **/
    static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
    				struct e1000_ring *ring)
    {
    	struct pci_dev *pdev = adapter->pdev;
    
    	ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
    					GFP_KERNEL);
    	if (!ring->desc)
    		return -ENOMEM;
    
    	return 0;
    }
    
    /**
     * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
     * @tx_ring: Tx descriptor ring
     *
     * Return 0 on success, negative on failure
     **/
    int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
    {
    	struct e1000_adapter *adapter = tx_ring->adapter;
    	int err = -ENOMEM, size;
    
    	size = sizeof(struct e1000_buffer) * tx_ring->count;
    	tx_ring->buffer_info = vzalloc(size);
    	if (!tx_ring->buffer_info)
    		goto err;
    
    	/* round up to nearest 4K */
    	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
    	tx_ring->size = ALIGN(tx_ring->size, 4096);
    
    	err = e1000_alloc_ring_dma(adapter, tx_ring);
    	if (err)
    		goto err;
    
    	tx_ring->next_to_use = 0;
    	tx_ring->next_to_clean = 0;
    
    	return 0;
    err:
    	vfree(tx_ring->buffer_info);
    	e_err("Unable to allocate memory for the transmit descriptor ring\n");
    	return err;
    }
    
    /**
     * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
     * @rx_ring: Rx descriptor ring
     *
     * Returns 0 on success, negative on failure
     **/
    int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
    {
    	struct e1000_adapter *adapter = rx_ring->adapter;
    	struct e1000_buffer *buffer_info;
    	int i, size, desc_len, err = -ENOMEM;
    
    	size = sizeof(struct e1000_buffer) * rx_ring->count;
    	rx_ring->buffer_info = vzalloc(size);
    	if (!rx_ring->buffer_info)
    		goto err;
    
    	for (i = 0; i < rx_ring->count; i++) {
    		buffer_info = &rx_ring->buffer_info[i];
    		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
    						sizeof(struct e1000_ps_page),
    						GFP_KERNEL);
    		if (!buffer_info->ps_pages)
    			goto err_pages;
    	}
    
    	desc_len = sizeof(union e1000_rx_desc_packet_split);
    
    	/* Round up to nearest 4K */
    	rx_ring->size = rx_ring->count * desc_len;
    	rx_ring->size = ALIGN(rx_ring->size, 4096);
    
    	err = e1000_alloc_ring_dma(adapter, rx_ring);
    	if (err)
    		goto err_pages;
    
    	rx_ring->next_to_clean = 0;
    	rx_ring->next_to_use = 0;
    	rx_ring->rx_skb_top = NULL;
    
    	return 0;
    
    err_pages:
    	for (i = 0; i < rx_ring->count; i++) {
    		buffer_info = &rx_ring->buffer_info[i];
    		kfree(buffer_info->ps_pages);
    	}
    err:
    	vfree(rx_ring->buffer_info);
    	e_err("Unable to allocate memory for the receive descriptor ring\n");
    	return err;
    }
    
    /**
     * e1000_clean_tx_ring - Free Tx Buffers
     * @tx_ring: Tx descriptor ring
     **/
    static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
    {
    	struct e1000_adapter *adapter = tx_ring->adapter;
    	struct e1000_buffer *buffer_info;
    	unsigned long size;
    	unsigned int i;
    
    	for (i = 0; i < tx_ring->count; i++) {
    		buffer_info = &tx_ring->buffer_info[i];
    		e1000_put_txbuf(tx_ring, buffer_info);
    	}
    
    	netdev_reset_queue(adapter->netdev);
    	size = sizeof(struct e1000_buffer) * tx_ring->count;
    	memset(tx_ring->buffer_info, 0, size);
    
    	memset(tx_ring->desc, 0, tx_ring->size);
    
    	tx_ring->next_to_use = 0;
    	tx_ring->next_to_clean = 0;
    }
    
    /**
     * e1000e_free_tx_resources - Free Tx Resources per Queue
     * @tx_ring: Tx descriptor ring
     *
     * Free all transmit software resources
     **/
    void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
    {
    	struct e1000_adapter *adapter = tx_ring->adapter;
    	struct pci_dev *pdev = adapter->pdev;
    
    	e1000_clean_tx_ring(tx_ring);
    
    	vfree(tx_ring->buffer_info);
    	tx_ring->buffer_info = NULL;
    
    	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
    			  tx_ring->dma);
    	tx_ring->desc = NULL;
    }
    
    /**
     * e1000e_free_rx_resources - Free Rx Resources
     * @rx_ring: Rx descriptor ring
     *
     * Free all receive software resources
     **/
    void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
    {
    	struct e1000_adapter *adapter = rx_ring->adapter;
    	struct pci_dev *pdev = adapter->pdev;
    	int i;
    
    	e1000_clean_rx_ring(rx_ring);
    
    	for (i = 0; i < rx_ring->count; i++)
    		kfree(rx_ring->buffer_info[i].ps_pages);
    
    	vfree(rx_ring->buffer_info);
    	rx_ring->buffer_info = NULL;
    
    	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
    			  rx_ring->dma);
    	rx_ring->desc = NULL;
    }
    
    /**
     * e1000_update_itr - update the dynamic ITR value based on statistics
     * @adapter: pointer to adapter
     * @itr_setting: current adapter->itr
     * @packets: the number of packets during this measurement interval
     * @bytes: the number of bytes during this measurement interval
     *
     *      Stores a new ITR value based on packets and byte
     *      counts during the last interrupt.  The advantage of per interrupt
     *      computation is faster updates and more accurate ITR for the current
     *      traffic pattern.  Constants in this function were computed
     *      based on theoretical maximum wire speed and thresholds were set based
     *      on testing data as well as attempting to minimize response time
     *      while increasing bulk throughput.  This functionality is controlled
     *      by the InterruptThrottleRate module parameter.
     **/
    static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
    {
    	unsigned int retval = itr_setting;
    
    	if (packets == 0)
    		return itr_setting;
    
    	switch (itr_setting) {
    	case lowest_latency:
    		/* handle TSO and jumbo frames */
    		if (bytes / packets > 8000)
    			retval = bulk_latency;
    		else if ((packets < 5) && (bytes > 512))
    			retval = low_latency;
    		break;
    	case low_latency:	/* 50 usec aka 20000 ints/s */
    		if (bytes > 10000) {
    			/* this if handles the TSO accounting */
    			if (bytes / packets > 8000)
    				retval = bulk_latency;
    			else if ((packets < 10) || ((bytes / packets) > 1200))
    				retval = bulk_latency;
    			else if ((packets > 35))
    				retval = lowest_latency;
    		} else if (bytes / packets > 2000) {
    			retval = bulk_latency;
    		} else if (packets <= 2 && bytes < 512) {
    			retval = lowest_latency;
    		}
    		break;
    	case bulk_latency:	/* 250 usec aka 4000 ints/s */
    		if (bytes > 25000) {
    			if (packets > 35)
    				retval = low_latency;
    		} else if (bytes < 6000) {
    			retval = low_latency;
    		}
    		break;
    	}
    
    	return retval;
    }
    
    static void e1000_set_itr(struct e1000_adapter *adapter)
    {
    	u16 current_itr;
    	u32 new_itr = adapter->itr;
    
    	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
    	if (adapter->link_speed != SPEED_1000) {
    		current_itr = 0;
    		new_itr = 4000;
    		goto set_itr_now;
    	}
    
    	if (adapter->flags2 & FLAG2_DISABLE_AIM) {
    		new_itr = 0;
    		goto set_itr_now;
    	}
    
    	adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
    					   adapter->total_tx_packets,
    					   adapter->total_tx_bytes);
    	/* conservative mode (itr 3) eliminates the lowest_latency setting */
    	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
    		adapter->tx_itr = low_latency;
    
    	adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
    					   adapter->total_rx_packets,
    					   adapter->total_rx_bytes);
    	/* conservative mode (itr 3) eliminates the lowest_latency setting */
    	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
    		adapter->rx_itr = low_latency;
    
    	current_itr = max(adapter->rx_itr, adapter->tx_itr);
    
    	/* counts and packets in update_itr are dependent on these numbers */
    	switch (current_itr) {
    	case lowest_latency:
    		new_itr = 70000;
    		break;
    	case low_latency:
    		new_itr = 20000;	/* aka hwitr = ~200 */
    		break;
    	case bulk_latency:
    		new_itr = 4000;
    		break;
    	default:
    		break;
    	}
    
    set_itr_now:
    	if (new_itr != adapter->itr) {
    		/* this attempts to bias the interrupt rate towards Bulk
    		 * by adding intermediate steps when interrupt rate is
    		 * increasing
    		 */
    		new_itr = new_itr > adapter->itr ?
    		    min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
    		adapter->itr = new_itr;
    		adapter->rx_ring->itr_val = new_itr;
    		if (adapter->msix_entries)
    			adapter->rx_ring->set_itr = 1;
    		else
    			e1000e_write_itr(adapter, new_itr);
    	}
    }
    
    /**
     * e1000e_write_itr - write the ITR value to the appropriate registers
     * @adapter: address of board private structure
     * @itr: new ITR value to program
     *
     * e1000e_write_itr determines if the adapter is in MSI-X mode
     * and, if so, writes the EITR registers with the ITR value.
     * Otherwise, it writes the ITR value into the ITR register.
     **/
    void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
    {
    	struct e1000_hw *hw = &adapter->hw;
    	u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
    
    	if (adapter->msix_entries) {
    		int vector;
    
    		for (vector = 0; vector < adapter->num_vectors; vector++)
    			writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
    	} else {
    		ew32(ITR, new_itr);
    	}
    }
    
    /**
     * e1000_alloc_queues - Allocate memory for all rings
     * @adapter: board private structure to initialize
     **/
    static int e1000_alloc_queues(struct e1000_adapter *adapter)
    {
    	int size = sizeof(struct e1000_ring);
    
    	adapter->tx_ring = kzalloc(size, GFP_KERNEL);
    	if (!adapter->tx_ring)
    		goto err;
    	adapter->tx_ring->count = adapter->tx_ring_count;
    	adapter->tx_ring->adapter = adapter;
    
    	adapter->rx_ring = kzalloc(size, GFP_KERNEL);
    	if (!adapter->rx_ring)
    		goto err;
    	adapter->rx_ring->count = adapter->rx_ring_count;
    	adapter->rx_ring->adapter = adapter;
    
    	return 0;
    err:
    	e_err("Unable to allocate memory for queues\n");
    	kfree(adapter->rx_ring);
    	kfree(adapter->tx_ring);
    	return -ENOMEM;
    }
    
    /**
     * e1000e_poll - NAPI Rx polling callback
     * @napi: struct associated with this polling callback
     * @weight: number of packets driver is allowed to process this poll
     **/
    static int e1000e_poll(struct napi_struct *napi, int weight)
    {
    	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
    						     napi);
    	struct e1000_hw *hw = &adapter->hw;
    	struct net_device *poll_dev = adapter->netdev;
    	int tx_cleaned = 1, work_done = 0;
    
    	adapter = netdev_priv(poll_dev);
    
    	if (!adapter->msix_entries ||
    	    (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
    		tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
    
    	adapter->clean_rx(adapter->rx_ring, &work_done, weight);
    
    	if (!tx_cleaned)
    		work_done = weight;
    
    	/* If weight not fully consumed, exit the polling mode */
    	if (work_done < weight) {
    		if (adapter->itr_setting & 3)
    			e1000_set_itr(adapter);
    		napi_complete_done(napi, work_done);
    		if (!test_bit(__E1000_DOWN, &adapter->state)) {
    			if (adapter->msix_entries)
    				ew32(IMS, adapter->rx_ring->ims_val |
    				     E1000_IMS_OTHER);
    			else
    				e1000_irq_enable(adapter);
    		}
    	}
    
    	return work_done;
    }
    
    static int e1000_vlan_rx_add_vid(struct net_device *netdev,
    				 __always_unused __be16 proto, u16 vid)
    {
    	struct e1000_adapter *adapter = netdev_priv(netdev);
    	struct e1000_hw *hw = &adapter->hw;
    	u32 vfta, index;
    
    	/* don't update vlan cookie if already programmed */
    	if ((adapter->hw.mng_cookie.status &
    	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
    	    (vid == adapter->mng_vlan_id))
    		return 0;
    
    	/* add VID to filter table */
    	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
    		index = (vid >> 5) & 0x7F;
    		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
    		vfta |= BIT((vid & 0x1F));
    		hw->mac.ops.write_vfta(hw, index, vfta);
    	}
    
    	set_bit(vid, adapter->active_vlans);
    
    	return 0;
    }
    
    static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
    				  __always_unused __be16 proto, u16 vid)
    {
    	struct e1000_adapter *adapter = netdev_priv(netdev);
    	struct e1000_hw *hw = &adapter->hw;
    	u32 vfta, index;
    
    	if ((adapter->hw.mng_cookie.status &
    	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
    	    (vid == adapter->mng_vlan_id)) {
    		/* release control to f/w */
    		e1000e_release_hw_control(adapter);
    		return 0;
    	}
    
    	/* remove VID from filter table */
    	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
    		index = (vid >> 5) & 0x7F;
    		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
    		vfta &= ~BIT((vid & 0x1F));
    		hw->mac.ops.write_vfta(hw, index, vfta);
    	}
    
    	clear_bit(vid, adapter->active_vlans);
    
    	return 0;
    }
    
    /**
     * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
     * @adapter: board private structure to initialize
     **/
    static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
    {
    	struct net_device *netdev = adapter->netdev;
    	struct e1000_hw *hw = &adapter->hw;
    	u32 rctl;
    
    	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
    		/* disable VLAN receive filtering */
    		rctl = er32(RCTL);
    		rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
    		ew32(RCTL, rctl);
    
    		if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
    			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
    					       adapter->mng_vlan_id);
    			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
    		}
    	}
    }
    
    /**
     * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
     * @adapter: board private structure to initialize
     **/
    static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
    {
    	struct e1000_hw *hw = &adapter->hw;
    	u32 rctl;
    
    	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
    		/* enable VLAN receive filtering */
    		rctl = er32(RCTL);
    		rctl |= E1000_RCTL_VFE;
    		rctl &= ~E1000_RCTL_CFIEN;
    		ew32(RCTL, rctl);
    	}
    }
    
    /**
     * e1000e_vlan_strip_disable - helper to disable HW VLAN stripping
     * @adapter: board private structure to initialize
     **/
    static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
    {
    	struct e1000_hw *hw = &adapter->hw;
    	u32 ctrl;
    
    	/* disable VLAN tag insert/strip */
    	ctrl = er32(CTRL);
    	ctrl &= ~E1000_CTRL_VME;
    	ew32(CTRL, ctrl);
    }
    
    /**
     * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
     * @adapter: board private structure to initialize
     **/
    static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
    {
    	struct e1000_hw *hw = &adapter->hw;
    	u32 ctrl;
    
    	/* enable VLAN tag insert/strip */
    	ctrl = er32(CTRL);
    	ctrl |= E1000_CTRL_VME;
    	ew32(CTRL, ctrl);
    }
    
    static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
    {
    	struct net_device *netdev = adapter->netdev;
    	u16 vid = adapter->hw.mng_cookie.vlan_id;
    	u16 old_vid = adapter->mng_vlan_id;
    
    	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
    		e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
    		adapter->mng_vlan_id = vid;
    	}
    
    	if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
    		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
    }
    
    static void e1000_restore_vlan(struct e1000_adapter *adapter)
    {
    	u16 vid;
    
    	e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
    
    	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
    	    e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
    }
    
    static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
    {
    	struct e1000_hw *hw = &adapter->hw;
    	u32 manc, manc2h, mdef, i, j;
    
    	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
    		return;
    
    	manc = er32(MANC);
    
    	/* enable receiving management packets to the host. this will probably
    	 * generate destination unreachable messages from the host OS, but
    	 * the packets will be handled on SMBUS
    	 */
    	manc |= E1000_MANC_EN_MNG2HOST;
    	manc2h = er32(MANC2H);
    
    	switch (hw->mac.type) {
    	default:
    		manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
    		break;
    	case e1000_82574:
    	case e1000_82583:
    		/* Check if IPMI pass-through decision filter already exists;
    		 * if so, enable it.
    		 */
    		for (i = 0, j = 0; i < 8; i++) {
    			mdef = er32(MDEF(i));
    
    			/* Ignore filters with anything other than IPMI ports */
    			if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
    				continue;
    
    			/* Enable this decision filter in MANC2H */
    			if (mdef)
    				manc2h |= BIT(i);
    
    			j |= mdef;
    		}
    
    		if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
    			break;
    
    		/* Create new decision filter in an empty filter */
    		for (i = 0, j = 0; i < 8; i++)
    			if (er32(MDEF(i)) == 0) {
    				ew32(MDEF(i), (E1000_MDEF_PORT_623 |
    					       E1000_MDEF_PORT_664));
    				manc2h |= BIT(1);
    				j++;
    				break;
    			}
    
    		if (!j)
    			e_warn("Unable to create IPMI pass-through filter\n");
    		break;
    	}
    
    	ew32(MANC2H, manc2h);
    	ew32(MANC, manc);
    }
    
    /**
     * e1000_configure_tx - Configure Transmit Unit after Reset
     * @adapter: board private structure
     *
     * Configure the Tx unit of the MAC after a reset.
     **/
    static void e1000_configure_tx(struct e1000_adapter *adapter)
    {
    	struct e1000_hw *hw = &adapter->hw;
    	struct e1000_ring *tx_ring = adapter->tx_ring;
    	u64 tdba;
    	u32 tdlen, tctl, tarc;
    
    	/* Setup the HW Tx Head and Tail descriptor pointers */
    	tdba = tx_ring->dma;
    	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
    	ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
    	ew32(TDBAH(0), (tdba >> 32));
    	ew32(TDLEN(0), tdlen);
    	ew32(TDH(0), 0);
    	ew32(TDT(0), 0);
    	tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
    	tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
    
    	writel(0, tx_ring->head);
    	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
    		e1000e_update_tdt_wa(tx_ring, 0);
    	else
    		writel(0, tx_ring->tail);
    
    	/* Set the Tx Interrupt Delay register */
    	ew32(TIDV, adapter->tx_int_delay);
    	/* Tx irq moderation */
    	ew32(TADV, adapter->tx_abs_int_delay);
    
    	if (adapter->flags2 & FLAG2_DMA_BURST) {
    		u32 txdctl = er32(TXDCTL(0));
    
    		txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
    			    E1000_TXDCTL_WTHRESH);
    		/* set up some performance related parameters to encourage the
    		 * hardware to use the bus more efficiently in bursts, depends
    		 * on the tx_int_delay to be enabled,
    		 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
    		 * hthresh = 1 ==> prefetch when one or more available
    		 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
    		 * BEWARE: this seems to work but should be considered first if
    		 * there are Tx hangs or other Tx related bugs
    		 */
    		txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
    		ew32(TXDCTL(0), txdctl);
    	}
    	/* erratum work around: set txdctl the same for both queues */
    	ew32(TXDCTL(1), er32(TXDCTL(0)));
    
    	/* Program the Transmit Control Register */
    	tctl = er32(TCTL);
    	tctl &= ~E1000_TCTL_CT;
    	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
    		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
    
    	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
    		tarc = er32(TARC(0));
    		/* set the speed mode bit, we'll clear it if we're not at
    		 * gigabit link later
    		 */
    #define SPEED_MODE_BIT BIT(21)
    		tarc |= SPEED_MODE_BIT;
    		ew32(TARC(0), tarc);
    	}
    
    	/* errata: program both queues to unweighted RR */
    	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
    		tarc = er32(TARC(0));
    		tarc |= 1;
    		ew32(TARC(0), tarc);
    		tarc = er32(TARC(1));
    		tarc |= 1;
    		ew32(TARC(1), tarc);
    	}
    
    	/* Setup Transmit Descriptor Settings for eop descriptor */
    	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
    
    	/* only set IDE if we are delaying interrupts using the timers */
    	if (adapter->tx_int_delay)
    		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
    
    	/* enable Report Status bit */
    	adapter->txd_cmd |= E1000_TXD_CMD_RS;
    
    	ew32(TCTL, tctl);
    
    	hw->mac.ops.config_collision_dist(hw);
    
    	/* SPT and KBL Si errata workaround to avoid data corruption */
    	if (hw->mac.type == e1000_pch_spt) {
    		u32 reg_val;
    
    		reg_val = er32(IOSFPC);
    		reg_val |= E1000_RCTL_RDMTS_HEX;
    		ew32(IOSFPC, reg_val);
    
    		reg_val = er32(TARC(0));
    		/* SPT and KBL Si errata workaround to avoid Tx hang */
    		reg_val &= ~BIT(28);
    		reg_val |= BIT(29);
    		ew32(TARC(0), reg_val);
    	}
    }
    
    /**
     * e1000_setup_rctl - configure the receive control registers
     * @adapter: Board private structure
     **/
    #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
    			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
    static void e1000_setup_rctl(struct e1000_adapter *adapter)
    {
    	struct e1000_hw *hw = &adapter->hw;
    	u32 rctl, rfctl;
    	u32 pages = 0;
    
    	/* Workaround Si errata on PCHx - configure jumbo frame flow.
    	 * If jumbo frames not set, program related MAC/PHY registers
    	 * to h/w defaults
    	 */
    	if (hw->mac.type >= e1000_pch2lan) {
    		s32 ret_val;
    
    		if (adapter->netdev->mtu > ETH_DATA_LEN)
    			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
    		else
    			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
    
    		if (ret_val)
    			e_dbg("failed to enable|disable jumbo frame workaround mode\n");
    	}
    
    	/* Program MC offset vector base */
    	rctl = er32(RCTL);
    	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
    	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
    	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
    	    (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
    
    	/* Do not Store bad packets */
    	rctl &= ~E1000_RCTL_SBP;
    
    	/* Enable Long Packet receive */
    	if (adapter->netdev->mtu <= ETH_DATA_LEN)
    		rctl &= ~E1000_RCTL_LPE;
    	else
    		rctl |= E1000_RCTL_LPE;
    
    	/* Some systems expect that the CRC is included in SMBUS traffic. The
    	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
    	 * host memory when this is enabled
    	 */
    	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
    		rctl |= E1000_RCTL_SECRC;
    
    	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
    	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
    		u16 phy_data;
    
    		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
    		phy_data &= 0xfff8;
    		phy_data |= BIT(2);
    		e1e_wphy(hw, PHY_REG(770, 26), phy_data);
    
    		e1e_rphy(hw, 22, &phy_data);
    		phy_data &= 0x0fff;
    		phy_data |= BIT(14);
    		e1e_wphy(hw, 0x10, 0x2823);
    		e1e_wphy(hw, 0x11, 0x0003);
    		e1e_wphy(hw, 22, phy_data);
    	}
    
    	/* Setup buffer sizes */
    	rctl &= ~E1000_RCTL_SZ_4096;
    	rctl |= E1000_RCTL_BSEX;
    	switch (adapter->rx_buffer_len) {
    	case 2048:
    	default:
    		rctl |= E1000_RCTL_SZ_2048;
    		rctl &= ~E1000_RCTL_BSEX;
    		break;
    	case 4096:
    		rctl |= E1000_RCTL_SZ_4096;
    		break;
    	case 8192:
    		rctl |= E1000_RCTL_SZ_8192;
    		break;
    	case 16384:
    		rctl |= E1000_RCTL_SZ_16384;
    		break;
    	}
    
    	/* Enable Extended Status in all Receive Descriptors */
    	rfctl = er32(RFCTL);
    	rfctl |= E1000_RFCTL_EXTEN;
    	ew32(RFCTL, rfctl);
    
    	/* 82571 and greater support packet-split where the protocol
    	 * header is placed in skb->data and the packet data is
    	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
    	 * In the case of a non-split, skb->data is linearly filled,
    	 * followed by the page buffers.  Therefore, skb->data is
    	 * sized to hold the largest protocol header.
    	 *
    	 * allocations using alloc_page take too long for regular MTU
    	 * so only enable packet split for jumbo frames
    	 *
    	 * Using pages when the page size is greater than 16k wastes
    	 * a lot of memory, since we allocate 3 pages at all times
    	 * per packet.
    	 */
    	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
    	if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
    		adapter->rx_ps_pages = pages;
    	else
    		adapter->rx_ps_pages = 0;
    
    	if (adapter->rx_ps_pages) {
    		u32 psrctl = 0;
    
    		/* Enable Packet split descriptors */
    		rctl |= E1000_RCTL_DTYP_PS;
    
    		psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
    
    		switch (adapter->rx_ps_pages) {
    		case 3:
    			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
    			/* fall-through */
    		case 2:
    			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
    			/* fall-through */
    		case 1:
    			psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
    			break;
    		}
    
    		ew32(PSRCTL, psrctl);
    	}
    
    	/* This is useful for sniffing bad packets. */
    	if (adapter->netdev->features & NETIF_F_RXALL) {
    		/* UPE and MPE will be handled by normal PROMISC logic
    		 * in e1000e_set_rx_mode
    		 */
    		rctl |= (E1000_RCTL_SBP |	/* Receive bad packets */
    			 E1000_RCTL_BAM |	/* RX All Bcast Pkts */
    			 E1000_RCTL_PMCF);	/* RX All MAC Ctrl Pkts */
    
    		rctl &= ~(E1000_RCTL_VFE |	/* Disable VLAN filter */
    			  E1000_RCTL_DPF |	/* Allow filtered pause */
    			  E1000_RCTL_CFIEN);	/* Dis VLAN CFIEN Filter */
    		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
    		 * and that breaks VLANs.
    		 */
    	}
    
    	ew32(RCTL, rctl);
    	/* just started the receive unit, no need to restart */
    	adapter->flags &= ~FLAG_RESTART_NOW;
    }
    
    /**
     * e1000_configure_rx - Configure Receive Unit after Reset
     * @adapter: board private structure
     *
     * Configure the Rx unit of the MAC after a reset.
     **/
    static void e1000_configure_rx(struct e1000_adapter *adapter)
    {
    	struct e1000_hw *hw = &adapter->hw;
    	struct e1000_ring *rx_ring = adapter->rx_ring;
    	u64 rdba;
    	u32 rdlen, rctl, rxcsum, ctrl_ext;
    
    	if (adapter->rx_ps_pages) {
    		/* this is a 32 byte descriptor */
    		rdlen = rx_ring->count *
    		    sizeof(union e1000_rx_desc_packet_split);
    		adapter->clean_rx = e1000_clean_rx_irq_ps;
    		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
    	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
    		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
    		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
    		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
    	} else {
    		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
    		adapter->clean_rx = e1000_clean_rx_irq;
    		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
    	}
    
    	/* disable receives while setting up the descriptors */
    	rctl = er32(RCTL);
    	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
    		ew32(RCTL, rctl & ~E1000_RCTL_EN);
    	e1e_flush();
    	usleep_range(10000, 20000);
    
    	if (adapter->flags2 & FLAG2_DMA_BURST) {
    		/* set the writeback threshold (only takes effect if the RDTR
    		 * is set). set GRAN=1 and write back up to 0x4 worth, and
    		 * enable prefetching of 0x20 Rx descriptors
    		 * granularity = 01
    		 * wthresh = 04,
    		 * hthresh = 04,
    		 * pthresh = 0x20
    		 */
    		ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
    		ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
    
    		/* override the delay timers for enabling bursting, only if
    		 * the value was not set by the user via module options
    		 */
    		if (adapter->rx_int_delay == DEFAULT_RDTR)
    			adapter->rx_int_delay = BURST_RDTR;
    		if (adapter->rx_abs_int_delay == DEFAULT_RADV)
    			adapter->rx_abs_int_delay = BURST_RADV;
    	}
    
    	/* set the Receive Delay Timer Register */
    	ew32(RDTR, adapter->rx_int_delay);
    
    	/* irq moderation */
    	ew32(RADV, adapter->rx_abs_int_delay);
    	if ((adapter->itr_setting != 0) && (adapter->itr != 0))
    		e1000e_write_itr(adapter, adapter->itr);
    
    	ctrl_ext = er32(CTRL_EXT);
    	/* Auto-Mask interrupts upon ICR access */
    	ctrl_ext |= E1000_CTRL_EXT_IAME;
    	ew32(IAM, 0xffffffff);
    	ew32(CTRL_EXT, ctrl_ext);
    	e1e_flush();
    
    	/* Setup the HW Rx Head and Tail Descriptor Pointers and
    	 * the Base and Length of the Rx Descriptor Ring
    	 */
    	rdba = rx_ring->dma;
    	ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
    	ew32(RDBAH(0), (rdba >> 32));
    	ew32(RDLEN(0), rdlen);
    	ew32(RDH(0), 0);
    	ew32(RDT(0), 0);
    	rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
    	rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
    
    	writel(0, rx_ring->head);
    	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
    		e1000e_update_rdt_wa(rx_ring, 0);
    	else
    		writel(0, rx_ring->tail);
    
    	/* Enable Receive Checksum Offload for TCP and UDP */
    	rxcsum = er32(RXCSUM);
    	if (adapter->netdev->features & NETIF_F_RXCSUM)
    		rxcsum |= E1000_RXCSUM_TUOFL;
    	else
    		rxcsum &= ~E1000_RXCSUM_TUOFL;
    	ew32(RXCSUM, rxcsum);
    
    	/* With jumbo frames, excessive C-state transition latencies result
    	 * in dropped transactions.
    	 */
    	if (adapter->netdev->mtu > ETH_DATA_LEN) {
    		u32 lat =
    		    ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
    		     adapter->max_frame_size) * 8 / 1000;
    
    		if (adapter->flags & FLAG_IS_ICH) {
    			u32 rxdctl = er32(RXDCTL(0));
    
    			ew32(RXDCTL(0), rxdctl | 0x3);
    		}
    
    		pm_qos_update_request(&adapter->pm_qos_req, lat);
    	} else {
    		pm_qos_update_request(&adapter->pm_qos_req,
    				      PM_QOS_DEFAULT_VALUE);
    	}
    
    	/* Enable Receives */
    	ew32(RCTL, rctl);
    }
    
    /**
     * e1000e_write_mc_addr_list - write multicast addresses to MTA
     * @netdev: network interface device structure
     *
     * Writes multicast address list to the MTA hash table.
     * Returns: -ENOMEM on failure
     *                0 on no addresses written
     *                X on writing X addresses to MTA
     */
    static int e1000e_write_mc_addr_list(struct net_device *netdev)
    {
    	struct e1000_adapter *adapter = netdev_priv(netdev);
    	struct e1000_hw *hw = &adapter->hw;
    	struct netdev_hw_addr *ha;
    	u8 *mta_list;
    	int i;
    
    	if (netdev_mc_empty(netdev)) {
    		/* nothing to program, so clear mc list */
    		hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
    		return 0;
    	}
    
    	mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
    	if (!mta_list)
    		return -ENOMEM;
    
    	/* update_mc_addr_list expects a packed array of only addresses. */
    	i = 0;
    	netdev_for_each_mc_addr(ha, netdev)
    	    memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
    
    	hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
    	kfree(mta_list);
    
    	return netdev_mc_count(netdev);
    }
    
    /**
     * e1000e_write_uc_addr_list - write unicast addresses to RAR table
     * @netdev: network interface device structure
     *
     * Writes unicast address list to the RAR table.
     * Returns: -ENOMEM on failure/insufficient address space
     *                0 on no addresses written
     *                X on writing X addresses to the RAR table
     **/
    static int e1000e_write_uc_addr_list(struct net_device *netdev)
    {
    	struct e1000_adapter *adapter = netdev_priv(netdev);
    	struct e1000_hw *hw = &adapter->hw;
    	unsigned int rar_entries;
    	int count = 0;
    
    	rar_entries = hw->mac.ops.rar_get_count(hw);
    
    	/* save a rar entry for our hardware address */
    	rar_entries--;
    
    	/* save a rar entry for the LAA workaround */
    	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
    		rar_entries--;
    
    	/* return ENOMEM indicating insufficient memory for addresses */
    	if (netdev_uc_count(netdev) > rar_entries)
    		return -ENOMEM;
    
    	if (!netdev_uc_empty(netdev) && rar_entries) {
    		struct netdev_hw_addr *ha;
    
    		/* write the addresses in reverse order to avoid write
    		 * combining
    		 */
    		netdev_for_each_uc_addr(ha, netdev) {
    			int ret_val;
    
    			if (!rar_entries)
    				break;
    			ret_val = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
    			if (ret_val < 0)
    				return -ENOMEM;
    			count++;
    		}
    	}
    
    	/* zero out the remaining RAR entries not used above */
    	for (; rar_entries > 0; rar_entries--) {
    		ew32(RAH(rar_entries), 0);
    		ew32(RAL(rar_entries), 0);
    	}
    	e1e_flush();
    
    	return count;
    }
    
    /**
     * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
     * @netdev: network interface device structure
     *
     * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
     * address list or the network interface flags are updated.  This routine is
     * responsible for configuring the hardware for proper unicast, multicast,
     * promiscuous mode, and all-multi behavior.
     **/
    static void e1000e_set_rx_mode(struct net_device *netdev)
    {
    	struct e1000_adapter *adapter = netdev_priv(netdev);
    	struct e1000_hw *hw = &adapter->hw;
    	u32 rctl;
    
    	if (pm_runtime_suspended(netdev->dev.parent))
    		return;
    
    	/* Check for Promiscuous and All Multicast modes */
    	rctl = er32(RCTL);
    
    	/* clear the affected bits */
    	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
    
    	if (netdev->flags & IFF_PROMISC) {
    		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
    		/* Do not hardware filter VLANs in promisc mode */
    		e1000e_vlan_filter_disable(adapter);
    	} else {
    		int count;
    
    		if (netdev->flags & IFF_ALLMULTI) {
    			rctl |= E1000_RCTL_MPE;
    		} else {
    			/* Write addresses to the MTA, if the attempt fails
    			 * then we should just turn on promiscuous mode so
    			 * that we can at least receive multicast traffic
    			 */
    			count = e1000e_write_mc_addr_list(netdev);
    			if (count < 0)
    				rctl |= E1000_RCTL_MPE;
    		}
    		e1000e_vlan_filter_enable(adapter);
    		/* Write addresses to available RAR registers, if there is not
    		 * sufficient space to store all the addresses then enable
    		 * unicast promiscuous mode
    		 */
    		count = e1000e_write_uc_addr_list(netdev);
    		if (count < 0)
    			rctl |= E1000_RCTL_UPE;
    	}
    
    	ew32(RCTL, rctl);
    
    	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
    		e1000e_vlan_strip_enable(adapter);
    	else
    		e1000e_vlan_strip_disable(adapter);
    }
    
    static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
    {
    	struct e1000_hw *hw = &adapter->hw;
    	u32 mrqc, rxcsum;
    	u32 rss_key[10];
    	int i;
    
    	netdev_rss_key_fill(rss_key, sizeof(rss_key));
    	for (i = 0; i < 10; i++)
    		ew32(RSSRK(i), rss_key[i]);
    
    	/* Direct all traffic to queue 0 */
    	for (i = 0; i < 32; i++)
    		ew32(RETA(i), 0);
    
    	/* Disable raw packet checksumming so that RSS hash is placed in
    	 * descriptor on writeback.
    	 */
    	rxcsum = er32(RXCSUM);
    	rxcsum |= E1000_RXCSUM_PCSD;
    
    	ew32(RXCSUM, rxcsum);
    
    	mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
    		E1000_MRQC_RSS_FIELD_IPV4_TCP |
    		E1000_MRQC_RSS_FIELD_IPV6 |
    		E1000_MRQC_RSS_FIELD_IPV6_TCP |
    		E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
    
    	ew32(MRQC, mrqc);
    }
    
    /**
     * e1000e_get_base_timinca - get default SYSTIM time increment attributes
     * @adapter: board private structure
     * @timinca: pointer to returned time increment attributes
     *
     * Get attributes for incrementing the System Time Register SYSTIML/H at
     * the default base frequency, and set the cyclecounter shift value.
     **/
    s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
    {
    	struct e1000_hw *hw = &adapter->hw;
    	u32 incvalue, incperiod, shift;
    
    	/* Make sure clock is enabled on I217/I218/I219  before checking
    	 * the frequency
    	 */
    	if ((hw->mac.type >= e1000_pch_lpt) &&
    	    !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
    	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
    		u32 fextnvm7 = er32(FEXTNVM7);
    
    		if (!(fextnvm7 & BIT(0))) {
    			ew32(FEXTNVM7, fextnvm7 | BIT(0));
    			e1e_flush();
    		}
    	}
    
    	switch (hw->mac.type) {
    	case e1000_pch2lan:
    		/* Stable 96MHz frequency */
    		incperiod = INCPERIOD_96MHZ;
    		incvalue = INCVALUE_96MHZ;
    		shift = INCVALUE_SHIFT_96MHZ;
    		adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
    		break;
    	case e1000_pch_lpt:
    		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
    			/* Stable 96MHz frequency */
    			incperiod = INCPERIOD_96MHZ;
    			incvalue = INCVALUE_96MHZ;
    			shift = INCVALUE_SHIFT_96MHZ;
    			adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
    		} else {
    			/* Stable 25MHz frequency */
    			incperiod = INCPERIOD_25MHZ;
    			incvalue = INCVALUE_25MHZ;
    			shift = INCVALUE_SHIFT_25MHZ;
    			adapter->cc.shift = shift;
    		}
    		break;
    	case e1000_pch_spt:
    		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
    			/* Stable 24MHz frequency */
    			incperiod = INCPERIOD_24MHZ;
    			incvalue = INCVALUE_24MHZ;
    			shift = INCVALUE_SHIFT_24MHZ;
    			adapter->cc.shift = shift;
    			break;
    		}
    		return -EINVAL;
    	case e1000_pch_cnp:
    		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
    			/* Stable 24MHz frequency */
    			incperiod = INCPERIOD_24MHZ;
    			incvalue = INCVALUE_24MHZ;
    			shift = INCVALUE_SHIFT_24MHZ;
    			adapter->cc.shift = shift;
    		} else {
    			/* Stable 38400KHz frequency */
    			incperiod = INCPERIOD_38400KHZ;
    			incvalue = INCVALUE_38400KHZ;
    			shift = INCVALUE_SHIFT_38400KHZ;
    			adapter->cc.shift = shift;
    		}
    		break;
    	case e1000_82574:
    	case e1000_82583:
    		/* Stable 25MHz frequency */
    		incperiod = INCPERIOD_25MHZ;
    		incvalue = INCVALUE_25MHZ;
    		shift = INCVALUE_SHIFT_25MHZ;
    		adapter->cc.shift = shift;
    		break;
    	default:
    		return -EINVAL;
    	}
    
    	*timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
    		    ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
    
    	return 0;
    }
    
    /**
     * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
     * @adapter: board private structure
     *
     * Outgoing time stamping can be enabled and disabled. Play nice and
     * disable it when requested, although it shouldn't cause any overhead
     * when no packet needs it. At most one packet in the queue may be
     * marked for time stamping, otherwise it would be impossible to tell
     * for sure to which packet the hardware time stamp belongs.
     *
     * Incoming time stamping has to be configured via the hardware filters.
     * Not all combinations are supported, in particular event type has to be
     * specified. Matching the kind of event packet is not supported, with the
     * exception of "all V2 events regardless of level 2 or 4".
     **/
    static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
    				  struct hwtstamp_config *config)
    {
    	struct e1000_hw *hw = &adapter->hw;
    	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
    	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
    	u32 rxmtrl = 0;
    	u16 rxudp = 0;
    	bool is_l4 = false;
    	bool is_l2 = false;
    	u32 regval;
    
    	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
    		return -EINVAL;
    
    	/* flags reserved for future extensions - must be zero */
    	if (config->flags)
    		return -EINVAL;
    
    	switch (config->tx_type) {
    	case HWTSTAMP_TX_OFF:
    		tsync_tx_ctl = 0;
    		break;
    	case HWTSTAMP_TX_ON:
    		break;
    	default:
    		return -ERANGE;
    	}
    
    	switch (config->rx_filter) {
    	case HWTSTAMP_FILTER_NONE:
    		tsync_rx_ctl = 0;
    		break;
    	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
    		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
    		rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
    		is_l4 = true;
    		break;
    	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
    		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
    		rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
    		is_l4 = true;
    		break;
    	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
    		/* Also time stamps V2 L2 Path Delay Request/Response */
    		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
    		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
    		is_l2 = true;
    		break;
    	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
    		/* Also time stamps V2 L2 Path Delay Request/Response. */
    		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
    		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
    		is_l2 = true;
    		break;
    	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
    		/* Hardware cannot filter just V2 L4 Sync messages;
    		 * fall-through to V2 (both L2 and L4) Sync.
    		 */
    	case HWTSTAMP_FILTER_PTP_V2_SYNC:
    		/* Also time stamps V2 Path Delay Request/Response. */
    		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
    		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
    		is_l2 = true;
    		is_l4 = true;
    		break;
    	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
    		/* Hardware cannot filter just V2 L4 Delay Request messages;
    		 * fall-through to V2 (both L2 and L4) Delay Request.
    		 */
    	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
    		/* Also time stamps V2 Path Delay Request/Response. */
    		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
    		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
    		is_l2 = true;
    		is_l4 = true;
    		break;
    	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
    	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
    		/* Hardware cannot filter just V2 L4 or L2 Event messages;
    		 * fall-through to all V2 (both L2 and L4) Events.
    		 */
    	case HWTSTAMP_FILTER_PTP_V2_EVENT:
    		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
    		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
    		is_l2 = true;
    		is_l4 = true;
    		break;
    	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
    		/* For V1, the hardware can only filter Sync messages or
    		 * Delay Request messages but not both so fall-through to
    		 * time stamp all packets.
    		 */
    	case HWTSTAMP_FILTER_NTP_ALL:
    	case HWTSTAMP_FILTER_ALL:
    		is_l2 = true;
    		is_l4 = true;
    		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
    		config->rx_filter = HWTSTAMP_FILTER_ALL;
    		break;
    	default:
    		return -ERANGE;
    	}
    
    	adapter->hwtstamp_config = *config;
    
    	/* enable/disable Tx h/w time stamping */
    	regval = er32(TSYNCTXCTL);
    	regval &= ~E1000_TSYNCTXCTL_ENABLED;
    	regval |= tsync_tx_ctl;
    	ew32(TSYNCTXCTL, regval);
    	if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
    	    (regval & E1000_TSYNCTXCTL_ENABLED)) {
    		e_err("Timesync Tx Control register not set as expected\n");
    		return -EAGAIN;
    	}
    
    	/* enable/disable Rx h/w time stamping */
    	regval = er32(TSYNCRXCTL);
    	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
    	regval |= tsync_rx_ctl;
    	ew32(TSYNCRXCTL, regval);
    	if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
    				 E1000_TSYNCRXCTL_TYPE_MASK)) !=
    	    (regval & (E1000_TSYNCRXCTL_ENABLED |
    		       E1000_TSYNCRXCTL_TYPE_MASK))) {
    		e_err("Timesync Rx Control register not set as expected\n");
    		return -EAGAIN;
    	}
    
    	/* L2: define ethertype filter for time stamped packets */
    	if (is_l2)
    		rxmtrl |= ETH_P_1588;
    
    	/* define which PTP packets get time stamped */
    	ew32(RXMTRL, rxmtrl);
    
    	/* Filter by destination port */
    	if (is_l4) {
    		rxudp = PTP_EV_PORT;
    		cpu_to_be16s(&rxudp);
    	}
    	ew32(RXUDP, rxudp);
    
    	e1e_flush();
    
    	/* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
    	er32(RXSTMPH);
    	er32(TXSTMPH);
    
    	return 0;
    }
    
    /**
     * e1000_configure - configure the hardware for Rx and Tx
     * @adapter: private board structure
     **/
    static void e1000_configure(struct e1000_adapter *adapter)
    {
    	struct e1000_ring *rx_ring = adapter->rx_ring;
    
    	e1000e_set_rx_mode(adapter->netdev);
    
    	e1000_restore_vlan(adapter);
    	e1000_init_manageability_pt(adapter);
    
    	e1000_configure_tx(adapter);
    
    	if (adapter->netdev->features & NETIF_F_RXHASH)
    		e1000e_setup_rss_hash(adapter);
    	e1000_setup_rctl(adapter);
    	e1000_configure_rx(adapter);
    	adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
    }
    
    /**
     * e1000e_power_up_phy - restore link in case the phy was powered down
     * @adapter: address of board private structure
     *
     * The phy may be powered down to save power and turn off link when the
     * driver is unloaded and wake on lan is not enabled (among others)
     * *** this routine MUST be followed by a call to e1000e_reset ***
     **/
    void e1000e_power_up_phy(struct e1000_adapter *adapter)
    {
    	if (adapter->hw.phy.ops.power_up)
    		adapter->hw.phy.ops.power_up(&adapter->hw);
    
    	adapter->hw.mac.ops.setup_link(&adapter->hw);
    }
    
    /**
     * e1000_power_down_phy - Power down the PHY
     *
     * Power down the PHY so no link is implied when interface is down.
     * The PHY cannot be powered down if management or WoL is active.
     */
    static void e1000_power_down_phy(struct e1000_adapter *adapter)
    {
    	if (adapter->hw.phy.ops.power_down)
    		adapter->hw.phy.ops.power_down(&adapter->hw);
    }
    
    /**
     * e1000_flush_tx_ring - remove all descriptors from the tx_ring
     *
     * We want to clear all pending descriptors from the TX ring.
     * zeroing happens when the HW reads the regs. We  assign the ring itself as
     * the data of the next descriptor. We don't care about the data we are about
     * to reset the HW.
     */
    static void e1000_flush_tx_ring(struct e1000_adapter *adapter)
    {
    	struct e1000_hw *hw = &adapter->hw;
    	struct e1000_ring *tx_ring = adapter->tx_ring;
    	struct e1000_tx_desc *tx_desc = NULL;
    	u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
    	u16 size = 512;
    
    	tctl = er32(TCTL);
    	ew32(TCTL, tctl | E1000_TCTL_EN);
    	tdt = er32(TDT(0));
    	BUG_ON(tdt != tx_ring->next_to_use);
    	tx_desc =  E1000_TX_DESC(*tx_ring, tx_ring->next_to_use);
    	tx_desc->buffer_addr = tx_ring->dma;
    
    	tx_desc->lower.data = cpu_to_le32(txd_lower | size);
    	tx_desc->upper.data = 0;
    	/* flush descriptors to memory before notifying the HW */
    	wmb();
    	tx_ring->next_to_use++;
    	if (tx_ring->next_to_use == tx_ring->count)
    		tx_ring->next_to_use = 0;
    	ew32(TDT(0), tx_ring->next_to_use);
    	mmiowb();
    	usleep_range(200, 250);
    }
    
    /**
     * e1000_flush_rx_ring - remove all descriptors from the rx_ring
     *
     * Mark all descriptors in the RX ring as consumed and disable the rx ring
     */
    static void e1000_flush_rx_ring(struct e1000_adapter *adapter)
    {
    	u32 rctl, rxdctl;
    	struct e1000_hw *hw = &adapter->hw;
    
    	rctl = er32(RCTL);
    	ew32(RCTL, rctl & ~E1000_RCTL_EN);
    	e1e_flush();
    	usleep_range(100, 150);
    
    	rxdctl = er32(RXDCTL(0));
    	/* zero the lower 14 bits (prefetch and host thresholds) */
    	rxdctl &= 0xffffc000;
    
    	/* update thresholds: prefetch threshold to 31, host threshold to 1
    	 * and make sure the granularity is "descriptors" and not "cache lines"
    	 */
    	rxdctl |= (0x1F | BIT(8) | E1000_RXDCTL_THRESH_UNIT_DESC);
    
    	ew32(RXDCTL(0), rxdctl);
    	/* momentarily enable the RX ring for the changes to take effect */
    	ew32(RCTL, rctl | E1000_RCTL_EN);
    	e1e_flush();
    	usleep_range(100, 150);
    	ew32(RCTL, rctl & ~E1000_RCTL_EN);
    }
    
    /**
     * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
     *
     * In i219, the descriptor rings must be emptied before resetting the HW
     * or before changing the device state to D3 during runtime (runtime PM).
     *
     * Failure to do this will cause the HW to enter a unit hang state which can
     * only be released by PCI reset on the device
     *
     */
    
    static void e1000_flush_desc_rings(struct e1000_adapter *adapter)
    {
    	u16 hang_state;
    	u32 fext_nvm11, tdlen;
    	struct e1000_hw *hw = &adapter->hw;
    
    	/* First, disable MULR fix in FEXTNVM11 */
    	fext_nvm11 = er32(FEXTNVM11);
    	fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
    	ew32(FEXTNVM11, fext_nvm11);
    	/* do nothing if we're not in faulty state, or if the queue is empty */
    	tdlen = er32(TDLEN(0));
    	pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
    			     &hang_state);
    	if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
    		return;
    	e1000_flush_tx_ring(adapter);
    	/* recheck, maybe the fault is caused by the rx ring */
    	pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
    			     &hang_state);
    	if (hang_state & FLUSH_DESC_REQUIRED)
    		e1000_flush_rx_ring(adapter);
    }
    
    /**
     * e1000e_systim_reset - reset the timesync registers after a hardware reset
     * @adapter: board private structure
     *
     * When the MAC is reset, all hardware bits for timesync will be reset to the
     * default values. This function will restore the settings last in place.
     * Since the clock SYSTIME registers are reset, we will simply restore the
     * cyclecounter to the kernel real clock time.
     **/
    static void e1000e_systim_reset(struct e1000_adapter *adapter)
    {
    	struct ptp_clock_info *info = &adapter->ptp_clock_info;
    	struct e1000_hw *hw = &adapter->hw;
    	unsigned long flags;
    	u32 timinca;
    	s32 ret_val;
    
    	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
    		return;
    
    	if (info->adjfreq) {
    		/* restore the previous ptp frequency delta */
    		ret_val = info->adjfreq(info, adapter->ptp_delta);
    	} else {
    		/* set the default base frequency if no adjustment possible */
    		ret_val = e1000e_get_base_timinca(adapter, &timinca);
    		if (!ret_val)
    			ew32(TIMINCA, timinca);
    	}
    
    	if (ret_val) {
    		dev_warn(&adapter->pdev->dev,
    			 "Failed to restore TIMINCA clock rate delta: %d\n",
    			 ret_val);
    		return;
    	}
    
    	/* reset the systim ns time counter */
    	spin_lock_irqsave(&adapter->systim_lock, flags);
    	timecounter_init(&adapter->tc, &adapter->cc,
    			 ktime_to_ns(ktime_get_real()));
    	spin_unlock_irqrestore(&adapter->systim_lock, flags);
    
    	/* restore the previous hwtstamp configuration settings */
    	e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
    }
    
    /**
     * e1000e_reset - bring the hardware into a known good state
     *
     * This function boots the hardware and enables some settings that
     * require a configuration cycle of the hardware - those cannot be
     * set/changed during runtime. After reset the device needs to be
     * properly configured for Rx, Tx etc.
     */
    void e1000e_reset(struct e1000_adapter *adapter)
    {
    	struct e1000_mac_info *mac = &adapter->hw.mac;
    	struct e1000_fc_info *fc = &adapter->hw.fc;
    	struct e1000_hw *hw = &adapter->hw;
    	u32 tx_space, min_tx_space, min_rx_space;
    	u32 pba = adapter->pba;
    	u16 hwm;
    
    	/* reset Packet Buffer Allocation to default */
    	ew32(PBA, pba);
    
    	if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) {
    		/* To maintain wire speed transmits, the Tx FIFO should be
    		 * large enough to accommodate two full transmit packets,
    		 * rounded up to the next 1KB and expressed in KB.  Likewise,
    		 * the Rx FIFO should be large enough to accommodate at least
    		 * one full receive packet and is similarly rounded up and
    		 * expressed in KB.
    		 */
    		pba = er32(PBA);
    		/* upper 16 bits has Tx packet buffer allocation size in KB */
    		tx_space = pba >> 16;
    		/* lower 16 bits has Rx packet buffer allocation size in KB */
    		pba &= 0xffff;
    		/* the Tx fifo also stores 16 bytes of information about the Tx
    		 * but don't include ethernet FCS because hardware appends it
    		 */
    		min_tx_space = (adapter->max_frame_size +
    				sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
    		min_tx_space = ALIGN(min_tx_space, 1024);
    		min_tx_space >>= 10;
    		/* software strips receive CRC, so leave room for it */
    		min_rx_space = adapter->max_frame_size;
    		min_rx_space = ALIGN(min_rx_space, 1024);
    		min_rx_space >>= 10;
    
    		/* If current Tx allocation is less than the min Tx FIFO size,
    		 * and the min Tx FIFO size is less than the current Rx FIFO
    		 * allocation, take space away from current Rx allocation
    		 */
    		if ((tx_space < min_tx_space) &&
    		    ((min_tx_space - tx_space) < pba)) {
    			pba -= min_tx_space - tx_space;
    
    			/* if short on Rx space, Rx wins and must trump Tx
    			 * adjustment
    			 */
    			if (pba < min_rx_space)
    				pba = min_rx_space;
    		}
    
    		ew32(PBA, pba);
    	}
    
    	/* flow control settings
    	 *
    	 * The high water mark must be low enough to fit one full frame
    	 * (or the size used for early receive) above it in the Rx FIFO.
    	 * Set it to the lower of:
    	 * - 90% of the Rx FIFO size, and
    	 * - the full Rx FIFO size minus one full frame
    	 */
    	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
    		fc->pause_time = 0xFFFF;
    	else
    		fc->pause_time = E1000_FC_PAUSE_TIME;
    	fc->send_xon = true;
    	fc->current_mode = fc->requested_mode;
    
    	switch (hw->mac.type) {
    	case e1000_ich9lan:
    	case e1000_ich10lan:
    		if (adapter->netdev->mtu > ETH_DATA_LEN) {
    			pba = 14;
    			ew32(PBA, pba);
    			fc->high_water = 0x2800;
    			fc->low_water = fc->high_water - 8;
    			break;
    		}
    		/* fall-through */
    	default:
    		hwm = min(((pba << 10) * 9 / 10),
    			  ((pba << 10) - adapter->max_frame_size));
    
    		fc->high_water = hwm & E1000_FCRTH_RTH;	/* 8-byte granularity */
    		fc->low_water = fc->high_water - 8;
    		break;
    	case e1000_pchlan:
    		/* Workaround PCH LOM adapter hangs with certain network
    		 * loads.  If hangs persist, try disabling Tx flow control.
    		 */
    		if (adapter->netdev->mtu > ETH_DATA_LEN) {
    			fc->high_water = 0x3500;
    			fc->low_water = 0x1500;
    		} else {
    			fc->high_water = 0x5000;
    			fc->low_water = 0x3000;
    		}
    		fc->refresh_time = 0x1000;
    		break;
    	case e1000_pch2lan:
    	case e1000_pch_lpt:
    	case e1000_pch_spt:
    	case e1000_pch_cnp:
    		fc->refresh_time = 0x0400;
    
    		if (adapter->netdev->mtu <= ETH_DATA_LEN) {
    			fc->high_water = 0x05C20;
    			fc->low_water = 0x05048;
    			fc->pause_time = 0x0650;
    			break;
    		}
    
    		pba = 14;
    		ew32(PBA, pba);
    		fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
    		fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
    		break;
    	}
    
    	/* Alignment of Tx data is on an arbitrary byte boundary with the
    	 * maximum size per Tx descriptor limited only to the transmit
    	 * allocation of the packet buffer minus 96 bytes with an upper
    	 * limit of 24KB due to receive synchronization limitations.
    	 */
    	adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
    				       24 << 10);
    
    	/* Disable Adaptive Interrupt Moderation if 2 full packets cannot
    	 * fit in receive buffer.
    	 */
    	if (adapter->itr_setting & 0x3) {
    		if ((adapter->max_frame_size * 2) > (pba << 10)) {
    			if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
    				dev_info(&adapter->pdev->dev,
    					 "Interrupt Throttle Rate off\n");
    				adapter->flags2 |= FLAG2_DISABLE_AIM;
    				e1000e_write_itr(adapter, 0);
    			}
    		} else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
    			dev_info(&adapter->pdev->dev,
    				 "Interrupt Throttle Rate on\n");
    			adapter->flags2 &= ~FLAG2_DISABLE_AIM;
    			adapter->itr = 20000;
    			e1000e_write_itr(adapter, adapter->itr);
    		}
    	}
    
    	if (hw->mac.type >= e1000_pch_spt)
    		e1000_flush_desc_rings(adapter);
    	/* Allow time for pending master requests to run */
    	mac->ops.reset_hw(hw);
    
    	/* For parts with AMT enabled, let the firmware know
    	 * that the network interface is in control
    	 */
    	if (adapter->flags & FLAG_HAS_AMT)
    		e1000e_get_hw_control(adapter);
    
    	ew32(WUC, 0);
    
    	if (mac->ops.init_hw(hw))
    		e_err("Hardware Error\n");
    
    	e1000_update_mng_vlan(adapter);
    
    	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
    	ew32(VET, ETH_P_8021Q);
    
    	e1000e_reset_adaptive(hw);
    
    	/* restore systim and hwtstamp settings */
    	e1000e_systim_reset(adapter);
    
    	/* Set EEE advertisement as appropriate */
    	if (adapter->flags2 & FLAG2_HAS_EEE) {
    		s32 ret_val;
    		u16 adv_addr;
    
    		switch (hw->phy.type) {
    		case e1000_phy_82579:
    			adv_addr = I82579_EEE_ADVERTISEMENT;
    			break;
    		case e1000_phy_i217:
    			adv_addr = I217_EEE_ADVERTISEMENT;
    			break;
    		default:
    			dev_err(&adapter->pdev->dev,
    				"Invalid PHY type setting EEE advertisement\n");
    			return;
    		}
    
    		ret_val = hw->phy.ops.acquire(hw);
    		if (ret_val) {
    			dev_err(&adapter->pdev->dev,
    				"EEE advertisement - unable to acquire PHY\n");
    			return;
    		}
    
    		e1000_write_emi_reg_locked(hw, adv_addr,
    					   hw->dev_spec.ich8lan.eee_disable ?
    					   0 : adapter->eee_advert);
    
    		hw->phy.ops.release(hw);
    	}
    
    	if (!netif_running(adapter->netdev) &&
    	    !test_bit(__E1000_TESTING, &adapter->state))
    		e1000_power_down_phy(adapter);
    
    	e1000_get_phy_info(hw);
    
    	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
    	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
    		u16 phy_data = 0;
    		/* speed up time to link by disabling smart power down, ignore
    		 * the return value of this function because there is nothing
    		 * different we would do if it failed
    		 */
    		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
    		phy_data &= ~IGP02E1000_PM_SPD;
    		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
    	}
    	if (hw->mac.type >= e1000_pch_spt && adapter->int_mode == 0) {
    		u32 reg;
    
    		/* Fextnvm7 @ 0xe4[2] = 1 */
    		reg = er32(FEXTNVM7);
    		reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE;
    		ew32(FEXTNVM7, reg);
    		/* Fextnvm9 @ 0x5bb4[13:12] = 11 */
    		reg = er32(FEXTNVM9);
    		reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS |
    		       E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS;
    		ew32(FEXTNVM9, reg);
    	}
    
    }
    
    /**
     * e1000e_trigger_lsc - trigger an LSC interrupt
     * @adapter: 
     *
     * Fire a link status change interrupt to start the watchdog.
     **/
    static void e1000e_trigger_lsc(struct e1000_adapter *adapter)
    {
    	struct e1000_hw *hw = &adapter->hw;
    
    	if (adapter->msix_entries)
    		ew32(ICS, E1000_ICS_LSC | E1000_ICS_OTHER);
    	else
    		ew32(ICS, E1000_ICS_LSC);
    }
    
    void e1000e_up(struct e1000_adapter *adapter)
    {
    	/* hardware has been reset, we need to reload some things */
    	e1000_configure(adapter);
    
    	clear_bit(__E1000_DOWN, &adapter->state);
    
    	if (adapter->msix_entries)
    		e1000_configure_msix(adapter);
    	e1000_irq_enable(adapter);
    
    	netif_start_queue(adapter->netdev);
    
    	e1000e_trigger_lsc(adapter);
    }
    
    static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
    {
    	struct e1000_hw *hw = &adapter->hw;
    
    	if (!(adapter->flags2 & FLAG2_DMA_BURST))
    		return;
    
    	/* flush pending descriptor writebacks to memory */
    	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
    	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
    
    	/* execute the writes immediately */
    	e1e_flush();
    
    	/* due to rare timing issues, write to TIDV/RDTR again to ensure the
    	 * write is successful
    	 */
    	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
    	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
    
    	/* execute the writes immediately */
    	e1e_flush();
    }
    
    static void e1000e_update_stats(struct e1000_adapter *adapter);
    
    /**
     * e1000e_down - quiesce the device and optionally reset the hardware
     * @adapter: board private structure
     * @reset: boolean flag to reset the hardware or not
     */
    void e1000e_down(struct e1000_adapter *adapter, bool reset)
    {
    	struct net_device *netdev = adapter->netdev;
    	struct e1000_hw *hw = &adapter->hw;
    	u32 tctl, rctl;
    
    	/* signal that we're down so the interrupt handler does not
    	 * reschedule our watchdog timer
    	 */
    	set_bit(__E1000_DOWN, &adapter->state);
    
    	netif_carrier_off(netdev);
    
    	/* disable receives in the hardware */
    	rctl = er32(RCTL);
    	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
    		ew32(RCTL, rctl & ~E1000_RCTL_EN);
    	/* flush and sleep below */
    
    	netif_stop_queue(netdev);
    
    	/* disable transmits in the hardware */
    	tctl = er32(TCTL);
    	tctl &= ~E1000_TCTL_EN;
    	ew32(TCTL, tctl);
    
    	/* flush both disables and wait for them to finish */
    	e1e_flush();
    	usleep_range(10000, 20000);
    
    	e1000_irq_disable(adapter);
    
    	napi_synchronize(&adapter->napi);
    
    	del_timer_sync(&adapter->watchdog_timer);
    	del_timer_sync(&adapter->phy_info_timer);
    
    	spin_lock(&adapter->stats64_lock);
    	e1000e_update_stats(adapter);
    	spin_unlock(&adapter->stats64_lock);
    
    	e1000e_flush_descriptors(adapter);
    
    	adapter->link_speed = 0;
    	adapter->link_duplex = 0;
    
    	/* Disable Si errata workaround on PCHx for jumbo frame flow */
    	if ((hw->mac.type >= e1000_pch2lan) &&
    	    (adapter->netdev->mtu > ETH_DATA_LEN) &&
    	    e1000_lv_jumbo_workaround_ich8lan(hw, false))
    		e_dbg("failed to disable jumbo frame workaround mode\n");
    
    	if (!pci_channel_offline(adapter->pdev)) {
    		if (reset)
    			e1000e_reset(adapter);
    		else if (hw->mac.type >= e1000_pch_spt)
    			e1000_flush_desc_rings(adapter);
    	}
    	e1000_clean_tx_ring(adapter->tx_ring);
    	e1000_clean_rx_ring(adapter->rx_ring);
    }
    
    void e1000e_reinit_locked(struct e1000_adapter *adapter)
    {
    	might_sleep();
    	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
    		usleep_range(1000, 2000);
    	e1000e_down(adapter, true);
    	e1000e_up(adapter);
    	clear_bit(__E1000_RESETTING, &adapter->state);
    }
    
    /**
     * e1000e_sanitize_systim - sanitize raw cycle counter reads
     * @hw: pointer to the HW structure
     * @systim: time value read, sanitized and returned
     *
     * Errata for 82574/82583 possible bad bits read from SYSTIMH/L:
     * check to see that the time is incrementing at a reasonable
     * rate and is a multiple of incvalue.
     **/
    static u64 e1000e_sanitize_systim(struct e1000_hw *hw, u64 systim)
    {
    	u64 time_delta, rem, temp;
    	u64 systim_next;
    	u32 incvalue;
    	int i;
    
    	incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
    	for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
    		/* latch SYSTIMH on read of SYSTIML */
    		systim_next = (u64)er32(SYSTIML);
    		systim_next |= (u64)er32(SYSTIMH) << 32;
    
    		time_delta = systim_next - systim;
    		temp = time_delta;
    		/* VMWare users have seen incvalue of zero, don't div / 0 */
    		rem = incvalue ? do_div(temp, incvalue) : (time_delta != 0);
    
    		systim = systim_next;
    
    		if ((time_delta < E1000_82574_SYSTIM_EPSILON) && (rem == 0))
    			break;
    	}
    
    	return systim;
    }
    
    /**
     * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
     * @cc: cyclecounter structure
     **/
    static u64 e1000e_cyclecounter_read(const struct cyclecounter *cc)
    {
    	struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
    						     cc);
    	struct e1000_hw *hw = &adapter->hw;
    	u32 systimel, systimeh;
    	u64 systim;
    	/* SYSTIMH latching upon SYSTIML read does not work well.
    	 * This means that if SYSTIML overflows after we read it but before
    	 * we read SYSTIMH, the value of SYSTIMH has been incremented and we
    	 * will experience a huge non linear increment in the systime value
    	 * to fix that we test for overflow and if true, we re-read systime.
    	 */
    	systimel = er32(SYSTIML);
    	systimeh = er32(SYSTIMH);
    	/* Is systimel is so large that overflow is possible? */
    	if (systimel >= (u32)0xffffffff - E1000_TIMINCA_INCVALUE_MASK) {
    		u32 systimel_2 = er32(SYSTIML);
    		if (systimel > systimel_2) {
    			/* There was an overflow, read again SYSTIMH, and use
    			 * systimel_2
    			 */
    			systimeh = er32(SYSTIMH);
    			systimel = systimel_2;
    		}
    	}
    	systim = (u64)systimel;
    	systim |= (u64)systimeh << 32;
    
    	if (adapter->flags2 & FLAG2_CHECK_SYSTIM_OVERFLOW)
    		systim = e1000e_sanitize_systim(hw, systim);
    
    	return systim;
    }
    
    /**
     * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
     * @adapter: board private structure to initialize
     *
     * e1000_sw_init initializes the Adapter private data structure.
     * Fields are initialized based on PCI device information and
     * OS network device settings (MTU size).
     **/
    static int e1000_sw_init(struct e1000_adapter *adapter)
    {
    	struct net_device *netdev = adapter->netdev;
    
    	adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
    	adapter->rx_ps_bsize0 = 128;
    	adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
    	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
    	adapter->tx_ring_count = E1000_DEFAULT_TXD;
    	adapter->rx_ring_count = E1000_DEFAULT_RXD;
    
    	spin_lock_init(&adapter->stats64_lock);
    
    	e1000e_set_interrupt_capability(adapter);
    
    	if (e1000_alloc_queues(adapter))
    		return -ENOMEM;
    
    	/* Setup hardware time stamping cyclecounter */
    	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
    		adapter->cc.read = e1000e_cyclecounter_read;
    		adapter->cc.mask = CYCLECOUNTER_MASK(64);
    		adapter->cc.mult = 1;
    		/* cc.shift set in e1000e_get_base_tininca() */
    
    		spin_lock_init(&adapter->systim_lock);
    		INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
    	}
    
    	/* Explicitly disable IRQ since the NIC can be in any state. */
    	e1000_irq_disable(adapter);
    
    	set_bit(__E1000_DOWN, &adapter->state);
    	return 0;
    }
    
    /**
     * e1000_intr_msi_test - Interrupt Handler
     * @irq: interrupt number
     * @data: pointer to a network interface device structure
     **/
    static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
    {
    	struct net_device *netdev = data;
    	struct e1000_adapter *adapter = netdev_priv(netdev);
    	struct e1000_hw *hw = &adapter->hw;
    	u32 icr = er32(ICR);
    
    	e_dbg("icr is %08X\n", icr);
    	if (icr & E1000_ICR_RXSEQ) {
    		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
    		/* Force memory writes to complete before acknowledging the
    		 * interrupt is handled.
    		 */
    		wmb();
    	}
    
    	return IRQ_HANDLED;
    }
    
    /**
     * e1000_test_msi_interrupt - Returns 0 for successful test
     * @adapter: board private struct
     *
     * code flow taken from tg3.c
     **/
    static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
    {
    	struct net_device *netdev = adapter->netdev;
    	struct e1000_hw *hw = &adapter->hw;
    	int err;
    
    	/* poll_enable hasn't been called yet, so don't need disable */
    	/* clear any pending events */
    	er32(ICR);
    
    	/* free the real vector and request a test handler */
    	e1000_free_irq(adapter);
    	e1000e_reset_interrupt_capability(adapter);
    
    	/* Assume that the test fails, if it succeeds then the test
    	 * MSI irq handler will unset this flag
    	 */
    	adapter->flags |= FLAG_MSI_TEST_FAILED;
    
    	err = pci_enable_msi(adapter->pdev);
    	if (err)
    		goto msi_test_failed;
    
    	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
    			  netdev->name, netdev);
    	if (err) {
    		pci_disable_msi(adapter->pdev);
    		goto msi_test_failed;
    	}
    
    	/* Force memory writes to complete before enabling and firing an
    	 * interrupt.
    	 */
    	wmb();
    
    	e1000_irq_enable(adapter);
    
    	/* fire an unusual interrupt on the test handler */
    	ew32(ICS, E1000_ICS_RXSEQ);
    	e1e_flush();
    	msleep(100);
    
    	e1000_irq_disable(adapter);
    
    	rmb();			/* read flags after interrupt has been fired */
    
    	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
    		adapter->int_mode = E1000E_INT_MODE_LEGACY;
    		e_info("MSI interrupt test failed, using legacy interrupt.\n");
    	} else {
    		e_dbg("MSI interrupt test succeeded!\n");
    	}
    
    	free_irq(adapter->pdev->irq, netdev);
    	pci_disable_msi(adapter->pdev);
    
    msi_test_failed:
    	e1000e_set_interrupt_capability(adapter);
    	return e1000_request_irq(adapter);
    }
    
    /**
     * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
     * @adapter: board private struct
     *
     * code flow taken from tg3.c, called with e1000 interrupts disabled.
     **/
    static int e1000_test_msi(struct e1000_adapter *adapter)
    {
    	int err;
    	u16 pci_cmd;
    
    	if (!(adapter->flags & FLAG_MSI_ENABLED))
    		return 0;
    
    	/* disable SERR in case the MSI write causes a master abort */
    	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
    	if (pci_cmd & PCI_COMMAND_SERR)
    		pci_write_config_word(adapter->pdev, PCI_COMMAND,
    				      pci_cmd & ~PCI_COMMAND_SERR);
    
    	err = e1000_test_msi_interrupt(adapter);
    
    	/* re-enable SERR */
    	if (pci_cmd & PCI_COMMAND_SERR) {
    		pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
    		pci_cmd |= PCI_COMMAND_SERR;
    		pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
    	}
    
    	return err;
    }
    
    /**
     * e1000e_open - Called when a network interface is made active
     * @netdev: network interface device structure
     *
     * Returns 0 on success, negative value on failure
     *
     * The open entry point is called when a network interface is made
     * active by the system (IFF_UP).  At this point all resources needed
     * for transmit and receive operations are allocated, the interrupt
     * handler is registered with the OS, the watchdog timer is started,
     * and the stack is notified that the interface is ready.
     **/
    int e1000e_open(struct net_device *netdev)
    {
    	struct e1000_adapter *adapter = netdev_priv(netdev);
    	struct e1000_hw *hw = &adapter->hw;
    	struct pci_dev *pdev = adapter->pdev;
    	int err;
    
    	/* disallow open during test */
    	if (test_bit(__E1000_TESTING, &adapter->state))
    		return -EBUSY;
    
    	pm_runtime_get_sync(&pdev->dev);
    
    	netif_carrier_off(netdev);
    
    	/* allocate transmit descriptors */
    	err = e1000e_setup_tx_resources(adapter->tx_ring);
    	if (err)
    		goto err_setup_tx;
    
    	/* allocate receive descriptors */
    	err = e1000e_setup_rx_resources(adapter->rx_ring);
    	if (err)
    		goto err_setup_rx;
    
    	/* If AMT is enabled, let the firmware know that the network
    	 * interface is now open and reset the part to a known state.
    	 */
    	if (adapter->flags & FLAG_HAS_AMT) {
    		e1000e_get_hw_control(adapter);
    		e1000e_reset(adapter);
    	}
    
    	e1000e_power_up_phy(adapter);
    
    	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
    	if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
    		e1000_update_mng_vlan(adapter);
    
    	/* DMA latency requirement to workaround jumbo issue */
    	pm_qos_add_request(&adapter->pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
    			   PM_QOS_DEFAULT_VALUE);
    
    	/* before we allocate an interrupt, we must be ready to handle it.
    	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
    	 * as soon as we call pci_request_irq, so we have to setup our
    	 * clean_rx handler before we do so.
    	 */
    	e1000_configure(adapter);
    
    	err = e1000_request_irq(adapter);
    	if (err)
    		goto err_req_irq;
    
    	/* Work around PCIe errata with MSI interrupts causing some chipsets to
    	 * ignore e1000e MSI messages, which means we need to test our MSI
    	 * interrupt now
    	 */
    	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
    		err = e1000_test_msi(adapter);
    		if (err) {
    			e_err("Interrupt allocation failed\n");
    			goto err_req_irq;
    		}
    	}
    
    	/* From here on the code is the same as e1000e_up() */
    	clear_bit(__E1000_DOWN, &adapter->state);
    
    	napi_enable(&adapter->napi);
    
    	e1000_irq_enable(adapter);
    
    	adapter->tx_hang_recheck = false;
    	netif_start_queue(netdev);
    
    	hw->mac.get_link_status = true;
    	pm_runtime_put(&pdev->dev);
    
    	e1000e_trigger_lsc(adapter);
    
    	return 0;
    
    err_req_irq:
    	pm_qos_remove_request(&adapter->pm_qos_req);
    	e1000e_release_hw_control(adapter);
    	e1000_power_down_phy(adapter);
    	e1000e_free_rx_resources(adapter->rx_ring);
    err_setup_rx:
    	e1000e_free_tx_resources(adapter->tx_ring);
    err_setup_tx:
    	e1000e_reset(adapter);
    	pm_runtime_put_sync(&pdev->dev);
    
    	return err;
    }
    
    /**
     * e1000e_close - Disables a network interface
     * @netdev: network interface device structure
     *
     * Returns 0, this is not allowed to fail
     *
     * The close entry point is called when an interface is de-activated
     * by the OS.  The hardware is still under the drivers control, but
     * needs to be disabled.  A global MAC reset is issued to stop the
     * hardware, and all transmit and receive resources are freed.
     **/
    int e1000e_close(struct net_device *netdev)
    {
    	struct e1000_adapter *adapter = netdev_priv(netdev);
    	struct pci_dev *pdev = adapter->pdev;
    	int count = E1000_CHECK_RESET_COUNT;
    
    	while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
    		usleep_range(10000, 20000);
    
    	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
    
    	pm_runtime_get_sync(&pdev->dev);
    
    	if (!test_bit(__E1000_DOWN, &adapter->state)) {
    		e1000e_down(adapter, true);
    		e1000_free_irq(adapter);
    
    		/* Link status message must follow this format */
    		pr_info("%s NIC Link is Down\n", adapter->netdev->name);
    	}
    
    	napi_disable(&adapter->napi);
    
    	e1000e_free_tx_resources(adapter->tx_ring);
    	e1000e_free_rx_resources(adapter->rx_ring);
    
    	/* kill manageability vlan ID if supported, but not if a vlan with
    	 * the same ID is registered on the host OS (let 8021q kill it)
    	 */
    	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
    		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
    				       adapter->mng_vlan_id);
    
    	/* If AMT is enabled, let the firmware know that the network
    	 * interface is now closed
    	 */
    	if ((adapter->flags & FLAG_HAS_AMT) &&
    	    !test_bit(__E1000_TESTING, &adapter->state))
    		e1000e_release_hw_control(adapter);
    
    	pm_qos_remove_request(&adapter->pm_qos_req);
    
    	pm_runtime_put_sync(&pdev->dev);
    
    	return 0;
    }
    
    /**
     * e1000_set_mac - Change the Ethernet Address of the NIC
     * @netdev: network interface device structure
     * @p: pointer to an address structure
     *
     * Returns 0 on success, negative on failure
     **/
    static int e1000_set_mac(struct net_device *netdev, void *p)
    {
    	struct e1000_adapter *adapter = netdev_priv(netdev);
    	struct e1000_hw *hw = &adapter->hw;
    	struct sockaddr *addr = p;
    
    	if (!is_valid_ether_addr(addr->sa_data))
    		return -EADDRNOTAVAIL;
    
    	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
    	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
    
    	hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
    
    	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
    		/* activate the work around */
    		e1000e_set_laa_state_82571(&adapter->hw, 1);
    
    		/* Hold a copy of the LAA in RAR[14] This is done so that
    		 * between the time RAR[0] gets clobbered  and the time it
    		 * gets fixed (in e1000_watchdog), the actual LAA is in one
    		 * of the RARs and no incoming packets directed to this port
    		 * are dropped. Eventually the LAA will be in RAR[0] and
    		 * RAR[14]
    		 */
    		hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
    				    adapter->hw.mac.rar_entry_count - 1);
    	}
    
    	return 0;
    }
    
    /**
     * e1000e_update_phy_task - work thread to update phy
     * @work: pointer to our work struct
     *
     * this worker thread exists because we must acquire a
     * semaphore to read the phy, which we could msleep while
     * waiting for it, and we can't msleep in a timer.
     **/
    static void e1000e_update_phy_task(struct work_struct *work)
    {
    	struct e1000_adapter *adapter = container_of(work,
    						     struct e1000_adapter,
    						     update_phy_task);
    	struct e1000_hw *hw = &adapter->hw;
    
    	if (test_bit(__E1000_DOWN, &adapter->state))
    		return;
    
    	e1000_get_phy_info(hw);
    
    	/* Enable EEE on 82579 after link up */
    	if (hw->phy.type >= e1000_phy_82579)
    		e1000_set_eee_pchlan(hw);
    }
    
    /**
     * e1000_update_phy_info - timre call-back to update PHY info
     * @data: pointer to adapter cast into an unsigned long
     *
     * Need to wait a few seconds after link up to get diagnostic information from
     * the phy
     **/
    static void e1000_update_phy_info(unsigned long data)
    {
    	struct e1000_adapter *adapter = (struct e1000_adapter *)data;
    
    	if (test_bit(__E1000_DOWN, &adapter->state))
    		return;
    
    	schedule_work(&adapter->update_phy_task);
    }
    
    /**
     * e1000e_update_phy_stats - Update the PHY statistics counters
     * @adapter: board private structure
     *
     * Read/clear the upper 16-bit PHY registers and read/accumulate lower
     **/
    static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
    {
    	struct e1000_hw *hw = &adapter->hw;
    	s32 ret_val;
    	u16 phy_data;
    
    	ret_val = hw->phy.ops.acquire(hw);
    	if (ret_val)
    		return;
    
    	/* A page set is expensive so check if already on desired page.
    	 * If not, set to the page with the PHY status registers.
    	 */
    	hw->phy.addr = 1;
    	ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
    					   &phy_data);
    	if (ret_val)
    		goto release;
    	if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
    		ret_val = hw->phy.ops.set_page(hw,
    					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
    		if (ret_val)
    			goto release;
    	}
    
    	/* Single Collision Count */
    	hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
    	ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
    	if (!ret_val)
    		adapter->stats.scc += phy_data;
    
    	/* Excessive Collision Count */
    	hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
    	ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
    	if (!ret_val)
    		adapter->stats.ecol += phy_data;
    
    	/* Multiple Collision Count */
    	hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
    	ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
    	if (!ret_val)
    		adapter->stats.mcc += phy_data;
    
    	/* Late Collision Count */
    	hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
    	ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
    	if (!ret_val)
    		adapter->stats.latecol += phy_data;
    
    	/* Collision Count - also used for adaptive IFS */
    	hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
    	ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
    	if (!ret_val)
    		hw->mac.collision_delta = phy_data;
    
    	/* Defer Count */
    	hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
    	ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
    	if (!ret_val)
    		adapter->stats.dc += phy_data;
    
    	/* Transmit with no CRS */
    	hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
    	ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
    	if (!ret_val)
    		adapter->stats.tncrs += phy_data;
    
    release:
    	hw->phy.ops.release(hw);
    }
    
    /**
     * e1000e_update_stats - Update the board statistics counters
     * @adapter: board private structure
     **/
    static void e1000e_update_stats(struct e1000_adapter *adapter)
    {
    	struct net_device *netdev = adapter->netdev;
    	struct e1000_hw *hw = &adapter->hw;
    	struct pci_dev *pdev = adapter->pdev;
    
    	/* Prevent stats update while adapter is being reset, or if the pci
    	 * connection is down.
    	 */
    	if (adapter->link_speed == 0)
    		return;
    	if (pci_channel_offline(pdev))
    		return;
    
    	adapter->stats.crcerrs += er32(CRCERRS);
    	adapter->stats.gprc += er32(GPRC);
    	adapter->stats.gorc += er32(GORCL);
    	er32(GORCH);		/* Clear gorc */
    	adapter->stats.bprc += er32(BPRC);
    	adapter->stats.mprc += er32(MPRC);
    	adapter->stats.roc += er32(ROC);
    
    	adapter->stats.mpc += er32(MPC);
    
    	/* Half-duplex statistics */
    	if (adapter->link_duplex == HALF_DUPLEX) {
    		if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
    			e1000e_update_phy_stats(adapter);
    		} else {
    			adapter->stats.scc += er32(SCC);
    			adapter->stats.ecol += er32(ECOL);
    			adapter->stats.mcc += er32(MCC);
    			adapter->stats.latecol += er32(LATECOL);
    			adapter->stats.dc += er32(DC);
    
    			hw->mac.collision_delta = er32(COLC);
    
    			if ((hw->mac.type != e1000_82574) &&
    			    (hw->mac.type != e1000_82583))
    				adapter->stats.tncrs += er32(TNCRS);
    		}
    		adapter->stats.colc += hw->mac.collision_delta;
    	}
    
    	adapter->stats.xonrxc += er32(XONRXC);
    	adapter->stats.xontxc += er32(XONTXC);
    	adapter->stats.xoffrxc += er32(XOFFRXC);
    	adapter->stats.xofftxc += er32(XOFFTXC);
    	adapter->stats.gptc += er32(GPTC);
    	adapter->stats.gotc += er32(GOTCL);
    	er32(GOTCH);		/* Clear gotc */
    	adapter->stats.rnbc += er32(RNBC);
    	adapter->stats.ruc += er32(RUC);
    
    	adapter->stats.mptc += er32(MPTC);
    	adapter->stats.bptc += er32(BPTC);
    
    	/* used for adaptive IFS */
    
    	hw->mac.tx_packet_delta = er32(TPT);
    	adapter->stats.tpt += hw->mac.tx_packet_delta;
    
    	adapter->stats.algnerrc += er32(ALGNERRC);
    	adapter->stats.rxerrc += er32(RXERRC);
    	adapter->stats.cexterr += er32(CEXTERR);
    	adapter->stats.tsctc += er32(TSCTC);
    	adapter->stats.tsctfc += er32(TSCTFC);
    
    	/* Fill out the OS statistics structure */
    	netdev->stats.multicast = adapter->stats.mprc;
    	netdev->stats.collisions = adapter->stats.colc;
    
    	/* Rx Errors */
    
    	/* RLEC on some newer hardware can be incorrect so build
    	 * our own version based on RUC and ROC
    	 */
    	netdev->stats.rx_errors = adapter->stats.rxerrc +
    	    adapter->stats.crcerrs + adapter->stats.algnerrc +
    	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
    	netdev->stats.rx_length_errors = adapter->stats.ruc +
    	    adapter->stats.roc;
    	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
    	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
    	netdev->stats.rx_missed_errors = adapter->stats.mpc;
    
    	/* Tx Errors */
    	netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
    	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
    	netdev->stats.tx_window_errors = adapter->stats.latecol;
    	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
    
    	/* Tx Dropped needs to be maintained elsewhere */
    
    	/* Management Stats */
    	adapter->stats.mgptc += er32(MGTPTC);
    	adapter->stats.mgprc += er32(MGTPRC);
    	adapter->stats.mgpdc += er32(MGTPDC);
    
    	/* Correctable ECC Errors */
    	if (hw->mac.type >= e1000_pch_lpt) {
    		u32 pbeccsts = er32(PBECCSTS);
    
    		adapter->corr_errors +=
    		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
    		adapter->uncorr_errors +=
    		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
    		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
    	}
    }
    
    /**
     * e1000_phy_read_status - Update the PHY register status snapshot
     * @adapter: board private structure
     **/
    static void e1000_phy_read_status(struct e1000_adapter *adapter)
    {
    	struct e1000_hw *hw = &adapter->hw;
    	struct e1000_phy_regs *phy = &adapter->phy_regs;
    
    	if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
    	    (er32(STATUS) & E1000_STATUS_LU) &&
    	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
    		int ret_val;
    
    		ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
    		ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
    		ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
    		ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
    		ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
    		ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
    		ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
    		ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
    		if (ret_val)
    			e_warn("Error reading PHY register\n");
    	} else {
    		/* Do not read PHY registers if link is not up
    		 * Set values to typical power-on defaults
    		 */
    		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
    		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
    			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
    			     BMSR_ERCAP);
    		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
    				  ADVERTISE_ALL | ADVERTISE_CSMA);
    		phy->lpa = 0;
    		phy->expansion = EXPANSION_ENABLENPAGE;
    		phy->ctrl1000 = ADVERTISE_1000FULL;
    		phy->stat1000 = 0;
    		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
    	}
    }
    
    static void e1000_print_link_info(struct e1000_adapter *adapter)
    {
    	struct e1000_hw *hw = &adapter->hw;
    	u32 ctrl = er32(CTRL);
    
    	/* Link status message must follow this format for user tools */
    	pr_info("%s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
    		adapter->netdev->name, adapter->link_speed,
    		adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
    		(ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
    		(ctrl & E1000_CTRL_RFCE) ? "Rx" :
    		(ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
    }
    
    static bool e1000e_has_link(struct e1000_adapter *adapter)
    {
    	struct e1000_hw *hw = &adapter->hw;
    	bool link_active = false;
    	s32 ret_val = 0;
    
    	/* get_link_status is set on LSC (link status) interrupt or
    	 * Rx sequence error interrupt.  get_link_status will stay
    	 * true until the check_for_link establishes link
    	 * for copper adapters ONLY
    	 */
    	switch (hw->phy.media_type) {
    	case e1000_media_type_copper:
    		if (hw->mac.get_link_status) {
    			ret_val = hw->mac.ops.check_for_link(hw);
    			link_active = ret_val > 0;
    		} else {
    			link_active = true;
    		}
    		break;
    	case e1000_media_type_fiber:
    		ret_val = hw->mac.ops.check_for_link(hw);
    		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
    		break;
    	case e1000_media_type_internal_serdes:
    		ret_val = hw->mac.ops.check_for_link(hw);
    		link_active = hw->mac.serdes_has_link;
    		break;
    	default:
    	case e1000_media_type_unknown:
    		break;
    	}
    
    	if ((ret_val == -E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
    	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
    		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
    		e_info("Gigabit has been disabled, downgrading speed\n");
    	}
    
    	return link_active;
    }
    
    static void e1000e_enable_receives(struct e1000_adapter *adapter)
    {
    	/* make sure the receive unit is started */
    	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
    	    (adapter->flags & FLAG_RESTART_NOW)) {
    		struct e1000_hw *hw = &adapter->hw;
    		u32 rctl = er32(RCTL);
    
    		ew32(RCTL, rctl | E1000_RCTL_EN);
    		adapter->flags &= ~FLAG_RESTART_NOW;
    	}
    }
    
    static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
    {
    	struct e1000_hw *hw = &adapter->hw;
    
    	/* With 82574 controllers, PHY needs to be checked periodically
    	 * for hung state and reset, if two calls return true
    	 */
    	if (e1000_check_phy_82574(hw))
    		adapter->phy_hang_count++;
    	else
    		adapter->phy_hang_count = 0;
    
    	if (adapter->phy_hang_count > 1) {
    		adapter->phy_hang_count = 0;
    		e_dbg("PHY appears hung - resetting\n");
    		schedule_work(&adapter->reset_task);
    	}
    }
    
    /**
     * e1000_watchdog - Timer Call-back
     * @data: pointer to adapter cast into an unsigned long
     **/
    static void e1000_watchdog(unsigned long data)
    {
    	struct e1000_adapter *adapter = (struct e1000_adapter *)data;
    
    	/* Do the rest outside of interrupt context */
    	schedule_work(&adapter->watchdog_task);
    
    	/* TODO: make this use queue_delayed_work() */
    }
    
    static void e1000_watchdog_task(struct work_struct *work)
    {
    	struct e1000_adapter *adapter = container_of(work,
    						     struct e1000_adapter,
    						     watchdog_task);
    	struct net_device *netdev = adapter->netdev;
    	struct e1000_mac_info *mac = &adapter->hw.mac;
    	struct e1000_phy_info *phy = &adapter->hw.phy;
    	struct e1000_ring *tx_ring = adapter->tx_ring;
    	struct e1000_hw *hw = &adapter->hw;
    	u32 link, tctl;
    
    	if (test_bit(__E1000_DOWN, &adapter->state))
    		return;
    
    	link = e1000e_has_link(adapter);
    	if ((netif_carrier_ok(netdev)) && link) {
    		/* Cancel scheduled suspend requests. */
    		pm_runtime_resume(netdev->dev.parent);
    
    		e1000e_enable_receives(adapter);
    		goto link_up;
    	}
    
    	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
    	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
    		e1000_update_mng_vlan(adapter);
    
    	if (link) {
    		if (!netif_carrier_ok(netdev)) {
    			bool txb2b = true;
    
    			/* Cancel scheduled suspend requests. */
    			pm_runtime_resume(netdev->dev.parent);
    
    			/* update snapshot of PHY registers on LSC */
    			e1000_phy_read_status(adapter);
    			mac->ops.get_link_up_info(&adapter->hw,
    						  &adapter->link_speed,
    						  &adapter->link_duplex);
    			e1000_print_link_info(adapter);
    
    			/* check if SmartSpeed worked */
    			e1000e_check_downshift(hw);
    			if (phy->speed_downgraded)
    				netdev_warn(netdev,
    					    "Link Speed was downgraded by SmartSpeed\n");
    
    			/* On supported PHYs, check for duplex mismatch only
    			 * if link has autonegotiated at 10/100 half
    			 */
    			if ((hw->phy.type == e1000_phy_igp_3 ||
    			     hw->phy.type == e1000_phy_bm) &&
    			    hw->mac.autoneg &&
    			    (adapter->link_speed == SPEED_10 ||
    			     adapter->link_speed == SPEED_100) &&
    			    (adapter->link_duplex == HALF_DUPLEX)) {
    				u16 autoneg_exp;
    
    				e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
    
    				if (!(autoneg_exp & EXPANSION_NWAY))
    					e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
    			}
    
    			/* adjust timeout factor according to speed/duplex */
    			adapter->tx_timeout_factor = 1;
    			switch (adapter->link_speed) {
    			case SPEED_10:
    				txb2b = false;
    				adapter->tx_timeout_factor = 16;
    				break;
    			case SPEED_100:
    				txb2b = false;
    				adapter->tx_timeout_factor = 10;
    				break;
    			}
    
    			/* workaround: re-program speed mode bit after
    			 * link-up event
    			 */
    			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
    			    !txb2b) {
    				u32 tarc0;
    
    				tarc0 = er32(TARC(0));
    				tarc0 &= ~SPEED_MODE_BIT;
    				ew32(TARC(0), tarc0);
    			}
    
    			/* disable TSO for pcie and 10/100 speeds, to avoid
    			 * some hardware issues
    			 */
    			if (!(adapter->flags & FLAG_TSO_FORCE)) {
    				switch (adapter->link_speed) {
    				case SPEED_10:
    				case SPEED_100:
    					e_info("10/100 speed: disabling TSO\n");
    					netdev->features &= ~NETIF_F_TSO;
    					netdev->features &= ~NETIF_F_TSO6;
    					break;
    				case SPEED_1000:
    					netdev->features |= NETIF_F_TSO;
    					netdev->features |= NETIF_F_TSO6;
    					break;
    				default:
    					/* oops */
    					break;
    				}
    			}
    
    			/* enable transmits in the hardware, need to do this
    			 * after setting TARC(0)
    			 */
    			tctl = er32(TCTL);
    			tctl |= E1000_TCTL_EN;
    			ew32(TCTL, tctl);
    
    			/* Perform any post-link-up configuration before
    			 * reporting link up.
    			 */
    			if (phy->ops.cfg_on_link_up)
    				phy->ops.cfg_on_link_up(hw);
    
    			netif_carrier_on(netdev);
    
    			if (!test_bit(__E1000_DOWN, &adapter->state))
    				mod_timer(&adapter->phy_info_timer,
    					  round_jiffies(jiffies + 2 * HZ));
    		}
    	} else {
    		if (netif_carrier_ok(netdev)) {
    			adapter->link_speed = 0;
    			adapter->link_duplex = 0;
    			/* Link status message must follow this format */
    			pr_info("%s NIC Link is Down\n", adapter->netdev->name);
    			netif_carrier_off(netdev);
    			if (!test_bit(__E1000_DOWN, &adapter->state))
    				mod_timer(&adapter->phy_info_timer,
    					  round_jiffies(jiffies + 2 * HZ));
    
    			/* 8000ES2LAN requires a Rx packet buffer work-around
    			 * on link down event; reset the controller to flush
    			 * the Rx packet buffer.
    			 */
    			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
    				adapter->flags |= FLAG_RESTART_NOW;
    			else
    				pm_schedule_suspend(netdev->dev.parent,
    						    LINK_TIMEOUT);
    		}
    	}
    
    link_up:
    	spin_lock(&adapter->stats64_lock);
    	e1000e_update_stats(adapter);
    
    	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
    	adapter->tpt_old = adapter->stats.tpt;
    	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
    	adapter->colc_old = adapter->stats.colc;
    
    	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
    	adapter->gorc_old = adapter->stats.gorc;
    	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
    	adapter->gotc_old = adapter->stats.gotc;
    	spin_unlock(&adapter->stats64_lock);
    
    	/* If the link is lost the controller stops DMA, but
    	 * if there is queued Tx work it cannot be done.  So
    	 * reset the controller to flush the Tx packet buffers.
    	 */
    	if (!netif_carrier_ok(netdev) &&
    	    (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
    		adapter->flags |= FLAG_RESTART_NOW;
    
    	/* If reset is necessary, do it outside of interrupt context. */
    	if (adapter->flags & FLAG_RESTART_NOW) {
    		schedule_work(&adapter->reset_task);
    		/* return immediately since reset is imminent */
    		return;
    	}
    
    	e1000e_update_adaptive(&adapter->hw);
    
    	/* Simple mode for Interrupt Throttle Rate (ITR) */
    	if (adapter->itr_setting == 4) {
    		/* Symmetric Tx/Rx gets a reduced ITR=2000;
    		 * Total asymmetrical Tx or Rx gets ITR=8000;
    		 * everyone else is between 2000-8000.
    		 */
    		u32 goc = (adapter->gotc + adapter->gorc) / 10000;
    		u32 dif = (adapter->gotc > adapter->gorc ?
    			   adapter->gotc - adapter->gorc :
    			   adapter->gorc - adapter->gotc) / 10000;
    		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
    
    		e1000e_write_itr(adapter, itr);
    	}
    
    	/* Cause software interrupt to ensure Rx ring is cleaned */
    	if (adapter->msix_entries)
    		ew32(ICS, adapter->rx_ring->ims_val);
    	else
    		ew32(ICS, E1000_ICS_RXDMT0);
    
    	/* flush pending descriptors to memory before detecting Tx hang */
    	e1000e_flush_descriptors(adapter);
    
    	/* Force detection of hung controller every watchdog period */
    	adapter->detect_tx_hung = true;
    
    	/* With 82571 controllers, LAA may be overwritten due to controller
    	 * reset from the other port. Set the appropriate LAA in RAR[0]
    	 */
    	if (e1000e_get_laa_state_82571(hw))
    		hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
    
    	if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
    		e1000e_check_82574_phy_workaround(adapter);
    
    	/* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
    	if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
    		if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
    		    (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
    			er32(RXSTMPH);
    			adapter->rx_hwtstamp_cleared++;
    		} else {
    			adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
    		}
    	}
    
    	/* Reset the timer */
    	if (!test_bit(__E1000_DOWN, &adapter->state))
    		mod_timer(&adapter->watchdog_timer,
    			  round_jiffies(jiffies + 2 * HZ));
    }
    
    #define E1000_TX_FLAGS_CSUM		0x00000001
    #define E1000_TX_FLAGS_VLAN		0x00000002
    #define E1000_TX_FLAGS_TSO		0x00000004
    #define E1000_TX_FLAGS_IPV4		0x00000008
    #define E1000_TX_FLAGS_NO_FCS		0x00000010
    #define E1000_TX_FLAGS_HWTSTAMP		0x00000020
    #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
    #define E1000_TX_FLAGS_VLAN_SHIFT	16
    
    static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
    		     __be16 protocol)
    {
    	struct e1000_context_desc *context_desc;
    	struct e1000_buffer *buffer_info;
    	unsigned int i;
    	u32 cmd_length = 0;
    	u16 ipcse = 0, mss;
    	u8 ipcss, ipcso, tucss, tucso, hdr_len;
    	int err;
    
    	if (!skb_is_gso(skb))
    		return 0;
    
    	err = skb_cow_head(skb, 0);
    	if (err < 0)
    		return err;
    
    	hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
    	mss = skb_shinfo(skb)->gso_size;
    	if (protocol == htons(ETH_P_IP)) {
    		struct iphdr *iph = ip_hdr(skb);
    		iph->tot_len = 0;
    		iph->check = 0;
    		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
    							 0, IPPROTO_TCP, 0);
    		cmd_length = E1000_TXD_CMD_IP;
    		ipcse = skb_transport_offset(skb) - 1;
    	} else if (skb_is_gso_v6(skb)) {
    		ipv6_hdr(skb)->payload_len = 0;
    		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
    						       &ipv6_hdr(skb)->daddr,
    						       0, IPPROTO_TCP, 0);
    		ipcse = 0;
    	}
    	ipcss = skb_network_offset(skb);
    	ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
    	tucss = skb_transport_offset(skb);
    	tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
    
    	cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
    		       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
    
    	i = tx_ring->next_to_use;
    	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
    	buffer_info = &tx_ring->buffer_info[i];
    
    	context_desc->lower_setup.ip_fields.ipcss = ipcss;
    	context_desc->lower_setup.ip_fields.ipcso = ipcso;
    	context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
    	context_desc->upper_setup.tcp_fields.tucss = tucss;
    	context_desc->upper_setup.tcp_fields.tucso = tucso;
    	context_desc->upper_setup.tcp_fields.tucse = 0;
    	context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
    	context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
    	context_desc->cmd_and_length = cpu_to_le32(cmd_length);
    
    	buffer_info->time_stamp = jiffies;
    	buffer_info->next_to_watch = i;
    
    	i++;
    	if (i == tx_ring->count)
    		i = 0;
    	tx_ring->next_to_use = i;
    
    	return 1;
    }
    
    static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
    			  __be16 protocol)
    {
    	struct e1000_adapter *adapter = tx_ring->adapter;
    	struct e1000_context_desc *context_desc;
    	struct e1000_buffer *buffer_info;
    	unsigned int i;
    	u8 css;
    	u32 cmd_len = E1000_TXD_CMD_DEXT;
    
    	if (skb->ip_summed != CHECKSUM_PARTIAL)
    		return false;
    
    	switch (protocol) {
    	case cpu_to_be16(ETH_P_IP):
    		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
    			cmd_len |= E1000_TXD_CMD_TCP;
    		break;
    	case cpu_to_be16(ETH_P_IPV6):
    		/* XXX not handling all IPV6 headers */
    		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
    			cmd_len |= E1000_TXD_CMD_TCP;
    		break;
    	default:
    		if (unlikely(net_ratelimit()))
    			e_warn("checksum_partial proto=%x!\n",
    			       be16_to_cpu(protocol));
    		break;
    	}
    
    	css = skb_checksum_start_offset(skb);
    
    	i = tx_ring->next_to_use;
    	buffer_info = &tx_ring->buffer_info[i];
    	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
    
    	context_desc->lower_setup.ip_config = 0;
    	context_desc->upper_setup.tcp_fields.tucss = css;
    	context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
    	context_desc->upper_setup.tcp_fields.tucse = 0;
    	context_desc->tcp_seg_setup.data = 0;
    	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
    
    	buffer_info->time_stamp = jiffies;
    	buffer_info->next_to_watch = i;
    
    	i++;
    	if (i == tx_ring->count)
    		i = 0;
    	tx_ring->next_to_use = i;
    
    	return true;
    }
    
    static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
    			unsigned int first, unsigned int max_per_txd,
    			unsigned int nr_frags)
    {
    	struct e1000_adapter *adapter = tx_ring->adapter;
    	struct pci_dev *pdev = adapter->pdev;
    	struct e1000_buffer *buffer_info;
    	unsigned int len = skb_headlen(skb);
    	unsigned int offset = 0, size, count = 0, i;
    	unsigned int f, bytecount, segs;
    
    	i = tx_ring->next_to_use;
    
    	while (len) {
    		buffer_info = &tx_ring->buffer_info[i];
    		size = min(len, max_per_txd);
    
    		buffer_info->length = size;
    		buffer_info->time_stamp = jiffies;
    		buffer_info->next_to_watch = i;
    		buffer_info->dma = dma_map_single(&pdev->dev,
    						  skb->data + offset,
    						  size, DMA_TO_DEVICE);
    		buffer_info->mapped_as_page = false;
    		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
    			goto dma_error;
    
    		len -= size;
    		offset += size;
    		count++;
    
    		if (len) {
    			i++;
    			if (i == tx_ring->count)
    				i = 0;
    		}
    	}
    
    	for (f = 0; f < nr_frags; f++) {
    		const struct skb_frag_struct *frag;
    
    		frag = &skb_shinfo(skb)->frags[f];
    		len = skb_frag_size(frag);
    		offset = 0;
    
    		while (len) {
    			i++;
    			if (i == tx_ring->count)
    				i = 0;
    
    			buffer_info = &tx_ring->buffer_info[i];
    			size = min(len, max_per_txd);
    
    			buffer_info->length = size;
    			buffer_info->time_stamp = jiffies;
    			buffer_info->next_to_watch = i;
    			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
    							    offset, size,
    							    DMA_TO_DEVICE);
    			buffer_info->mapped_as_page = true;
    			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
    				goto dma_error;
    
    			len -= size;
    			offset += size;
    			count++;
    		}
    	}
    
    	segs = skb_shinfo(skb)->gso_segs ? : 1;
    	/* multiply data chunks by size of headers */
    	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
    
    	tx_ring->buffer_info[i].skb = skb;
    	tx_ring->buffer_info[i].segs = segs;
    	tx_ring->buffer_info[i].bytecount = bytecount;
    	tx_ring->buffer_info[first].next_to_watch = i;
    
    	return count;
    
    dma_error:
    	dev_err(&pdev->dev, "Tx DMA map failed\n");
    	buffer_info->dma = 0;
    	if (count)
    		count--;
    
    	while (count--) {
    		if (i == 0)
    			i += tx_ring->count;
    		i--;
    		buffer_info = &tx_ring->buffer_info[i];
    		e1000_put_txbuf(tx_ring, buffer_info);
    	}
    
    	return 0;
    }
    
    static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
    {
    	struct e1000_adapter *adapter = tx_ring->adapter;
    	struct e1000_tx_desc *tx_desc = NULL;
    	struct e1000_buffer *buffer_info;
    	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
    	unsigned int i;
    
    	if (tx_flags & E1000_TX_FLAGS_TSO) {
    		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
    		    E1000_TXD_CMD_TSE;
    		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
    
    		if (tx_flags & E1000_TX_FLAGS_IPV4)
    			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
    	}
    
    	if (tx_flags & E1000_TX_FLAGS_CSUM) {
    		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
    		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
    	}
    
    	if (tx_flags & E1000_TX_FLAGS_VLAN) {
    		txd_lower |= E1000_TXD_CMD_VLE;
    		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
    	}
    
    	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
    		txd_lower &= ~(E1000_TXD_CMD_IFCS);
    
    	if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
    		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
    		txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
    	}
    
    	i = tx_ring->next_to_use;
    
    	do {
    		buffer_info = &tx_ring->buffer_info[i];
    		tx_desc = E1000_TX_DESC(*tx_ring, i);
    		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
    		tx_desc->lower.data = cpu_to_le32(txd_lower |
    						  buffer_info->length);
    		tx_desc->upper.data = cpu_to_le32(txd_upper);
    
    		i++;
    		if (i == tx_ring->count)
    			i = 0;
    	} while (--count > 0);
    
    	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
    
    	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
    	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
    		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
    
    	/* Force memory writes to complete before letting h/w
    	 * know there are new descriptors to fetch.  (Only
    	 * applicable for weak-ordered memory model archs,
    	 * such as IA-64).
    	 */
    	wmb();
    
    	tx_ring->next_to_use = i;
    }
    
    #define MINIMUM_DHCP_PACKET_SIZE 282
    static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
    				    struct sk_buff *skb)
    {
    	struct e1000_hw *hw = &adapter->hw;
    	u16 length, offset;
    
    	if (skb_vlan_tag_present(skb) &&
    	    !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
    	      (adapter->hw.mng_cookie.status &
    	       E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
    		return 0;
    
    	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
    		return 0;
    
    	if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
    		return 0;
    
    	{
    		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
    		struct udphdr *udp;
    
    		if (ip->protocol != IPPROTO_UDP)
    			return 0;
    
    		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
    		if (ntohs(udp->dest) != 67)
    			return 0;
    
    		offset = (u8 *)udp + 8 - skb->data;
    		length = skb->len - offset;
    		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
    	}
    
    	return 0;
    }
    
    static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
    {
    	struct e1000_adapter *adapter = tx_ring->adapter;
    
    	netif_stop_queue(adapter->netdev);
    	/* Herbert's original patch had:
    	 *  smp_mb__after_netif_stop_queue();
    	 * but since that doesn't exist yet, just open code it.
    	 */
    	smp_mb();
    
    	/* We need to check again in a case another CPU has just
    	 * made room available.
    	 */
    	if (e1000_desc_unused(tx_ring) < size)
    		return -EBUSY;
    
    	/* A reprieve! */
    	netif_start_queue(adapter->netdev);
    	++adapter->restart_queue;
    	return 0;
    }
    
    static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
    {
    	BUG_ON(size > tx_ring->count);
    
    	if (e1000_desc_unused(tx_ring) >= size)
    		return 0;
    	return __e1000_maybe_stop_tx(tx_ring, size);
    }
    
    static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
    				    struct net_device *netdev)
    {
    	struct e1000_adapter *adapter = netdev_priv(netdev);
    	struct e1000_ring *tx_ring = adapter->tx_ring;
    	unsigned int first;
    	unsigned int tx_flags = 0;
    	unsigned int len = skb_headlen(skb);
    	unsigned int nr_frags;
    	unsigned int mss;
    	int count = 0;
    	int tso;
    	unsigned int f;
    	__be16 protocol = vlan_get_protocol(skb);
    
    	if (test_bit(__E1000_DOWN, &adapter->state)) {
    		dev_kfree_skb_any(skb);
    		return NETDEV_TX_OK;
    	}
    
    	if (skb->len <= 0) {
    		dev_kfree_skb_any(skb);
    		return NETDEV_TX_OK;
    	}
    
    	/* The minimum packet size with TCTL.PSP set is 17 bytes so
    	 * pad skb in order to meet this minimum size requirement
    	 */
    	if (skb_put_padto(skb, 17))
    		return NETDEV_TX_OK;
    
    	mss = skb_shinfo(skb)->gso_size;
    	if (mss) {
    		u8 hdr_len;
    
    		/* TSO Workaround for 82571/2/3 Controllers -- if skb->data
    		 * points to just header, pull a few bytes of payload from
    		 * frags into skb->data
    		 */
    		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
    		/* we do this workaround for ES2LAN, but it is un-necessary,
    		 * avoiding it could save a lot of cycles
    		 */
    		if (skb->data_len && (hdr_len == len)) {
    			unsigned int pull_size;
    
    			pull_size = min_t(unsigned int, 4, skb->data_len);
    			if (!__pskb_pull_tail(skb, pull_size)) {
    				e_err("__pskb_pull_tail failed.\n");
    				dev_kfree_skb_any(skb);
    				return NETDEV_TX_OK;
    			}
    			len = skb_headlen(skb);
    		}
    	}
    
    	/* reserve a descriptor for the offload context */
    	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
    		count++;
    	count++;
    
    	count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
    
    	nr_frags = skb_shinfo(skb)->nr_frags;
    	for (f = 0; f < nr_frags; f++)
    		count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
    				      adapter->tx_fifo_limit);
    
    	if (adapter->hw.mac.tx_pkt_filtering)
    		e1000_transfer_dhcp_info(adapter, skb);
    
    	/* need: count + 2 desc gap to keep tail from touching
    	 * head, otherwise try next time
    	 */
    	if (e1000_maybe_stop_tx(tx_ring, count + 2))
    		return NETDEV_TX_BUSY;
    
    	if (skb_vlan_tag_present(skb)) {
    		tx_flags |= E1000_TX_FLAGS_VLAN;
    		tx_flags |= (skb_vlan_tag_get(skb) <<
    			     E1000_TX_FLAGS_VLAN_SHIFT);
    	}
    
    	first = tx_ring->next_to_use;
    
    	tso = e1000_tso(tx_ring, skb, protocol);
    	if (tso < 0) {
    		dev_kfree_skb_any(skb);
    		return NETDEV_TX_OK;
    	}
    
    	if (tso)
    		tx_flags |= E1000_TX_FLAGS_TSO;
    	else if (e1000_tx_csum(tx_ring, skb, protocol))
    		tx_flags |= E1000_TX_FLAGS_CSUM;
    
    	/* Old method was to assume IPv4 packet by default if TSO was enabled.
    	 * 82571 hardware supports TSO capabilities for IPv6 as well...
    	 * no longer assume, we must.
    	 */
    	if (protocol == htons(ETH_P_IP))
    		tx_flags |= E1000_TX_FLAGS_IPV4;
    
    	if (unlikely(skb->no_fcs))
    		tx_flags |= E1000_TX_FLAGS_NO_FCS;
    
    	/* if count is 0 then mapping error has occurred */
    	count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
    			     nr_frags);
    	if (count) {
    		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
    		    (adapter->flags & FLAG_HAS_HW_TIMESTAMP)) {
    			if (!adapter->tx_hwtstamp_skb) {
    				skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
    				tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
    				adapter->tx_hwtstamp_skb = skb_get(skb);
    				adapter->tx_hwtstamp_start = jiffies;
    				schedule_work(&adapter->tx_hwtstamp_work);
    			} else {
    				adapter->tx_hwtstamp_skipped++;
    			}
    		}
    
    		skb_tx_timestamp(skb);
    
    		netdev_sent_queue(netdev, skb->len);
    		e1000_tx_queue(tx_ring, tx_flags, count);
    		/* Make sure there is space in the ring for the next send. */
    		e1000_maybe_stop_tx(tx_ring,
    				    (MAX_SKB_FRAGS *
    				     DIV_ROUND_UP(PAGE_SIZE,
    						  adapter->tx_fifo_limit) + 2));
    
    		if (!skb->xmit_more ||
    		    netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
    			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
    				e1000e_update_tdt_wa(tx_ring,
    						     tx_ring->next_to_use);
    			else
    				writel(tx_ring->next_to_use, tx_ring->tail);
    
    			/* we need this if more than one processor can write
    			 * to our tail at a time, it synchronizes IO on
    			 *IA64/Altix systems
    			 */
    			mmiowb();
    		}
    	} else {
    		dev_kfree_skb_any(skb);
    		tx_ring->buffer_info[first].time_stamp = 0;
    		tx_ring->next_to_use = first;
    	}
    
    	return NETDEV_TX_OK;
    }
    
    /**
     * e1000_tx_timeout - Respond to a Tx Hang
     * @netdev: network interface device structure
     **/
    static void e1000_tx_timeout(struct net_device *netdev)
    {
    	struct e1000_adapter *adapter = netdev_priv(netdev);
    
    	/* Do the reset outside of interrupt context */
    	adapter->tx_timeout_count++;
    	schedule_work(&adapter->reset_task);
    }
    
    static void e1000_reset_task(struct work_struct *work)
    {
    	struct e1000_adapter *adapter;
    	adapter = container_of(work, struct e1000_adapter, reset_task);
    
    	/* don't run the task if already down */
    	if (test_bit(__E1000_DOWN, &adapter->state))
    		return;
    
    	if (!(adapter->flags & FLAG_RESTART_NOW)) {
    		e1000e_dump(adapter);
    		e_err("Reset adapter unexpectedly\n");
    	}
    	e1000e_reinit_locked(adapter);
    }
    
    /**
     * e1000_get_stats64 - Get System Network Statistics
     * @netdev: network interface device structure
     * @stats: rtnl_link_stats64 pointer
     *
     * Returns the address of the device statistics structure.
     **/
    void e1000e_get_stats64(struct net_device *netdev,
    			struct rtnl_link_stats64 *stats)
    {
    	struct e1000_adapter *adapter = netdev_priv(netdev);
    
    	spin_lock(&adapter->stats64_lock);
    	e1000e_update_stats(adapter);
    	/* Fill out the OS statistics structure */
    	stats->rx_bytes = adapter->stats.gorc;
    	stats->rx_packets = adapter->stats.gprc;
    	stats->tx_bytes = adapter->stats.gotc;
    	stats->tx_packets = adapter->stats.gptc;
    	stats->multicast = adapter->stats.mprc;
    	stats->collisions = adapter->stats.colc;
    
    	/* Rx Errors */
    
    	/* RLEC on some newer hardware can be incorrect so build
    	 * our own version based on RUC and ROC
    	 */
    	stats->rx_errors = adapter->stats.rxerrc +
    	    adapter->stats.crcerrs + adapter->stats.algnerrc +
    	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
    	stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
    	stats->rx_crc_errors = adapter->stats.crcerrs;
    	stats->rx_frame_errors = adapter->stats.algnerrc;
    	stats->rx_missed_errors = adapter->stats.mpc;
    
    	/* Tx Errors */
    	stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
    	stats->tx_aborted_errors = adapter->stats.ecol;
    	stats->tx_window_errors = adapter->stats.latecol;
    	stats->tx_carrier_errors = adapter->stats.tncrs;
    
    	/* Tx Dropped needs to be maintained elsewhere */
    
    	spin_unlock(&adapter->stats64_lock);
    }
    
    /**
     * e1000_change_mtu - Change the Maximum Transfer Unit
     * @netdev: network interface device structure
     * @new_mtu: new value for maximum frame size
     *
     * Returns 0 on success, negative on failure
     **/
    static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
    {
    	struct e1000_adapter *adapter = netdev_priv(netdev);
    	int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
    
    	/* Jumbo frame support */
    	if ((new_mtu > ETH_DATA_LEN) &&
    	    !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
    		e_err("Jumbo Frames not supported.\n");
    		return -EINVAL;
    	}
    
    	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
    	if ((adapter->hw.mac.type >= e1000_pch2lan) &&
    	    !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
    	    (new_mtu > ETH_DATA_LEN)) {
    		e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
    		return -EINVAL;
    	}
    
    	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
    		usleep_range(1000, 2000);
    	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
    	adapter->max_frame_size = max_frame;
    	e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
    	netdev->mtu = new_mtu;
    
    	pm_runtime_get_sync(netdev->dev.parent);
    
    	if (netif_running(netdev))
    		e1000e_down(adapter, true);
    
    	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
    	 * means we reserve 2 more, this pushes us to allocate from the next
    	 * larger slab size.
    	 * i.e. RXBUFFER_2048 --> size-4096 slab
    	 * However with the new *_jumbo_rx* routines, jumbo receives will use
    	 * fragmented skbs
    	 */
    
    	if (max_frame <= 2048)
    		adapter->rx_buffer_len = 2048;
    	else
    		adapter->rx_buffer_len = 4096;
    
    	/* adjust allocation if LPE protects us, and we aren't using SBP */
    	if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN))
    		adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
    
    	if (netif_running(netdev))
    		e1000e_up(adapter);
    	else
    		e1000e_reset(adapter);
    
    	pm_runtime_put_sync(netdev->dev.parent);
    
    	clear_bit(__E1000_RESETTING, &adapter->state);
    
    	return 0;
    }
    
    static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
    			   int cmd)
    {
    	struct e1000_adapter *adapter = netdev_priv(netdev);
    	struct mii_ioctl_data *data = if_mii(ifr);
    
    	if (adapter->hw.phy.media_type != e1000_media_type_copper)
    		return -EOPNOTSUPP;
    
    	switch (cmd) {
    	case SIOCGMIIPHY:
    		data->phy_id = adapter->hw.phy.addr;
    		break;
    	case SIOCGMIIREG:
    		e1000_phy_read_status(adapter);
    
    		switch (data->reg_num & 0x1F) {
    		case MII_BMCR:
    			data->val_out = adapter->phy_regs.bmcr;
    			break;
    		case MII_BMSR:
    			data->val_out = adapter->phy_regs.bmsr;
    			break;
    		case MII_PHYSID1:
    			data->val_out = (adapter->hw.phy.id >> 16);
    			break;
    		case MII_PHYSID2:
    			data->val_out = (adapter->hw.phy.id & 0xFFFF);
    			break;
    		case MII_ADVERTISE:
    			data->val_out = adapter->phy_regs.advertise;
    			break;
    		case MII_LPA:
    			data->val_out = adapter->phy_regs.lpa;
    			break;
    		case MII_EXPANSION:
    			data->val_out = adapter->phy_regs.expansion;
    			break;
    		case MII_CTRL1000:
    			data->val_out = adapter->phy_regs.ctrl1000;
    			break;
    		case MII_STAT1000:
    			data->val_out = adapter->phy_regs.stat1000;
    			break;
    		case MII_ESTATUS:
    			data->val_out = adapter->phy_regs.estatus;
    			break;
    		default:
    			return -EIO;
    		}
    		break;
    	case SIOCSMIIREG:
    	default:
    		return -EOPNOTSUPP;
    	}
    	return 0;
    }
    
    /**
     * e1000e_hwtstamp_ioctl - control hardware time stamping
     * @netdev: network interface device structure
     * @ifreq: interface request
     *
     * Outgoing time stamping can be enabled and disabled. Play nice and
     * disable it when requested, although it shouldn't cause any overhead
     * when no packet needs it. At most one packet in the queue may be
     * marked for time stamping, otherwise it would be impossible to tell
     * for sure to which packet the hardware time stamp belongs.
     *
     * Incoming time stamping has to be configured via the hardware filters.
     * Not all combinations are supported, in particular event type has to be
     * specified. Matching the kind of event packet is not supported, with the
     * exception of "all V2 events regardless of level 2 or 4".
     **/
    static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
    {
    	struct e1000_adapter *adapter = netdev_priv(netdev);
    	struct hwtstamp_config config;
    	int ret_val;
    
    	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
    		return -EFAULT;
    
    	ret_val = e1000e_config_hwtstamp(adapter, &config);
    	if (ret_val)
    		return ret_val;
    
    	switch (config.rx_filter) {
    	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
    	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
    	case HWTSTAMP_FILTER_PTP_V2_SYNC:
    	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
    	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
    	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
    		/* With V2 type filters which specify a Sync or Delay Request,
    		 * Path Delay Request/Response messages are also time stamped
    		 * by hardware so notify the caller the requested packets plus
    		 * some others are time stamped.
    		 */
    		config.rx_filter = HWTSTAMP_FILTER_SOME;
    		break;
    	default:
    		break;
    	}
    
    	return copy_to_user(ifr->ifr_data, &config,
    			    sizeof(config)) ? -EFAULT : 0;
    }
    
    static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
    {
    	struct e1000_adapter *adapter = netdev_priv(netdev);
    
    	return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
    			    sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
    }
    
    static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
    {
    	switch (cmd) {
    	case SIOCGMIIPHY:
    	case SIOCGMIIREG:
    	case SIOCSMIIREG:
    		return e1000_mii_ioctl(netdev, ifr, cmd);
    	case SIOCSHWTSTAMP:
    		return e1000e_hwtstamp_set(netdev, ifr);
    	case SIOCGHWTSTAMP:
    		return e1000e_hwtstamp_get(netdev, ifr);
    	default:
    		return -EOPNOTSUPP;
    	}
    }
    
    static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
    {
    	struct e1000_hw *hw = &adapter->hw;
    	u32 i, mac_reg, wuc;
    	u16 phy_reg, wuc_enable;
    	int retval;
    
    	/* copy MAC RARs to PHY RARs */
    	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
    
    	retval = hw->phy.ops.acquire(hw);
    	if (retval) {
    		e_err("Could not acquire PHY\n");
    		return retval;
    	}
    
    	/* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
    	retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
    	if (retval)
    		goto release;
    
    	/* copy MAC MTA to PHY MTA - only needed for pchlan */
    	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
    		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
    		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
    					   (u16)(mac_reg & 0xFFFF));
    		hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
    					   (u16)((mac_reg >> 16) & 0xFFFF));
    	}
    
    	/* configure PHY Rx Control register */
    	hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
    	mac_reg = er32(RCTL);
    	if (mac_reg & E1000_RCTL_UPE)
    		phy_reg |= BM_RCTL_UPE;
    	if (mac_reg & E1000_RCTL_MPE)
    		phy_reg |= BM_RCTL_MPE;
    	phy_reg &= ~(BM_RCTL_MO_MASK);
    	if (mac_reg & E1000_RCTL_MO_3)
    		phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
    			    << BM_RCTL_MO_SHIFT);
    	if (mac_reg & E1000_RCTL_BAM)
    		phy_reg |= BM_RCTL_BAM;
    	if (mac_reg & E1000_RCTL_PMCF)
    		phy_reg |= BM_RCTL_PMCF;
    	mac_reg = er32(CTRL);
    	if (mac_reg & E1000_CTRL_RFCE)
    		phy_reg |= BM_RCTL_RFCE;
    	hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
    
    	wuc = E1000_WUC_PME_EN;
    	if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
    		wuc |= E1000_WUC_APME;
    
    	/* enable PHY wakeup in MAC register */
    	ew32(WUFC, wufc);
    	ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
    		   E1000_WUC_PME_STATUS | wuc));
    
    	/* configure and enable PHY wakeup in PHY registers */
    	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
    	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
    
    	/* activate PHY wakeup */
    	wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
    	retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
    	if (retval)
    		e_err("Could not set PHY Host Wakeup bit\n");
    release:
    	hw->phy.ops.release(hw);
    
    	return retval;
    }
    
    static void e1000e_flush_lpic(struct pci_dev *pdev)
    {
    	struct net_device *netdev = pci_get_drvdata(pdev);
    	struct e1000_adapter *adapter = netdev_priv(netdev);
    	struct e1000_hw *hw = &adapter->hw;
    	u32 ret_val;
    
    	pm_runtime_get_sync(netdev->dev.parent);
    
    	ret_val = hw->phy.ops.acquire(hw);
    	if (ret_val)
    		goto fl_out;
    
    	pr_info("EEE TX LPI TIMER: %08X\n",
    		er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
    
    	hw->phy.ops.release(hw);
    
    fl_out:
    	pm_runtime_put_sync(netdev->dev.parent);
    }
    
    static int e1000e_pm_freeze(struct device *dev)
    {
    	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
    	struct e1000_adapter *adapter = netdev_priv(netdev);
    
    	netif_device_detach(netdev);
    
    	if (netif_running(netdev)) {
    		int count = E1000_CHECK_RESET_COUNT;
    
    		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
    			usleep_range(10000, 20000);
    
    		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
    
    		/* Quiesce the device without resetting the hardware */
    		e1000e_down(adapter, false);
    		e1000_free_irq(adapter);
    	}
    	e1000e_reset_interrupt_capability(adapter);
    
    	/* Allow time for pending master requests to run */
    	e1000e_disable_pcie_master(&adapter->hw);
    
    	return 0;
    }
    
    static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
    {
    	struct net_device *netdev = pci_get_drvdata(pdev);
    	struct e1000_adapter *adapter = netdev_priv(netdev);
    	struct e1000_hw *hw = &adapter->hw;
    	u32 ctrl, ctrl_ext, rctl, status;
    	/* Runtime suspend should only enable wakeup for link changes */
    	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
    	int retval = 0;
    
    	status = er32(STATUS);
    	if (status & E1000_STATUS_LU)
    		wufc &= ~E1000_WUFC_LNKC;
    
    	if (wufc) {
    		e1000_setup_rctl(adapter);
    		e1000e_set_rx_mode(netdev);
    
    		/* turn on all-multi mode if wake on multicast is enabled */
    		if (wufc & E1000_WUFC_MC) {
    			rctl = er32(RCTL);
    			rctl |= E1000_RCTL_MPE;
    			ew32(RCTL, rctl);
    		}
    
    		ctrl = er32(CTRL);
    		ctrl |= E1000_CTRL_ADVD3WUC;
    		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
    			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
    		ew32(CTRL, ctrl);
    
    		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
    		    adapter->hw.phy.media_type ==
    		    e1000_media_type_internal_serdes) {
    			/* keep the laser running in D3 */
    			ctrl_ext = er32(CTRL_EXT);
    			ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
    			ew32(CTRL_EXT, ctrl_ext);
    		}
    
    		if (!runtime)
    			e1000e_power_up_phy(adapter);
    
    		if (adapter->flags & FLAG_IS_ICH)
    			e1000_suspend_workarounds_ich8lan(&adapter->hw);
    
    		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
    			/* enable wakeup by the PHY */
    			retval = e1000_init_phy_wakeup(adapter, wufc);
    			if (retval)
    				return retval;
    		} else {
    			/* enable wakeup by the MAC */
    			ew32(WUFC, wufc);
    			ew32(WUC, E1000_WUC_PME_EN);
    		}
    	} else {
    		ew32(WUC, 0);
    		ew32(WUFC, 0);
    
    		e1000_power_down_phy(adapter);
    	}
    
    	if (adapter->hw.phy.type == e1000_phy_igp_3) {
    		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
    	} else if (hw->mac.type >= e1000_pch_lpt) {
    		if (!(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC)))
    			/* ULP does not support wake from unicast, multicast
    			 * or broadcast.
    			 */
    			retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
    
    		if (retval)
    			return retval;
    	}
    
    	/* Ensure that the appropriate bits are set in LPI_CTRL
    	 * for EEE in Sx
    	 */
    	if ((hw->phy.type >= e1000_phy_i217) &&
    	    adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) {
    		u16 lpi_ctrl = 0;
    
    		retval = hw->phy.ops.acquire(hw);
    		if (!retval) {
    			retval = e1e_rphy_locked(hw, I82579_LPI_CTRL,
    						 &lpi_ctrl);
    			if (!retval) {
    				if (adapter->eee_advert &
    				    hw->dev_spec.ich8lan.eee_lp_ability &
    				    I82579_EEE_100_SUPPORTED)
    					lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
    				if (adapter->eee_advert &
    				    hw->dev_spec.ich8lan.eee_lp_ability &
    				    I82579_EEE_1000_SUPPORTED)
    					lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
    
    				retval = e1e_wphy_locked(hw, I82579_LPI_CTRL,
    							 lpi_ctrl);
    			}
    		}
    		hw->phy.ops.release(hw);
    	}
    
    	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
    	 * would have already happened in close and is redundant.
    	 */
    	e1000e_release_hw_control(adapter);
    
    	pci_clear_master(pdev);
    
    	/* The pci-e switch on some quad port adapters will report a
    	 * correctable error when the MAC transitions from D0 to D3.  To
    	 * prevent this we need to mask off the correctable errors on the
    	 * downstream port of the pci-e switch.
    	 *
    	 * We don't have the associated upstream bridge while assigning
    	 * the PCI device into guest. For example, the KVM on power is
    	 * one of the cases.
    	 */
    	if (adapter->flags & FLAG_IS_QUAD_PORT) {
    		struct pci_dev *us_dev = pdev->bus->self;
    		u16 devctl;
    
    		if (!us_dev)
    			return 0;
    
    		pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
    		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
    					   (devctl & ~PCI_EXP_DEVCTL_CERE));
    
    		pci_save_state(pdev);
    		pci_prepare_to_sleep(pdev);
    
    		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
    	}
    
    	return 0;
    }
    
    /**
     * __e1000e_disable_aspm - Disable ASPM states
     * @pdev: pointer to PCI device struct
     * @state: bit-mask of ASPM states to disable
     * @locked: indication if this context holds pci_bus_sem locked.
     *
     * Some devices *must* have certain ASPM states disabled per hardware errata.
     **/
    static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked)
    {
    	struct pci_dev *parent = pdev->bus->self;
    	u16 aspm_dis_mask = 0;
    	u16 pdev_aspmc, parent_aspmc;
    
    	switch (state) {
    	case PCIE_LINK_STATE_L0S:
    	case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
    		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
    		/* fall-through - can't have L1 without L0s */
    	case PCIE_LINK_STATE_L1:
    		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
    		break;
    	default:
    		return;
    	}
    
    	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
    	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
    
    	if (parent) {
    		pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
    					  &parent_aspmc);
    		parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
    	}
    
    	/* Nothing to do if the ASPM states to be disabled already are */
    	if (!(pdev_aspmc & aspm_dis_mask) &&
    	    (!parent || !(parent_aspmc & aspm_dis_mask)))
    		return;
    
    	dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
    		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
    		 "L0s" : "",
    		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
    		 "L1" : "");
    
    #ifdef CONFIG_PCIEASPM
    	if (locked)
    		pci_disable_link_state_locked(pdev, state);
    	else
    		pci_disable_link_state(pdev, state);
    
    	/* Double-check ASPM control.  If not disabled by the above, the
    	 * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
    	 * not enabled); override by writing PCI config space directly.
    	 */
    	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
    	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
    
    	if (!(aspm_dis_mask & pdev_aspmc))
    		return;
    #endif
    
    	/* Both device and parent should have the same ASPM setting.
    	 * Disable ASPM in downstream component first and then upstream.
    	 */
    	pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
    
    	if (parent)
    		pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
    					   aspm_dis_mask);
    }
    
    /**
     * e1000e_disable_aspm - Disable ASPM states.
     * @pdev: pointer to PCI device struct
     * @state: bit-mask of ASPM states to disable
     *
     * This function acquires the pci_bus_sem!
     * Some devices *must* have certain ASPM states disabled per hardware errata.
     **/
    static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
    {
    	__e1000e_disable_aspm(pdev, state, 0);
    }
    
    /**
     * e1000e_disable_aspm_locked   Disable ASPM states.
     * @pdev: pointer to PCI device struct
     * @state: bit-mask of ASPM states to disable
     *
     * This function must be called with pci_bus_sem acquired!
     * Some devices *must* have certain ASPM states disabled per hardware errata.
     **/
    static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state)
    {
    	__e1000e_disable_aspm(pdev, state, 1);
    }
    
    #ifdef CONFIG_PM
    static int __e1000_resume(struct pci_dev *pdev)
    {
    	struct net_device *netdev = pci_get_drvdata(pdev);
    	struct e1000_adapter *adapter = netdev_priv(netdev);
    	struct e1000_hw *hw = &adapter->hw;
    	u16 aspm_disable_flag = 0;
    
    	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
    		aspm_disable_flag = PCIE_LINK_STATE_L0S;
    	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
    		aspm_disable_flag |= PCIE_LINK_STATE_L1;
    	if (aspm_disable_flag)
    		e1000e_disable_aspm(pdev, aspm_disable_flag);
    
    	pci_set_master(pdev);
    
    	if (hw->mac.type >= e1000_pch2lan)
    		e1000_resume_workarounds_pchlan(&adapter->hw);
    
    	e1000e_power_up_phy(adapter);
    
    	/* report the system wakeup cause from S3/S4 */
    	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
    		u16 phy_data;
    
    		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
    		if (phy_data) {
    			e_info("PHY Wakeup cause - %s\n",
    			       phy_data & E1000_WUS_EX ? "Unicast Packet" :
    			       phy_data & E1000_WUS_MC ? "Multicast Packet" :
    			       phy_data & E1000_WUS_BC ? "Broadcast Packet" :
    			       phy_data & E1000_WUS_MAG ? "Magic Packet" :
    			       phy_data & E1000_WUS_LNKC ?
    			       "Link Status Change" : "other");
    		}
    		e1e_wphy(&adapter->hw, BM_WUS, ~0);
    	} else {
    		u32 wus = er32(WUS);
    
    		if (wus) {
    			e_info("MAC Wakeup cause - %s\n",
    			       wus & E1000_WUS_EX ? "Unicast Packet" :
    			       wus & E1000_WUS_MC ? "Multicast Packet" :
    			       wus & E1000_WUS_BC ? "Broadcast Packet" :
    			       wus & E1000_WUS_MAG ? "Magic Packet" :
    			       wus & E1000_WUS_LNKC ? "Link Status Change" :
    			       "other");
    		}
    		ew32(WUS, ~0);
    	}
    
    	e1000e_reset(adapter);
    
    	e1000_init_manageability_pt(adapter);
    
    	/* If the controller has AMT, do not set DRV_LOAD until the interface
    	 * is up.  For all other cases, let the f/w know that the h/w is now
    	 * under the control of the driver.
    	 */
    	if (!(adapter->flags & FLAG_HAS_AMT))
    		e1000e_get_hw_control(adapter);
    
    	return 0;
    }
    
    #ifdef CONFIG_PM_SLEEP
    static int e1000e_pm_thaw(struct device *dev)
    {
    	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
    	struct e1000_adapter *adapter = netdev_priv(netdev);
    
    	e1000e_set_interrupt_capability(adapter);
    	if (netif_running(netdev)) {
    		u32 err = e1000_request_irq(adapter);
    
    		if (err)
    			return err;
    
    		e1000e_up(adapter);
    	}
    
    	netif_device_attach(netdev);
    
    	return 0;
    }
    
    static int e1000e_pm_suspend(struct device *dev)
    {
    	struct pci_dev *pdev = to_pci_dev(dev);
    	int rc;
    
    	e1000e_flush_lpic(pdev);
    
    	e1000e_pm_freeze(dev);
    
    	rc = __e1000_shutdown(pdev, false);
    	if (rc)
    		e1000e_pm_thaw(dev);
    
    	return rc;
    }
    
    static int e1000e_pm_resume(struct device *dev)
    {
    	struct pci_dev *pdev = to_pci_dev(dev);
    	int rc;
    
    	rc = __e1000_resume(pdev);
    	if (rc)
    		return rc;
    
    	return e1000e_pm_thaw(dev);
    }
    #endif /* CONFIG_PM_SLEEP */
    
    static int e1000e_pm_runtime_idle(struct device *dev)
    {
    	struct pci_dev *pdev = to_pci_dev(dev);
    	struct net_device *netdev = pci_get_drvdata(pdev);
    	struct e1000_adapter *adapter = netdev_priv(netdev);
    	u16 eee_lp;
    
    	eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
    
    	if (!e1000e_has_link(adapter)) {
    		adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
    		pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
    	}
    
    	return -EBUSY;
    }
    
    static int e1000e_pm_runtime_resume(struct device *dev)
    {
    	struct pci_dev *pdev = to_pci_dev(dev);
    	struct net_device *netdev = pci_get_drvdata(pdev);
    	struct e1000_adapter *adapter = netdev_priv(netdev);
    	int rc;
    
    	rc = __e1000_resume(pdev);
    	if (rc)
    		return rc;
    
    	if (netdev->flags & IFF_UP)
    		e1000e_up(adapter);
    
    	return rc;
    }
    
    static int e1000e_pm_runtime_suspend(struct device *dev)
    {
    	struct pci_dev *pdev = to_pci_dev(dev);
    	struct net_device *netdev = pci_get_drvdata(pdev);
    	struct e1000_adapter *adapter = netdev_priv(netdev);
    
    	if (netdev->flags & IFF_UP) {
    		int count = E1000_CHECK_RESET_COUNT;
    
    		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
    			usleep_range(10000, 20000);
    
    		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
    
    		/* Down the device without resetting the hardware */
    		e1000e_down(adapter, false);
    	}
    
    	if (__e1000_shutdown(pdev, true)) {
    		e1000e_pm_runtime_resume(dev);
    		return -EBUSY;
    	}
    
    	return 0;
    }
    #endif /* CONFIG_PM */
    
    static void e1000_shutdown(struct pci_dev *pdev)
    {
    	e1000e_flush_lpic(pdev);
    
    	e1000e_pm_freeze(&pdev->dev);
    
    	__e1000_shutdown(pdev, false);
    }
    
    #ifdef CONFIG_NET_POLL_CONTROLLER
    
    static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
    {
    	struct net_device *netdev = data;
    	struct e1000_adapter *adapter = netdev_priv(netdev);
    
    	if (adapter->msix_entries) {
    		int vector, msix_irq;
    
    		vector = 0;
    		msix_irq = adapter->msix_entries[vector].vector;
    		if (disable_hardirq(msix_irq))
    			e1000_intr_msix_rx(msix_irq, netdev);
    		enable_irq(msix_irq);
    
    		vector++;
    		msix_irq = adapter->msix_entries[vector].vector;
    		if (disable_hardirq(msix_irq))
    			e1000_intr_msix_tx(msix_irq, netdev);
    		enable_irq(msix_irq);
    
    		vector++;
    		msix_irq = adapter->msix_entries[vector].vector;
    		if (disable_hardirq(msix_irq))
    			e1000_msix_other(msix_irq, netdev);
    		enable_irq(msix_irq);
    	}
    
    	return IRQ_HANDLED;
    }
    
    /**
     * e1000_netpoll
     * @netdev: network interface device structure
     *
     * Polling 'interrupt' - used by things like netconsole to send skbs
     * without having to re-enable interrupts. It's not called while
     * the interrupt routine is executing.
     */
    static void e1000_netpoll(struct net_device *netdev)
    {
    	struct e1000_adapter *adapter = netdev_priv(netdev);
    
    	switch (adapter->int_mode) {
    	case E1000E_INT_MODE_MSIX:
    		e1000_intr_msix(adapter->pdev->irq, netdev);
    		break;
    	case E1000E_INT_MODE_MSI:
    		if (disable_hardirq(adapter->pdev->irq))
    			e1000_intr_msi(adapter->pdev->irq, netdev);
    		enable_irq(adapter->pdev->irq);
    		break;
    	default:		/* E1000E_INT_MODE_LEGACY */
    		if (disable_hardirq(adapter->pdev->irq))
    			e1000_intr(adapter->pdev->irq, netdev);
    		enable_irq(adapter->pdev->irq);
    		break;
    	}
    }
    #endif
    
    /**
     * e1000_io_error_detected - called when PCI error is detected
     * @pdev: Pointer to PCI device
     * @state: The current pci connection state
     *
     * This function is called after a PCI bus error affecting
     * this device has been detected.
     */
    static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
    						pci_channel_state_t state)
    {
    	struct net_device *netdev = pci_get_drvdata(pdev);
    	struct e1000_adapter *adapter = netdev_priv(netdev);
    
    	netif_device_detach(netdev);
    
    	if (state == pci_channel_io_perm_failure)
    		return PCI_ERS_RESULT_DISCONNECT;
    
    	if (netif_running(netdev))
    		e1000e_down(adapter, true);
    	pci_disable_device(pdev);
    
    	/* Request a slot slot reset. */
    	return PCI_ERS_RESULT_NEED_RESET;
    }
    
    /**
     * e1000_io_slot_reset - called after the pci bus has been reset.
     * @pdev: Pointer to PCI device
     *
     * Restart the card from scratch, as if from a cold-boot. Implementation
     * resembles the first-half of the e1000e_pm_resume routine.
     */
    static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
    {
    	struct net_device *netdev = pci_get_drvdata(pdev);
    	struct e1000_adapter *adapter = netdev_priv(netdev);
    	struct e1000_hw *hw = &adapter->hw;
    	u16 aspm_disable_flag = 0;
    	int err;
    	pci_ers_result_t result;
    
    	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
    		aspm_disable_flag = PCIE_LINK_STATE_L0S;
    	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
    		aspm_disable_flag |= PCIE_LINK_STATE_L1;
    	if (aspm_disable_flag)
    		e1000e_disable_aspm_locked(pdev, aspm_disable_flag);
    
    	err = pci_enable_device_mem(pdev);
    	if (err) {
    		dev_err(&pdev->dev,
    			"Cannot re-enable PCI device after reset.\n");
    		result = PCI_ERS_RESULT_DISCONNECT;
    	} else {
    		pdev->state_saved = true;
    		pci_restore_state(pdev);
    		pci_set_master(pdev);
    
    		pci_enable_wake(pdev, PCI_D3hot, 0);
    		pci_enable_wake(pdev, PCI_D3cold, 0);
    
    		e1000e_reset(adapter);
    		ew32(WUS, ~0);
    		result = PCI_ERS_RESULT_RECOVERED;
    	}
    
    	pci_cleanup_aer_uncorrect_error_status(pdev);
    
    	return result;
    }
    
    /**
     * e1000_io_resume - called when traffic can start flowing again.
     * @pdev: Pointer to PCI device
     *
     * This callback is called when the error recovery driver tells us that
     * its OK to resume normal operation. Implementation resembles the
     * second-half of the e1000e_pm_resume routine.
     */
    static void e1000_io_resume(struct pci_dev *pdev)
    {
    	struct net_device *netdev = pci_get_drvdata(pdev);
    	struct e1000_adapter *adapter = netdev_priv(netdev);
    
    	e1000_init_manageability_pt(adapter);
    
    	if (netif_running(netdev))
    		e1000e_up(adapter);
    
    	netif_device_attach(netdev);
    
    	/* If the controller has AMT, do not set DRV_LOAD until the interface
    	 * is up.  For all other cases, let the f/w know that the h/w is now
    	 * under the control of the driver.
    	 */
    	if (!(adapter->flags & FLAG_HAS_AMT))
    		e1000e_get_hw_control(adapter);
    }
    
    static void e1000_print_device_info(struct e1000_adapter *adapter)
    {
    	struct e1000_hw *hw = &adapter->hw;
    	struct net_device *netdev = adapter->netdev;
    	u32 ret_val;
    	u8 pba_str[E1000_PBANUM_LENGTH];
    
    	/* print bus type/speed/width info */
    	e_info("(PCI Express:2.5GT/s:%s) %pM\n",
    	       /* bus width */
    	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
    		"Width x1"),
    	       /* MAC address */
    	       netdev->dev_addr);
    	e_info("Intel(R) PRO/%s Network Connection\n",
    	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
    	ret_val = e1000_read_pba_string_generic(hw, pba_str,
    						E1000_PBANUM_LENGTH);
    	if (ret_val)
    		strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
    	e_info("MAC: %d, PHY: %d, PBA No: %s\n",
    	       hw->mac.type, hw->phy.type, pba_str);
    }
    
    static void e1000_eeprom_checks(struct e1000_adapter *adapter)
    {
    	struct e1000_hw *hw = &adapter->hw;
    	int ret_val;
    	u16 buf = 0;
    
    	if (hw->mac.type != e1000_82573)
    		return;
    
    	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
    	le16_to_cpus(&buf);
    	if (!ret_val && (!(buf & BIT(0)))) {
    		/* Deep Smart Power Down (DSPD) */
    		dev_warn(&adapter->pdev->dev,
    			 "Warning: detected DSPD enabled in EEPROM\n");
    	}
    }
    
    static netdev_features_t e1000_fix_features(struct net_device *netdev,
    					    netdev_features_t features)
    {
    	struct e1000_adapter *adapter = netdev_priv(netdev);
    	struct e1000_hw *hw = &adapter->hw;
    
    	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
    	if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN))
    		features &= ~NETIF_F_RXFCS;
    
    	/* Since there is no support for separate Rx/Tx vlan accel
    	 * enable/disable make sure Tx flag is always in same state as Rx.
    	 */
    	if (features & NETIF_F_HW_VLAN_CTAG_RX)
    		features |= NETIF_F_HW_VLAN_CTAG_TX;
    	else
    		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
    
    	return features;
    }
    
    static int e1000_set_features(struct net_device *netdev,
    			      netdev_features_t features)
    {
    	struct e1000_adapter *adapter = netdev_priv(netdev);
    	netdev_features_t changed = features ^ netdev->features;
    
    	if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
    		adapter->flags |= FLAG_TSO_FORCE;
    
    	if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
    			 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
    			 NETIF_F_RXALL)))
    		return 0;
    
    	if (changed & NETIF_F_RXFCS) {
    		if (features & NETIF_F_RXFCS) {
    			adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
    		} else {
    			/* We need to take it back to defaults, which might mean
    			 * stripping is still disabled at the adapter level.
    			 */
    			if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
    				adapter->flags2 |= FLAG2_CRC_STRIPPING;
    			else
    				adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
    		}
    	}
    
    	netdev->features = features;
    
    	if (netif_running(netdev))
    		e1000e_reinit_locked(adapter);
    	else
    		e1000e_reset(adapter);
    
    	return 0;
    }
    
    static const struct net_device_ops e1000e_netdev_ops = {
    	.ndo_open		= e1000e_open,
    	.ndo_stop		= e1000e_close,
    	.ndo_start_xmit		= e1000_xmit_frame,
    	.ndo_get_stats64	= e1000e_get_stats64,
    	.ndo_set_rx_mode	= e1000e_set_rx_mode,
    	.ndo_set_mac_address	= e1000_set_mac,
    	.ndo_change_mtu		= e1000_change_mtu,
    	.ndo_do_ioctl		= e1000_ioctl,
    	.ndo_tx_timeout		= e1000_tx_timeout,
    	.ndo_validate_addr	= eth_validate_addr,
    
    	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
    	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
    #ifdef CONFIG_NET_POLL_CONTROLLER
    	.ndo_poll_controller	= e1000_netpoll,
    #endif
    	.ndo_set_features = e1000_set_features,
    	.ndo_fix_features = e1000_fix_features,
    	.ndo_features_check	= passthru_features_check,
    };
    
    /**
     * e1000_probe - Device Initialization Routine
     * @pdev: PCI device information struct
     * @ent: entry in e1000_pci_tbl
     *
     * Returns 0 on success, negative on failure
     *
     * e1000_probe initializes an adapter identified by a pci_dev structure.
     * The OS initialization, configuring of the adapter private structure,
     * and a hardware reset occur.
     **/
    static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
    {
    	struct net_device *netdev;
    	struct e1000_adapter *adapter;
    	struct e1000_hw *hw;
    	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
    	resource_size_t mmio_start, mmio_len;
    	resource_size_t flash_start, flash_len;
    	static int cards_found;
    	u16 aspm_disable_flag = 0;
    	int bars, i, err, pci_using_dac;
    	u16 eeprom_data = 0;
    	u16 eeprom_apme_mask = E1000_EEPROM_APME;
    	s32 ret_val = 0;
    
    	if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
    		aspm_disable_flag = PCIE_LINK_STATE_L0S;
    	if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
    		aspm_disable_flag |= PCIE_LINK_STATE_L1;
    	if (aspm_disable_flag)
    		e1000e_disable_aspm(pdev, aspm_disable_flag);
    
    	err = pci_enable_device_mem(pdev);
    	if (err)
    		return err;
    
    	pci_using_dac = 0;
    	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
    	if (!err) {
    		pci_using_dac = 1;
    	} else {
    		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
    		if (err) {
    			dev_err(&pdev->dev,
    				"No usable DMA configuration, aborting\n");
    			goto err_dma;
    		}
    	}
    
    	bars = pci_select_bars(pdev, IORESOURCE_MEM);
    	err = pci_request_selected_regions_exclusive(pdev, bars,
    						     e1000e_driver_name);
    	if (err)
    		goto err_pci_reg;
    
    	/* AER (Advanced Error Reporting) hooks */
    	pci_enable_pcie_error_reporting(pdev);
    
    	pci_set_master(pdev);
    	/* PCI config space info */
    	err = pci_save_state(pdev);
    	if (err)
    		goto err_alloc_etherdev;
    
    	err = -ENOMEM;
    	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
    	if (!netdev)
    		goto err_alloc_etherdev;
    
    	SET_NETDEV_DEV(netdev, &pdev->dev);
    
    	netdev->irq = pdev->irq;
    
    	pci_set_drvdata(pdev, netdev);
    	adapter = netdev_priv(netdev);
    	hw = &adapter->hw;
    	adapter->netdev = netdev;
    	adapter->pdev = pdev;
    	adapter->ei = ei;
    	adapter->pba = ei->pba;
    	adapter->flags = ei->flags;
    	adapter->flags2 = ei->flags2;
    	adapter->hw.adapter = adapter;
    	adapter->hw.mac.type = ei->mac;
    	adapter->max_hw_frame_size = ei->max_hw_frame_size;
    	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
    
    	mmio_start = pci_resource_start(pdev, 0);
    	mmio_len = pci_resource_len(pdev, 0);
    
    	err = -EIO;
    	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
    	if (!adapter->hw.hw_addr)
    		goto err_ioremap;
    
    	if ((adapter->flags & FLAG_HAS_FLASH) &&
    	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
    	    (hw->mac.type < e1000_pch_spt)) {
    		flash_start = pci_resource_start(pdev, 1);
    		flash_len = pci_resource_len(pdev, 1);
    		adapter->hw.flash_address = ioremap(flash_start, flash_len);
    		if (!adapter->hw.flash_address)
    			goto err_flashmap;
    	}
    
    	/* Set default EEE advertisement */
    	if (adapter->flags2 & FLAG2_HAS_EEE)
    		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
    
    	/* construct the net_device struct */
    	netdev->netdev_ops = &e1000e_netdev_ops;
    	e1000e_set_ethtool_ops(netdev);
    	netdev->watchdog_timeo = 5 * HZ;
    	netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
    	strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
    
    	netdev->mem_start = mmio_start;
    	netdev->mem_end = mmio_start + mmio_len;
    
    	adapter->bd_number = cards_found++;
    
    	e1000e_check_options(adapter);
    
    	/* setup adapter struct */
    	err = e1000_sw_init(adapter);
    	if (err)
    		goto err_sw_init;
    
    	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
    	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
    	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
    
    	err = ei->get_variants(adapter);
    	if (err)
    		goto err_hw_init;
    
    	if ((adapter->flags & FLAG_IS_ICH) &&
    	    (adapter->flags & FLAG_READ_ONLY_NVM) &&
    	    (hw->mac.type < e1000_pch_spt))
    		e1000e_write_protect_nvm_ich8lan(&adapter->hw);
    
    	hw->mac.ops.get_bus_info(&adapter->hw);
    
    	adapter->hw.phy.autoneg_wait_to_complete = 0;
    
    	/* Copper options */
    	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
    		adapter->hw.phy.mdix = AUTO_ALL_MODES;
    		adapter->hw.phy.disable_polarity_correction = 0;
    		adapter->hw.phy.ms_type = e1000_ms_hw_default;
    	}
    
    	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
    		dev_info(&pdev->dev,
    			 "PHY reset is blocked due to SOL/IDER session.\n");
    
    	/* Set initial default active device features */
    	netdev->features = (NETIF_F_SG |
    			    NETIF_F_HW_VLAN_CTAG_RX |
    			    NETIF_F_HW_VLAN_CTAG_TX |
    			    NETIF_F_TSO |
    			    NETIF_F_TSO6 |
    			    NETIF_F_RXHASH |
    			    NETIF_F_RXCSUM |
    			    NETIF_F_HW_CSUM);
    
    	/* Set user-changeable features (subset of all device features) */
    	netdev->hw_features = netdev->features;
    	netdev->hw_features |= NETIF_F_RXFCS;
    	netdev->priv_flags |= IFF_SUPP_NOFCS;
    	netdev->hw_features |= NETIF_F_RXALL;
    
    	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
    		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
    
    	netdev->vlan_features |= (NETIF_F_SG |
    				  NETIF_F_TSO |
    				  NETIF_F_TSO6 |
    				  NETIF_F_HW_CSUM);
    
    	netdev->priv_flags |= IFF_UNICAST_FLT;
    
    	if (pci_using_dac) {
    		netdev->features |= NETIF_F_HIGHDMA;
    		netdev->vlan_features |= NETIF_F_HIGHDMA;
    	}
    
    	/* MTU range: 68 - max_hw_frame_size */
    	netdev->min_mtu = ETH_MIN_MTU;
    	netdev->max_mtu = adapter->max_hw_frame_size -
    			  (VLAN_ETH_HLEN + ETH_FCS_LEN);
    
    	if (e1000e_enable_mng_pass_thru(&adapter->hw))
    		adapter->flags |= FLAG_MNG_PT_ENABLED;
    
    	/* before reading the NVM, reset the controller to
    	 * put the device in a known good starting state
    	 */
    	adapter->hw.mac.ops.reset_hw(&adapter->hw);
    
    	/* systems with ASPM and others may see the checksum fail on the first
    	 * attempt. Let's give it a few tries
    	 */
    	for (i = 0;; i++) {
    		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
    			break;
    		if (i == 2) {
    			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
    			err = -EIO;
    			goto err_eeprom;
    		}
    	}
    
    	e1000_eeprom_checks(adapter);
    
    	/* copy the MAC address */
    	if (e1000e_read_mac_addr(&adapter->hw))
    		dev_err(&pdev->dev,
    			"NVM Read Error while reading MAC address\n");
    
    	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
    
    	if (!is_valid_ether_addr(netdev->dev_addr)) {
    		dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
    			netdev->dev_addr);
    		err = -EIO;
    		goto err_eeprom;
    	}
    
    	setup_timer(&adapter->watchdog_timer, e1000_watchdog,
    		    (unsigned long)adapter);
    	setup_timer(&adapter->phy_info_timer, e1000_update_phy_info,
    		    (unsigned long)adapter);
    
    	INIT_WORK(&adapter->reset_task, e1000_reset_task);
    	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
    	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
    	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
    	INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
    
    	/* Initialize link parameters. User can change them with ethtool */
    	adapter->hw.mac.autoneg = 1;
    	adapter->fc_autoneg = true;
    	adapter->hw.fc.requested_mode = e1000_fc_default;
    	adapter->hw.fc.current_mode = e1000_fc_default;
    	adapter->hw.phy.autoneg_advertised = 0x2f;
    
    	/* Initial Wake on LAN setting - If APM wake is enabled in
    	 * the EEPROM, enable the ACPI Magic Packet filter
    	 */
    	if (adapter->flags & FLAG_APME_IN_WUC) {
    		/* APME bit in EEPROM is mapped to WUC.APME */
    		eeprom_data = er32(WUC);
    		eeprom_apme_mask = E1000_WUC_APME;
    		if ((hw->mac.type > e1000_ich10lan) &&
    		    (eeprom_data & E1000_WUC_PHY_WAKE))
    			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
    	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
    		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
    		    (adapter->hw.bus.func == 1))
    			ret_val = e1000_read_nvm(&adapter->hw,
    					      NVM_INIT_CONTROL3_PORT_B,
    					      1, &eeprom_data);
    		else
    			ret_val = e1000_read_nvm(&adapter->hw,
    					      NVM_INIT_CONTROL3_PORT_A,
    					      1, &eeprom_data);
    	}
    
    	/* fetch WoL from EEPROM */
    	if (ret_val)
    		e_dbg("NVM read error getting WoL initial values: %d\n", ret_val);
    	else if (eeprom_data & eeprom_apme_mask)
    		adapter->eeprom_wol |= E1000_WUFC_MAG;
    
    	/* now that we have the eeprom settings, apply the special cases
    	 * where the eeprom may be wrong or the board simply won't support
    	 * wake on lan on a particular port
    	 */
    	if (!(adapter->flags & FLAG_HAS_WOL))
    		adapter->eeprom_wol = 0;
    
    	/* initialize the wol settings based on the eeprom settings */
    	adapter->wol = adapter->eeprom_wol;
    
    	/* make sure adapter isn't asleep if manageability is enabled */
    	if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
    	    (hw->mac.ops.check_mng_mode(hw)))
    		device_wakeup_enable(&pdev->dev);
    
    	/* save off EEPROM version number */
    	ret_val = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
    
    	if (ret_val) {
    		e_dbg("NVM read error getting EEPROM version: %d\n", ret_val);
    		adapter->eeprom_vers = 0;
    	}
    
    	/* init PTP hardware clock */
    	e1000e_ptp_init(adapter);
    
    	/* reset the hardware with the new settings */
    	e1000e_reset(adapter);
    
    	/* If the controller has AMT, do not set DRV_LOAD until the interface
    	 * is up.  For all other cases, let the f/w know that the h/w is now
    	 * under the control of the driver.
    	 */
    	if (!(adapter->flags & FLAG_HAS_AMT))
    		e1000e_get_hw_control(adapter);
    
    	strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
    	err = register_netdev(netdev);
    	if (err)
    		goto err_register;
    
    	/* carrier off reporting is important to ethtool even BEFORE open */
    	netif_carrier_off(netdev);
    
    	e1000_print_device_info(adapter);
    
    	if (pci_dev_run_wake(pdev))
    		pm_runtime_put_noidle(&pdev->dev);
    
    	return 0;
    
    err_register:
    	if (!(adapter->flags & FLAG_HAS_AMT))
    		e1000e_release_hw_control(adapter);
    err_eeprom:
    	if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
    		e1000_phy_hw_reset(&adapter->hw);
    err_hw_init:
    	kfree(adapter->tx_ring);
    	kfree(adapter->rx_ring);
    err_sw_init:
    	if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
    		iounmap(adapter->hw.flash_address);
    	e1000e_reset_interrupt_capability(adapter);
    err_flashmap:
    	iounmap(adapter->hw.hw_addr);
    err_ioremap:
    	free_netdev(netdev);
    err_alloc_etherdev:
    	pci_release_mem_regions(pdev);
    err_pci_reg:
    err_dma:
    	pci_disable_device(pdev);
    	return err;
    }
    
    /**
     * e1000_remove - Device Removal Routine
     * @pdev: PCI device information struct
     *
     * e1000_remove is called by the PCI subsystem to alert the driver
     * that it should release a PCI device.  The could be caused by a
     * Hot-Plug event, or because the driver is going to be removed from
     * memory.
     **/
    static void e1000_remove(struct pci_dev *pdev)
    {
    	struct net_device *netdev = pci_get_drvdata(pdev);
    	struct e1000_adapter *adapter = netdev_priv(netdev);
    	bool down = test_bit(__E1000_DOWN, &adapter->state);
    
    	e1000e_ptp_remove(adapter);
    
    	/* The timers may be rescheduled, so explicitly disable them
    	 * from being rescheduled.
    	 */
    	if (!down)
    		set_bit(__E1000_DOWN, &adapter->state);
    	del_timer_sync(&adapter->watchdog_timer);
    	del_timer_sync(&adapter->phy_info_timer);
    
    	cancel_work_sync(&adapter->reset_task);
    	cancel_work_sync(&adapter->watchdog_task);
    	cancel_work_sync(&adapter->downshift_task);
    	cancel_work_sync(&adapter->update_phy_task);
    	cancel_work_sync(&adapter->print_hang_task);
    
    	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
    		cancel_work_sync(&adapter->tx_hwtstamp_work);
    		if (adapter->tx_hwtstamp_skb) {
    			dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
    			adapter->tx_hwtstamp_skb = NULL;
    		}
    	}
    
    	/* Don't lie to e1000_close() down the road. */
    	if (!down)
    		clear_bit(__E1000_DOWN, &adapter->state);
    	unregister_netdev(netdev);
    
    	if (pci_dev_run_wake(pdev))
    		pm_runtime_get_noresume(&pdev->dev);
    
    	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
    	 * would have already happened in close and is redundant.
    	 */
    	e1000e_release_hw_control(adapter);
    
    	e1000e_reset_interrupt_capability(adapter);
    	kfree(adapter->tx_ring);
    	kfree(adapter->rx_ring);
    
    	iounmap(adapter->hw.hw_addr);
    	if ((adapter->hw.flash_address) &&
    	    (adapter->hw.mac.type < e1000_pch_spt))
    		iounmap(adapter->hw.flash_address);
    	pci_release_mem_regions(pdev);
    
    	free_netdev(netdev);
    
    	/* AER disable */
    	pci_disable_pcie_error_reporting(pdev);
    
    	pci_disable_device(pdev);
    }
    
    /* PCI Error Recovery (ERS) */
    static const struct pci_error_handlers e1000_err_handler = {
    	.error_detected = e1000_io_error_detected,
    	.slot_reset = e1000_io_slot_reset,
    	.resume = e1000_io_resume,
    };
    
    static const struct pci_device_id e1000_pci_tbl[] = {
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
    	  board_82571 },
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
    
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
    
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
    
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
    
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
    	  board_80003es2lan },
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
    	  board_80003es2lan },
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
    	  board_80003es2lan },
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
    	  board_80003es2lan },
    
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
    
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
    
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
    
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
    
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
    
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
    
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LBG_I219_LM3), board_pch_spt },
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM4), board_pch_spt },
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V4), board_pch_spt },
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM5), board_pch_spt },
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V5), board_pch_spt },
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM6), board_pch_cnp },
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V6), board_pch_cnp },
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM7), board_pch_cnp },
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V7), board_pch_cnp },
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM8), board_pch_cnp },
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V8), board_pch_cnp },
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM9), board_pch_cnp },
    	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V9), board_pch_cnp },
    
    	{ 0, 0, 0, 0, 0, 0, 0 }	/* terminate list */
    };
    MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
    
    static const struct dev_pm_ops e1000_pm_ops = {
    #ifdef CONFIG_PM_SLEEP
    	.suspend	= e1000e_pm_suspend,
    	.resume		= e1000e_pm_resume,
    	.freeze		= e1000e_pm_freeze,
    	.thaw		= e1000e_pm_thaw,
    	.poweroff	= e1000e_pm_suspend,
    	.restore	= e1000e_pm_resume,
    #endif
    	SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
    			   e1000e_pm_runtime_idle)
    };
    
    /* PCI Device API Driver */
    static struct pci_driver e1000_driver = {
    	.name     = e1000e_driver_name,
    	.id_table = e1000_pci_tbl,
    	.probe    = e1000_probe,
    	.remove   = e1000_remove,
    	.driver   = {
    		.pm = &e1000_pm_ops,
    	},
    	.shutdown = e1000_shutdown,
    	.err_handler = &e1000_err_handler
    };
    
    /**
     * e1000_init_module - Driver Registration Routine
     *
     * e1000_init_module is the first routine called when the driver is
     * loaded. All it does is register with the PCI subsystem.
     **/
    static int __init e1000_init_module(void)
    {
    	pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
    		e1000e_driver_version);
    	pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
    
    	return pci_register_driver(&e1000_driver);
    }
    module_init(e1000_init_module);
    
    /**
     * e1000_exit_module - Driver Exit Cleanup Routine
     *
     * e1000_exit_module is called just before the driver is removed
     * from memory.
     **/
    static void __exit e1000_exit_module(void)
    {
    	pci_unregister_driver(&e1000_driver);
    }
    module_exit(e1000_exit_module);
    
    MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
    MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
    MODULE_LICENSE("GPL");
    MODULE_VERSION(DRV_VERSION);
    
    /* netdev.c */