Skip to content
Snippets Groups Projects
Select Git revision
  • b51c05a331ff46d2b29e4007df938ec2dbbadfde
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

at91sam9261.dtsi

Blame
  • perf_event_intel.c 46.22 KiB
    /*
     * Per core/cpu state
     *
     * Used to coordinate shared registers between HT threads or
     * among events on a single PMU.
     */
    
    #include <linux/stddef.h>
    #include <linux/types.h>
    #include <linux/init.h>
    #include <linux/slab.h>
    #include <linux/export.h>
    
    #include <asm/hardirq.h>
    #include <asm/apic.h>
    
    #include "perf_event.h"
    
    /*
     * Intel PerfMon, used on Core and later.
     */
    static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
    {
      [PERF_COUNT_HW_CPU_CYCLES]		= 0x003c,
      [PERF_COUNT_HW_INSTRUCTIONS]		= 0x00c0,
      [PERF_COUNT_HW_CACHE_REFERENCES]	= 0x4f2e,
      [PERF_COUNT_HW_CACHE_MISSES]		= 0x412e,
      [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x00c4,
      [PERF_COUNT_HW_BRANCH_MISSES]		= 0x00c5,
      [PERF_COUNT_HW_BUS_CYCLES]		= 0x013c,
    };
    
    static struct event_constraint intel_core_event_constraints[] __read_mostly =
    {
    	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
    	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
    	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
    	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
    	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
    	INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
    	EVENT_CONSTRAINT_END
    };
    
    static struct event_constraint intel_core2_event_constraints[] __read_mostly =
    {
    	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
    	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
    	/*
    	 * Core2 has Fixed Counter 2 listed as CPU_CLK_UNHALTED.REF and event
    	 * 0x013c as CPU_CLK_UNHALTED.BUS and specifies there is a fixed
    	 * ratio between these counters.
    	 */
    	/* FIXED_EVENT_CONSTRAINT(0x013c, 2),  CPU_CLK_UNHALTED.REF */
    	INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
    	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
    	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
    	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
    	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
    	INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
    	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
    	INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
    	INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
    	INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
    	EVENT_CONSTRAINT_END
    };
    
    static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
    {
    	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
    	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
    	/* FIXED_EVENT_CONSTRAINT(0x013c, 2), CPU_CLK_UNHALTED.REF */
    	INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
    	INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
    	INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
    	INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
    	INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
    	INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
    	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
    	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
    	EVENT_CONSTRAINT_END
    };
    
    static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
    {
    	INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
    	EVENT_EXTRA_END
    };
    
    static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
    {
    	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
    	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
    	/* FIXED_EVENT_CONSTRAINT(0x013c, 2), CPU_CLK_UNHALTED.REF */
    	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
    	INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
    	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
    	INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
    	EVENT_CONSTRAINT_END
    };
    
    static struct event_constraint intel_snb_event_constraints[] __read_mostly =
    {
    	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
    	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
    	/* FIXED_EVENT_CONSTRAINT(0x013c, 2), CPU_CLK_UNHALTED.REF */
    	INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
    	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
    	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
    	EVENT_CONSTRAINT_END
    };
    
    static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
    {
    	INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
    	INTEL_EVENT_EXTRA_REG(0xbb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
    	EVENT_EXTRA_END
    };
    
    static struct event_constraint intel_v1_event_constraints[] __read_mostly =
    {
    	EVENT_CONSTRAINT_END
    };
    
    static struct event_constraint intel_gen_event_constraints[] __read_mostly =
    {
    	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
    	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
    	/* FIXED_EVENT_CONSTRAINT(0x013c, 2), CPU_CLK_UNHALTED.REF */
    	EVENT_CONSTRAINT_END
    };
    
    static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
    	INTEL_EVENT_EXTRA_REG(0xb7, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
    	INTEL_EVENT_EXTRA_REG(0xbb, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
    	EVENT_EXTRA_END
    };
    
    static u64 intel_pmu_event_map(int hw_event)
    {
    	return intel_perfmon_event_map[hw_event];
    }
    
    static __initconst const u64 snb_hw_cache_event_ids
    				[PERF_COUNT_HW_CACHE_MAX]
    				[PERF_COUNT_HW_CACHE_OP_MAX]
    				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
    {
     [ C(L1D) ] = {
    	[ C(OP_READ) ] = {
    		[ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
    		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
    	},
    	[ C(OP_WRITE) ] = {
    		[ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
    		[ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
    	},
    	[ C(OP_PREFETCH) ] = {
    		[ C(RESULT_ACCESS) ] = 0x0,
    		[ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
    	},
     },
     [ C(L1I ) ] = {
    	[ C(OP_READ) ] = {
    		[ C(RESULT_ACCESS) ] = 0x0,
    		[ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
    	},
    	[ C(OP_WRITE) ] = {
    		[ C(RESULT_ACCESS) ] = -1,
    		[ C(RESULT_MISS)   ] = -1,
    	},
    	[ C(OP_PREFETCH) ] = {
    		[ C(RESULT_ACCESS) ] = 0x0,
    		[ C(RESULT_MISS)   ] = 0x0,
    	},
     },
     [ C(LL  ) ] = {
    	[ C(OP_READ) ] = {
    		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
    		[ C(RESULT_ACCESS) ] = 0x01b7,
    		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
    		[ C(RESULT_MISS)   ] = 0x01b7,
    	},
    	[ C(OP_WRITE) ] = {
    		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
    		[ C(RESULT_ACCESS) ] = 0x01b7,
    		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
    		[ C(RESULT_MISS)   ] = 0x01b7,
    	},
    	[ C(OP_PREFETCH) ] = {
    		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
    		[ C(RESULT_ACCESS) ] = 0x01b7,
    		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
    		[ C(RESULT_MISS)   ] = 0x01b7,
    	},
     },
     [ C(DTLB) ] = {
    	[ C(OP_READ) ] = {
    		[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
    		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
    	},
    	[ C(OP_WRITE) ] = {
    		[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
    		[ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
    	},
    	[ C(OP_PREFETCH) ] = {
    		[ C(RESULT_ACCESS) ] = 0x0,
    		[ C(RESULT_MISS)   ] = 0x0,
    	},
     },
     [ C(ITLB) ] = {
    	[ C(OP_READ) ] = {
    		[ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
    		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
    	},
    	[ C(OP_WRITE) ] = {
    		[ C(RESULT_ACCESS) ] = -1,
    		[ C(RESULT_MISS)   ] = -1,
    	},
    	[ C(OP_PREFETCH) ] = {
    		[ C(RESULT_ACCESS) ] = -1,
    		[ C(RESULT_MISS)   ] = -1,
    	},
     },
     [ C(BPU ) ] = {
    	[ C(OP_READ) ] = {
    		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
    		[ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
    	},
    	[ C(OP_WRITE) ] = {
    		[ C(RESULT_ACCESS) ] = -1,
    		[ C(RESULT_MISS)   ] = -1,
    	},
    	[ C(OP_PREFETCH) ] = {
    		[ C(RESULT_ACCESS) ] = -1,
    		[ C(RESULT_MISS)   ] = -1,
    	},
     },
     [ C(NODE) ] = {
    	[ C(OP_READ) ] = {
    		[ C(RESULT_ACCESS) ] = -1,
    		[ C(RESULT_MISS)   ] = -1,
    	},
    	[ C(OP_WRITE) ] = {
    		[ C(RESULT_ACCESS) ] = -1,
    		[ C(RESULT_MISS)   ] = -1,
    	},
    	[ C(OP_PREFETCH) ] = {
    		[ C(RESULT_ACCESS) ] = -1,
    		[ C(RESULT_MISS)   ] = -1,
    	},
     },
    
    };
    
    static __initconst const u64 westmere_hw_cache_event_ids
    				[PERF_COUNT_HW_CACHE_MAX]
    				[PERF_COUNT_HW_CACHE_OP_MAX]
    				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
    {
     [ C(L1D) ] = {
    	[ C(OP_READ) ] = {
    		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
    		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
    	},
    	[ C(OP_WRITE) ] = {
    		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
    		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
    	},
    	[ C(OP_PREFETCH) ] = {
    		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
    		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
    	},
     },
     [ C(L1I ) ] = {
    	[ C(OP_READ) ] = {
    		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
    		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
    	},
    	[ C(OP_WRITE) ] = {
    		[ C(RESULT_ACCESS) ] = -1,
    		[ C(RESULT_MISS)   ] = -1,
    	},
    	[ C(OP_PREFETCH) ] = {
    		[ C(RESULT_ACCESS) ] = 0x0,
    		[ C(RESULT_MISS)   ] = 0x0,
    	},
     },
     [ C(LL  ) ] = {
    	[ C(OP_READ) ] = {
    		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
    		[ C(RESULT_ACCESS) ] = 0x01b7,
    		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
    		[ C(RESULT_MISS)   ] = 0x01b7,
    	},
    	/*
    	 * Use RFO, not WRITEBACK, because a write miss would typically occur
    	 * on RFO.
    	 */
    	[ C(OP_WRITE) ] = {
    		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
    		[ C(RESULT_ACCESS) ] = 0x01b7,
    		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
    		[ C(RESULT_MISS)   ] = 0x01b7,
    	},
    	[ C(OP_PREFETCH) ] = {
    		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
    		[ C(RESULT_ACCESS) ] = 0x01b7,
    		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
    		[ C(RESULT_MISS)   ] = 0x01b7,
    	},
     },
     [ C(DTLB) ] = {
    	[ C(OP_READ) ] = {
    		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
    		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
    	},
    	[ C(OP_WRITE) ] = {
    		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
    		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
    	},
    	[ C(OP_PREFETCH) ] = {
    		[ C(RESULT_ACCESS) ] = 0x0,
    		[ C(RESULT_MISS)   ] = 0x0,
    	},
     },
     [ C(ITLB) ] = {
    	[ C(OP_READ) ] = {
    		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
    		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
    	},
    	[ C(OP_WRITE) ] = {
    		[ C(RESULT_ACCESS) ] = -1,
    		[ C(RESULT_MISS)   ] = -1,
    	},
    	[ C(OP_PREFETCH) ] = {
    		[ C(RESULT_ACCESS) ] = -1,
    		[ C(RESULT_MISS)   ] = -1,
    	},
     },
     [ C(BPU ) ] = {
    	[ C(OP_READ) ] = {
    		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
    		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
    	},
    	[ C(OP_WRITE) ] = {
    		[ C(RESULT_ACCESS) ] = -1,
    		[ C(RESULT_MISS)   ] = -1,
    	},
    	[ C(OP_PREFETCH) ] = {
    		[ C(RESULT_ACCESS) ] = -1,
    		[ C(RESULT_MISS)   ] = -1,
    	},
     },
     [ C(NODE) ] = {
    	[ C(OP_READ) ] = {
    		[ C(RESULT_ACCESS) ] = 0x01b7,
    		[ C(RESULT_MISS)   ] = 0x01b7,
    	},
    	[ C(OP_WRITE) ] = {
    		[ C(RESULT_ACCESS) ] = 0x01b7,
    		[ C(RESULT_MISS)   ] = 0x01b7,
    	},
    	[ C(OP_PREFETCH) ] = {
    		[ C(RESULT_ACCESS) ] = 0x01b7,
    		[ C(RESULT_MISS)   ] = 0x01b7,
    	},
     },
    };
    
    /*
     * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
     * See IA32 SDM Vol 3B 30.6.1.3
     */
    
    #define NHM_DMND_DATA_RD	(1 << 0)
    #define NHM_DMND_RFO		(1 << 1)
    #define NHM_DMND_IFETCH		(1 << 2)
    #define NHM_DMND_WB		(1 << 3)
    #define NHM_PF_DATA_RD		(1 << 4)
    #define NHM_PF_DATA_RFO		(1 << 5)
    #define NHM_PF_IFETCH		(1 << 6)
    #define NHM_OFFCORE_OTHER	(1 << 7)
    #define NHM_UNCORE_HIT		(1 << 8)
    #define NHM_OTHER_CORE_HIT_SNP	(1 << 9)
    #define NHM_OTHER_CORE_HITM	(1 << 10)
            			/* reserved */
    #define NHM_REMOTE_CACHE_FWD	(1 << 12)
    #define NHM_REMOTE_DRAM		(1 << 13)
    #define NHM_LOCAL_DRAM		(1 << 14)
    #define NHM_NON_DRAM		(1 << 15)
    
    #define NHM_ALL_DRAM		(NHM_REMOTE_DRAM|NHM_LOCAL_DRAM)
    
    #define NHM_DMND_READ		(NHM_DMND_DATA_RD)
    #define NHM_DMND_WRITE		(NHM_DMND_RFO|NHM_DMND_WB)
    #define NHM_DMND_PREFETCH	(NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
    
    #define NHM_L3_HIT	(NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
    #define NHM_L3_MISS	(NHM_NON_DRAM|NHM_ALL_DRAM|NHM_REMOTE_CACHE_FWD)
    #define NHM_L3_ACCESS	(NHM_L3_HIT|NHM_L3_MISS)
    
    static __initconst const u64 nehalem_hw_cache_extra_regs
    				[PERF_COUNT_HW_CACHE_MAX]
    				[PERF_COUNT_HW_CACHE_OP_MAX]
    				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
    {
     [ C(LL  ) ] = {
    	[ C(OP_READ) ] = {
    		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
    		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
    	},
    	[ C(OP_WRITE) ] = {
    		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
    		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
    	},
    	[ C(OP_PREFETCH) ] = {
    		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
    		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
    	},
     },
     [ C(NODE) ] = {
    	[ C(OP_READ) ] = {
    		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_ALL_DRAM,
    		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE_DRAM,
    	},
    	[ C(OP_WRITE) ] = {
    		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_ALL_DRAM,
    		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE_DRAM,
    	},
    	[ C(OP_PREFETCH) ] = {
    		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_ALL_DRAM,
    		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE_DRAM,
    	},
     },
    };
    
    static __initconst const u64 nehalem_hw_cache_event_ids
    				[PERF_COUNT_HW_CACHE_MAX]
    				[PERF_COUNT_HW_CACHE_OP_MAX]
    				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
    {
     [ C(L1D) ] = {
    	[ C(OP_READ) ] = {
    		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
    		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
    	},
    	[ C(OP_WRITE) ] = {
    		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
    		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
    	},
    	[ C(OP_PREFETCH) ] = {
    		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
    		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
    	},
     },
     [ C(L1I ) ] = {
    	[ C(OP_READ) ] = {
    		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
    		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
    	},
    	[ C(OP_WRITE) ] = {
    		[ C(RESULT_ACCESS) ] = -1,
    		[ C(RESULT_MISS)   ] = -1,
    	},
    	[ C(OP_PREFETCH) ] = {
    		[ C(RESULT_ACCESS) ] = 0x0,
    		[ C(RESULT_MISS)   ] = 0x0,
    	},
     },
     [ C(LL  ) ] = {
    	[ C(OP_READ) ] = {
    		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
    		[ C(RESULT_ACCESS) ] = 0x01b7,
    		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
    		[ C(RESULT_MISS)   ] = 0x01b7,
    	},
    	/*
    	 * Use RFO, not WRITEBACK, because a write miss would typically occur
    	 * on RFO.
    	 */
    	[ C(OP_WRITE) ] = {
    		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
    		[ C(RESULT_ACCESS) ] = 0x01b7,
    		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
    		[ C(RESULT_MISS)   ] = 0x01b7,
    	},
    	[ C(OP_PREFETCH) ] = {
    		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
    		[ C(RESULT_ACCESS) ] = 0x01b7,
    		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
    		[ C(RESULT_MISS)   ] = 0x01b7,
    	},
     },
     [ C(DTLB) ] = {
    	[ C(OP_READ) ] = {
    		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
    		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
    	},
    	[ C(OP_WRITE) ] = {
    		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
    		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
    	},
    	[ C(OP_PREFETCH) ] = {
    		[ C(RESULT_ACCESS) ] = 0x0,
    		[ C(RESULT_MISS)   ] = 0x0,
    	},
     },
     [ C(ITLB) ] = {
    	[ C(OP_READ) ] = {
    		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
    		[ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
    	},
    	[ C(OP_WRITE) ] = {
    		[ C(RESULT_ACCESS) ] = -1,
    		[ C(RESULT_MISS)   ] = -1,
    	},
    	[ C(OP_PREFETCH) ] = {
    		[ C(RESULT_ACCESS) ] = -1,
    		[ C(RESULT_MISS)   ] = -1,
    	},
     },
     [ C(BPU ) ] = {
    	[ C(OP_READ) ] = {
    		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
    		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
    	},
    	[ C(OP_WRITE) ] = {
    		[ C(RESULT_ACCESS) ] = -1,
    		[ C(RESULT_MISS)   ] = -1,
    	},
    	[ C(OP_PREFETCH) ] = {
    		[ C(RESULT_ACCESS) ] = -1,
    		[ C(RESULT_MISS)   ] = -1,
    	},
     },
     [ C(NODE) ] = {
    	[ C(OP_READ) ] = {
    		[ C(RESULT_ACCESS) ] = 0x01b7,
    		[ C(RESULT_MISS)   ] = 0x01b7,
    	},
    	[ C(OP_WRITE) ] = {
    		[ C(RESULT_ACCESS) ] = 0x01b7,
    		[ C(RESULT_MISS)   ] = 0x01b7,
    	},
    	[ C(OP_PREFETCH) ] = {
    		[ C(RESULT_ACCESS) ] = 0x01b7,
    		[ C(RESULT_MISS)   ] = 0x01b7,
    	},
     },
    };
    
    static __initconst const u64 core2_hw_cache_event_ids
    				[PERF_COUNT_HW_CACHE_MAX]
    				[PERF_COUNT_HW_CACHE_OP_MAX]
    				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
    {
     [ C(L1D) ] = {
    	[ C(OP_READ) ] = {
    		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
    		[ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
    	},
    	[ C(OP_WRITE) ] = {
    		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
    		[ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
    	},
    	[ C(OP_PREFETCH) ] = {
    		[ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
    		[ C(RESULT_MISS)   ] = 0,
    	},
     },
     [ C(L1I ) ] = {
    	[ C(OP_READ) ] = {
    		[ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
    		[ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
    	},
    	[ C(OP_WRITE) ] = {
    		[ C(RESULT_ACCESS) ] = -1,
    		[ C(RESULT_MISS)   ] = -1,
    	},
    	[ C(OP_PREFETCH) ] = {
    		[ C(RESULT_ACCESS) ] = 0,
    		[ C(RESULT_MISS)   ] = 0,
    	},
     },
     [ C(LL  ) ] = {
    	[ C(OP_READ) ] = {
    		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
    		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
    	},
    	[ C(OP_WRITE) ] = {
    		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
    		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
    	},
    	[ C(OP_PREFETCH) ] = {
    		[ C(RESULT_ACCESS) ] = 0,
    		[ C(RESULT_MISS)   ] = 0,
    	},
     },
     [ C(DTLB) ] = {
    	[ C(OP_READ) ] = {
    		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
    		[ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
    	},
    	[ C(OP_WRITE) ] = {
    		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
    		[ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
    	},
    	[ C(OP_PREFETCH) ] = {
    		[ C(RESULT_ACCESS) ] = 0,
    		[ C(RESULT_MISS)   ] = 0,
    	},
     },
     [ C(ITLB) ] = {
    	[ C(OP_READ) ] = {
    		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
    		[ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
    	},
    	[ C(OP_WRITE) ] = {
    		[ C(RESULT_ACCESS) ] = -1,
    		[ C(RESULT_MISS)   ] = -1,
    	},
    	[ C(OP_PREFETCH) ] = {
    		[ C(RESULT_ACCESS) ] = -1,
    		[ C(RESULT_MISS)   ] = -1,
    	},
     },
     [ C(BPU ) ] = {
    	[ C(OP_READ) ] = {
    		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
    		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
    	},
    	[ C(OP_WRITE) ] = {
    		[ C(RESULT_ACCESS) ] = -1,
    		[ C(RESULT_MISS)   ] = -1,
    	},
    	[ C(OP_PREFETCH) ] = {
    		[ C(RESULT_ACCESS) ] = -1,
    		[ C(RESULT_MISS)   ] = -1,
    	},
     },
    };
    
    static __initconst const u64 atom_hw_cache_event_ids
    				[PERF_COUNT_HW_CACHE_MAX]
    				[PERF_COUNT_HW_CACHE_OP_MAX]
    				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
    {
     [ C(L1D) ] = {
    	[ C(OP_READ) ] = {
    		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
    		[ C(RESULT_MISS)   ] = 0,
    	},
    	[ C(OP_WRITE) ] = {
    		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
    		[ C(RESULT_MISS)   ] = 0,
    	},
    	[ C(OP_PREFETCH) ] = {
    		[ C(RESULT_ACCESS) ] = 0x0,
    		[ C(RESULT_MISS)   ] = 0,
    	},
     },
     [ C(L1I ) ] = {
    	[ C(OP_READ) ] = {
    		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
    		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
    	},
    	[ C(OP_WRITE) ] = {
    		[ C(RESULT_ACCESS) ] = -1,
    		[ C(RESULT_MISS)   ] = -1,
    	},
    	[ C(OP_PREFETCH) ] = {
    		[ C(RESULT_ACCESS) ] = 0,
    		[ C(RESULT_MISS)   ] = 0,
    	},
     },
     [ C(LL  ) ] = {
    	[ C(OP_READ) ] = {
    		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
    		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
    	},
    	[ C(OP_WRITE) ] = {
    		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
    		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
    	},
    	[ C(OP_PREFETCH) ] = {
    		[ C(RESULT_ACCESS) ] = 0,
    		[ C(RESULT_MISS)   ] = 0,
    	},
     },
     [ C(DTLB) ] = {
    	[ C(OP_READ) ] = {
    		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
    		[ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
    	},
    	[ C(OP_WRITE) ] = {
    		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
    		[ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
    	},
    	[ C(OP_PREFETCH) ] = {
    		[ C(RESULT_ACCESS) ] = 0,
    		[ C(RESULT_MISS)   ] = 0,
    	},
     },
     [ C(ITLB) ] = {
    	[ C(OP_READ) ] = {
    		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
    		[ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
    	},
    	[ C(OP_WRITE) ] = {
    		[ C(RESULT_ACCESS) ] = -1,
    		[ C(RESULT_MISS)   ] = -1,
    	},
    	[ C(OP_PREFETCH) ] = {
    		[ C(RESULT_ACCESS) ] = -1,
    		[ C(RESULT_MISS)   ] = -1,
    	},
     },
     [ C(BPU ) ] = {
    	[ C(OP_READ) ] = {
    		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
    		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
    	},
    	[ C(OP_WRITE) ] = {
    		[ C(RESULT_ACCESS) ] = -1,
    		[ C(RESULT_MISS)   ] = -1,
    	},
    	[ C(OP_PREFETCH) ] = {
    		[ C(RESULT_ACCESS) ] = -1,
    		[ C(RESULT_MISS)   ] = -1,
    	},
     },
    };
    
    static void intel_pmu_disable_all(void)
    {
    	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
    
    	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
    
    	if (test_bit(X86_PMC_IDX_FIXED_BTS, cpuc->active_mask))
    		intel_pmu_disable_bts();
    
    	intel_pmu_pebs_disable_all();
    	intel_pmu_lbr_disable_all();
    }
    
    static void intel_pmu_enable_all(int added)
    {
    	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
    
    	intel_pmu_pebs_enable_all();
    	intel_pmu_lbr_enable_all();
    	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
    			x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
    
    	if (test_bit(X86_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
    		struct perf_event *event =
    			cpuc->events[X86_PMC_IDX_FIXED_BTS];
    
    		if (WARN_ON_ONCE(!event))
    			return;
    
    		intel_pmu_enable_bts(event->hw.config);
    	}
    }
    
    /*
     * Workaround for:
     *   Intel Errata AAK100 (model 26)
     *   Intel Errata AAP53  (model 30)
     *   Intel Errata BD53   (model 44)
     *
     * The official story:
     *   These chips need to be 'reset' when adding counters by programming the
     *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
     *   in sequence on the same PMC or on different PMCs.
     *
     * In practise it appears some of these events do in fact count, and
     * we need to programm all 4 events.
     */
    static void intel_pmu_nhm_workaround(void)
    {
    	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
    	static const unsigned long nhm_magic[4] = {
    		0x4300B5,
    		0x4300D2,
    		0x4300B1,
    		0x4300B1
    	};
    	struct perf_event *event;
    	int i;
    
    	/*
    	 * The Errata requires below steps:
    	 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
    	 * 2) Configure 4 PERFEVTSELx with the magic events and clear
    	 *    the corresponding PMCx;
    	 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
    	 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
    	 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
    	 */
    
    	/*
    	 * The real steps we choose are a little different from above.
    	 * A) To reduce MSR operations, we don't run step 1) as they
    	 *    are already cleared before this function is called;
    	 * B) Call x86_perf_event_update to save PMCx before configuring
    	 *    PERFEVTSELx with magic number;
    	 * C) With step 5), we do clear only when the PERFEVTSELx is
    	 *    not used currently.
    	 * D) Call x86_perf_event_set_period to restore PMCx;
    	 */
    
    	/* We always operate 4 pairs of PERF Counters */
    	for (i = 0; i < 4; i++) {
    		event = cpuc->events[i];
    		if (event)
    			x86_perf_event_update(event);
    	}
    
    	for (i = 0; i < 4; i++) {
    		wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
    		wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
    	}
    
    	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
    	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
    
    	for (i = 0; i < 4; i++) {
    		event = cpuc->events[i];
    
    		if (event) {
    			x86_perf_event_set_period(event);
    			__x86_pmu_enable_event(&event->hw,
    					ARCH_PERFMON_EVENTSEL_ENABLE);
    		} else
    			wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
    	}
    }
    
    static void intel_pmu_nhm_enable_all(int added)
    {
    	if (added)
    		intel_pmu_nhm_workaround();
    	intel_pmu_enable_all(added);
    }
    
    static inline u64 intel_pmu_get_status(void)
    {
    	u64 status;
    
    	rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
    
    	return status;
    }
    
    static inline void intel_pmu_ack_status(u64 ack)
    {
    	wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
    }
    
    static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
    {
    	int idx = hwc->idx - X86_PMC_IDX_FIXED;
    	u64 ctrl_val, mask;
    
    	mask = 0xfULL << (idx * 4);
    
    	rdmsrl(hwc->config_base, ctrl_val);
    	ctrl_val &= ~mask;
    	wrmsrl(hwc->config_base, ctrl_val);
    }
    
    static void intel_pmu_disable_event(struct perf_event *event)
    {
    	struct hw_perf_event *hwc = &event->hw;
    	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
    
    	if (unlikely(hwc->idx == X86_PMC_IDX_FIXED_BTS)) {
    		intel_pmu_disable_bts();
    		intel_pmu_drain_bts_buffer();
    		return;
    	}
    
    	cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
    	cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
    
    	if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
    		intel_pmu_disable_fixed(hwc);
    		return;
    	}
    
    	x86_pmu_disable_event(event);
    
    	if (unlikely(event->attr.precise_ip))
    		intel_pmu_pebs_disable(event);
    }
    
    static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
    {
    	int idx = hwc->idx - X86_PMC_IDX_FIXED;
    	u64 ctrl_val, bits, mask;
    
    	/*
    	 * Enable IRQ generation (0x8),
    	 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
    	 * if requested:
    	 */
    	bits = 0x8ULL;
    	if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
    		bits |= 0x2;
    	if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
    		bits |= 0x1;
    
    	/*
    	 * ANY bit is supported in v3 and up
    	 */
    	if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
    		bits |= 0x4;
    
    	bits <<= (idx * 4);
    	mask = 0xfULL << (idx * 4);
    
    	rdmsrl(hwc->config_base, ctrl_val);
    	ctrl_val &= ~mask;
    	ctrl_val |= bits;
    	wrmsrl(hwc->config_base, ctrl_val);
    }
    
    static void intel_pmu_enable_event(struct perf_event *event)
    {
    	struct hw_perf_event *hwc = &event->hw;
    	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
    
    	if (unlikely(hwc->idx == X86_PMC_IDX_FIXED_BTS)) {
    		if (!__this_cpu_read(cpu_hw_events.enabled))
    			return;
    
    		intel_pmu_enable_bts(hwc->config);
    		return;
    	}
    
    	if (event->attr.exclude_host)
    		cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
    	if (event->attr.exclude_guest)
    		cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
    
    	if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
    		intel_pmu_enable_fixed(hwc);
    		return;
    	}
    
    	if (unlikely(event->attr.precise_ip))
    		intel_pmu_pebs_enable(event);
    
    	__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
    }
    
    /*
     * Save and restart an expired event. Called by NMI contexts,
     * so it has to be careful about preempting normal event ops:
     */
    int intel_pmu_save_and_restart(struct perf_event *event)
    {
    	x86_perf_event_update(event);
    	return x86_perf_event_set_period(event);
    }
    
    static void intel_pmu_reset(void)
    {
    	struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
    	unsigned long flags;
    	int idx;
    
    	if (!x86_pmu.num_counters)
    		return;
    
    	local_irq_save(flags);
    
    	printk("clearing PMU state on CPU#%d\n", smp_processor_id());
    
    	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
    		checking_wrmsrl(x86_pmu_config_addr(idx), 0ull);
    		checking_wrmsrl(x86_pmu_event_addr(idx),  0ull);
    	}
    	for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
    		checking_wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
    
    	if (ds)
    		ds->bts_index = ds->bts_buffer_base;
    
    	local_irq_restore(flags);
    }
    
    /*
     * This handler is triggered by the local APIC, so the APIC IRQ handling
     * rules apply:
     */
    static int intel_pmu_handle_irq(struct pt_regs *regs)
    {
    	struct perf_sample_data data;
    	struct cpu_hw_events *cpuc;
    	int bit, loops;
    	u64 status;
    	int handled;
    
    	perf_sample_data_init(&data, 0);
    
    	cpuc = &__get_cpu_var(cpu_hw_events);
    
    	/*
    	 * Some chipsets need to unmask the LVTPC in a particular spot
    	 * inside the nmi handler.  As a result, the unmasking was pushed
    	 * into all the nmi handlers.
    	 *
    	 * This handler doesn't seem to have any issues with the unmasking
    	 * so it was left at the top.
    	 */
    	apic_write(APIC_LVTPC, APIC_DM_NMI);
    
    	intel_pmu_disable_all();
    	handled = intel_pmu_drain_bts_buffer();
    	status = intel_pmu_get_status();
    	if (!status) {
    		intel_pmu_enable_all(0);
    		return handled;
    	}
    
    	loops = 0;
    again:
    	intel_pmu_ack_status(status);
    	if (++loops > 100) {
    		WARN_ONCE(1, "perfevents: irq loop stuck!\n");
    		perf_event_print_debug();
    		intel_pmu_reset();
    		goto done;
    	}
    
    	inc_irq_stat(apic_perf_irqs);
    
    	intel_pmu_lbr_read();
    
    	/*
    	 * PEBS overflow sets bit 62 in the global status register
    	 */
    	if (__test_and_clear_bit(62, (unsigned long *)&status)) {
    		handled++;
    		x86_pmu.drain_pebs(regs);
    	}
    
    	for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
    		struct perf_event *event = cpuc->events[bit];
    
    		handled++;
    
    		if (!test_bit(bit, cpuc->active_mask))
    			continue;
    
    		if (!intel_pmu_save_and_restart(event))
    			continue;
    
    		data.period = event->hw.last_period;
    
    		if (perf_event_overflow(event, &data, regs))
    			x86_pmu_stop(event, 0);
    	}
    
    	/*
    	 * Repeat if there is more work to be done:
    	 */
    	status = intel_pmu_get_status();
    	if (status)
    		goto again;
    
    done:
    	intel_pmu_enable_all(0);
    	return handled;
    }
    
    static struct event_constraint *
    intel_bts_constraints(struct perf_event *event)
    {
    	struct hw_perf_event *hwc = &event->hw;
    	unsigned int hw_event, bts_event;
    
    	if (event->attr.freq)
    		return NULL;
    
    	hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
    	bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
    
    	if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
    		return &bts_constraint;
    
    	return NULL;
    }
    
    static bool intel_try_alt_er(struct perf_event *event, int orig_idx)
    {
    	if (!(x86_pmu.er_flags & ERF_HAS_RSP_1))
    		return false;
    
    	if (event->hw.extra_reg.idx == EXTRA_REG_RSP_0) {
    		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
    		event->hw.config |= 0x01bb;
    		event->hw.extra_reg.idx = EXTRA_REG_RSP_1;
    		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
    	} else if (event->hw.extra_reg.idx == EXTRA_REG_RSP_1) {
    		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
    		event->hw.config |= 0x01b7;
    		event->hw.extra_reg.idx = EXTRA_REG_RSP_0;
    		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
    	}
    
    	if (event->hw.extra_reg.idx == orig_idx)
    		return false;
    
    	return true;
    }
    
    /*
     * manage allocation of shared extra msr for certain events
     *
     * sharing can be:
     * per-cpu: to be shared between the various events on a single PMU
     * per-core: per-cpu + shared by HT threads
     */
    static struct event_constraint *
    __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
    				   struct perf_event *event)
    {
    	struct event_constraint *c = &emptyconstraint;
    	struct hw_perf_event_extra *reg = &event->hw.extra_reg;
    	struct er_account *era;
    	unsigned long flags;
    	int orig_idx = reg->idx;
    
    	/* already allocated shared msr */
    	if (reg->alloc)
    		return &unconstrained;
    
    again:
    	era = &cpuc->shared_regs->regs[reg->idx];
    	/*
    	 * we use spin_lock_irqsave() to avoid lockdep issues when
    	 * passing a fake cpuc
    	 */
    	raw_spin_lock_irqsave(&era->lock, flags);
    
    	if (!atomic_read(&era->ref) || era->config == reg->config) {
    
    		/* lock in msr value */
    		era->config = reg->config;
    		era->reg = reg->reg;
    
    		/* one more user */
    		atomic_inc(&era->ref);
    
    		/* no need to reallocate during incremental event scheduling */
    		reg->alloc = 1;
    
    		/*
    		 * All events using extra_reg are unconstrained.
    		 * Avoids calling x86_get_event_constraints()
    		 *
    		 * Must revisit if extra_reg controlling events
    		 * ever have constraints. Worst case we go through
    		 * the regular event constraint table.
    		 */
    		c = &unconstrained;
    	} else if (intel_try_alt_er(event, orig_idx)) {
    		raw_spin_unlock_irqrestore(&era->lock, flags);
    		goto again;
    	}
    	raw_spin_unlock_irqrestore(&era->lock, flags);
    
    	return c;
    }
    
    static void
    __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
    				   struct hw_perf_event_extra *reg)
    {
    	struct er_account *era;
    
    	/*
    	 * only put constraint if extra reg was actually
    	 * allocated. Also takes care of event which do
    	 * not use an extra shared reg
    	 */
    	if (!reg->alloc)
    		return;
    
    	era = &cpuc->shared_regs->regs[reg->idx];
    
    	/* one fewer user */
    	atomic_dec(&era->ref);
    
    	/* allocate again next time */
    	reg->alloc = 0;
    }
    
    static struct event_constraint *
    intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
    			      struct perf_event *event)
    {
    	struct event_constraint *c = NULL;
    
    	if (event->hw.extra_reg.idx != EXTRA_REG_NONE)
    		c = __intel_shared_reg_get_constraints(cpuc, event);
    
    	return c;
    }
    
    struct event_constraint *
    x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
    {
    	struct event_constraint *c;
    
    	if (x86_pmu.event_constraints) {
    		for_each_event_constraint(c, x86_pmu.event_constraints) {
    			if ((event->hw.config & c->cmask) == c->code)
    				return c;
    		}
    	}
    
    	return &unconstrained;
    }
    
    static struct event_constraint *
    intel_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
    {
    	struct event_constraint *c;
    
    	c = intel_bts_constraints(event);
    	if (c)
    		return c;
    
    	c = intel_pebs_constraints(event);
    	if (c)
    		return c;
    
    	c = intel_shared_regs_constraints(cpuc, event);
    	if (c)
    		return c;
    
    	return x86_get_event_constraints(cpuc, event);
    }
    
    static void
    intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
    					struct perf_event *event)
    {
    	struct hw_perf_event_extra *reg;
    
    	reg = &event->hw.extra_reg;
    	if (reg->idx != EXTRA_REG_NONE)
    		__intel_shared_reg_put_constraints(cpuc, reg);
    }
    
    static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
    					struct perf_event *event)
    {
    	intel_put_shared_regs_event_constraints(cpuc, event);
    }
    
    static int intel_pmu_hw_config(struct perf_event *event)
    {
    	int ret = x86_pmu_hw_config(event);
    
    	if (ret)
    		return ret;
    
    	if (event->attr.precise_ip &&
    	    (event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
    		/*
    		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
    		 * (0x003c) so that we can use it with PEBS.
    		 *
    		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
    		 * PEBS capable. However we can use INST_RETIRED.ANY_P
    		 * (0x00c0), which is a PEBS capable event, to get the same
    		 * count.
    		 *
    		 * INST_RETIRED.ANY_P counts the number of cycles that retires
    		 * CNTMASK instructions. By setting CNTMASK to a value (16)
    		 * larger than the maximum number of instructions that can be
    		 * retired per cycle (4) and then inverting the condition, we
    		 * count all cycles that retire 16 or less instructions, which
    		 * is every cycle.
    		 *
    		 * Thereby we gain a PEBS capable cycle counter.
    		 */
    		u64 alt_config = 0x108000c0; /* INST_RETIRED.TOTAL_CYCLES */
    
    		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
    		event->hw.config = alt_config;
    	}
    
    	if (event->attr.type != PERF_TYPE_RAW)
    		return 0;
    
    	if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
    		return 0;
    
    	if (x86_pmu.version < 3)
    		return -EINVAL;
    
    	if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
    		return -EACCES;
    
    	event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
    
    	return 0;
    }
    
    struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
    {
    	if (x86_pmu.guest_get_msrs)
    		return x86_pmu.guest_get_msrs(nr);
    	*nr = 0;
    	return NULL;
    }
    EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
    
    static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
    {
    	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
    	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
    
    	arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
    	arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
    	arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
    
    	*nr = 1;
    	return arr;
    }
    
    static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
    {
    	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
    	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
    	int idx;
    
    	for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
    		struct perf_event *event = cpuc->events[idx];
    
    		arr[idx].msr = x86_pmu_config_addr(idx);
    		arr[idx].host = arr[idx].guest = 0;
    
    		if (!test_bit(idx, cpuc->active_mask))
    			continue;
    
    		arr[idx].host = arr[idx].guest =
    			event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
    
    		if (event->attr.exclude_host)
    			arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
    		else if (event->attr.exclude_guest)
    			arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
    	}
    
    	*nr = x86_pmu.num_counters;
    	return arr;
    }
    
    static void core_pmu_enable_event(struct perf_event *event)
    {
    	if (!event->attr.exclude_host)
    		x86_pmu_enable_event(event);
    }
    
    static void core_pmu_enable_all(int added)
    {
    	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
    	int idx;
    
    	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
    		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
    
    		if (!test_bit(idx, cpuc->active_mask) ||
    				cpuc->events[idx]->attr.exclude_host)
    			continue;
    
    		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
    	}
    }
    
    static __initconst const struct x86_pmu core_pmu = {
    	.name			= "core",
    	.handle_irq		= x86_pmu_handle_irq,
    	.disable_all		= x86_pmu_disable_all,
    	.enable_all		= core_pmu_enable_all,
    	.enable			= core_pmu_enable_event,
    	.disable		= x86_pmu_disable_event,
    	.hw_config		= x86_pmu_hw_config,
    	.schedule_events	= x86_schedule_events,
    	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
    	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
    	.event_map		= intel_pmu_event_map,
    	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
    	.apic			= 1,
    	/*
    	 * Intel PMCs cannot be accessed sanely above 32 bit width,
    	 * so we install an artificial 1<<31 period regardless of
    	 * the generic event period:
    	 */
    	.max_period		= (1ULL << 31) - 1,
    	.get_event_constraints	= intel_get_event_constraints,
    	.put_event_constraints	= intel_put_event_constraints,
    	.event_constraints	= intel_core_event_constraints,
    	.guest_get_msrs		= core_guest_get_msrs,
    };
    
    struct intel_shared_regs *allocate_shared_regs(int cpu)
    {
    	struct intel_shared_regs *regs;
    	int i;
    
    	regs = kzalloc_node(sizeof(struct intel_shared_regs),
    			    GFP_KERNEL, cpu_to_node(cpu));
    	if (regs) {
    		/*
    		 * initialize the locks to keep lockdep happy
    		 */
    		for (i = 0; i < EXTRA_REG_MAX; i++)
    			raw_spin_lock_init(&regs->regs[i].lock);
    
    		regs->core_id = -1;
    	}
    	return regs;
    }
    
    static int intel_pmu_cpu_prepare(int cpu)
    {
    	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
    
    	if (!x86_pmu.extra_regs)
    		return NOTIFY_OK;
    
    	cpuc->shared_regs = allocate_shared_regs(cpu);
    	if (!cpuc->shared_regs)
    		return NOTIFY_BAD;
    
    	return NOTIFY_OK;
    }
    
    static void intel_pmu_cpu_starting(int cpu)
    {
    	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
    	int core_id = topology_core_id(cpu);
    	int i;
    
    	init_debug_store_on_cpu(cpu);
    	/*
    	 * Deal with CPUs that don't clear their LBRs on power-up.
    	 */
    	intel_pmu_lbr_reset();
    
    	if (!cpuc->shared_regs || (x86_pmu.er_flags & ERF_NO_HT_SHARING))
    		return;
    
    	for_each_cpu(i, topology_thread_cpumask(cpu)) {
    		struct intel_shared_regs *pc;
    
    		pc = per_cpu(cpu_hw_events, i).shared_regs;
    		if (pc && pc->core_id == core_id) {
    			cpuc->kfree_on_online = cpuc->shared_regs;
    			cpuc->shared_regs = pc;
    			break;
    		}
    	}
    
    	cpuc->shared_regs->core_id = core_id;
    	cpuc->shared_regs->refcnt++;
    }
    
    static void intel_pmu_cpu_dying(int cpu)
    {
    	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
    	struct intel_shared_regs *pc;
    
    	pc = cpuc->shared_regs;
    	if (pc) {
    		if (pc->core_id == -1 || --pc->refcnt == 0)
    			kfree(pc);
    		cpuc->shared_regs = NULL;
    	}
    
    	fini_debug_store_on_cpu(cpu);
    }
    
    static __initconst const struct x86_pmu intel_pmu = {
    	.name			= "Intel",
    	.handle_irq		= intel_pmu_handle_irq,
    	.disable_all		= intel_pmu_disable_all,
    	.enable_all		= intel_pmu_enable_all,
    	.enable			= intel_pmu_enable_event,
    	.disable		= intel_pmu_disable_event,
    	.hw_config		= intel_pmu_hw_config,
    	.schedule_events	= x86_schedule_events,
    	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
    	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
    	.event_map		= intel_pmu_event_map,
    	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
    	.apic			= 1,
    	/*
    	 * Intel PMCs cannot be accessed sanely above 32 bit width,
    	 * so we install an artificial 1<<31 period regardless of
    	 * the generic event period:
    	 */
    	.max_period		= (1ULL << 31) - 1,
    	.get_event_constraints	= intel_get_event_constraints,
    	.put_event_constraints	= intel_put_event_constraints,
    
    	.cpu_prepare		= intel_pmu_cpu_prepare,
    	.cpu_starting		= intel_pmu_cpu_starting,
    	.cpu_dying		= intel_pmu_cpu_dying,
    	.guest_get_msrs		= intel_guest_get_msrs,
    };
    
    static void intel_clovertown_quirks(void)
    {
    	/*
    	 * PEBS is unreliable due to:
    	 *
    	 *   AJ67  - PEBS may experience CPL leaks
    	 *   AJ68  - PEBS PMI may be delayed by one event
    	 *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
    	 *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
    	 *
    	 * AJ67 could be worked around by restricting the OS/USR flags.
    	 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
    	 *
    	 * AJ106 could possibly be worked around by not allowing LBR
    	 *       usage from PEBS, including the fixup.
    	 * AJ68  could possibly be worked around by always programming
    	 *	 a pebs_event_reset[0] value and coping with the lost events.
    	 *
    	 * But taken together it might just make sense to not enable PEBS on
    	 * these chips.
    	 */
    	printk(KERN_WARNING "PEBS disabled due to CPU errata.\n");
    	x86_pmu.pebs = 0;
    	x86_pmu.pebs_constraints = NULL;
    }
    
    static void intel_sandybridge_quirks(void)
    {
    	printk(KERN_WARNING "PEBS disabled due to CPU errata.\n");
    	x86_pmu.pebs = 0;
    	x86_pmu.pebs_constraints = NULL;
    }
    
    __init int intel_pmu_init(void)
    {
    	union cpuid10_edx edx;
    	union cpuid10_eax eax;
    	unsigned int unused;
    	unsigned int ebx;
    	int version;
    
    	if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
    		switch (boot_cpu_data.x86) {
    		case 0x6:
    			return p6_pmu_init();
    		case 0xf:
    			return p4_pmu_init();
    		}
    		return -ENODEV;
    	}
    
    	/*
    	 * Check whether the Architectural PerfMon supports
    	 * Branch Misses Retired hw_event or not.
    	 */
    	cpuid(10, &eax.full, &ebx, &unused, &edx.full);
    	if (eax.split.mask_length <= ARCH_PERFMON_BRANCH_MISSES_RETIRED)
    		return -ENODEV;
    
    	version = eax.split.version_id;
    	if (version < 2)
    		x86_pmu = core_pmu;
    	else
    		x86_pmu = intel_pmu;
    
    	x86_pmu.version			= version;
    	x86_pmu.num_counters		= eax.split.num_counters;
    	x86_pmu.cntval_bits		= eax.split.bit_width;
    	x86_pmu.cntval_mask		= (1ULL << eax.split.bit_width) - 1;
    
    	/*
    	 * Quirk: v2 perfmon does not report fixed-purpose events, so
    	 * assume at least 3 events:
    	 */
    	if (version > 1)
    		x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
    
    	/*
    	 * v2 and above have a perf capabilities MSR
    	 */
    	if (version > 1) {
    		u64 capabilities;
    
    		rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
    		x86_pmu.intel_cap.capabilities = capabilities;
    	}
    
    	intel_ds_init();
    
    	/*
    	 * Install the hw-cache-events table:
    	 */
    	switch (boot_cpu_data.x86_model) {
    	case 14: /* 65 nm core solo/duo, "Yonah" */
    		pr_cont("Core events, ");
    		break;
    
    	case 15: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */
    		x86_pmu.quirks = intel_clovertown_quirks;
    	case 22: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */
    	case 23: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */
    	case 29: /* six-core 45 nm xeon "Dunnington" */
    		memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
    		       sizeof(hw_cache_event_ids));
    
    		intel_pmu_lbr_init_core();
    
    		x86_pmu.event_constraints = intel_core2_event_constraints;
    		x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
    		pr_cont("Core2 events, ");
    		break;
    
    	case 26: /* 45 nm nehalem, "Bloomfield" */
    	case 30: /* 45 nm nehalem, "Lynnfield" */
    	case 46: /* 45 nm nehalem-ex, "Beckton" */
    		memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
    		       sizeof(hw_cache_event_ids));
    		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
    		       sizeof(hw_cache_extra_regs));
    
    		intel_pmu_lbr_init_nhm();
    
    		x86_pmu.event_constraints = intel_nehalem_event_constraints;
    		x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
    		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
    		x86_pmu.extra_regs = intel_nehalem_extra_regs;
    
    		/* UOPS_ISSUED.STALLED_CYCLES */
    		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x180010e;
    		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
    		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 0x1803fb1;
    
    		if (ebx & 0x40) {
    			/*
    			 * Erratum AAJ80 detected, we work it around by using
    			 * the BR_MISP_EXEC.ANY event. This will over-count
    			 * branch-misses, but it's still much better than the
    			 * architectural event which is often completely bogus:
    			 */
    			intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
    
    			pr_cont("erratum AAJ80 worked around, ");
    		}
    		pr_cont("Nehalem events, ");
    		break;
    
    	case 28: /* Atom */
    		memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
    		       sizeof(hw_cache_event_ids));
    
    		intel_pmu_lbr_init_atom();
    
    		x86_pmu.event_constraints = intel_gen_event_constraints;
    		x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
    		pr_cont("Atom events, ");
    		break;
    
    	case 37: /* 32 nm nehalem, "Clarkdale" */
    	case 44: /* 32 nm nehalem, "Gulftown" */
    	case 47: /* 32 nm Xeon E7 */
    		memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
    		       sizeof(hw_cache_event_ids));
    		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
    		       sizeof(hw_cache_extra_regs));
    
    		intel_pmu_lbr_init_nhm();
    
    		x86_pmu.event_constraints = intel_westmere_event_constraints;
    		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
    		x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
    		x86_pmu.extra_regs = intel_westmere_extra_regs;
    		x86_pmu.er_flags |= ERF_HAS_RSP_1;
    
    		/* UOPS_ISSUED.STALLED_CYCLES */
    		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x180010e;
    		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
    		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 0x1803fb1;
    
    		pr_cont("Westmere events, ");
    		break;
    
    	case 42: /* SandyBridge */
    		x86_pmu.quirks = intel_sandybridge_quirks;
    	case 45: /* SandyBridge, "Romely-EP" */
    		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
    		       sizeof(hw_cache_event_ids));
    
    		intel_pmu_lbr_init_nhm();
    
    		x86_pmu.event_constraints = intel_snb_event_constraints;
    		x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
    		x86_pmu.extra_regs = intel_snb_extra_regs;
    		/* all extra regs are per-cpu when HT is on */
    		x86_pmu.er_flags |= ERF_HAS_RSP_1;
    		x86_pmu.er_flags |= ERF_NO_HT_SHARING;
    
    		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
    		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x180010e;
    		/* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
    		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 0x18001b1;
    
    		pr_cont("SandyBridge events, ");
    		break;
    
    	default:
    		switch (x86_pmu.version) {
    		case 1:
    			x86_pmu.event_constraints = intel_v1_event_constraints;
    			pr_cont("generic architected perfmon v1, ");
    			break;
    		default:
    			/*
    			 * default constraints for v2 and up
    			 */
    			x86_pmu.event_constraints = intel_gen_event_constraints;
    			pr_cont("generic architected perfmon, ");
    			break;
    		}
    	}
    	return 0;
    }