Skip to content
Snippets Groups Projects
Select Git revision
  • b5b0ecb736f1ce1e68eb50613c0cfecff10198eb
  • vme-testing default
  • ci-test
  • master
  • remoteproc
  • am625-sk-ov5640
  • pcal6534-upstreaming
  • lps22df-upstreaming
  • msc-upstreaming
  • imx8mp
  • iio/noa1305
  • vme-next
  • vme-next-4.14-rc4
  • v4.14-rc4
  • v4.14-rc3
  • v4.14-rc2
  • v4.14-rc1
  • v4.13
  • vme-next-4.13-rc7
  • v4.13-rc7
  • v4.13-rc6
  • v4.13-rc5
  • v4.13-rc4
  • v4.13-rc3
  • v4.13-rc2
  • v4.13-rc1
  • v4.12
  • v4.12-rc7
  • v4.12-rc6
  • v4.12-rc5
  • v4.12-rc4
  • v4.12-rc3
32 results

io_uring.c

Blame
  • io_uring.c 238.12 KiB
    // SPDX-License-Identifier: GPL-2.0
    /*
     * Shared application/kernel submission and completion ring pairs, for
     * supporting fast/efficient IO.
     *
     * A note on the read/write ordering memory barriers that are matched between
     * the application and kernel side.
     *
     * After the application reads the CQ ring tail, it must use an
     * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
     * before writing the tail (using smp_load_acquire to read the tail will
     * do). It also needs a smp_mb() before updating CQ head (ordering the
     * entry load(s) with the head store), pairing with an implicit barrier
     * through a control-dependency in io_get_cqring (smp_store_release to
     * store head will do). Failure to do so could lead to reading invalid
     * CQ entries.
     *
     * Likewise, the application must use an appropriate smp_wmb() before
     * writing the SQ tail (ordering SQ entry stores with the tail store),
     * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
     * to store the tail will do). And it needs a barrier ordering the SQ
     * head load before writing new SQ entries (smp_load_acquire to read
     * head will do).
     *
     * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
     * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
     * updating the SQ tail; a full memory barrier smp_mb() is needed
     * between.
     *
     * Also see the examples in the liburing library:
     *
     *	git://git.kernel.dk/liburing
     *
     * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
     * from data shared between the kernel and application. This is done both
     * for ordering purposes, but also to ensure that once a value is loaded from
     * data that the application could potentially modify, it remains stable.
     *
     * Copyright (C) 2018-2019 Jens Axboe
     * Copyright (c) 2018-2019 Christoph Hellwig
     */
    #include <linux/kernel.h>
    #include <linux/init.h>
    #include <linux/errno.h>
    #include <linux/syscalls.h>
    #include <linux/compat.h>
    #include <net/compat.h>
    #include <linux/refcount.h>
    #include <linux/uio.h>
    #include <linux/bits.h>
    
    #include <linux/sched/signal.h>
    #include <linux/fs.h>
    #include <linux/file.h>
    #include <linux/fdtable.h>
    #include <linux/mm.h>
    #include <linux/mman.h>
    #include <linux/percpu.h>
    #include <linux/slab.h>
    #include <linux/blkdev.h>
    #include <linux/bvec.h>
    #include <linux/net.h>
    #include <net/sock.h>
    #include <net/af_unix.h>
    #include <net/scm.h>
    #include <linux/anon_inodes.h>
    #include <linux/sched/mm.h>
    #include <linux/uaccess.h>
    #include <linux/nospec.h>
    #include <linux/sizes.h>
    #include <linux/hugetlb.h>
    #include <linux/highmem.h>
    #include <linux/namei.h>
    #include <linux/fsnotify.h>
    #include <linux/fadvise.h>
    #include <linux/eventpoll.h>
    #include <linux/splice.h>
    #include <linux/task_work.h>
    #include <linux/pagemap.h>
    #include <linux/io_uring.h>
    #include <linux/freezer.h>
    
    #define CREATE_TRACE_POINTS
    #include <trace/events/io_uring.h>
    
    #include <uapi/linux/io_uring.h>
    
    #include "internal.h"
    #include "io-wq.h"
    
    #define IORING_MAX_ENTRIES	32768
    #define IORING_MAX_CQ_ENTRIES	(2 * IORING_MAX_ENTRIES)
    
    /*
     * Shift of 9 is 512 entries, or exactly one page on 64-bit archs
     */
    #define IORING_FILE_TABLE_SHIFT	9
    #define IORING_MAX_FILES_TABLE	(1U << IORING_FILE_TABLE_SHIFT)
    #define IORING_FILE_TABLE_MASK	(IORING_MAX_FILES_TABLE - 1)
    #define IORING_MAX_FIXED_FILES	(64 * IORING_MAX_FILES_TABLE)
    #define IORING_MAX_RESTRICTIONS	(IORING_RESTRICTION_LAST + \
    				 IORING_REGISTER_LAST + IORING_OP_LAST)
    
    #define SQE_VALID_FLAGS	(IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK|	\
    				IOSQE_IO_HARDLINK | IOSQE_ASYNC | \
    				IOSQE_BUFFER_SELECT)
    
    struct io_uring {
    	u32 head ____cacheline_aligned_in_smp;
    	u32 tail ____cacheline_aligned_in_smp;
    };
    
    /*
     * This data is shared with the application through the mmap at offsets
     * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
     *
     * The offsets to the member fields are published through struct
     * io_sqring_offsets when calling io_uring_setup.
     */
    struct io_rings {
    	/*
    	 * Head and tail offsets into the ring; the offsets need to be
    	 * masked to get valid indices.
    	 *
    	 * The kernel controls head of the sq ring and the tail of the cq ring,
    	 * and the application controls tail of the sq ring and the head of the
    	 * cq ring.
    	 */
    	struct io_uring		sq, cq;
    	/*
    	 * Bitmasks to apply to head and tail offsets (constant, equals
    	 * ring_entries - 1)
    	 */
    	u32			sq_ring_mask, cq_ring_mask;
    	/* Ring sizes (constant, power of 2) */
    	u32			sq_ring_entries, cq_ring_entries;
    	/*
    	 * Number of invalid entries dropped by the kernel due to
    	 * invalid index stored in array
    	 *
    	 * Written by the kernel, shouldn't be modified by the
    	 * application (i.e. get number of "new events" by comparing to
    	 * cached value).
    	 *
    	 * After a new SQ head value was read by the application this
    	 * counter includes all submissions that were dropped reaching
    	 * the new SQ head (and possibly more).
    	 */
    	u32			sq_dropped;
    	/*
    	 * Runtime SQ flags
    	 *
    	 * Written by the kernel, shouldn't be modified by the
    	 * application.
    	 *
    	 * The application needs a full memory barrier before checking
    	 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
    	 */
    	u32			sq_flags;
    	/*
    	 * Runtime CQ flags
    	 *
    	 * Written by the application, shouldn't be modified by the
    	 * kernel.
    	 */
    	u32                     cq_flags;
    	/*
    	 * Number of completion events lost because the queue was full;
    	 * this should be avoided by the application by making sure
    	 * there are not more requests pending than there is space in
    	 * the completion queue.
    	 *
    	 * Written by the kernel, shouldn't be modified by the
    	 * application (i.e. get number of "new events" by comparing to
    	 * cached value).
    	 *
    	 * As completion events come in out of order this counter is not
    	 * ordered with any other data.
    	 */
    	u32			cq_overflow;
    	/*
    	 * Ring buffer of completion events.
    	 *
    	 * The kernel writes completion events fresh every time they are
    	 * produced, so the application is allowed to modify pending
    	 * entries.
    	 */
    	struct io_uring_cqe	cqes[] ____cacheline_aligned_in_smp;
    };
    
    enum io_uring_cmd_flags {
    	IO_URING_F_NONBLOCK		= 1,
    	IO_URING_F_COMPLETE_DEFER	= 2,
    };
    
    struct io_mapped_ubuf {
    	u64		ubuf;
    	size_t		len;
    	struct		bio_vec *bvec;
    	unsigned int	nr_bvecs;
    	unsigned long	acct_pages;
    };
    
    struct io_ring_ctx;
    
    struct io_rsrc_put {
    	struct list_head list;
    	union {
    		void *rsrc;
    		struct file *file;
    	};
    };
    
    struct fixed_rsrc_table {
    	struct file		**files;
    };
    
    struct fixed_rsrc_ref_node {
    	struct percpu_ref		refs;
    	struct list_head		node;
    	struct list_head		rsrc_list;
    	struct fixed_rsrc_data		*rsrc_data;
    	void				(*rsrc_put)(struct io_ring_ctx *ctx,
    						    struct io_rsrc_put *prsrc);
    	struct llist_node		llist;
    	bool				done;
    };
    
    struct fixed_rsrc_data {
    	struct fixed_rsrc_table		*table;
    	struct io_ring_ctx		*ctx;
    
    	struct fixed_rsrc_ref_node	*node;
    	struct percpu_ref		refs;
    	struct completion		done;
    	bool				quiesce;
    };
    
    struct io_buffer {
    	struct list_head list;
    	__u64 addr;
    	__s32 len;
    	__u16 bid;
    };
    
    struct io_restriction {
    	DECLARE_BITMAP(register_op, IORING_REGISTER_LAST);
    	DECLARE_BITMAP(sqe_op, IORING_OP_LAST);
    	u8 sqe_flags_allowed;
    	u8 sqe_flags_required;
    	bool registered;
    };
    
    enum {
    	IO_SQ_THREAD_SHOULD_STOP = 0,
    	IO_SQ_THREAD_SHOULD_PARK,
    };
    
    struct io_sq_data {
    	refcount_t		refs;
    	struct mutex		lock;
    
    	/* ctx's that are using this sqd */
    	struct list_head	ctx_list;
    	struct list_head	ctx_new_list;
    	struct mutex		ctx_lock;
    
    	struct task_struct	*thread;
    	struct wait_queue_head	wait;
    
    	unsigned		sq_thread_idle;
    	int			sq_cpu;
    	pid_t			task_pid;
    
    	unsigned long		state;
    	struct completion	startup;
    	struct completion	completion;
    	struct completion	exited;
    };
    
    #define IO_IOPOLL_BATCH			8
    #define IO_COMPL_BATCH			32
    #define IO_REQ_CACHE_SIZE		32
    #define IO_REQ_ALLOC_BATCH		8
    
    struct io_comp_state {
    	struct io_kiocb		*reqs[IO_COMPL_BATCH];
    	unsigned int		nr;
    	unsigned int		locked_free_nr;
    	/* inline/task_work completion list, under ->uring_lock */
    	struct list_head	free_list;
    	/* IRQ completion list, under ->completion_lock */
    	struct list_head	locked_free_list;
    };
    
    struct io_submit_link {
    	struct io_kiocb		*head;
    	struct io_kiocb		*last;
    };
    
    struct io_submit_state {
    	struct blk_plug		plug;
    	struct io_submit_link	link;
    
    	/*
    	 * io_kiocb alloc cache
    	 */
    	void			*reqs[IO_REQ_CACHE_SIZE];
    	unsigned int		free_reqs;
    
    	bool			plug_started;
    
    	/*
    	 * Batch completion logic
    	 */
    	struct io_comp_state	comp;
    
    	/*
    	 * File reference cache
    	 */
    	struct file		*file;
    	unsigned int		fd;
    	unsigned int		file_refs;
    	unsigned int		ios_left;
    };
    
    struct io_ring_ctx {
    	struct {
    		struct percpu_ref	refs;
    	} ____cacheline_aligned_in_smp;
    
    	struct {
    		unsigned int		flags;
    		unsigned int		compat: 1;
    		unsigned int		cq_overflow_flushed: 1;
    		unsigned int		drain_next: 1;
    		unsigned int		eventfd_async: 1;
    		unsigned int		restricted: 1;
    		unsigned int		sqo_exec: 1;
    
    		/*
    		 * Ring buffer of indices into array of io_uring_sqe, which is
    		 * mmapped by the application using the IORING_OFF_SQES offset.
    		 *
    		 * This indirection could e.g. be used to assign fixed
    		 * io_uring_sqe entries to operations and only submit them to
    		 * the queue when needed.
    		 *
    		 * The kernel modifies neither the indices array nor the entries
    		 * array.
    		 */
    		u32			*sq_array;
    		unsigned		cached_sq_head;
    		unsigned		sq_entries;
    		unsigned		sq_mask;
    		unsigned		sq_thread_idle;
    		unsigned		cached_sq_dropped;
    		unsigned		cached_cq_overflow;
    		unsigned long		sq_check_overflow;
    
    		/* hashed buffered write serialization */
    		struct io_wq_hash	*hash_map;
    
    		struct list_head	defer_list;
    		struct list_head	timeout_list;
    		struct list_head	cq_overflow_list;
    
    		struct io_uring_sqe	*sq_sqes;
    	} ____cacheline_aligned_in_smp;
    
    	struct {
    		struct mutex		uring_lock;
    		wait_queue_head_t	wait;
    	} ____cacheline_aligned_in_smp;
    
    	struct io_submit_state		submit_state;
    
    	struct io_rings	*rings;
    
    	/* Only used for accounting purposes */
    	struct mm_struct	*mm_account;
    
    	struct io_sq_data	*sq_data;	/* if using sq thread polling */
    
    	struct wait_queue_head	sqo_sq_wait;
    	struct list_head	sqd_list;
    
    	/*
    	 * If used, fixed file set. Writers must ensure that ->refs is dead,
    	 * readers must ensure that ->refs is alive as long as the file* is
    	 * used. Only updated through io_uring_register(2).
    	 */
    	struct fixed_rsrc_data	*file_data;
    	unsigned		nr_user_files;
    
    	/* if used, fixed mapped user buffers */
    	unsigned		nr_user_bufs;
    	struct io_mapped_ubuf	*user_bufs;
    
    	struct user_struct	*user;
    
    	struct completion	ref_comp;
    	struct completion	sq_thread_comp;
    
    #if defined(CONFIG_UNIX)
    	struct socket		*ring_sock;
    #endif
    
    	struct idr		io_buffer_idr;
    
    	struct idr		personality_idr;
    
    	struct {
    		unsigned		cached_cq_tail;
    		unsigned		cq_entries;
    		unsigned		cq_mask;
    		atomic_t		cq_timeouts;
    		unsigned		cq_last_tm_flush;
    		unsigned long		cq_check_overflow;
    		struct wait_queue_head	cq_wait;
    		struct fasync_struct	*cq_fasync;
    		struct eventfd_ctx	*cq_ev_fd;
    	} ____cacheline_aligned_in_smp;
    
    	struct {
    		spinlock_t		completion_lock;
    
    		/*
    		 * ->iopoll_list is protected by the ctx->uring_lock for
    		 * io_uring instances that don't use IORING_SETUP_SQPOLL.
    		 * For SQPOLL, only the single threaded io_sq_thread() will
    		 * manipulate the list, hence no extra locking is needed there.
    		 */
    		struct list_head	iopoll_list;
    		struct hlist_head	*cancel_hash;
    		unsigned		cancel_hash_bits;
    		bool			poll_multi_file;
    
    		spinlock_t		inflight_lock;
    		struct list_head	inflight_list;
    	} ____cacheline_aligned_in_smp;
    
    	struct delayed_work		rsrc_put_work;
    	struct llist_head		rsrc_put_llist;
    	struct list_head		rsrc_ref_list;
    	spinlock_t			rsrc_ref_lock;
    
    	struct io_restriction		restrictions;
    
    	/* exit task_work */
    	struct callback_head		*exit_task_work;
    
    	struct wait_queue_head		hash_wait;
    
    	/* Keep this last, we don't need it for the fast path */
    	struct work_struct		exit_work;
    };
    
    /*
     * First field must be the file pointer in all the
     * iocb unions! See also 'struct kiocb' in <linux/fs.h>
     */
    struct io_poll_iocb {
    	struct file			*file;
    	struct wait_queue_head		*head;
    	__poll_t			events;
    	bool				done;
    	bool				canceled;
    	struct wait_queue_entry		wait;
    };
    
    struct io_poll_remove {
    	struct file			*file;
    	u64				addr;
    };
    
    struct io_close {
    	struct file			*file;
    	int				fd;
    };
    
    struct io_timeout_data {
    	struct io_kiocb			*req;
    	struct hrtimer			timer;
    	struct timespec64		ts;
    	enum hrtimer_mode		mode;
    };
    
    struct io_accept {
    	struct file			*file;
    	struct sockaddr __user		*addr;
    	int __user			*addr_len;
    	int				flags;
    	unsigned long			nofile;
    };
    
    struct io_sync {
    	struct file			*file;
    	loff_t				len;
    	loff_t				off;
    	int				flags;
    	int				mode;
    };
    
    struct io_cancel {
    	struct file			*file;
    	u64				addr;
    };
    
    struct io_timeout {
    	struct file			*file;
    	u32				off;
    	u32				target_seq;
    	struct list_head		list;
    	/* head of the link, used by linked timeouts only */
    	struct io_kiocb			*head;
    };
    
    struct io_timeout_rem {
    	struct file			*file;
    	u64				addr;
    
    	/* timeout update */
    	struct timespec64		ts;
    	u32				flags;
    };
    
    struct io_rw {
    	/* NOTE: kiocb has the file as the first member, so don't do it here */
    	struct kiocb			kiocb;
    	u64				addr;
    	u64				len;
    };
    
    struct io_connect {
    	struct file			*file;
    	struct sockaddr __user		*addr;
    	int				addr_len;
    };
    
    struct io_sr_msg {
    	struct file			*file;
    	union {
    		struct user_msghdr __user *umsg;
    		void __user		*buf;
    	};
    	int				msg_flags;
    	int				bgid;
    	size_t				len;
    	struct io_buffer		*kbuf;
    };
    
    struct io_open {
    	struct file			*file;
    	int				dfd;
    	struct filename			*filename;
    	struct open_how			how;
    	unsigned long			nofile;
    };
    
    struct io_rsrc_update {
    	struct file			*file;
    	u64				arg;
    	u32				nr_args;
    	u32				offset;
    };
    
    struct io_fadvise {
    	struct file			*file;
    	u64				offset;
    	u32				len;
    	u32				advice;
    };
    
    struct io_madvise {
    	struct file			*file;
    	u64				addr;
    	u32				len;
    	u32				advice;
    };
    
    struct io_epoll {
    	struct file			*file;
    	int				epfd;
    	int				op;
    	int				fd;
    	struct epoll_event		event;
    };
    
    struct io_splice {
    	struct file			*file_out;
    	struct file			*file_in;
    	loff_t				off_out;
    	loff_t				off_in;
    	u64				len;
    	unsigned int			flags;
    };
    
    struct io_provide_buf {
    	struct file			*file;
    	__u64				addr;
    	__s32				len;
    	__u32				bgid;
    	__u16				nbufs;
    	__u16				bid;
    };
    
    struct io_statx {
    	struct file			*file;
    	int				dfd;
    	unsigned int			mask;
    	unsigned int			flags;
    	const char __user		*filename;
    	struct statx __user		*buffer;
    };
    
    struct io_shutdown {
    	struct file			*file;
    	int				how;
    };
    
    struct io_rename {
    	struct file			*file;
    	int				old_dfd;
    	int				new_dfd;
    	struct filename			*oldpath;
    	struct filename			*newpath;
    	int				flags;
    };
    
    struct io_unlink {
    	struct file			*file;
    	int				dfd;
    	int				flags;
    	struct filename			*filename;
    };
    
    struct io_completion {
    	struct file			*file;
    	struct list_head		list;
    	int				cflags;
    };
    
    struct io_async_connect {
    	struct sockaddr_storage		address;
    };
    
    struct io_async_msghdr {
    	struct iovec			fast_iov[UIO_FASTIOV];
    	/* points to an allocated iov, if NULL we use fast_iov instead */
    	struct iovec			*free_iov;
    	struct sockaddr __user		*uaddr;
    	struct msghdr			msg;
    	struct sockaddr_storage		addr;
    };
    
    struct io_async_rw {
    	struct iovec			fast_iov[UIO_FASTIOV];
    	const struct iovec		*free_iovec;
    	struct iov_iter			iter;
    	size_t				bytes_done;
    	struct wait_page_queue		wpq;
    };
    
    enum {
    	REQ_F_FIXED_FILE_BIT	= IOSQE_FIXED_FILE_BIT,
    	REQ_F_IO_DRAIN_BIT	= IOSQE_IO_DRAIN_BIT,
    	REQ_F_LINK_BIT		= IOSQE_IO_LINK_BIT,
    	REQ_F_HARDLINK_BIT	= IOSQE_IO_HARDLINK_BIT,
    	REQ_F_FORCE_ASYNC_BIT	= IOSQE_ASYNC_BIT,
    	REQ_F_BUFFER_SELECT_BIT	= IOSQE_BUFFER_SELECT_BIT,
    
    	REQ_F_FAIL_LINK_BIT,
    	REQ_F_INFLIGHT_BIT,
    	REQ_F_CUR_POS_BIT,
    	REQ_F_NOWAIT_BIT,
    	REQ_F_LINK_TIMEOUT_BIT,
    	REQ_F_ISREG_BIT,
    	REQ_F_NEED_CLEANUP_BIT,
    	REQ_F_POLLED_BIT,
    	REQ_F_BUFFER_SELECTED_BIT,
    	REQ_F_NO_FILE_TABLE_BIT,
    	REQ_F_LTIMEOUT_ACTIVE_BIT,
    	REQ_F_COMPLETE_INLINE_BIT,
    
    	/* not a real bit, just to check we're not overflowing the space */
    	__REQ_F_LAST_BIT,
    };
    
    enum {
    	/* ctx owns file */
    	REQ_F_FIXED_FILE	= BIT(REQ_F_FIXED_FILE_BIT),
    	/* drain existing IO first */
    	REQ_F_IO_DRAIN		= BIT(REQ_F_IO_DRAIN_BIT),
    	/* linked sqes */
    	REQ_F_LINK		= BIT(REQ_F_LINK_BIT),
    	/* doesn't sever on completion < 0 */
    	REQ_F_HARDLINK		= BIT(REQ_F_HARDLINK_BIT),
    	/* IOSQE_ASYNC */
    	REQ_F_FORCE_ASYNC	= BIT(REQ_F_FORCE_ASYNC_BIT),
    	/* IOSQE_BUFFER_SELECT */
    	REQ_F_BUFFER_SELECT	= BIT(REQ_F_BUFFER_SELECT_BIT),
    
    	/* fail rest of links */
    	REQ_F_FAIL_LINK		= BIT(REQ_F_FAIL_LINK_BIT),
    	/* on inflight list, should be cancelled and waited on exit reliably */
    	REQ_F_INFLIGHT		= BIT(REQ_F_INFLIGHT_BIT),
    	/* read/write uses file position */
    	REQ_F_CUR_POS		= BIT(REQ_F_CUR_POS_BIT),
    	/* must not punt to workers */
    	REQ_F_NOWAIT		= BIT(REQ_F_NOWAIT_BIT),
    	/* has or had linked timeout */
    	REQ_F_LINK_TIMEOUT	= BIT(REQ_F_LINK_TIMEOUT_BIT),
    	/* regular file */
    	REQ_F_ISREG		= BIT(REQ_F_ISREG_BIT),
    	/* needs cleanup */
    	REQ_F_NEED_CLEANUP	= BIT(REQ_F_NEED_CLEANUP_BIT),
    	/* already went through poll handler */
    	REQ_F_POLLED		= BIT(REQ_F_POLLED_BIT),
    	/* buffer already selected */
    	REQ_F_BUFFER_SELECTED	= BIT(REQ_F_BUFFER_SELECTED_BIT),
    	/* doesn't need file table for this request */
    	REQ_F_NO_FILE_TABLE	= BIT(REQ_F_NO_FILE_TABLE_BIT),
    	/* linked timeout is active, i.e. prepared by link's head */
    	REQ_F_LTIMEOUT_ACTIVE	= BIT(REQ_F_LTIMEOUT_ACTIVE_BIT),
    	/* completion is deferred through io_comp_state */
    	REQ_F_COMPLETE_INLINE	= BIT(REQ_F_COMPLETE_INLINE_BIT),
    };
    
    struct async_poll {
    	struct io_poll_iocb	poll;
    	struct io_poll_iocb	*double_poll;
    };
    
    struct io_task_work {
    	struct io_wq_work_node	node;
    	task_work_func_t	func;
    };
    
    /*
     * NOTE! Each of the iocb union members has the file pointer
     * as the first entry in their struct definition. So you can
     * access the file pointer through any of the sub-structs,
     * or directly as just 'ki_filp' in this struct.
     */
    struct io_kiocb {
    	union {
    		struct file		*file;
    		struct io_rw		rw;
    		struct io_poll_iocb	poll;
    		struct io_poll_remove	poll_remove;
    		struct io_accept	accept;
    		struct io_sync		sync;
    		struct io_cancel	cancel;
    		struct io_timeout	timeout;
    		struct io_timeout_rem	timeout_rem;
    		struct io_connect	connect;
    		struct io_sr_msg	sr_msg;
    		struct io_open		open;
    		struct io_close		close;
    		struct io_rsrc_update	rsrc_update;
    		struct io_fadvise	fadvise;
    		struct io_madvise	madvise;
    		struct io_epoll		epoll;
    		struct io_splice	splice;
    		struct io_provide_buf	pbuf;
    		struct io_statx		statx;
    		struct io_shutdown	shutdown;
    		struct io_rename	rename;
    		struct io_unlink	unlink;
    		/* use only after cleaning per-op data, see io_clean_op() */
    		struct io_completion	compl;
    	};
    
    	/* opcode allocated if it needs to store data for async defer */
    	void				*async_data;
    	u8				opcode;
    	/* polled IO has completed */
    	u8				iopoll_completed;
    
    	u16				buf_index;
    	u32				result;
    
    	struct io_ring_ctx		*ctx;
    	unsigned int			flags;
    	refcount_t			refs;
    	struct task_struct		*task;
    	u64				user_data;
    
    	struct io_kiocb			*link;
    	struct percpu_ref		*fixed_rsrc_refs;
    
    	/*
    	 * 1. used with ctx->iopoll_list with reads/writes
    	 * 2. to track reqs with ->files (see io_op_def::file_table)
    	 */
    	struct list_head		inflight_entry;
    	union {
    		struct io_task_work	io_task_work;
    		struct callback_head	task_work;
    	};
    	/* for polled requests, i.e. IORING_OP_POLL_ADD and async armed poll */
    	struct hlist_node		hash_node;
    	struct async_poll		*apoll;
    	struct io_wq_work		work;
    };
    
    struct io_defer_entry {
    	struct list_head	list;
    	struct io_kiocb		*req;
    	u32			seq;
    };
    
    struct io_op_def {
    	/* needs req->file assigned */
    	unsigned		needs_file : 1;
    	/* hash wq insertion if file is a regular file */
    	unsigned		hash_reg_file : 1;
    	/* unbound wq insertion if file is a non-regular file */
    	unsigned		unbound_nonreg_file : 1;
    	/* opcode is not supported by this kernel */
    	unsigned		not_supported : 1;
    	/* set if opcode supports polled "wait" */
    	unsigned		pollin : 1;
    	unsigned		pollout : 1;
    	/* op supports buffer selection */
    	unsigned		buffer_select : 1;
    	/* must always have async data allocated */
    	unsigned		needs_async_data : 1;
    	/* should block plug */
    	unsigned		plug : 1;
    	/* size of async data needed, if any */
    	unsigned short		async_size;
    };
    
    static const struct io_op_def io_op_defs[] = {
    	[IORING_OP_NOP] = {},
    	[IORING_OP_READV] = {
    		.needs_file		= 1,
    		.unbound_nonreg_file	= 1,
    		.pollin			= 1,
    		.buffer_select		= 1,
    		.needs_async_data	= 1,
    		.plug			= 1,
    		.async_size		= sizeof(struct io_async_rw),
    	},
    	[IORING_OP_WRITEV] = {
    		.needs_file		= 1,
    		.hash_reg_file		= 1,
    		.unbound_nonreg_file	= 1,
    		.pollout		= 1,
    		.needs_async_data	= 1,
    		.plug			= 1,
    		.async_size		= sizeof(struct io_async_rw),
    	},
    	[IORING_OP_FSYNC] = {
    		.needs_file		= 1,
    	},
    	[IORING_OP_READ_FIXED] = {
    		.needs_file		= 1,
    		.unbound_nonreg_file	= 1,
    		.pollin			= 1,
    		.plug			= 1,
    		.async_size		= sizeof(struct io_async_rw),
    	},
    	[IORING_OP_WRITE_FIXED] = {
    		.needs_file		= 1,
    		.hash_reg_file		= 1,
    		.unbound_nonreg_file	= 1,
    		.pollout		= 1,
    		.plug			= 1,
    		.async_size		= sizeof(struct io_async_rw),
    	},
    	[IORING_OP_POLL_ADD] = {
    		.needs_file		= 1,
    		.unbound_nonreg_file	= 1,
    	},
    	[IORING_OP_POLL_REMOVE] = {},
    	[IORING_OP_SYNC_FILE_RANGE] = {
    		.needs_file		= 1,
    	},
    	[IORING_OP_SENDMSG] = {
    		.needs_file		= 1,
    		.unbound_nonreg_file	= 1,
    		.pollout		= 1,
    		.needs_async_data	= 1,
    		.async_size		= sizeof(struct io_async_msghdr),
    	},
    	[IORING_OP_RECVMSG] = {
    		.needs_file		= 1,
    		.unbound_nonreg_file	= 1,
    		.pollin			= 1,
    		.buffer_select		= 1,
    		.needs_async_data	= 1,
    		.async_size		= sizeof(struct io_async_msghdr),
    	},
    	[IORING_OP_TIMEOUT] = {
    		.needs_async_data	= 1,
    		.async_size		= sizeof(struct io_timeout_data),
    	},
    	[IORING_OP_TIMEOUT_REMOVE] = {
    		/* used by timeout updates' prep() */
    	},
    	[IORING_OP_ACCEPT] = {
    		.needs_file		= 1,
    		.unbound_nonreg_file	= 1,
    		.pollin			= 1,
    	},
    	[IORING_OP_ASYNC_CANCEL] = {},
    	[IORING_OP_LINK_TIMEOUT] = {
    		.needs_async_data	= 1,
    		.async_size		= sizeof(struct io_timeout_data),
    	},
    	[IORING_OP_CONNECT] = {
    		.needs_file		= 1,
    		.unbound_nonreg_file	= 1,
    		.pollout		= 1,
    		.needs_async_data	= 1,
    		.async_size		= sizeof(struct io_async_connect),
    	},
    	[IORING_OP_FALLOCATE] = {
    		.needs_file		= 1,
    	},
    	[IORING_OP_OPENAT] = {},
    	[IORING_OP_CLOSE] = {},
    	[IORING_OP_FILES_UPDATE] = {},
    	[IORING_OP_STATX] = {},
    	[IORING_OP_READ] = {
    		.needs_file		= 1,
    		.unbound_nonreg_file	= 1,
    		.pollin			= 1,
    		.buffer_select		= 1,
    		.plug			= 1,
    		.async_size		= sizeof(struct io_async_rw),
    	},
    	[IORING_OP_WRITE] = {
    		.needs_file		= 1,
    		.unbound_nonreg_file	= 1,
    		.pollout		= 1,
    		.plug			= 1,
    		.async_size		= sizeof(struct io_async_rw),
    	},
    	[IORING_OP_FADVISE] = {
    		.needs_file		= 1,
    	},
    	[IORING_OP_MADVISE] = {},
    	[IORING_OP_SEND] = {
    		.needs_file		= 1,
    		.unbound_nonreg_file	= 1,
    		.pollout		= 1,
    	},
    	[IORING_OP_RECV] = {
    		.needs_file		= 1,
    		.unbound_nonreg_file	= 1,
    		.pollin			= 1,
    		.buffer_select		= 1,
    	},
    	[IORING_OP_OPENAT2] = {
    	},
    	[IORING_OP_EPOLL_CTL] = {
    		.unbound_nonreg_file	= 1,
    	},
    	[IORING_OP_SPLICE] = {
    		.needs_file		= 1,
    		.hash_reg_file		= 1,
    		.unbound_nonreg_file	= 1,
    	},
    	[IORING_OP_PROVIDE_BUFFERS] = {},
    	[IORING_OP_REMOVE_BUFFERS] = {},
    	[IORING_OP_TEE] = {
    		.needs_file		= 1,
    		.hash_reg_file		= 1,
    		.unbound_nonreg_file	= 1,
    	},
    	[IORING_OP_SHUTDOWN] = {
    		.needs_file		= 1,
    	},
    	[IORING_OP_RENAMEAT] = {},
    	[IORING_OP_UNLINKAT] = {},
    };
    
    static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
    					 struct task_struct *task,
    					 struct files_struct *files);
    static void io_uring_cancel_sqpoll(struct io_ring_ctx *ctx);
    static void destroy_fixed_rsrc_ref_node(struct fixed_rsrc_ref_node *ref_node);
    static struct fixed_rsrc_ref_node *alloc_fixed_rsrc_ref_node(
    			struct io_ring_ctx *ctx);
    static void io_ring_file_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc);
    
    static bool io_rw_reissue(struct io_kiocb *req);
    static void io_cqring_fill_event(struct io_kiocb *req, long res);
    static void io_put_req(struct io_kiocb *req);
    static void io_put_req_deferred(struct io_kiocb *req, int nr);
    static void io_double_put_req(struct io_kiocb *req);
    static void io_dismantle_req(struct io_kiocb *req);
    static void io_put_task(struct task_struct *task, int nr);
    static void io_queue_next(struct io_kiocb *req);
    static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req);
    static void __io_queue_linked_timeout(struct io_kiocb *req);
    static void io_queue_linked_timeout(struct io_kiocb *req);
    static int __io_sqe_files_update(struct io_ring_ctx *ctx,
    				 struct io_uring_rsrc_update *ip,
    				 unsigned nr_args);
    static void __io_clean_op(struct io_kiocb *req);
    static struct file *io_file_get(struct io_submit_state *state,
    				struct io_kiocb *req, int fd, bool fixed);
    static void __io_queue_sqe(struct io_kiocb *req);
    static void io_rsrc_put_work(struct work_struct *work);
    
    static int io_import_iovec(int rw, struct io_kiocb *req, struct iovec **iovec,
    			   struct iov_iter *iter, bool needs_lock);
    static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
    			     const struct iovec *fast_iov,
    			     struct iov_iter *iter, bool force);
    static void io_req_task_queue(struct io_kiocb *req);
    static void io_submit_flush_completions(struct io_comp_state *cs,
    					struct io_ring_ctx *ctx);
    
    static struct kmem_cache *req_cachep;
    
    static const struct file_operations io_uring_fops;
    
    struct sock *io_uring_get_socket(struct file *file)
    {
    #if defined(CONFIG_UNIX)
    	if (file->f_op == &io_uring_fops) {
    		struct io_ring_ctx *ctx = file->private_data;
    
    		return ctx->ring_sock->sk;
    	}
    #endif
    	return NULL;
    }
    EXPORT_SYMBOL(io_uring_get_socket);
    
    #define io_for_each_link(pos, head) \
    	for (pos = (head); pos; pos = pos->link)
    
    static inline void io_clean_op(struct io_kiocb *req)
    {
    	if (req->flags & (REQ_F_NEED_CLEANUP | REQ_F_BUFFER_SELECTED))
    		__io_clean_op(req);
    }
    
    static inline void io_set_resource_node(struct io_kiocb *req)
    {
    	struct io_ring_ctx *ctx = req->ctx;
    
    	if (!req->fixed_rsrc_refs) {
    		req->fixed_rsrc_refs = &ctx->file_data->node->refs;
    		percpu_ref_get(req->fixed_rsrc_refs);
    	}
    }
    
    static bool io_match_task(struct io_kiocb *head,
    			  struct task_struct *task,
    			  struct files_struct *files)
    {
    	struct io_kiocb *req;
    
    	if (task && head->task != task) {
    		/* in terms of cancelation, always match if req task is dead */
    		if (head->task->flags & PF_EXITING)
    			return true;
    		return false;
    	}
    	if (!files)
    		return true;
    
    	io_for_each_link(req, head) {
    		if (req->flags & REQ_F_INFLIGHT)
    			return true;
    		if (req->task->files == files)
    			return true;
    	}
    	return false;
    }
    
    static inline void req_set_fail_links(struct io_kiocb *req)
    {
    	if ((req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) == REQ_F_LINK)
    		req->flags |= REQ_F_FAIL_LINK;
    }
    
    static void io_ring_ctx_ref_free(struct percpu_ref *ref)
    {
    	struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
    
    	complete(&ctx->ref_comp);
    }
    
    static inline bool io_is_timeout_noseq(struct io_kiocb *req)
    {
    	return !req->timeout.off;
    }
    
    static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
    {
    	struct io_ring_ctx *ctx;
    	int hash_bits;
    
    	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
    	if (!ctx)
    		return NULL;
    
    	/*
    	 * Use 5 bits less than the max cq entries, that should give us around
    	 * 32 entries per hash list if totally full and uniformly spread.
    	 */
    	hash_bits = ilog2(p->cq_entries);
    	hash_bits -= 5;
    	if (hash_bits <= 0)
    		hash_bits = 1;
    	ctx->cancel_hash_bits = hash_bits;
    	ctx->cancel_hash = kmalloc((1U << hash_bits) * sizeof(struct hlist_head),
    					GFP_KERNEL);
    	if (!ctx->cancel_hash)
    		goto err;
    	__hash_init(ctx->cancel_hash, 1U << hash_bits);
    
    	if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
    			    PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
    		goto err;
    
    	ctx->flags = p->flags;
    	init_waitqueue_head(&ctx->sqo_sq_wait);
    	INIT_LIST_HEAD(&ctx->sqd_list);
    	init_waitqueue_head(&ctx->cq_wait);
    	INIT_LIST_HEAD(&ctx->cq_overflow_list);
    	init_completion(&ctx->ref_comp);
    	init_completion(&ctx->sq_thread_comp);
    	idr_init(&ctx->io_buffer_idr);
    	idr_init(&ctx->personality_idr);
    	mutex_init(&ctx->uring_lock);
    	init_waitqueue_head(&ctx->wait);
    	spin_lock_init(&ctx->completion_lock);
    	INIT_LIST_HEAD(&ctx->iopoll_list);
    	INIT_LIST_HEAD(&ctx->defer_list);
    	INIT_LIST_HEAD(&ctx->timeout_list);
    	spin_lock_init(&ctx->inflight_lock);
    	INIT_LIST_HEAD(&ctx->inflight_list);
    	spin_lock_init(&ctx->rsrc_ref_lock);
    	INIT_LIST_HEAD(&ctx->rsrc_ref_list);
    	INIT_DELAYED_WORK(&ctx->rsrc_put_work, io_rsrc_put_work);
    	init_llist_head(&ctx->rsrc_put_llist);
    	INIT_LIST_HEAD(&ctx->submit_state.comp.free_list);
    	INIT_LIST_HEAD(&ctx->submit_state.comp.locked_free_list);
    	return ctx;
    err:
    	kfree(ctx->cancel_hash);
    	kfree(ctx);
    	return NULL;
    }
    
    static bool req_need_defer(struct io_kiocb *req, u32 seq)
    {
    	if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
    		struct io_ring_ctx *ctx = req->ctx;
    
    		return seq != ctx->cached_cq_tail
    				+ READ_ONCE(ctx->cached_cq_overflow);
    	}
    
    	return false;
    }
    
    static void io_req_track_inflight(struct io_kiocb *req)
    {
    	struct io_ring_ctx *ctx = req->ctx;
    
    	if (!(req->flags & REQ_F_INFLIGHT)) {
    		req->flags |= REQ_F_INFLIGHT;
    
    		spin_lock_irq(&ctx->inflight_lock);
    		list_add(&req->inflight_entry, &ctx->inflight_list);
    		spin_unlock_irq(&ctx->inflight_lock);
    	}
    }
    
    static void io_prep_async_work(struct io_kiocb *req)
    {
    	const struct io_op_def *def = &io_op_defs[req->opcode];
    	struct io_ring_ctx *ctx = req->ctx;
    
    	if (req->flags & REQ_F_FORCE_ASYNC)
    		req->work.flags |= IO_WQ_WORK_CONCURRENT;
    
    	if (req->flags & REQ_F_ISREG) {
    		if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
    			io_wq_hash_work(&req->work, file_inode(req->file));
    	} else {
    		if (def->unbound_nonreg_file)
    			req->work.flags |= IO_WQ_WORK_UNBOUND;
    	}
    }
    
    static void io_prep_async_link(struct io_kiocb *req)
    {
    	struct io_kiocb *cur;
    
    	io_for_each_link(cur, req)
    		io_prep_async_work(cur);
    }
    
    static void io_queue_async_work(struct io_kiocb *req)
    {
    	struct io_ring_ctx *ctx = req->ctx;
    	struct io_kiocb *link = io_prep_linked_timeout(req);
    	struct io_uring_task *tctx = req->task->io_uring;
    
    	BUG_ON(!tctx);
    	BUG_ON(!tctx->io_wq);
    
    	trace_io_uring_queue_async_work(ctx, io_wq_is_hashed(&req->work), req,
    					&req->work, req->flags);
    	/* init ->work of the whole link before punting */
    	io_prep_async_link(req);
    	io_wq_enqueue(tctx->io_wq, &req->work);
    	if (link)
    		io_queue_linked_timeout(link);
    }
    
    static void io_kill_timeout(struct io_kiocb *req)
    {
    	struct io_timeout_data *io = req->async_data;
    	int ret;
    
    	ret = hrtimer_try_to_cancel(&io->timer);
    	if (ret != -1) {
    		atomic_set(&req->ctx->cq_timeouts,
    			atomic_read(&req->ctx->cq_timeouts) + 1);
    		list_del_init(&req->timeout.list);
    		io_cqring_fill_event(req, 0);
    		io_put_req_deferred(req, 1);
    	}
    }
    
    /*
     * Returns true if we found and killed one or more timeouts
     */
    static bool io_kill_timeouts(struct io_ring_ctx *ctx, struct task_struct *tsk,
    			     struct files_struct *files)
    {
    	struct io_kiocb *req, *tmp;
    	int canceled = 0;
    
    	spin_lock_irq(&ctx->completion_lock);
    	list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
    		if (io_match_task(req, tsk, files)) {
    			io_kill_timeout(req);
    			canceled++;
    		}
    	}
    	spin_unlock_irq(&ctx->completion_lock);
    	return canceled != 0;
    }
    
    static void __io_queue_deferred(struct io_ring_ctx *ctx)
    {
    	do {
    		struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
    						struct io_defer_entry, list);
    
    		if (req_need_defer(de->req, de->seq))
    			break;
    		list_del_init(&de->list);
    		io_req_task_queue(de->req);
    		kfree(de);
    	} while (!list_empty(&ctx->defer_list));
    }
    
    static void io_flush_timeouts(struct io_ring_ctx *ctx)
    {
    	u32 seq;
    
    	if (list_empty(&ctx->timeout_list))
    		return;
    
    	seq = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
    
    	do {
    		u32 events_needed, events_got;
    		struct io_kiocb *req = list_first_entry(&ctx->timeout_list,
    						struct io_kiocb, timeout.list);
    
    		if (io_is_timeout_noseq(req))
    			break;
    
    		/*
    		 * Since seq can easily wrap around over time, subtract
    		 * the last seq at which timeouts were flushed before comparing.
    		 * Assuming not more than 2^31-1 events have happened since,
    		 * these subtractions won't have wrapped, so we can check if
    		 * target is in [last_seq, current_seq] by comparing the two.
    		 */
    		events_needed = req->timeout.target_seq - ctx->cq_last_tm_flush;
    		events_got = seq - ctx->cq_last_tm_flush;
    		if (events_got < events_needed)
    			break;
    
    		list_del_init(&req->timeout.list);
    		io_kill_timeout(req);
    	} while (!list_empty(&ctx->timeout_list));
    
    	ctx->cq_last_tm_flush = seq;
    }
    
    static void io_commit_cqring(struct io_ring_ctx *ctx)
    {
    	io_flush_timeouts(ctx);
    
    	/* order cqe stores with ring update */
    	smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail);
    
    	if (unlikely(!list_empty(&ctx->defer_list)))
    		__io_queue_deferred(ctx);
    }
    
    static inline bool io_sqring_full(struct io_ring_ctx *ctx)
    {
    	struct io_rings *r = ctx->rings;
    
    	return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == r->sq_ring_entries;
    }
    
    static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
    {
    	return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
    }
    
    static struct io_uring_cqe *io_get_cqring(struct io_ring_ctx *ctx)
    {
    	struct io_rings *rings = ctx->rings;
    	unsigned tail;
    
    	/*
    	 * writes to the cq entry need to come after reading head; the
    	 * control dependency is enough as we're using WRITE_ONCE to
    	 * fill the cq entry
    	 */
    	if (__io_cqring_events(ctx) == rings->cq_ring_entries)
    		return NULL;
    
    	tail = ctx->cached_cq_tail++;
    	return &rings->cqes[tail & ctx->cq_mask];
    }
    
    static inline bool io_should_trigger_evfd(struct io_ring_ctx *ctx)
    {
    	if (!ctx->cq_ev_fd)
    		return false;
    	if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
    		return false;
    	if (!ctx->eventfd_async)
    		return true;
    	return io_wq_current_is_worker();
    }
    
    static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
    {
    	/* see waitqueue_active() comment */
    	smp_mb();
    
    	if (waitqueue_active(&ctx->wait))
    		wake_up(&ctx->wait);
    	if (ctx->sq_data && waitqueue_active(&ctx->sq_data->wait))
    		wake_up(&ctx->sq_data->wait);
    	if (io_should_trigger_evfd(ctx))
    		eventfd_signal(ctx->cq_ev_fd, 1);
    	if (waitqueue_active(&ctx->cq_wait)) {
    		wake_up_interruptible(&ctx->cq_wait);
    		kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
    	}
    }
    
    static void io_cqring_ev_posted_iopoll(struct io_ring_ctx *ctx)
    {
    	/* see waitqueue_active() comment */
    	smp_mb();
    
    	if (ctx->flags & IORING_SETUP_SQPOLL) {
    		if (waitqueue_active(&ctx->wait))
    			wake_up(&ctx->wait);
    	}
    	if (io_should_trigger_evfd(ctx))
    		eventfd_signal(ctx->cq_ev_fd, 1);
    	if (waitqueue_active(&ctx->cq_wait)) {
    		wake_up_interruptible(&ctx->cq_wait);
    		kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
    	}
    }
    
    /* Returns true if there are no backlogged entries after the flush */
    static bool __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force,
    				       struct task_struct *tsk,
    				       struct files_struct *files)
    {
    	struct io_rings *rings = ctx->rings;
    	struct io_kiocb *req, *tmp;
    	struct io_uring_cqe *cqe;
    	unsigned long flags;
    	bool all_flushed, posted;
    	LIST_HEAD(list);
    
    	if (!force && __io_cqring_events(ctx) == rings->cq_ring_entries)
    		return false;
    
    	posted = false;
    	spin_lock_irqsave(&ctx->completion_lock, flags);
    	list_for_each_entry_safe(req, tmp, &ctx->cq_overflow_list, compl.list) {
    		if (!io_match_task(req, tsk, files))
    			continue;
    
    		cqe = io_get_cqring(ctx);
    		if (!cqe && !force)
    			break;
    
    		list_move(&req->compl.list, &list);
    		if (cqe) {
    			WRITE_ONCE(cqe->user_data, req->user_data);
    			WRITE_ONCE(cqe->res, req->result);
    			WRITE_ONCE(cqe->flags, req->compl.cflags);
    		} else {
    			ctx->cached_cq_overflow++;
    			WRITE_ONCE(ctx->rings->cq_overflow,
    				   ctx->cached_cq_overflow);
    		}
    		posted = true;
    	}
    
    	all_flushed = list_empty(&ctx->cq_overflow_list);
    	if (all_flushed) {
    		clear_bit(0, &ctx->sq_check_overflow);
    		clear_bit(0, &ctx->cq_check_overflow);
    		ctx->rings->sq_flags &= ~IORING_SQ_CQ_OVERFLOW;
    	}
    
    	if (posted)
    		io_commit_cqring(ctx);
    	spin_unlock_irqrestore(&ctx->completion_lock, flags);
    	if (posted)
    		io_cqring_ev_posted(ctx);
    
    	while (!list_empty(&list)) {
    		req = list_first_entry(&list, struct io_kiocb, compl.list);
    		list_del(&req->compl.list);
    		io_put_req(req);
    	}
    
    	return all_flushed;
    }
    
    static bool io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force,
    				     struct task_struct *tsk,
    				     struct files_struct *files)
    {
    	bool ret = true;
    
    	if (test_bit(0, &ctx->cq_check_overflow)) {
    		/* iopoll syncs against uring_lock, not completion_lock */
    		if (ctx->flags & IORING_SETUP_IOPOLL)
    			mutex_lock(&ctx->uring_lock);
    		ret = __io_cqring_overflow_flush(ctx, force, tsk, files);
    		if (ctx->flags & IORING_SETUP_IOPOLL)
    			mutex_unlock(&ctx->uring_lock);
    	}
    
    	return ret;
    }
    
    static void __io_cqring_fill_event(struct io_kiocb *req, long res, long cflags)
    {
    	struct io_ring_ctx *ctx = req->ctx;
    	struct io_uring_cqe *cqe;
    
    	trace_io_uring_complete(ctx, req->user_data, res);
    
    	/*
    	 * If we can't get a cq entry, userspace overflowed the
    	 * submission (by quite a lot). Increment the overflow count in
    	 * the ring.
    	 */
    	cqe = io_get_cqring(ctx);
    	if (likely(cqe)) {
    		WRITE_ONCE(cqe->user_data, req->user_data);
    		WRITE_ONCE(cqe->res, res);
    		WRITE_ONCE(cqe->flags, cflags);
    	} else if (ctx->cq_overflow_flushed ||
    		   atomic_read(&req->task->io_uring->in_idle)) {
    		/*
    		 * If we're in ring overflow flush mode, or in task cancel mode,
    		 * then we cannot store the request for later flushing, we need
    		 * to drop it on the floor.
    		 */
    		ctx->cached_cq_overflow++;
    		WRITE_ONCE(ctx->rings->cq_overflow, ctx->cached_cq_overflow);
    	} else {
    		if (list_empty(&ctx->cq_overflow_list)) {
    			set_bit(0, &ctx->sq_check_overflow);
    			set_bit(0, &ctx->cq_check_overflow);
    			ctx->rings->sq_flags |= IORING_SQ_CQ_OVERFLOW;
    		}
    		io_clean_op(req);
    		req->result = res;
    		req->compl.cflags = cflags;
    		refcount_inc(&req->refs);
    		list_add_tail(&req->compl.list, &ctx->cq_overflow_list);
    	}
    }
    
    static void io_cqring_fill_event(struct io_kiocb *req, long res)
    {
    	__io_cqring_fill_event(req, res, 0);
    }
    
    static inline void io_req_complete_post(struct io_kiocb *req, long res,
    					unsigned int cflags)
    {
    	struct io_ring_ctx *ctx = req->ctx;
    	unsigned long flags;
    
    	spin_lock_irqsave(&ctx->completion_lock, flags);
    	__io_cqring_fill_event(req, res, cflags);
    	io_commit_cqring(ctx);
    	/*
    	 * If we're the last reference to this request, add to our locked
    	 * free_list cache.
    	 */
    	if (refcount_dec_and_test(&req->refs)) {
    		struct io_comp_state *cs = &ctx->submit_state.comp;
    
    		io_dismantle_req(req);
    		io_put_task(req->task, 1);
    		list_add(&req->compl.list, &cs->locked_free_list);
    		cs->locked_free_nr++;
    	} else
    		req = NULL;
    	spin_unlock_irqrestore(&ctx->completion_lock, flags);
    
    	io_cqring_ev_posted(ctx);
    	if (req) {
    		io_queue_next(req);
    		percpu_ref_put(&ctx->refs);
    	}
    }
    
    static void io_req_complete_state(struct io_kiocb *req, long res,
    				  unsigned int cflags)
    {
    	io_clean_op(req);
    	req->result = res;
    	req->compl.cflags = cflags;
    	req->flags |= REQ_F_COMPLETE_INLINE;
    }
    
    static inline void __io_req_complete(struct io_kiocb *req, unsigned issue_flags,
    				     long res, unsigned cflags)
    {
    	if (issue_flags & IO_URING_F_COMPLETE_DEFER)
    		io_req_complete_state(req, res, cflags);
    	else
    		io_req_complete_post(req, res, cflags);
    }
    
    static inline void io_req_complete(struct io_kiocb *req, long res)
    {
    	__io_req_complete(req, 0, res, 0);
    }
    
    static bool io_flush_cached_reqs(struct io_ring_ctx *ctx)
    {
    	struct io_submit_state *state = &ctx->submit_state;
    	struct io_comp_state *cs = &state->comp;
    	struct io_kiocb *req = NULL;
    
    	/*
    	 * If we have more than a batch's worth of requests in our IRQ side
    	 * locked cache, grab the lock and move them over to our submission
    	 * side cache.
    	 */
    	if (READ_ONCE(cs->locked_free_nr) > IO_COMPL_BATCH) {
    		spin_lock_irq(&ctx->completion_lock);
    		list_splice_init(&cs->locked_free_list, &cs->free_list);
    		cs->locked_free_nr = 0;
    		spin_unlock_irq(&ctx->completion_lock);
    	}
    
    	while (!list_empty(&cs->free_list)) {
    		req = list_first_entry(&cs->free_list, struct io_kiocb,
    					compl.list);
    		list_del(&req->compl.list);
    		state->reqs[state->free_reqs++] = req;
    		if (state->free_reqs == ARRAY_SIZE(state->reqs))
    			break;
    	}
    
    	return req != NULL;
    }
    
    static struct io_kiocb *io_alloc_req(struct io_ring_ctx *ctx)
    {
    	struct io_submit_state *state = &ctx->submit_state;
    
    	BUILD_BUG_ON(IO_REQ_ALLOC_BATCH > ARRAY_SIZE(state->reqs));
    
    	if (!state->free_reqs) {
    		gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
    		int ret;
    
    		if (io_flush_cached_reqs(ctx))
    			goto got_req;
    
    		ret = kmem_cache_alloc_bulk(req_cachep, gfp, IO_REQ_ALLOC_BATCH,
    					    state->reqs);
    
    		/*
    		 * Bulk alloc is all-or-nothing. If we fail to get a batch,
    		 * retry single alloc to be on the safe side.
    		 */
    		if (unlikely(ret <= 0)) {
    			state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
    			if (!state->reqs[0])
    				return NULL;
    			ret = 1;
    		}
    		state->free_reqs = ret;
    	}
    got_req:
    	state->free_reqs--;
    	return state->reqs[state->free_reqs];
    }
    
    static inline void io_put_file(struct io_kiocb *req, struct file *file,
    			  bool fixed)
    {
    	if (!fixed)
    		fput(file);
    }
    
    static void io_dismantle_req(struct io_kiocb *req)
    {
    	io_clean_op(req);
    
    	if (req->async_data)
    		kfree(req->async_data);
    	if (req->file)
    		io_put_file(req, req->file, (req->flags & REQ_F_FIXED_FILE));
    	if (req->fixed_rsrc_refs)
    		percpu_ref_put(req->fixed_rsrc_refs);
    
    	if (req->flags & REQ_F_INFLIGHT) {
    		struct io_ring_ctx *ctx = req->ctx;
    		unsigned long flags;
    
    		spin_lock_irqsave(&ctx->inflight_lock, flags);
    		list_del(&req->inflight_entry);
    		spin_unlock_irqrestore(&ctx->inflight_lock, flags);
    		req->flags &= ~REQ_F_INFLIGHT;
    	}
    }
    
    /* must to be called somewhat shortly after putting a request */
    static inline void io_put_task(struct task_struct *task, int nr)
    {
    	struct io_uring_task *tctx = task->io_uring;
    
    	percpu_counter_sub(&tctx->inflight, nr);
    	if (unlikely(atomic_read(&tctx->in_idle)))
    		wake_up(&tctx->wait);
    	put_task_struct_many(task, nr);
    }
    
    static void __io_free_req(struct io_kiocb *req)
    {
    	struct io_ring_ctx *ctx = req->ctx;
    
    	io_dismantle_req(req);
    	io_put_task(req->task, 1);
    
    	kmem_cache_free(req_cachep, req);
    	percpu_ref_put(&ctx->refs);
    }
    
    static inline void io_remove_next_linked(struct io_kiocb *req)
    {
    	struct io_kiocb *nxt = req->link;
    
    	req->link = nxt->link;
    	nxt->link = NULL;
    }
    
    static void io_kill_linked_timeout(struct io_kiocb *req)
    {
    	struct io_ring_ctx *ctx = req->ctx;
    	struct io_kiocb *link;
    	bool cancelled = false;
    	unsigned long flags;
    
    	spin_lock_irqsave(&ctx->completion_lock, flags);
    	link = req->link;
    
    	/*
    	 * Can happen if a linked timeout fired and link had been like
    	 * req -> link t-out -> link t-out [-> ...]
    	 */
    	if (link && (link->flags & REQ_F_LTIMEOUT_ACTIVE)) {
    		struct io_timeout_data *io = link->async_data;
    		int ret;
    
    		io_remove_next_linked(req);
    		link->timeout.head = NULL;
    		ret = hrtimer_try_to_cancel(&io->timer);
    		if (ret != -1) {
    			io_cqring_fill_event(link, -ECANCELED);
    			io_commit_cqring(ctx);
    			cancelled = true;
    		}
    	}
    	req->flags &= ~REQ_F_LINK_TIMEOUT;
    	spin_unlock_irqrestore(&ctx->completion_lock, flags);
    
    	if (cancelled) {
    		io_cqring_ev_posted(ctx);
    		io_put_req(link);
    	}
    }
    
    
    static void io_fail_links(struct io_kiocb *req)
    {
    	struct io_kiocb *link, *nxt;
    	struct io_ring_ctx *ctx = req->ctx;
    	unsigned long flags;
    
    	spin_lock_irqsave(&ctx->completion_lock, flags);
    	link = req->link;
    	req->link = NULL;
    
    	while (link) {
    		nxt = link->link;
    		link->link = NULL;
    
    		trace_io_uring_fail_link(req, link);
    		io_cqring_fill_event(link, -ECANCELED);
    
    		io_put_req_deferred(link, 2);
    		link = nxt;
    	}
    	io_commit_cqring(ctx);
    	spin_unlock_irqrestore(&ctx->completion_lock, flags);
    
    	io_cqring_ev_posted(ctx);
    }
    
    static struct io_kiocb *__io_req_find_next(struct io_kiocb *req)
    {
    	if (req->flags & REQ_F_LINK_TIMEOUT)
    		io_kill_linked_timeout(req);
    
    	/*
    	 * If LINK is set, we have dependent requests in this chain. If we
    	 * didn't fail this request, queue the first one up, moving any other
    	 * dependencies to the next request. In case of failure, fail the rest
    	 * of the chain.
    	 */
    	if (likely(!(req->flags & REQ_F_FAIL_LINK))) {
    		struct io_kiocb *nxt = req->link;
    
    		req->link = NULL;
    		return nxt;
    	}
    	io_fail_links(req);
    	return NULL;
    }
    
    static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
    {
    	if (likely(!(req->flags & (REQ_F_LINK|REQ_F_HARDLINK))))
    		return NULL;
    	return __io_req_find_next(req);
    }
    
    static void ctx_flush_and_put(struct io_ring_ctx *ctx)
    {
    	if (!ctx)
    		return;
    	if (ctx->submit_state.comp.nr) {
    		mutex_lock(&ctx->uring_lock);
    		io_submit_flush_completions(&ctx->submit_state.comp, ctx);
    		mutex_unlock(&ctx->uring_lock);
    	}
    	percpu_ref_put(&ctx->refs);
    }
    
    static bool __tctx_task_work(struct io_uring_task *tctx)
    {
    	struct io_ring_ctx *ctx = NULL;
    	struct io_wq_work_list list;
    	struct io_wq_work_node *node;
    
    	if (wq_list_empty(&tctx->task_list))
    		return false;
    
    	spin_lock_irq(&tctx->task_lock);
    	list = tctx->task_list;
    	INIT_WQ_LIST(&tctx->task_list);
    	spin_unlock_irq(&tctx->task_lock);
    
    	node = list.first;
    	while (node) {
    		struct io_wq_work_node *next = node->next;
    		struct io_kiocb *req;
    
    		req = container_of(node, struct io_kiocb, io_task_work.node);
    		if (req->ctx != ctx) {
    			ctx_flush_and_put(ctx);
    			ctx = req->ctx;
    			percpu_ref_get(&ctx->refs);
    		}
    
    		req->task_work.func(&req->task_work);
    		node = next;
    	}
    
    	ctx_flush_and_put(ctx);
    	return list.first != NULL;
    }
    
    static void tctx_task_work(struct callback_head *cb)
    {
    	struct io_uring_task *tctx = container_of(cb, struct io_uring_task, task_work);
    
    	clear_bit(0, &tctx->task_state);
    
    	while (__tctx_task_work(tctx))
    		cond_resched();
    }
    
    static int io_task_work_add(struct task_struct *tsk, struct io_kiocb *req,
    			    enum task_work_notify_mode notify)
    {
    	struct io_uring_task *tctx = tsk->io_uring;
    	struct io_wq_work_node *node, *prev;
    	unsigned long flags;
    	int ret;
    
    	WARN_ON_ONCE(!tctx);
    
    	spin_lock_irqsave(&tctx->task_lock, flags);
    	wq_list_add_tail(&req->io_task_work.node, &tctx->task_list);
    	spin_unlock_irqrestore(&tctx->task_lock, flags);
    
    	/* task_work already pending, we're done */
    	if (test_bit(0, &tctx->task_state) ||
    	    test_and_set_bit(0, &tctx->task_state))
    		return 0;
    
    	if (!task_work_add(tsk, &tctx->task_work, notify))
    		return 0;
    
    	/*
    	 * Slow path - we failed, find and delete work. if the work is not
    	 * in the list, it got run and we're fine.
    	 */
    	ret = 0;
    	spin_lock_irqsave(&tctx->task_lock, flags);
    	wq_list_for_each(node, prev, &tctx->task_list) {
    		if (&req->io_task_work.node == node) {
    			wq_list_del(&tctx->task_list, node, prev);
    			ret = 1;
    			break;
    		}
    	}
    	spin_unlock_irqrestore(&tctx->task_lock, flags);
    	clear_bit(0, &tctx->task_state);
    	return ret;
    }
    
    static int io_req_task_work_add(struct io_kiocb *req)
    {
    	struct task_struct *tsk = req->task;
    	struct io_ring_ctx *ctx = req->ctx;
    	enum task_work_notify_mode notify;
    	int ret;
    
    	if (tsk->flags & PF_EXITING)
    		return -ESRCH;
    
    	/*
    	 * SQPOLL kernel thread doesn't need notification, just a wakeup. For
    	 * all other cases, use TWA_SIGNAL unconditionally to ensure we're
    	 * processing task_work. There's no reliable way to tell if TWA_RESUME
    	 * will do the job.
    	 */
    	notify = TWA_NONE;
    	if (!(ctx->flags & IORING_SETUP_SQPOLL))
    		notify = TWA_SIGNAL;
    
    	ret = io_task_work_add(tsk, req, notify);
    	if (!ret)
    		wake_up_process(tsk);
    
    	return ret;
    }
    
    static void io_req_task_work_add_fallback(struct io_kiocb *req,
    					  task_work_func_t cb)
    {
    	struct io_ring_ctx *ctx = req->ctx;
    	struct callback_head *head;
    
    	init_task_work(&req->task_work, cb);
    	do {
    		head = READ_ONCE(ctx->exit_task_work);
    		req->task_work.next = head;
    	} while (cmpxchg(&ctx->exit_task_work, head, &req->task_work) != head);
    }
    
    static void __io_req_task_cancel(struct io_kiocb *req, int error)
    {
    	struct io_ring_ctx *ctx = req->ctx;
    
    	spin_lock_irq(&ctx->completion_lock);
    	io_cqring_fill_event(req, error);
    	io_commit_cqring(ctx);
    	spin_unlock_irq(&ctx->completion_lock);
    
    	io_cqring_ev_posted(ctx);
    	req_set_fail_links(req);
    	io_double_put_req(req);
    }
    
    static void io_req_task_cancel(struct callback_head *cb)
    {
    	struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
    	struct io_ring_ctx *ctx = req->ctx;
    
    	mutex_lock(&ctx->uring_lock);
    	__io_req_task_cancel(req, req->result);
    	mutex_unlock(&ctx->uring_lock);
    	percpu_ref_put(&ctx->refs);
    }
    
    static void __io_req_task_submit(struct io_kiocb *req)
    {
    	struct io_ring_ctx *ctx = req->ctx;
    
    	/* ctx stays valid until unlock, even if we drop all ours ctx->refs */
    	mutex_lock(&ctx->uring_lock);
    	if (!(current->flags & PF_EXITING) && !current->in_execve)
    		__io_queue_sqe(req);
    	else
    		__io_req_task_cancel(req, -EFAULT);
    	mutex_unlock(&ctx->uring_lock);
    }
    
    static void io_req_task_submit(struct callback_head *cb)
    {
    	struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
    
    	__io_req_task_submit(req);
    }
    
    static void io_req_task_queue(struct io_kiocb *req)
    {
    	int ret;
    
    	req->task_work.func = io_req_task_submit;
    	ret = io_req_task_work_add(req);
    	if (unlikely(ret)) {
    		req->result = -ECANCELED;
    		percpu_ref_get(&req->ctx->refs);
    		io_req_task_work_add_fallback(req, io_req_task_cancel);
    	}
    }
    
    static void io_req_task_queue_fail(struct io_kiocb *req, int ret)
    {
    	percpu_ref_get(&req->ctx->refs);
    	req->result = ret;
    	req->task_work.func = io_req_task_cancel;
    
    	if (unlikely(io_req_task_work_add(req)))
    		io_req_task_work_add_fallback(req, io_req_task_cancel);
    }
    
    static inline void io_queue_next(struct io_kiocb *req)
    {
    	struct io_kiocb *nxt = io_req_find_next(req);
    
    	if (nxt)
    		io_req_task_queue(nxt);
    }
    
    static void io_free_req(struct io_kiocb *req)
    {
    	io_queue_next(req);
    	__io_free_req(req);
    }
    
    struct req_batch {
    	struct task_struct	*task;
    	int			task_refs;
    	int			ctx_refs;
    };
    
    static inline void io_init_req_batch(struct req_batch *rb)
    {
    	rb->task_refs = 0;
    	rb->ctx_refs = 0;
    	rb->task = NULL;
    }
    
    static void io_req_free_batch_finish(struct io_ring_ctx *ctx,
    				     struct req_batch *rb)
    {
    	if (rb->task)
    		io_put_task(rb->task, rb->task_refs);
    	if (rb->ctx_refs)
    		percpu_ref_put_many(&ctx->refs, rb->ctx_refs);
    }
    
    static void io_req_free_batch(struct req_batch *rb, struct io_kiocb *req,
    			      struct io_submit_state *state)
    {
    	io_queue_next(req);
    
    	if (req->task != rb->task) {
    		if (rb->task)
    			io_put_task(rb->task, rb->task_refs);
    		rb->task = req->task;
    		rb->task_refs = 0;
    	}
    	rb->task_refs++;
    	rb->ctx_refs++;
    
    	io_dismantle_req(req);
    	if (state->free_reqs != ARRAY_SIZE(state->reqs))
    		state->reqs[state->free_reqs++] = req;
    	else
    		list_add(&req->compl.list, &state->comp.free_list);
    }
    
    static void io_submit_flush_completions(struct io_comp_state *cs,
    					struct io_ring_ctx *ctx)
    {
    	int i, nr = cs->nr;
    	struct io_kiocb *req;
    	struct req_batch rb;
    
    	io_init_req_batch(&rb);
    	spin_lock_irq(&ctx->completion_lock);
    	for (i = 0; i < nr; i++) {
    		req = cs->reqs[i];
    		__io_cqring_fill_event(req, req->result, req->compl.cflags);
    	}
    	io_commit_cqring(ctx);
    	spin_unlock_irq(&ctx->completion_lock);
    
    	io_cqring_ev_posted(ctx);
    	for (i = 0; i < nr; i++) {
    		req = cs->reqs[i];
    
    		/* submission and completion refs */
    		if (refcount_sub_and_test(2, &req->refs))
    			io_req_free_batch(&rb, req, &ctx->submit_state);
    	}
    
    	io_req_free_batch_finish(ctx, &rb);
    	cs->nr = 0;
    }
    
    /*
     * Drop reference to request, return next in chain (if there is one) if this
     * was the last reference to this request.
     */
    static struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
    {
    	struct io_kiocb *nxt = NULL;
    
    	if (refcount_dec_and_test(&req->refs)) {
    		nxt = io_req_find_next(req);
    		__io_free_req(req);
    	}
    	return nxt;
    }
    
    static void io_put_req(struct io_kiocb *req)
    {
    	if (refcount_dec_and_test(&req->refs))
    		io_free_req(req);
    }
    
    static void io_put_req_deferred_cb(struct callback_head *cb)
    {
    	struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
    
    	io_free_req(req);
    }
    
    static void io_free_req_deferred(struct io_kiocb *req)
    {
    	int ret;
    
    	req->task_work.func = io_put_req_deferred_cb;
    	ret = io_req_task_work_add(req);
    	if (unlikely(ret))
    		io_req_task_work_add_fallback(req, io_put_req_deferred_cb);
    }
    
    static inline void io_put_req_deferred(struct io_kiocb *req, int refs)
    {
    	if (refcount_sub_and_test(refs, &req->refs))
    		io_free_req_deferred(req);
    }
    
    static void io_double_put_req(struct io_kiocb *req)
    {
    	/* drop both submit and complete references */
    	if (refcount_sub_and_test(2, &req->refs))
    		io_free_req(req);
    }
    
    static unsigned io_cqring_events(struct io_ring_ctx *ctx)
    {
    	/* See comment at the top of this file */
    	smp_rmb();
    	return __io_cqring_events(ctx);
    }
    
    static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
    {
    	struct io_rings *rings = ctx->rings;
    
    	/* make sure SQ entry isn't read before tail */
    	return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
    }
    
    static unsigned int io_put_kbuf(struct io_kiocb *req, struct io_buffer *kbuf)
    {
    	unsigned int cflags;
    
    	cflags = kbuf->bid << IORING_CQE_BUFFER_SHIFT;
    	cflags |= IORING_CQE_F_BUFFER;
    	req->flags &= ~REQ_F_BUFFER_SELECTED;
    	kfree(kbuf);
    	return cflags;
    }
    
    static inline unsigned int io_put_rw_kbuf(struct io_kiocb *req)
    {
    	struct io_buffer *kbuf;
    
    	kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
    	return io_put_kbuf(req, kbuf);
    }
    
    static inline bool io_run_task_work(void)
    {
    	/*
    	 * Not safe to run on exiting task, and the task_work handling will
    	 * not add work to such a task.
    	 */
    	if (unlikely(current->flags & PF_EXITING))
    		return false;
    	if (current->task_works) {
    		__set_current_state(TASK_RUNNING);
    		task_work_run();
    		return true;
    	}
    
    	return false;
    }
    
    /*
     * Find and free completed poll iocbs
     */
    static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
    			       struct list_head *done)
    {
    	struct req_batch rb;
    	struct io_kiocb *req;
    
    	/* order with ->result store in io_complete_rw_iopoll() */
    	smp_rmb();
    
    	io_init_req_batch(&rb);
    	while (!list_empty(done)) {
    		int cflags = 0;
    
    		req = list_first_entry(done, struct io_kiocb, inflight_entry);
    		list_del(&req->inflight_entry);
    
    		if (READ_ONCE(req->result) == -EAGAIN) {
    			req->iopoll_completed = 0;
    			if (io_rw_reissue(req))
    				continue;
    		}
    
    		if (req->flags & REQ_F_BUFFER_SELECTED)
    			cflags = io_put_rw_kbuf(req);
    
    		__io_cqring_fill_event(req, req->result, cflags);
    		(*nr_events)++;
    
    		if (refcount_dec_and_test(&req->refs))
    			io_req_free_batch(&rb, req, &ctx->submit_state);
    	}
    
    	io_commit_cqring(ctx);
    	io_cqring_ev_posted_iopoll(ctx);
    	io_req_free_batch_finish(ctx, &rb);
    }
    
    static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
    			long min)
    {
    	struct io_kiocb *req, *tmp;
    	LIST_HEAD(done);
    	bool spin;
    	int ret;
    
    	/*
    	 * Only spin for completions if we don't have multiple devices hanging
    	 * off our complete list, and we're under the requested amount.
    	 */
    	spin = !ctx->poll_multi_file && *nr_events < min;
    
    	ret = 0;
    	list_for_each_entry_safe(req, tmp, &ctx->iopoll_list, inflight_entry) {
    		struct kiocb *kiocb = &req->rw.kiocb;
    
    		/*
    		 * Move completed and retryable entries to our local lists.
    		 * If we find a request that requires polling, break out
    		 * and complete those lists first, if we have entries there.
    		 */
    		if (READ_ONCE(req->iopoll_completed)) {
    			list_move_tail(&req->inflight_entry, &done);
    			continue;
    		}
    		if (!list_empty(&done))
    			break;
    
    		ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
    		if (ret < 0)
    			break;
    
    		/* iopoll may have completed current req */
    		if (READ_ONCE(req->iopoll_completed))
    			list_move_tail(&req->inflight_entry, &done);
    
    		if (ret && spin)
    			spin = false;
    		ret = 0;
    	}
    
    	if (!list_empty(&done))
    		io_iopoll_complete(ctx, nr_events, &done);
    
    	return ret;
    }
    
    /*
     * Poll for a minimum of 'min' events. Note that if min == 0 we consider that a
     * non-spinning poll check - we'll still enter the driver poll loop, but only
     * as a non-spinning completion check.
     */
    static int io_iopoll_getevents(struct io_ring_ctx *ctx, unsigned int *nr_events,
    				long min)
    {
    	while (!list_empty(&ctx->iopoll_list) && !need_resched()) {
    		int ret;
    
    		ret = io_do_iopoll(ctx, nr_events, min);
    		if (ret < 0)
    			return ret;
    		if (*nr_events >= min)
    			return 0;
    	}
    
    	return 1;
    }
    
    /*
     * We can't just wait for polled events to come to us, we have to actively
     * find and complete them.
     */
    static void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
    {
    	if (!(ctx->flags & IORING_SETUP_IOPOLL))
    		return;
    
    	mutex_lock(&ctx->uring_lock);
    	while (!list_empty(&ctx->iopoll_list)) {
    		unsigned int nr_events = 0;
    
    		io_do_iopoll(ctx, &nr_events, 0);
    
    		/* let it sleep and repeat later if can't complete a request */
    		if (nr_events == 0)
    			break;
    		/*
    		 * Ensure we allow local-to-the-cpu processing to take place,
    		 * in this case we need to ensure that we reap all events.
    		 * Also let task_work, etc. to progress by releasing the mutex
    		 */
    		if (need_resched()) {
    			mutex_unlock(&ctx->uring_lock);
    			cond_resched();
    			mutex_lock(&ctx->uring_lock);
    		}
    	}
    	mutex_unlock(&ctx->uring_lock);
    }
    
    static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
    {
    	unsigned int nr_events = 0;
    	int iters = 0, ret = 0;
    
    	/*
    	 * We disallow the app entering submit/complete with polling, but we
    	 * still need to lock the ring to prevent racing with polled issue
    	 * that got punted to a workqueue.
    	 */
    	mutex_lock(&ctx->uring_lock);
    	do {
    		/*
    		 * Don't enter poll loop if we already have events pending.
    		 * If we do, we can potentially be spinning for commands that
    		 * already triggered a CQE (eg in error).
    		 */
    		if (test_bit(0, &ctx->cq_check_overflow))
    			__io_cqring_overflow_flush(ctx, false, NULL, NULL);
    		if (io_cqring_events(ctx))
    			break;
    
    		/*
    		 * If a submit got punted to a workqueue, we can have the
    		 * application entering polling for a command before it gets
    		 * issued. That app will hold the uring_lock for the duration
    		 * of the poll right here, so we need to take a breather every
    		 * now and then to ensure that the issue has a chance to add
    		 * the poll to the issued list. Otherwise we can spin here
    		 * forever, while the workqueue is stuck trying to acquire the
    		 * very same mutex.
    		 */
    		if (!(++iters & 7)) {
    			mutex_unlock(&ctx->uring_lock);
    			io_run_task_work();
    			mutex_lock(&ctx->uring_lock);
    		}
    
    		ret = io_iopoll_getevents(ctx, &nr_events, min);
    		if (ret <= 0)
    			break;
    		ret = 0;
    	} while (min && !nr_events && !need_resched());
    
    	mutex_unlock(&ctx->uring_lock);
    	return ret;
    }
    
    static void kiocb_end_write(struct io_kiocb *req)
    {
    	/*
    	 * Tell lockdep we inherited freeze protection from submission
    	 * thread.
    	 */
    	if (req->flags & REQ_F_ISREG) {
    		struct inode *inode = file_inode(req->file);
    
    		__sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
    	}
    	file_end_write(req->file);
    }
    
    #ifdef CONFIG_BLOCK
    static bool io_resubmit_prep(struct io_kiocb *req)
    {
    	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
    	int rw, ret;
    	struct iov_iter iter;
    
    	/* already prepared */
    	if (req->async_data)
    		return true;
    
    	switch (req->opcode) {
    	case IORING_OP_READV:
    	case IORING_OP_READ_FIXED:
    	case IORING_OP_READ:
    		rw = READ;
    		break;
    	case IORING_OP_WRITEV:
    	case IORING_OP_WRITE_FIXED:
    	case IORING_OP_WRITE:
    		rw = WRITE;
    		break;
    	default:
    		printk_once(KERN_WARNING "io_uring: bad opcode in resubmit %d\n",
    				req->opcode);
    		return false;
    	}
    
    	ret = io_import_iovec(rw, req, &iovec, &iter, false);
    	if (ret < 0)
    		return false;
    	return !io_setup_async_rw(req, iovec, inline_vecs, &iter, false);
    }
    
    static bool io_rw_should_reissue(struct io_kiocb *req)
    {
    	umode_t mode = file_inode(req->file)->i_mode;
    	struct io_ring_ctx *ctx = req->ctx;
    
    	if (!S_ISBLK(mode) && !S_ISREG(mode))
    		return false;
    	if ((req->flags & REQ_F_NOWAIT) || (io_wq_current_is_worker() &&
    	    !(ctx->flags & IORING_SETUP_IOPOLL)))
    		return false;
    	/*
    	 * If ref is dying, we might be running poll reap from the exit work.
    	 * Don't attempt to reissue from that path, just let it fail with
    	 * -EAGAIN.
    	 */
    	if (percpu_ref_is_dying(&ctx->refs))
    		return false;
    	return true;
    }
    #endif
    
    static bool io_rw_reissue(struct io_kiocb *req)
    {
    #ifdef CONFIG_BLOCK
    	if (!io_rw_should_reissue(req))
    		return false;
    
    	lockdep_assert_held(&req->ctx->uring_lock);
    
    	if (io_resubmit_prep(req)) {
    		refcount_inc(&req->refs);
    		io_queue_async_work(req);
    		return true;
    	}
    	req_set_fail_links(req);
    #endif
    	return false;
    }
    
    static void __io_complete_rw(struct io_kiocb *req, long res, long res2,
    			     unsigned int issue_flags)
    {
    	int cflags = 0;
    
    	if ((res == -EAGAIN || res == -EOPNOTSUPP) && io_rw_reissue(req))
    		return;
    	if (res != req->result)
    		req_set_fail_links(req);
    
    	if (req->rw.kiocb.ki_flags & IOCB_WRITE)
    		kiocb_end_write(req);
    	if (req->flags & REQ_F_BUFFER_SELECTED)
    		cflags = io_put_rw_kbuf(req);
    	__io_req_complete(req, issue_flags, res, cflags);
    }
    
    static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
    {
    	struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
    
    	__io_complete_rw(req, res, res2, 0);
    }
    
    static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
    {
    	struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
    
    #ifdef CONFIG_BLOCK
    	/* Rewind iter, if we have one. iopoll path resubmits as usual */
    	if (res == -EAGAIN && io_rw_should_reissue(req)) {
    		struct io_async_rw *rw = req->async_data;
    
    		if (rw)
    			iov_iter_revert(&rw->iter,
    					req->result - iov_iter_count(&rw->iter));
    		else if (!io_resubmit_prep(req))
    			res = -EIO;
    	}
    #endif
    
    	if (kiocb->ki_flags & IOCB_WRITE)
    		kiocb_end_write(req);
    
    	if (res != -EAGAIN && res != req->result)
    		req_set_fail_links(req);
    
    	WRITE_ONCE(req->result, res);
    	/* order with io_poll_complete() checking ->result */
    	smp_wmb();
    	WRITE_ONCE(req->iopoll_completed, 1);
    }
    
    /*
     * After the iocb has been issued, it's safe to be found on the poll list.
     * Adding the kiocb to the list AFTER submission ensures that we don't
     * find it from a io_iopoll_getevents() thread before the issuer is done
     * accessing the kiocb cookie.
     */
    static void io_iopoll_req_issued(struct io_kiocb *req, bool in_async)
    {
    	struct io_ring_ctx *ctx = req->ctx;
    
    	/*
    	 * Track whether we have multiple files in our lists. This will impact
    	 * how we do polling eventually, not spinning if we're on potentially
    	 * different devices.
    	 */
    	if (list_empty(&ctx->iopoll_list)) {
    		ctx->poll_multi_file = false;
    	} else if (!ctx->poll_multi_file) {
    		struct io_kiocb *list_req;
    
    		list_req = list_first_entry(&ctx->iopoll_list, struct io_kiocb,
    						inflight_entry);
    		if (list_req->file != req->file)
    			ctx->poll_multi_file = true;
    	}
    
    	/*
    	 * For fast devices, IO may have already completed. If it has, add
    	 * it to the front so we find it first.
    	 */
    	if (READ_ONCE(req->iopoll_completed))
    		list_add(&req->inflight_entry, &ctx->iopoll_list);
    	else
    		list_add_tail(&req->inflight_entry, &ctx->iopoll_list);
    
    	/*
    	 * If IORING_SETUP_SQPOLL is enabled, sqes are either handled in sq thread
    	 * task context or in io worker task context. If current task context is
    	 * sq thread, we don't need to check whether should wake up sq thread.
    	 */
    	if (in_async && (ctx->flags & IORING_SETUP_SQPOLL) &&
    	    wq_has_sleeper(&ctx->sq_data->wait))
    		wake_up(&ctx->sq_data->wait);
    }
    
    static inline void io_state_file_put(struct io_submit_state *state)
    {
    	if (state->file_refs) {
    		fput_many(state->file, state->file_refs);
    		state->file_refs = 0;
    	}
    }
    
    /*
     * Get as many references to a file as we have IOs left in this submission,
     * assuming most submissions are for one file, or at least that each file
     * has more than one submission.
     */
    static struct file *__io_file_get(struct io_submit_state *state, int fd)
    {
    	if (!state)
    		return fget(fd);
    
    	if (state->file_refs) {
    		if (state->fd == fd) {
    			state->file_refs--;
    			return state->file;
    		}
    		io_state_file_put(state);
    	}
    	state->file = fget_many(fd, state->ios_left);
    	if (unlikely(!state->file))
    		return NULL;
    
    	state->fd = fd;
    	state->file_refs = state->ios_left - 1;
    	return state->file;
    }
    
    static bool io_bdev_nowait(struct block_device *bdev)
    {
    	return !bdev || blk_queue_nowait(bdev_get_queue(bdev));
    }
    
    /*
     * If we tracked the file through the SCM inflight mechanism, we could support
     * any file. For now, just ensure that anything potentially problematic is done
     * inline.
     */
    static bool io_file_supports_async(struct file *file, int rw)
    {
    	umode_t mode = file_inode(file)->i_mode;
    
    	if (S_ISBLK(mode)) {
    		if (IS_ENABLED(CONFIG_BLOCK) &&
    		    io_bdev_nowait(I_BDEV(file->f_mapping->host)))
    			return true;
    		return false;
    	}
    	if (S_ISCHR(mode) || S_ISSOCK(mode))
    		return true;
    	if (S_ISREG(mode)) {
    		if (IS_ENABLED(CONFIG_BLOCK) &&
    		    io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
    		    file->f_op != &io_uring_fops)
    			return true;
    		return false;
    	}
    
    	/* any ->read/write should understand O_NONBLOCK */
    	if (file->f_flags & O_NONBLOCK)
    		return true;
    
    	if (!(file->f_mode & FMODE_NOWAIT))
    		return false;
    
    	if (rw == READ)
    		return file->f_op->read_iter != NULL;
    
    	return file->f_op->write_iter != NULL;
    }
    
    static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe)
    {
    	struct io_ring_ctx *ctx = req->ctx;
    	struct kiocb *kiocb = &req->rw.kiocb;
    	struct file *file = req->file;
    	unsigned ioprio;
    	int ret;
    
    	if (S_ISREG(file_inode(file)->i_mode))
    		req->flags |= REQ_F_ISREG;
    
    	kiocb->ki_pos = READ_ONCE(sqe->off);
    	if (kiocb->ki_pos == -1 && !(file->f_mode & FMODE_STREAM)) {
    		req->flags |= REQ_F_CUR_POS;
    		kiocb->ki_pos = file->f_pos;
    	}
    	kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
    	kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
    	ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
    	if (unlikely(ret))
    		return ret;
    
    	/* don't allow async punt for O_NONBLOCK or RWF_NOWAIT */
    	if ((kiocb->ki_flags & IOCB_NOWAIT) || (file->f_flags & O_NONBLOCK))
    		req->flags |= REQ_F_NOWAIT;
    
    	ioprio = READ_ONCE(sqe->ioprio);
    	if (ioprio) {
    		ret = ioprio_check_cap(ioprio);
    		if (ret)
    			return ret;
    
    		kiocb->ki_ioprio = ioprio;
    	} else
    		kiocb->ki_ioprio = get_current_ioprio();
    
    	if (ctx->flags & IORING_SETUP_IOPOLL) {
    		if (!(kiocb->ki_flags & IOCB_DIRECT) ||
    		    !kiocb->ki_filp->f_op->iopoll)
    			return -EOPNOTSUPP;
    
    		kiocb->ki_flags |= IOCB_HIPRI;
    		kiocb->ki_complete = io_complete_rw_iopoll;
    		req->iopoll_completed = 0;
    	} else {
    		if (kiocb->ki_flags & IOCB_HIPRI)
    			return -EINVAL;
    		kiocb->ki_complete = io_complete_rw;
    	}
    
    	req->rw.addr = READ_ONCE(sqe->addr);
    	req->rw.len = READ_ONCE(sqe->len);
    	req->buf_index = READ_ONCE(sqe->buf_index);
    	return 0;
    }
    
    static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
    {
    	switch (ret) {
    	case -EIOCBQUEUED:
    		break;
    	case -ERESTARTSYS:
    	case -ERESTARTNOINTR:
    	case -ERESTARTNOHAND:
    	case -ERESTART_RESTARTBLOCK:
    		/*
    		 * We can't just restart the syscall, since previously
    		 * submitted sqes may already be in progress. Just fail this
    		 * IO with EINTR.
    		 */
    		ret = -EINTR;
    		fallthrough;
    	default:
    		kiocb->ki_complete(kiocb, ret, 0);
    	}
    }
    
    static void kiocb_done(struct kiocb *kiocb, ssize_t ret,
    		       unsigned int issue_flags)
    {
    	struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
    	struct io_async_rw *io = req->async_data;
    
    	/* add previously done IO, if any */
    	if (io && io->bytes_done > 0) {
    		if (ret < 0)
    			ret = io->bytes_done;
    		else
    			ret += io->bytes_done;
    	}
    
    	if (req->flags & REQ_F_CUR_POS)
    		req->file->f_pos = kiocb->ki_pos;
    	if (ret >= 0 && kiocb->ki_complete == io_complete_rw)
    		__io_complete_rw(req, ret, 0, issue_flags);
    	else
    		io_rw_done(kiocb, ret);
    }
    
    static int io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter)
    {
    	struct io_ring_ctx *ctx = req->ctx;
    	size_t len = req->rw.len;
    	struct io_mapped_ubuf *imu;
    	u16 index, buf_index = req->buf_index;
    	size_t offset;
    	u64 buf_addr;
    
    	if (unlikely(buf_index >= ctx->nr_user_bufs))
    		return -EFAULT;
    	index = array_index_nospec(buf_index, ctx->nr_user_bufs);
    	imu = &ctx->user_bufs[index];
    	buf_addr = req->rw.addr;
    
    	/* overflow */
    	if (buf_addr + len < buf_addr)
    		return -EFAULT;
    	/* not inside the mapped region */
    	if (buf_addr < imu->ubuf || buf_addr + len > imu->ubuf + imu->len)
    		return -EFAULT;
    
    	/*
    	 * May not be a start of buffer, set size appropriately
    	 * and advance us to the beginning.
    	 */
    	offset = buf_addr - imu->ubuf;
    	iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
    
    	if (offset) {
    		/*
    		 * Don't use iov_iter_advance() here, as it's really slow for
    		 * using the latter parts of a big fixed buffer - it iterates
    		 * over each segment manually. We can cheat a bit here, because
    		 * we know that:
    		 *
    		 * 1) it's a BVEC iter, we set it up
    		 * 2) all bvecs are PAGE_SIZE in size, except potentially the
    		 *    first and last bvec
    		 *
    		 * So just find our index, and adjust the iterator afterwards.
    		 * If the offset is within the first bvec (or the whole first
    		 * bvec, just use iov_iter_advance(). This makes it easier
    		 * since we can just skip the first segment, which may not
    		 * be PAGE_SIZE aligned.
    		 */
    		const struct bio_vec *bvec = imu->bvec;
    
    		if (offset <= bvec->bv_len) {
    			iov_iter_advance(iter, offset);
    		} else {
    			unsigned long seg_skip;
    
    			/* skip first vec */
    			offset -= bvec->bv_len;
    			seg_skip = 1 + (offset >> PAGE_SHIFT);
    
    			iter->bvec = bvec + seg_skip;
    			iter->nr_segs -= seg_skip;
    			iter->count -= bvec->bv_len + offset;
    			iter->iov_offset = offset & ~PAGE_MASK;
    		}
    	}
    
    	return 0;
    }
    
    static void io_ring_submit_unlock(struct io_ring_ctx *ctx, bool needs_lock)
    {
    	if (needs_lock)
    		mutex_unlock(&ctx->uring_lock);
    }
    
    static void io_ring_submit_lock(struct io_ring_ctx *ctx, bool needs_lock)
    {
    	/*
    	 * "Normal" inline submissions always hold the uring_lock, since we
    	 * grab it from the system call. Same is true for the SQPOLL offload.
    	 * The only exception is when we've detached the request and issue it
    	 * from an async worker thread, grab the lock for that case.
    	 */
    	if (needs_lock)
    		mutex_lock(&ctx->uring_lock);
    }
    
    static struct io_buffer *io_buffer_select(struct io_kiocb *req, size_t *len,
    					  int bgid, struct io_buffer *kbuf,
    					  bool needs_lock)
    {
    	struct io_buffer *head;
    
    	if (req->flags & REQ_F_BUFFER_SELECTED)
    		return kbuf;
    
    	io_ring_submit_lock(req->ctx, needs_lock);
    
    	lockdep_assert_held(&req->ctx->uring_lock);
    
    	head = idr_find(&req->ctx->io_buffer_idr, bgid);
    	if (head) {
    		if (!list_empty(&head->list)) {
    			kbuf = list_last_entry(&head->list, struct io_buffer,
    							list);
    			list_del(&kbuf->list);
    		} else {
    			kbuf = head;
    			idr_remove(&req->ctx->io_buffer_idr, bgid);
    		}
    		if (*len > kbuf->len)
    			*len = kbuf->len;
    	} else {
    		kbuf = ERR_PTR(-ENOBUFS);
    	}
    
    	io_ring_submit_unlock(req->ctx, needs_lock);
    
    	return kbuf;
    }
    
    static void __user *io_rw_buffer_select(struct io_kiocb *req, size_t *len,
    					bool needs_lock)
    {
    	struct io_buffer *kbuf;
    	u16 bgid;
    
    	kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
    	bgid = req->buf_index;
    	kbuf = io_buffer_select(req, len, bgid, kbuf, needs_lock);
    	if (IS_ERR(kbuf))
    		return kbuf;
    	req->rw.addr = (u64) (unsigned long) kbuf;
    	req->flags |= REQ_F_BUFFER_SELECTED;
    	return u64_to_user_ptr(kbuf->addr);
    }
    
    #ifdef CONFIG_COMPAT
    static ssize_t io_compat_import(struct io_kiocb *req, struct iovec *iov,
    				bool needs_lock)
    {
    	struct compat_iovec __user *uiov;
    	compat_ssize_t clen;
    	void __user *buf;
    	ssize_t len;
    
    	uiov = u64_to_user_ptr(req->rw.addr);
    	if (!access_ok(uiov, sizeof(*uiov)))
    		return -EFAULT;
    	if (__get_user(clen, &uiov->iov_len))
    		return -EFAULT;
    	if (clen < 0)
    		return -EINVAL;
    
    	len = clen;
    	buf = io_rw_buffer_select(req, &len, needs_lock);
    	if (IS_ERR(buf))
    		return PTR_ERR(buf);
    	iov[0].iov_base = buf;
    	iov[0].iov_len = (compat_size_t) len;
    	return 0;
    }
    #endif
    
    static ssize_t __io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
    				      bool needs_lock)
    {
    	struct iovec __user *uiov = u64_to_user_ptr(req->rw.addr);
    	void __user *buf;
    	ssize_t len;
    
    	if (copy_from_user(iov, uiov, sizeof(*uiov)))
    		return -EFAULT;
    
    	len = iov[0].iov_len;
    	if (len < 0)
    		return -EINVAL;
    	buf = io_rw_buffer_select(req, &len, needs_lock);
    	if (IS_ERR(buf))
    		return PTR_ERR(buf);
    	iov[0].iov_base = buf;
    	iov[0].iov_len = len;
    	return 0;
    }
    
    static ssize_t io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
    				    bool needs_lock)
    {
    	if (req->flags & REQ_F_BUFFER_SELECTED) {
    		struct io_buffer *kbuf;
    
    		kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
    		iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
    		iov[0].iov_len = kbuf->len;
    		return 0;
    	}
    	if (req->rw.len != 1)
    		return -EINVAL;
    
    #ifdef CONFIG_COMPAT
    	if (req->ctx->compat)
    		return io_compat_import(req, iov, needs_lock);
    #endif
    
    	return __io_iov_buffer_select(req, iov, needs_lock);
    }
    
    static int io_import_iovec(int rw, struct io_kiocb *req, struct iovec **iovec,
    			   struct iov_iter *iter, bool needs_lock)
    {
    	void __user *buf = u64_to_user_ptr(req->rw.addr);
    	size_t sqe_len = req->rw.len;
    	u8 opcode = req->opcode;
    	ssize_t ret;
    
    	if (opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED) {
    		*iovec = NULL;
    		return io_import_fixed(req, rw, iter);
    	}
    
    	/* buffer index only valid with fixed read/write, or buffer select  */
    	if (req->buf_index && !(req->flags & REQ_F_BUFFER_SELECT))
    		return -EINVAL;
    
    	if (opcode == IORING_OP_READ || opcode == IORING_OP_WRITE) {
    		if (req->flags & REQ_F_BUFFER_SELECT) {
    			buf = io_rw_buffer_select(req, &sqe_len, needs_lock);
    			if (IS_ERR(buf))
    				return PTR_ERR(buf);
    			req->rw.len = sqe_len;
    		}
    
    		ret = import_single_range(rw, buf, sqe_len, *iovec, iter);
    		*iovec = NULL;
    		return ret;
    	}
    
    	if (req->flags & REQ_F_BUFFER_SELECT) {
    		ret = io_iov_buffer_select(req, *iovec, needs_lock);
    		if (!ret)
    			iov_iter_init(iter, rw, *iovec, 1, (*iovec)->iov_len);
    		*iovec = NULL;
    		return ret;
    	}
    
    	return __import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter,
    			      req->ctx->compat);
    }
    
    static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
    {
    	return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
    }
    
    /*
     * For files that don't have ->read_iter() and ->write_iter(), handle them
     * by looping over ->read() or ->write() manually.
     */
    static ssize_t loop_rw_iter(int rw, struct io_kiocb *req, struct iov_iter *iter)
    {
    	struct kiocb *kiocb = &req->rw.kiocb;
    	struct file *file = req->file;
    	ssize_t ret = 0;
    
    	/*
    	 * Don't support polled IO through this interface, and we can't
    	 * support non-blocking either. For the latter, this just causes
    	 * the kiocb to be handled from an async context.
    	 */
    	if (kiocb->ki_flags & IOCB_HIPRI)
    		return -EOPNOTSUPP;
    	if (kiocb->ki_flags & IOCB_NOWAIT)
    		return -EAGAIN;
    
    	while (iov_iter_count(iter)) {
    		struct iovec iovec;
    		ssize_t nr;
    
    		if (!iov_iter_is_bvec(iter)) {
    			iovec = iov_iter_iovec(iter);
    		} else {
    			iovec.iov_base = u64_to_user_ptr(req->rw.addr);
    			iovec.iov_len = req->rw.len;
    		}
    
    		if (rw == READ) {
    			nr = file->f_op->read(file, iovec.iov_base,
    					      iovec.iov_len, io_kiocb_ppos(kiocb));
    		} else {
    			nr = file->f_op->write(file, iovec.iov_base,
    					       iovec.iov_len, io_kiocb_ppos(kiocb));
    		}
    
    		if (nr < 0) {
    			if (!ret)
    				ret = nr;
    			break;
    		}
    		ret += nr;
    		if (nr != iovec.iov_len)
    			break;
    		req->rw.len -= nr;
    		req->rw.addr += nr;
    		iov_iter_advance(iter, nr);
    	}
    
    	return ret;
    }
    
    static void io_req_map_rw(struct io_kiocb *req, const struct iovec *iovec,
    			  const struct iovec *fast_iov, struct iov_iter *iter)
    {
    	struct io_async_rw *rw = req->async_data;
    
    	memcpy(&rw->iter, iter, sizeof(*iter));
    	rw->free_iovec = iovec;
    	rw->bytes_done = 0;
    	/* can only be fixed buffers, no need to do anything */
    	if (iov_iter_is_bvec(iter))
    		return;
    	if (!iovec) {
    		unsigned iov_off = 0;
    
    		rw->iter.iov = rw->fast_iov;
    		if (iter->iov != fast_iov) {
    			iov_off = iter->iov - fast_iov;
    			rw->iter.iov += iov_off;
    		}
    		if (rw->fast_iov != fast_iov)
    			memcpy(rw->fast_iov + iov_off, fast_iov + iov_off,
    			       sizeof(struct iovec) * iter->nr_segs);
    	} else {
    		req->flags |= REQ_F_NEED_CLEANUP;
    	}
    }
    
    static inline int __io_alloc_async_data(struct io_kiocb *req)
    {
    	WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
    	req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
    	return req->async_data == NULL;
    }
    
    static int io_alloc_async_data(struct io_kiocb *req)
    {
    	if (!io_op_defs[req->opcode].needs_async_data)
    		return 0;
    
    	return  __io_alloc_async_data(req);
    }
    
    static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
    			     const struct iovec *fast_iov,
    			     struct iov_iter *iter, bool force)
    {
    	if (!force && !io_op_defs[req->opcode].needs_async_data)
    		return 0;
    	if (!req->async_data) {
    		if (__io_alloc_async_data(req)) {
    			kfree(iovec);
    			return -ENOMEM;
    		}
    
    		io_req_map_rw(req, iovec, fast_iov, iter);
    	}
    	return 0;
    }
    
    static inline int io_rw_prep_async(struct io_kiocb *req, int rw)
    {
    	struct io_async_rw *iorw = req->async_data;
    	struct iovec *iov = iorw->fast_iov;
    	int ret;
    
    	ret = io_import_iovec(rw, req, &iov, &iorw->iter, false);
    	if (unlikely(ret < 0))
    		return ret;
    
    	iorw->bytes_done = 0;
    	iorw->free_iovec = iov;
    	if (iov)
    		req->flags |= REQ_F_NEED_CLEANUP;
    	return 0;
    }
    
    static int io_read_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
    {
    	if (unlikely(!(req->file->f_mode & FMODE_READ)))
    		return -EBADF;
    	return io_prep_rw(req, sqe);
    }
    
    /*
     * This is our waitqueue callback handler, registered through lock_page_async()
     * when we initially tried to do the IO with the iocb armed our waitqueue.
     * This gets called when the page is unlocked, and we generally expect that to
     * happen when the page IO is completed and the page is now uptodate. This will
     * queue a task_work based retry of the operation, attempting to copy the data
     * again. If the latter fails because the page was NOT uptodate, then we will
     * do a thread based blocking retry of the operation. That's the unexpected
     * slow path.
     */
    static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
    			     int sync, void *arg)
    {
    	struct wait_page_queue *wpq;
    	struct io_kiocb *req = wait->private;
    	struct wait_page_key *key = arg;
    
    	wpq = container_of(wait, struct wait_page_queue, wait);
    
    	if (!wake_page_match(wpq, key))
    		return 0;
    
    	req->rw.kiocb.ki_flags &= ~IOCB_WAITQ;
    	list_del_init(&wait->entry);
    
    	/* submit ref gets dropped, acquire a new one */
    	refcount_inc(&req->refs);
    	io_req_task_queue(req);
    	return 1;
    }
    
    /*
     * This controls whether a given IO request should be armed for async page
     * based retry. If we return false here, the request is handed to the async
     * worker threads for retry. If we're doing buffered reads on a regular file,
     * we prepare a private wait_page_queue entry and retry the operation. This
     * will either succeed because the page is now uptodate and unlocked, or it
     * will register a callback when the page is unlocked at IO completion. Through
     * that callback, io_uring uses task_work to setup a retry of the operation.
     * That retry will attempt the buffered read again. The retry will generally
     * succeed, or in rare cases where it fails, we then fall back to using the
     * async worker threads for a blocking retry.
     */
    static bool io_rw_should_retry(struct io_kiocb *req)
    {
    	struct io_async_rw *rw = req->async_data;
    	struct wait_page_queue *wait = &rw->wpq;
    	struct kiocb *kiocb = &req->rw.kiocb;
    
    	/* never retry for NOWAIT, we just complete with -EAGAIN */
    	if (req->flags & REQ_F_NOWAIT)
    		return false;
    
    	/* Only for buffered IO */
    	if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
    		return false;
    
    	/*
    	 * just use poll if we can, and don't attempt if the fs doesn't
    	 * support callback based unlocks
    	 */
    	if (file_can_poll(req->file) || !(req->file->f_mode & FMODE_BUF_RASYNC))
    		return false;
    
    	wait->wait.func = io_async_buf_func;
    	wait->wait.private = req;
    	wait->wait.flags = 0;
    	INIT_LIST_HEAD(&wait->wait.entry);
    	kiocb->ki_flags |= IOCB_WAITQ;
    	kiocb->ki_flags &= ~IOCB_NOWAIT;
    	kiocb->ki_waitq = wait;
    	return true;
    }
    
    static int io_iter_do_read(struct io_kiocb *req, struct iov_iter *iter)
    {
    	if (req->file->f_op->read_iter)
    		return call_read_iter(req->file, &req->rw.kiocb, iter);
    	else if (req->file->f_op->read)
    		return loop_rw_iter(READ, req, iter);
    	else
    		return -EINVAL;
    }
    
    static int io_read(struct io_kiocb *req, unsigned int issue_flags)
    {
    	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
    	struct kiocb *kiocb = &req->rw.kiocb;
    	struct iov_iter __iter, *iter = &__iter;
    	struct io_async_rw *rw = req->async_data;
    	ssize_t io_size, ret, ret2;
    	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
    
    	if (rw) {
    		iter = &rw->iter;
    		iovec = NULL;
    	} else {
    		ret = io_import_iovec(READ, req, &iovec, iter, !force_nonblock);
    		if (ret < 0)
    			return ret;
    	}
    	io_size = iov_iter_count(iter);
    	req->result = io_size;
    
    	/* Ensure we clear previously set non-block flag */
    	if (!force_nonblock)
    		kiocb->ki_flags &= ~IOCB_NOWAIT;
    	else
    		kiocb->ki_flags |= IOCB_NOWAIT;
    
    	/* If the file doesn't support async, just async punt */
    	if (force_nonblock && !io_file_supports_async(req->file, READ)) {
    		ret = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
    		return ret ?: -EAGAIN;
    	}
    
    	ret = rw_verify_area(READ, req->file, io_kiocb_ppos(kiocb), io_size);
    	if (unlikely(ret)) {
    		kfree(iovec);
    		return ret;
    	}
    
    	ret = io_iter_do_read(req, iter);
    
    	if (ret == -EIOCBQUEUED) {
    		if (req->async_data)
    			iov_iter_revert(iter, io_size - iov_iter_count(iter));
    		goto out_free;
    	} else if (ret == -EAGAIN) {
    		/* IOPOLL retry should happen for io-wq threads */
    		if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
    			goto done;
    		/* no retry on NONBLOCK nor RWF_NOWAIT */
    		if (req->flags & REQ_F_NOWAIT)
    			goto done;
    		/* some cases will consume bytes even on error returns */
    		iov_iter_revert(iter, io_size - iov_iter_count(iter));
    		ret = 0;
    	} else if (ret <= 0 || ret == io_size || !force_nonblock ||
    		   (req->flags & REQ_F_NOWAIT) || !(req->flags & REQ_F_ISREG)) {
    		/* read all, failed, already did sync or don't want to retry */
    		goto done;
    	}
    
    	ret2 = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
    	if (ret2)
    		return ret2;
    
    	iovec = NULL;
    	rw = req->async_data;
    	/* now use our persistent iterator, if we aren't already */
    	iter = &rw->iter;
    
    	do {
    		io_size -= ret;
    		rw->bytes_done += ret;
    		/* if we can retry, do so with the callbacks armed */
    		if (!io_rw_should_retry(req)) {
    			kiocb->ki_flags &= ~IOCB_WAITQ;
    			return -EAGAIN;
    		}
    
    		/*
    		 * Now retry read with the IOCB_WAITQ parts set in the iocb. If
    		 * we get -EIOCBQUEUED, then we'll get a notification when the
    		 * desired page gets unlocked. We can also get a partial read
    		 * here, and if we do, then just retry at the new offset.
    		 */
    		ret = io_iter_do_read(req, iter);
    		if (ret == -EIOCBQUEUED)
    			return 0;
    		/* we got some bytes, but not all. retry. */
    		kiocb->ki_flags &= ~IOCB_WAITQ;
    	} while (ret > 0 && ret < io_size);
    done:
    	kiocb_done(kiocb, ret, issue_flags);
    out_free:
    	/* it's faster to check here then delegate to kfree */
    	if (iovec)
    		kfree(iovec);
    	return 0;
    }
    
    static int io_write_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
    {
    	if (unlikely(!(req->file->f_mode & FMODE_WRITE)))
    		return -EBADF;
    	return io_prep_rw(req, sqe);
    }
    
    static int io_write(struct io_kiocb *req, unsigned int issue_flags)
    {
    	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
    	struct kiocb *kiocb = &req->rw.kiocb;
    	struct iov_iter __iter, *iter = &__iter;
    	struct io_async_rw *rw = req->async_data;
    	ssize_t ret, ret2, io_size;
    	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
    
    	if (rw) {
    		iter = &rw->iter;
    		iovec = NULL;
    	} else {
    		ret = io_import_iovec(WRITE, req, &iovec, iter, !force_nonblock);
    		if (ret < 0)
    			return ret;
    	}
    	io_size = iov_iter_count(iter);
    	req->result = io_size;
    
    	/* Ensure we clear previously set non-block flag */
    	if (!force_nonblock)
    		kiocb->ki_flags &= ~IOCB_NOWAIT;
    	else
    		kiocb->ki_flags |= IOCB_NOWAIT;
    
    	/* If the file doesn't support async, just async punt */
    	if (force_nonblock && !io_file_supports_async(req->file, WRITE))
    		goto copy_iov;
    
    	/* file path doesn't support NOWAIT for non-direct_IO */
    	if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT) &&
    	    (req->flags & REQ_F_ISREG))
    		goto copy_iov;
    
    	ret = rw_verify_area(WRITE, req->file, io_kiocb_ppos(kiocb), io_size);
    	if (unlikely(ret))
    		goto out_free;
    
    	/*
    	 * Open-code file_start_write here to grab freeze protection,
    	 * which will be released by another thread in
    	 * io_complete_rw().  Fool lockdep by telling it the lock got
    	 * released so that it doesn't complain about the held lock when
    	 * we return to userspace.
    	 */
    	if (req->flags & REQ_F_ISREG) {
    		sb_start_write(file_inode(req->file)->i_sb);
    		__sb_writers_release(file_inode(req->file)->i_sb,
    					SB_FREEZE_WRITE);
    	}
    	kiocb->ki_flags |= IOCB_WRITE;
    
    	if (req->file->f_op->write_iter)
    		ret2 = call_write_iter(req->file, kiocb, iter);
    	else if (req->file->f_op->write)
    		ret2 = loop_rw_iter(WRITE, req, iter);
    	else
    		ret2 = -EINVAL;
    
    	/*
    	 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
    	 * retry them without IOCB_NOWAIT.
    	 */
    	if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
    		ret2 = -EAGAIN;
    	/* no retry on NONBLOCK nor RWF_NOWAIT */
    	if (ret2 == -EAGAIN && (req->flags & REQ_F_NOWAIT))
    		goto done;
    	if (ret2 == -EIOCBQUEUED && req->async_data)
    		iov_iter_revert(iter, io_size - iov_iter_count(iter));
    	if (!force_nonblock || ret2 != -EAGAIN) {
    		/* IOPOLL retry should happen for io-wq threads */
    		if ((req->ctx->flags & IORING_SETUP_IOPOLL) && ret2 == -EAGAIN)
    			goto copy_iov;
    done:
    		kiocb_done(kiocb, ret2, issue_flags);
    	} else {
    copy_iov:
    		/* some cases will consume bytes even on error returns */
    		iov_iter_revert(iter, io_size - iov_iter_count(iter));
    		ret = io_setup_async_rw(req, iovec, inline_vecs, iter, false);
    		return ret ?: -EAGAIN;
    	}
    out_free:
    	/* it's reportedly faster than delegating the null check to kfree() */
    	if (iovec)
    		kfree(iovec);
    	return ret;
    }
    
    static int io_renameat_prep(struct io_kiocb *req,
    			    const struct io_uring_sqe *sqe)
    {
    	struct io_rename *ren = &req->rename;
    	const char __user *oldf, *newf;
    
    	if (unlikely(req->flags & REQ_F_FIXED_FILE))
    		return -EBADF;
    
    	ren->old_dfd = READ_ONCE(sqe->fd);
    	oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
    	newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
    	ren->new_dfd = READ_ONCE(sqe->len);
    	ren->flags = READ_ONCE(sqe->rename_flags);
    
    	ren->oldpath = getname(oldf);
    	if (IS_ERR(ren->oldpath))
    		return PTR_ERR(ren->oldpath);
    
    	ren->newpath = getname(newf);
    	if (IS_ERR(ren->newpath)) {
    		putname(ren->oldpath);
    		return PTR_ERR(ren->newpath);
    	}
    
    	req->flags |= REQ_F_NEED_CLEANUP;
    	return 0;
    }
    
    static int io_renameat(struct io_kiocb *req, unsigned int issue_flags)
    {
    	struct io_rename *ren = &req->rename;
    	int ret;
    
    	if (issue_flags & IO_URING_F_NONBLOCK)
    		return -EAGAIN;
    
    	ret = do_renameat2(ren->old_dfd, ren->oldpath, ren->new_dfd,
    				ren->newpath, ren->flags);
    
    	req->flags &= ~REQ_F_NEED_CLEANUP;
    	if (ret < 0)
    		req_set_fail_links(req);
    	io_req_complete(req, ret);
    	return 0;
    }
    
    static int io_unlinkat_prep(struct io_kiocb *req,
    			    const struct io_uring_sqe *sqe)
    {
    	struct io_unlink *un = &req->unlink;
    	const char __user *fname;
    
    	if (unlikely(req->flags & REQ_F_FIXED_FILE))
    		return -EBADF;
    
    	un->dfd = READ_ONCE(sqe->fd);
    
    	un->flags = READ_ONCE(sqe->unlink_flags);
    	if (un->flags & ~AT_REMOVEDIR)
    		return -EINVAL;
    
    	fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
    	un->filename = getname(fname);
    	if (IS_ERR(un->filename))
    		return PTR_ERR(un->filename);
    
    	req->flags |= REQ_F_NEED_CLEANUP;
    	return 0;
    }
    
    static int io_unlinkat(struct io_kiocb *req, unsigned int issue_flags)
    {
    	struct io_unlink *un = &req->unlink;
    	int ret;
    
    	if (issue_flags & IO_URING_F_NONBLOCK)
    		return -EAGAIN;
    
    	if (un->flags & AT_REMOVEDIR)
    		ret = do_rmdir(un->dfd, un->filename);
    	else
    		ret = do_unlinkat(un->dfd, un->filename);
    
    	req->flags &= ~REQ_F_NEED_CLEANUP;
    	if (ret < 0)
    		req_set_fail_links(req);
    	io_req_complete(req, ret);
    	return 0;
    }
    
    static int io_shutdown_prep(struct io_kiocb *req,
    			    const struct io_uring_sqe *sqe)
    {
    #if defined(CONFIG_NET)
    	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
    		return -EINVAL;
    	if (sqe->ioprio || sqe->off || sqe->addr || sqe->rw_flags ||
    	    sqe->buf_index)
    		return -EINVAL;
    
    	req->shutdown.how = READ_ONCE(sqe->len);
    	return 0;
    #else
    	return -EOPNOTSUPP;
    #endif
    }
    
    static int io_shutdown(struct io_kiocb *req, unsigned int issue_flags)
    {
    #if defined(CONFIG_NET)
    	struct socket *sock;
    	int ret;
    
    	if (issue_flags & IO_URING_F_NONBLOCK)
    		return -EAGAIN;
    
    	sock = sock_from_file(req->file);
    	if (unlikely(!sock))
    		return -ENOTSOCK;
    
    	ret = __sys_shutdown_sock(sock, req->shutdown.how);
    	if (ret < 0)
    		req_set_fail_links(req);
    	io_req_complete(req, ret);
    	return 0;
    #else
    	return -EOPNOTSUPP;
    #endif
    }
    
    static int __io_splice_prep(struct io_kiocb *req,
    			    const struct io_uring_sqe *sqe)
    {
    	struct io_splice* sp = &req->splice;
    	unsigned int valid_flags = SPLICE_F_FD_IN_FIXED | SPLICE_F_ALL;
    
    	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
    		return -EINVAL;
    
    	sp->file_in = NULL;
    	sp->len = READ_ONCE(sqe->len);
    	sp->flags = READ_ONCE(sqe->splice_flags);
    
    	if (unlikely(sp->flags & ~valid_flags))
    		return -EINVAL;
    
    	sp->file_in = io_file_get(NULL, req, READ_ONCE(sqe->splice_fd_in),
    				  (sp->flags & SPLICE_F_FD_IN_FIXED));
    	if (!sp->file_in)
    		return -EBADF;
    	req->flags |= REQ_F_NEED_CLEANUP;
    
    	if (!S_ISREG(file_inode(sp->file_in)->i_mode)) {
    		/*
    		 * Splice operation will be punted aync, and here need to
    		 * modify io_wq_work.flags, so initialize io_wq_work firstly.
    		 */
    		req->work.flags |= IO_WQ_WORK_UNBOUND;
    	}
    
    	return 0;
    }
    
    static int io_tee_prep(struct io_kiocb *req,
    		       const struct io_uring_sqe *sqe)
    {
    	if (READ_ONCE(sqe->splice_off_in) || READ_ONCE(sqe->off))
    		return -EINVAL;
    	return __io_splice_prep(req, sqe);
    }
    
    static int io_tee(struct io_kiocb *req, unsigned int issue_flags)
    {
    	struct io_splice *sp = &req->splice;
    	struct file *in = sp->file_in;
    	struct file *out = sp->file_out;
    	unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
    	long ret = 0;
    
    	if (issue_flags & IO_URING_F_NONBLOCK)
    		return -EAGAIN;
    	if (sp->len)
    		ret = do_tee(in, out, sp->len, flags);
    
    	io_put_file(req, in, (sp->flags & SPLICE_F_FD_IN_FIXED));
    	req->flags &= ~REQ_F_NEED_CLEANUP;
    
    	if (ret != sp->len)
    		req_set_fail_links(req);
    	io_req_complete(req, ret);
    	return 0;
    }
    
    static int io_splice_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
    {
    	struct io_splice* sp = &req->splice;
    
    	sp->off_in = READ_ONCE(sqe->splice_off_in);
    	sp->off_out = READ_ONCE(sqe->off);
    	return __io_splice_prep(req, sqe);
    }
    
    static int io_splice(struct io_kiocb *req, unsigned int issue_flags)
    {
    	struct io_splice *sp = &req->splice;
    	struct file *in = sp->file_in;
    	struct file *out = sp->file_out;
    	unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
    	loff_t *poff_in, *poff_out;
    	long ret = 0;
    
    	if (issue_flags & IO_URING_F_NONBLOCK)
    		return -EAGAIN;
    
    	poff_in = (sp->off_in == -1) ? NULL : &sp->off_in;
    	poff_out = (sp->off_out == -1) ? NULL : &sp->off_out;
    
    	if (sp->len)
    		ret = do_splice(in, poff_in, out, poff_out, sp->len, flags);
    
    	io_put_file(req, in, (sp->flags & SPLICE_F_FD_IN_FIXED));
    	req->flags &= ~REQ_F_NEED_CLEANUP;
    
    	if (ret != sp->len)
    		req_set_fail_links(req);
    	io_req_complete(req, ret);
    	return 0;
    }
    
    /*
     * IORING_OP_NOP just posts a completion event, nothing else.
     */
    static int io_nop(struct io_kiocb *req, unsigned int issue_flags)
    {
    	struct io_ring_ctx *ctx = req->ctx;
    
    	if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
    		return -EINVAL;
    
    	__io_req_complete(req, issue_flags, 0, 0);
    	return 0;
    }
    
    static int io_fsync_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
    {
    	struct io_ring_ctx *ctx = req->ctx;
    
    	if (!req->file)
    		return -EBADF;
    
    	if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
    		return -EINVAL;
    	if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
    		return -EINVAL;
    
    	req->sync.flags = READ_ONCE(sqe->fsync_flags);
    	if (unlikely(req->sync.flags & ~IORING_FSYNC_DATASYNC))
    		return -EINVAL;
    
    	req->sync.off = READ_ONCE(sqe->off);
    	req->sync.len = READ_ONCE(sqe->len);
    	return 0;
    }
    
    static int io_fsync(struct io_kiocb *req, unsigned int issue_flags)
    {
    	loff_t end = req->sync.off + req->sync.len;
    	int ret;
    
    	/* fsync always requires a blocking context */
    	if (issue_flags & IO_URING_F_NONBLOCK)
    		return -EAGAIN;
    
    	ret = vfs_fsync_range(req->file, req->sync.off,
    				end > 0 ? end : LLONG_MAX,
    				req->sync.flags & IORING_FSYNC_DATASYNC);
    	if (ret < 0)
    		req_set_fail_links(req);
    	io_req_complete(req, ret);
    	return 0;
    }
    
    static int io_fallocate_prep(struct io_kiocb *req,
    			     const struct io_uring_sqe *sqe)
    {
    	if (sqe->ioprio || sqe->buf_index || sqe->rw_flags)
    		return -EINVAL;
    	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
    		return -EINVAL;
    
    	req->sync.off = READ_ONCE(sqe->off);
    	req->sync.len = READ_ONCE(sqe->addr);
    	req->sync.mode = READ_ONCE(sqe->len);
    	return 0;
    }
    
    static int io_fallocate(struct io_kiocb *req, unsigned int issue_flags)
    {
    	int ret;
    
    	/* fallocate always requiring blocking context */
    	if (issue_flags & IO_URING_F_NONBLOCK)
    		return -EAGAIN;
    	ret = vfs_fallocate(req->file, req->sync.mode, req->sync.off,
    				req->sync.len);
    	if (ret < 0)
    		req_set_fail_links(req);
    	io_req_complete(req, ret);
    	return 0;
    }
    
    static int __io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
    {
    	const char __user *fname;
    	int ret;
    
    	if (unlikely(sqe->ioprio || sqe->buf_index))
    		return -EINVAL;
    	if (unlikely(req->flags & REQ_F_FIXED_FILE))
    		return -EBADF;
    
    	/* open.how should be already initialised */
    	if (!(req->open.how.flags & O_PATH) && force_o_largefile())
    		req->open.how.flags |= O_LARGEFILE;
    
    	req->open.dfd = READ_ONCE(sqe->fd);
    	fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
    	req->open.filename = getname(fname);
    	if (IS_ERR(req->open.filename)) {
    		ret = PTR_ERR(req->open.filename);
    		req->open.filename = NULL;
    		return ret;
    	}
    	req->open.nofile = rlimit(RLIMIT_NOFILE);
    	req->flags |= REQ_F_NEED_CLEANUP;
    	return 0;
    }
    
    static int io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
    {
    	u64 flags, mode;
    
    	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
    		return -EINVAL;
    	mode = READ_ONCE(sqe->len);
    	flags = READ_ONCE(sqe->open_flags);
    	req->open.how = build_open_how(flags, mode);
    	return __io_openat_prep(req, sqe);
    }
    
    static int io_openat2_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
    {
    	struct open_how __user *how;
    	size_t len;
    	int ret;
    
    	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
    		return -EINVAL;
    	how = u64_to_user_ptr(READ_ONCE(sqe->addr2));
    	len = READ_ONCE(sqe->len);
    	if (len < OPEN_HOW_SIZE_VER0)
    		return -EINVAL;
    
    	ret = copy_struct_from_user(&req->open.how, sizeof(req->open.how), how,
    					len);
    	if (ret)
    		return ret;
    
    	return __io_openat_prep(req, sqe);
    }
    
    static int io_openat2(struct io_kiocb *req, unsigned int issue_flags)
    {
    	struct open_flags op;
    	struct file *file;
    	bool nonblock_set;
    	bool resolve_nonblock;
    	int ret;
    
    	ret = build_open_flags(&req->open.how, &op);
    	if (ret)
    		goto err;
    	nonblock_set = op.open_flag & O_NONBLOCK;
    	resolve_nonblock = req->open.how.resolve & RESOLVE_CACHED;
    	if (issue_flags & IO_URING_F_NONBLOCK) {
    		/*
    		 * Don't bother trying for O_TRUNC, O_CREAT, or O_TMPFILE open,
    		 * it'll always -EAGAIN
    		 */
    		if (req->open.how.flags & (O_TRUNC | O_CREAT | O_TMPFILE))
    			return -EAGAIN;
    		op.lookup_flags |= LOOKUP_CACHED;
    		op.open_flag |= O_NONBLOCK;
    	}
    
    	ret = __get_unused_fd_flags(req->open.how.flags, req->open.nofile);
    	if (ret < 0)
    		goto err;
    
    	file = do_filp_open(req->open.dfd, req->open.filename, &op);
    	/* only retry if RESOLVE_CACHED wasn't already set by application */
    	if ((!resolve_nonblock && (issue_flags & IO_URING_F_NONBLOCK)) &&
    	    file == ERR_PTR(-EAGAIN)) {
    		/*
    		 * We could hang on to this 'fd', but seems like marginal
    		 * gain for something that is now known to be a slower path.
    		 * So just put it, and we'll get a new one when we retry.
    		 */
    		put_unused_fd(ret);
    		return -EAGAIN;
    	}
    
    	if (IS_ERR(file)) {
    		put_unused_fd(ret);
    		ret = PTR_ERR(file);
    	} else {
    		if ((issue_flags & IO_URING_F_NONBLOCK) && !nonblock_set)
    			file->f_flags &= ~O_NONBLOCK;
    		fsnotify_open(file);
    		fd_install(ret, file);
    	}
    err:
    	putname(req->open.filename);
    	req->flags &= ~REQ_F_NEED_CLEANUP;
    	if (ret < 0)
    		req_set_fail_links(req);
    	io_req_complete(req, ret);
    	return 0;
    }
    
    static int io_openat(struct io_kiocb *req, unsigned int issue_flags)
    {
    	return io_openat2(req, issue_flags & IO_URING_F_NONBLOCK);
    }
    
    static int io_remove_buffers_prep(struct io_kiocb *req,
    				  const struct io_uring_sqe *sqe)
    {
    	struct io_provide_buf *p = &req->pbuf;
    	u64 tmp;
    
    	if (sqe->ioprio || sqe->rw_flags || sqe->addr || sqe->len || sqe->off)
    		return -EINVAL;
    
    	tmp = READ_ONCE(sqe->fd);
    	if (!tmp || tmp > USHRT_MAX)
    		return -EINVAL;
    
    	memset(p, 0, sizeof(*p));
    	p->nbufs = tmp;
    	p->bgid = READ_ONCE(sqe->buf_group);
    	return 0;
    }
    
    static int __io_remove_buffers(struct io_ring_ctx *ctx, struct io_buffer *buf,
    			       int bgid, unsigned nbufs)
    {
    	unsigned i = 0;
    
    	/* shouldn't happen */
    	if (!nbufs)
    		return 0;
    
    	/* the head kbuf is the list itself */
    	while (!list_empty(&buf->list)) {
    		struct io_buffer *nxt;
    
    		nxt = list_first_entry(&buf->list, struct io_buffer, list);
    		list_del(&nxt->list);
    		kfree(nxt);
    		if (++i == nbufs)
    			return i;
    	}
    	i++;
    	kfree(buf);
    	idr_remove(&ctx->io_buffer_idr, bgid);
    
    	return i;
    }
    
    static int io_remove_buffers(struct io_kiocb *req, unsigned int issue_flags)
    {
    	struct io_provide_buf *p = &req->pbuf;
    	struct io_ring_ctx *ctx = req->ctx;
    	struct io_buffer *head;
    	int ret = 0;
    	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
    
    	io_ring_submit_lock(ctx, !force_nonblock);
    
    	lockdep_assert_held(&ctx->uring_lock);
    
    	ret = -ENOENT;
    	head = idr_find(&ctx->io_buffer_idr, p->bgid);
    	if (head)
    		ret = __io_remove_buffers(ctx, head, p->bgid, p->nbufs);
    	if (ret < 0)
    		req_set_fail_links(req);
    
    	/* need to hold the lock to complete IOPOLL requests */
    	if (ctx->flags & IORING_SETUP_IOPOLL) {
    		__io_req_complete(req, issue_flags, ret, 0);
    		io_ring_submit_unlock(ctx, !force_nonblock);
    	} else {
    		io_ring_submit_unlock(ctx, !force_nonblock);
    		__io_req_complete(req, issue_flags, ret, 0);
    	}
    	return 0;
    }
    
    static int io_provide_buffers_prep(struct io_kiocb *req,
    				   const struct io_uring_sqe *sqe)
    {
    	struct io_provide_buf *p = &req->pbuf;
    	u64 tmp;
    
    	if (sqe->ioprio || sqe->rw_flags)
    		return -EINVAL;
    
    	tmp = READ_ONCE(sqe->fd);
    	if (!tmp || tmp > USHRT_MAX)
    		return -E2BIG;
    	p->nbufs = tmp;
    	p->addr = READ_ONCE(sqe->addr);
    	p->len = READ_ONCE(sqe->len);
    
    	if (!access_ok(u64_to_user_ptr(p->addr), (p->len * p->nbufs)))
    		return -EFAULT;
    
    	p->bgid = READ_ONCE(sqe->buf_group);
    	tmp = READ_ONCE(sqe->off);
    	if (tmp > USHRT_MAX)
    		return -E2BIG;
    	p->bid = tmp;
    	return 0;
    }
    
    static int io_add_buffers(struct io_provide_buf *pbuf, struct io_buffer **head)
    {
    	struct io_buffer *buf;
    	u64 addr = pbuf->addr;
    	int i, bid = pbuf->bid;
    
    	for (i = 0; i < pbuf->nbufs; i++) {
    		buf = kmalloc(sizeof(*buf), GFP_KERNEL);
    		if (!buf)
    			break;
    
    		buf->addr = addr;
    		buf->len = pbuf->len;
    		buf->bid = bid;
    		addr += pbuf->len;
    		bid++;
    		if (!*head) {
    			INIT_LIST_HEAD(&buf->list);
    			*head = buf;
    		} else {
    			list_add_tail(&buf->list, &(*head)->list);
    		}
    	}
    
    	return i ? i : -ENOMEM;
    }
    
    static int io_provide_buffers(struct io_kiocb *req, unsigned int issue_flags)
    {
    	struct io_provide_buf *p = &req->pbuf;
    	struct io_ring_ctx *ctx = req->ctx;
    	struct io_buffer *head, *list;
    	int ret = 0;
    	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
    
    	io_ring_submit_lock(ctx, !force_nonblock);
    
    	lockdep_assert_held(&ctx->uring_lock);
    
    	list = head = idr_find(&ctx->io_buffer_idr, p->bgid);
    
    	ret = io_add_buffers(p, &head);
    	if (ret < 0)
    		goto out;
    
    	if (!list) {
    		ret = idr_alloc(&ctx->io_buffer_idr, head, p->bgid, p->bgid + 1,
    					GFP_KERNEL);
    		if (ret < 0) {
    			__io_remove_buffers(ctx, head, p->bgid, -1U);
    			goto out;
    		}
    	}
    out:
    	if (ret < 0)
    		req_set_fail_links(req);
    
    	/* need to hold the lock to complete IOPOLL requests */
    	if (ctx->flags & IORING_SETUP_IOPOLL) {
    		__io_req_complete(req, issue_flags, ret, 0);
    		io_ring_submit_unlock(ctx, !force_nonblock);
    	} else {
    		io_ring_submit_unlock(ctx, !force_nonblock);
    		__io_req_complete(req, issue_flags, ret, 0);
    	}
    	return 0;
    }
    
    static int io_epoll_ctl_prep(struct io_kiocb *req,
    			     const struct io_uring_sqe *sqe)
    {
    #if defined(CONFIG_EPOLL)
    	if (sqe->ioprio || sqe->buf_index)
    		return -EINVAL;
    	if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL)))
    		return -EINVAL;
    
    	req->epoll.epfd = READ_ONCE(sqe->fd);
    	req->epoll.op = READ_ONCE(sqe->len);
    	req->epoll.fd = READ_ONCE(sqe->off);
    
    	if (ep_op_has_event(req->epoll.op)) {
    		struct epoll_event __user *ev;
    
    		ev = u64_to_user_ptr(READ_ONCE(sqe->addr));
    		if (copy_from_user(&req->epoll.event, ev, sizeof(*ev)))
    			return -EFAULT;
    	}
    
    	return 0;
    #else
    	return -EOPNOTSUPP;
    #endif
    }
    
    static int io_epoll_ctl(struct io_kiocb *req, unsigned int issue_flags)
    {
    #if defined(CONFIG_EPOLL)
    	struct io_epoll *ie = &req->epoll;
    	int ret;
    	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
    
    	ret = do_epoll_ctl(ie->epfd, ie->op, ie->fd, &ie->event, force_nonblock);
    	if (force_nonblock && ret == -EAGAIN)
    		return -EAGAIN;
    
    	if (ret < 0)
    		req_set_fail_links(req);
    	__io_req_complete(req, issue_flags, ret, 0);
    	return 0;
    #else
    	return -EOPNOTSUPP;
    #endif
    }
    
    static int io_madvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
    {
    #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
    	if (sqe->ioprio || sqe->buf_index || sqe->off)
    		return -EINVAL;
    	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
    		return -EINVAL;
    
    	req->madvise.addr = READ_ONCE(sqe->addr);
    	req->madvise.len = READ_ONCE(sqe->len);
    	req->madvise.advice = READ_ONCE(sqe->fadvise_advice);
    	return 0;
    #else
    	return -EOPNOTSUPP;
    #endif
    }
    
    static int io_madvise(struct io_kiocb *req, unsigned int issue_flags)
    {
    #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
    	struct io_madvise *ma = &req->madvise;
    	int ret;
    
    	if (issue_flags & IO_URING_F_NONBLOCK)
    		return -EAGAIN;
    
    	ret = do_madvise(current->mm, ma->addr, ma->len, ma->advice);
    	if (ret < 0)
    		req_set_fail_links(req);
    	io_req_complete(req, ret);
    	return 0;
    #else
    	return -EOPNOTSUPP;
    #endif
    }
    
    static int io_fadvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
    {
    	if (sqe->ioprio || sqe->buf_index || sqe->addr)
    		return -EINVAL;
    	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
    		return -EINVAL;
    
    	req->fadvise.offset = READ_ONCE(sqe->off);
    	req->fadvise.len = READ_ONCE(sqe->len);
    	req->fadvise.advice = READ_ONCE(sqe->fadvise_advice);
    	return 0;
    }
    
    static int io_fadvise(struct io_kiocb *req, unsigned int issue_flags)
    {
    	struct io_fadvise *fa = &req->fadvise;
    	int ret;
    
    	if (issue_flags & IO_URING_F_NONBLOCK) {
    		switch (fa->advice) {
    		case POSIX_FADV_NORMAL:
    		case POSIX_FADV_RANDOM:
    		case POSIX_FADV_SEQUENTIAL:
    			break;
    		default:
    			return -EAGAIN;
    		}
    	}
    
    	ret = vfs_fadvise(req->file, fa->offset, fa->len, fa->advice);
    	if (ret < 0)
    		req_set_fail_links(req);
    	io_req_complete(req, ret);
    	return 0;
    }
    
    static int io_statx_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
    {
    	if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL)))
    		return -EINVAL;
    	if (sqe->ioprio || sqe->buf_index)
    		return -EINVAL;
    	if (req->flags & REQ_F_FIXED_FILE)
    		return -EBADF;
    
    	req->statx.dfd = READ_ONCE(sqe->fd);
    	req->statx.mask = READ_ONCE(sqe->len);
    	req->statx.filename = u64_to_user_ptr(READ_ONCE(sqe->addr));
    	req->statx.buffer = u64_to_user_ptr(READ_ONCE(sqe->addr2));
    	req->statx.flags = READ_ONCE(sqe->statx_flags);
    
    	return 0;
    }
    
    static int io_statx(struct io_kiocb *req, unsigned int issue_flags)
    {
    	struct io_statx *ctx = &req->statx;
    	int ret;
    
    	if (issue_flags & IO_URING_F_NONBLOCK) {
    		/* only need file table for an actual valid fd */
    		if (ctx->dfd == -1 || ctx->dfd == AT_FDCWD)
    			req->flags |= REQ_F_NO_FILE_TABLE;
    		return -EAGAIN;
    	}
    
    	ret = do_statx(ctx->dfd, ctx->filename, ctx->flags, ctx->mask,
    		       ctx->buffer);
    
    	if (ret < 0)
    		req_set_fail_links(req);
    	io_req_complete(req, ret);
    	return 0;
    }
    
    static int io_close_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
    {
    	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
    		return -EINVAL;
    	if (sqe->ioprio || sqe->off || sqe->addr || sqe->len ||
    	    sqe->rw_flags || sqe->buf_index)
    		return -EINVAL;
    	if (req->flags & REQ_F_FIXED_FILE)
    		return -EBADF;
    
    	req->close.fd = READ_ONCE(sqe->fd);
    	return 0;
    }
    
    static int io_close(struct io_kiocb *req, unsigned int issue_flags)
    {
    	struct files_struct *files = current->files;
    	struct io_close *close = &req->close;
    	struct fdtable *fdt;
    	struct file *file;
    	int ret;
    
    	file = NULL;
    	ret = -EBADF;
    	spin_lock(&files->file_lock);
    	fdt = files_fdtable(files);
    	if (close->fd >= fdt->max_fds) {
    		spin_unlock(&files->file_lock);
    		goto err;
    	}
    	file = fdt->fd[close->fd];
    	if (!file) {
    		spin_unlock(&files->file_lock);
    		goto err;
    	}
    
    	if (file->f_op == &io_uring_fops) {
    		spin_unlock(&files->file_lock);
    		file = NULL;
    		goto err;
    	}
    
    	/* if the file has a flush method, be safe and punt to async */
    	if (file->f_op->flush && (issue_flags & IO_URING_F_NONBLOCK)) {
    		spin_unlock(&files->file_lock);
    		return -EAGAIN;
    	}
    
    	ret = __close_fd_get_file(close->fd, &file);
    	spin_unlock(&files->file_lock);
    	if (ret < 0) {
    		if (ret == -ENOENT)
    			ret = -EBADF;
    		goto err;
    	}
    
    	/* No ->flush() or already async, safely close from here */
    	ret = filp_close(file, current->files);
    err:
    	if (ret < 0)
    		req_set_fail_links(req);
    	if (file)
    		fput(file);
    	__io_req_complete(req, issue_flags, ret, 0);
    	return 0;
    }
    
    static int io_sfr_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
    {
    	struct io_ring_ctx *ctx = req->ctx;
    
    	if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
    		return -EINVAL;
    	if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
    		return -EINVAL;
    
    	req->sync.off = READ_ONCE(sqe->off);
    	req->sync.len = READ_ONCE(sqe->len);
    	req->sync.flags = READ_ONCE(sqe->sync_range_flags);
    	return 0;
    }
    
    static int io_sync_file_range(struct io_kiocb *req, unsigned int issue_flags)
    {
    	int ret;
    
    	/* sync_file_range always requires a blocking context */
    	if (issue_flags & IO_URING_F_NONBLOCK)
    		return -EAGAIN;
    
    	ret = sync_file_range(req->file, req->sync.off, req->sync.len,
    				req->sync.flags);
    	if (ret < 0)
    		req_set_fail_links(req);
    	io_req_complete(req, ret);
    	return 0;
    }
    
    #if defined(CONFIG_NET)
    static int io_setup_async_msg(struct io_kiocb *req,
    			      struct io_async_msghdr *kmsg)
    {
    	struct io_async_msghdr *async_msg = req->async_data;
    
    	if (async_msg)
    		return -EAGAIN;
    	if (io_alloc_async_data(req)) {
    		kfree(kmsg->free_iov);
    		return -ENOMEM;
    	}
    	async_msg = req->async_data;
    	req->flags |= REQ_F_NEED_CLEANUP;
    	memcpy(async_msg, kmsg, sizeof(*kmsg));
    	async_msg->msg.msg_name = &async_msg->addr;
    	/* if were using fast_iov, set it to the new one */
    	if (!async_msg->free_iov)
    		async_msg->msg.msg_iter.iov = async_msg->fast_iov;
    
    	return -EAGAIN;
    }
    
    static int io_sendmsg_copy_hdr(struct io_kiocb *req,
    			       struct io_async_msghdr *iomsg)
    {
    	iomsg->msg.msg_name = &iomsg->addr;
    	iomsg->free_iov = iomsg->fast_iov;
    	return sendmsg_copy_msghdr(&iomsg->msg, req->sr_msg.umsg,
    				   req->sr_msg.msg_flags, &iomsg->free_iov);
    }
    
    static int io_sendmsg_prep_async(struct io_kiocb *req)
    {
    	int ret;
    
    	if (!io_op_defs[req->opcode].needs_async_data)
    		return 0;
    	ret = io_sendmsg_copy_hdr(req, req->async_data);
    	if (!ret)
    		req->flags |= REQ_F_NEED_CLEANUP;
    	return ret;
    }
    
    static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
    {
    	struct io_sr_msg *sr = &req->sr_msg;
    
    	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
    		return -EINVAL;
    
    	sr->msg_flags = READ_ONCE(sqe->msg_flags);
    	sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
    	sr->len = READ_ONCE(sqe->len);
    
    #ifdef CONFIG_COMPAT
    	if (req->ctx->compat)
    		sr->msg_flags |= MSG_CMSG_COMPAT;
    #endif
    	return 0;
    }
    
    static int io_sendmsg(struct io_kiocb *req, unsigned int issue_flags)
    {
    	struct io_async_msghdr iomsg, *kmsg;
    	struct socket *sock;
    	unsigned flags;
    	int ret;
    
    	sock = sock_from_file(req->file);
    	if (unlikely(!sock))
    		return -ENOTSOCK;
    
    	kmsg = req->async_data;
    	if (!kmsg) {
    		ret = io_sendmsg_copy_hdr(req, &iomsg);
    		if (ret)
    			return ret;
    		kmsg = &iomsg;
    	}
    
    	flags = req->sr_msg.msg_flags;
    	if (flags & MSG_DONTWAIT)
    		req->flags |= REQ_F_NOWAIT;
    	else if (issue_flags & IO_URING_F_NONBLOCK)
    		flags |= MSG_DONTWAIT;
    
    	ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
    	if ((issue_flags & IO_URING_F_NONBLOCK) && ret == -EAGAIN)
    		return io_setup_async_msg(req, kmsg);
    	if (ret == -ERESTARTSYS)
    		ret = -EINTR;
    
    	/* fast path, check for non-NULL to avoid function call */
    	if (kmsg->free_iov)
    		kfree(kmsg->free_iov);
    	req->flags &= ~REQ_F_NEED_CLEANUP;
    	if (ret < 0)
    		req_set_fail_links(req);
    	__io_req_complete(req, issue_flags, ret, 0);
    	return 0;
    }
    
    static int io_send(struct io_kiocb *req, unsigned int issue_flags)
    {
    	struct io_sr_msg *sr = &req->sr_msg;
    	struct msghdr msg;
    	struct iovec iov;
    	struct socket *sock;
    	unsigned flags;
    	int ret;
    
    	sock = sock_from_file(req->file);
    	if (unlikely(!sock))
    		return -ENOTSOCK;
    
    	ret = import_single_range(WRITE, sr->buf, sr->len, &iov, &msg.msg_iter);
    	if (unlikely(ret))
    		return ret;
    
    	msg.msg_name = NULL;
    	msg.msg_control = NULL;
    	msg.msg_controllen = 0;
    	msg.msg_namelen = 0;
    
    	flags = req->sr_msg.msg_flags;
    	if (flags & MSG_DONTWAIT)
    		req->flags |= REQ_F_NOWAIT;
    	else if (issue_flags & IO_URING_F_NONBLOCK)
    		flags |= MSG_DONTWAIT;
    
    	msg.msg_flags = flags;
    	ret = sock_sendmsg(sock, &msg);
    	if ((issue_flags & IO_URING_F_NONBLOCK) && ret == -EAGAIN)
    		return -EAGAIN;
    	if (ret == -ERESTARTSYS)
    		ret = -EINTR;
    
    	if (ret < 0)
    		req_set_fail_links(req);
    	__io_req_complete(req, issue_flags, ret, 0);
    	return 0;
    }
    
    static int __io_recvmsg_copy_hdr(struct io_kiocb *req,
    				 struct io_async_msghdr *iomsg)
    {
    	struct io_sr_msg *sr = &req->sr_msg;
    	struct iovec __user *uiov;
    	size_t iov_len;
    	int ret;
    
    	ret = __copy_msghdr_from_user(&iomsg->msg, sr->umsg,
    					&iomsg->uaddr, &uiov, &iov_len);
    	if (ret)
    		return ret;
    
    	if (req->flags & REQ_F_BUFFER_SELECT) {
    		if (iov_len > 1)
    			return -EINVAL;
    		if (copy_from_user(iomsg->fast_iov, uiov, sizeof(*uiov)))
    			return -EFAULT;
    		sr->len = iomsg->fast_iov[0].iov_len;
    		iomsg->free_iov = NULL;
    	} else {
    		iomsg->free_iov = iomsg->fast_iov;
    		ret = __import_iovec(READ, uiov, iov_len, UIO_FASTIOV,
    				     &iomsg->free_iov, &iomsg->msg.msg_iter,
    				     false);
    		if (ret > 0)
    			ret = 0;
    	}
    
    	return ret;
    }
    
    #ifdef CONFIG_COMPAT
    static int __io_compat_recvmsg_copy_hdr(struct io_kiocb *req,
    					struct io_async_msghdr *iomsg)
    {
    	struct compat_msghdr __user *msg_compat;
    	struct io_sr_msg *sr = &req->sr_msg;
    	struct compat_iovec __user *uiov;
    	compat_uptr_t ptr;
    	compat_size_t len;
    	int ret;
    
    	msg_compat = (struct compat_msghdr __user *) sr->umsg;
    	ret = __get_compat_msghdr(&iomsg->msg, msg_compat, &iomsg->uaddr,
    					&ptr, &len);
    	if (ret)
    		return ret;
    
    	uiov = compat_ptr(ptr);
    	if (req->flags & REQ_F_BUFFER_SELECT) {
    		compat_ssize_t clen;
    
    		if (len > 1)
    			return -EINVAL;
    		if (!access_ok(uiov, sizeof(*uiov)))
    			return -EFAULT;
    		if (__get_user(clen, &uiov->iov_len))
    			return -EFAULT;
    		if (clen < 0)
    			return -EINVAL;
    		sr->len = clen;
    		iomsg->free_iov = NULL;
    	} else {
    		iomsg->free_iov = iomsg->fast_iov;
    		ret = __import_iovec(READ, (struct iovec __user *)uiov, len,
    				   UIO_FASTIOV, &iomsg->free_iov,
    				   &iomsg->msg.msg_iter, true);
    		if (ret < 0)
    			return ret;
    	}
    
    	return 0;
    }
    #endif
    
    static int io_recvmsg_copy_hdr(struct io_kiocb *req,
    			       struct io_async_msghdr *iomsg)
    {
    	iomsg->msg.msg_name = &iomsg->addr;
    
    #ifdef CONFIG_COMPAT
    	if (req->ctx->compat)
    		return __io_compat_recvmsg_copy_hdr(req, iomsg);
    #endif
    
    	return __io_recvmsg_copy_hdr(req, iomsg);
    }
    
    static struct io_buffer *io_recv_buffer_select(struct io_kiocb *req,
    					       bool needs_lock)
    {
    	struct io_sr_msg *sr = &req->sr_msg;
    	struct io_buffer *kbuf;
    
    	kbuf = io_buffer_select(req, &sr->len, sr->bgid, sr->kbuf, needs_lock);
    	if (IS_ERR(kbuf))
    		return kbuf;
    
    	sr->kbuf = kbuf;
    	req->flags |= REQ_F_BUFFER_SELECTED;
    	return kbuf;
    }
    
    static inline unsigned int io_put_recv_kbuf(struct io_kiocb *req)
    {
    	return io_put_kbuf(req, req->sr_msg.kbuf);
    }
    
    static int io_recvmsg_prep_async(struct io_kiocb *req)
    {
    	int ret;
    
    	if (!io_op_defs[req->opcode].needs_async_data)
    		return 0;
    	ret = io_recvmsg_copy_hdr(req, req->async_data);
    	if (!ret)
    		req->flags |= REQ_F_NEED_CLEANUP;
    	return ret;
    }
    
    static int io_recvmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
    {
    	struct io_sr_msg *sr = &req->sr_msg;
    
    	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
    		return -EINVAL;
    
    	sr->msg_flags = READ_ONCE(sqe->msg_flags);
    	sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
    	sr->len = READ_ONCE(sqe->len);
    	sr->bgid = READ_ONCE(sqe->buf_group);
    
    #ifdef CONFIG_COMPAT
    	if (req->ctx->compat)
    		sr->msg_flags |= MSG_CMSG_COMPAT;
    #endif
    	return 0;
    }
    
    static int io_recvmsg(struct io_kiocb *req, unsigned int issue_flags)
    {
    	struct io_async_msghdr iomsg, *kmsg;
    	struct socket *sock;
    	struct io_buffer *kbuf;
    	unsigned flags;
    	int ret, cflags = 0;
    	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
    
    	sock = sock_from_file(req->file);
    	if (unlikely(!sock))
    		return -ENOTSOCK;
    
    	kmsg = req->async_data;
    	if (!kmsg) {
    		ret = io_recvmsg_copy_hdr(req, &iomsg);
    		if (ret)
    			return ret;
    		kmsg = &iomsg;
    	}
    
    	if (req->flags & REQ_F_BUFFER_SELECT) {
    		kbuf = io_recv_buffer_select(req, !force_nonblock);
    		if (IS_ERR(kbuf))
    			return PTR_ERR(kbuf);
    		kmsg->fast_iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
    		kmsg->fast_iov[0].iov_len = req->sr_msg.len;
    		iov_iter_init(&kmsg->msg.msg_iter, READ, kmsg->fast_iov,
    				1, req->sr_msg.len);
    	}
    
    	flags = req->sr_msg.msg_flags;
    	if (flags & MSG_DONTWAIT)
    		req->flags |= REQ_F_NOWAIT;
    	else if (force_nonblock)
    		flags |= MSG_DONTWAIT;
    
    	ret = __sys_recvmsg_sock(sock, &kmsg->msg, req->sr_msg.umsg,
    					kmsg->uaddr, flags);
    	if (force_nonblock && ret == -EAGAIN)
    		return io_setup_async_msg(req, kmsg);
    	if (ret == -ERESTARTSYS)
    		ret = -EINTR;
    
    	if (req->flags & REQ_F_BUFFER_SELECTED)
    		cflags = io_put_recv_kbuf(req);
    	/* fast path, check for non-NULL to avoid function call */
    	if (kmsg->free_iov)
    		kfree(kmsg->free_iov);
    	req->flags &= ~REQ_F_NEED_CLEANUP;
    	if (ret < 0)
    		req_set_fail_links(req);
    	__io_req_complete(req, issue_flags, ret, cflags);
    	return 0;
    }
    
    static int io_recv(struct io_kiocb *req, unsigned int issue_flags)
    {
    	struct io_buffer *kbuf;
    	struct io_sr_msg *sr = &req->sr_msg;
    	struct msghdr msg;
    	void __user *buf = sr->buf;
    	struct socket *sock;
    	struct iovec iov;
    	unsigned flags;
    	int ret, cflags = 0;
    	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
    
    	sock = sock_from_file(req->file);
    	if (unlikely(!sock))
    		return -ENOTSOCK;
    
    	if (req->flags & REQ_F_BUFFER_SELECT) {
    		kbuf = io_recv_buffer_select(req, !force_nonblock);
    		if (IS_ERR(kbuf))
    			return PTR_ERR(kbuf);
    		buf = u64_to_user_ptr(kbuf->addr);
    	}
    
    	ret = import_single_range(READ, buf, sr->len, &iov, &msg.msg_iter);
    	if (unlikely(ret))
    		goto out_free;
    
    	msg.msg_name = NULL;
    	msg.msg_control = NULL;
    	msg.msg_controllen = 0;
    	msg.msg_namelen = 0;
    	msg.msg_iocb = NULL;
    	msg.msg_flags = 0;
    
    	flags = req->sr_msg.msg_flags;
    	if (flags & MSG_DONTWAIT)
    		req->flags |= REQ_F_NOWAIT;
    	else if (force_nonblock)
    		flags |= MSG_DONTWAIT;
    
    	ret = sock_recvmsg(sock, &msg, flags);
    	if (force_nonblock && ret == -EAGAIN)
    		return -EAGAIN;
    	if (ret == -ERESTARTSYS)
    		ret = -EINTR;
    out_free:
    	if (req->flags & REQ_F_BUFFER_SELECTED)
    		cflags = io_put_recv_kbuf(req);
    	if (ret < 0)
    		req_set_fail_links(req);
    	__io_req_complete(req, issue_flags, ret, cflags);
    	return 0;
    }
    
    static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
    {
    	struct io_accept *accept = &req->accept;
    
    	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
    		return -EINVAL;
    	if (sqe->ioprio || sqe->len || sqe->buf_index)
    		return -EINVAL;
    
    	accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
    	accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2));
    	accept->flags = READ_ONCE(sqe->accept_flags);
    	accept->nofile = rlimit(RLIMIT_NOFILE);
    	return 0;
    }
    
    static int io_accept(struct io_kiocb *req, unsigned int issue_flags)
    {
    	struct io_accept *accept = &req->accept;
    	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
    	unsigned int file_flags = force_nonblock ? O_NONBLOCK : 0;
    	int ret;
    
    	if (req->file->f_flags & O_NONBLOCK)
    		req->flags |= REQ_F_NOWAIT;
    
    	ret = __sys_accept4_file(req->file, file_flags, accept->addr,
    					accept->addr_len, accept->flags,
    					accept->nofile);
    	if (ret == -EAGAIN && force_nonblock)
    		return -EAGAIN;
    	if (ret < 0) {
    		if (ret == -ERESTARTSYS)
    			ret = -EINTR;
    		req_set_fail_links(req);
    	}
    	__io_req_complete(req, issue_flags, ret, 0);
    	return 0;
    }
    
    static int io_connect_prep_async(struct io_kiocb *req)
    {
    	struct io_async_connect *io = req->async_data;
    	struct io_connect *conn = &req->connect;
    
    	return move_addr_to_kernel(conn->addr, conn->addr_len, &io->address);
    }
    
    static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
    {
    	struct io_connect *conn = &req->connect;
    
    	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
    		return -EINVAL;
    	if (sqe->ioprio || sqe->len || sqe->buf_index || sqe->rw_flags)
    		return -EINVAL;
    
    	conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
    	conn->addr_len =  READ_ONCE(sqe->addr2);
    	return 0;
    }
    
    static int io_connect(struct io_kiocb *req, unsigned int issue_flags)
    {
    	struct io_async_connect __io, *io;
    	unsigned file_flags;
    	int ret;
    	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
    
    	if (req->async_data) {
    		io = req->async_data;
    	} else {
    		ret = move_addr_to_kernel(req->connect.addr,
    						req->connect.addr_len,
    						&__io.address);
    		if (ret)
    			goto out;
    		io = &__io;
    	}
    
    	file_flags = force_nonblock ? O_NONBLOCK : 0;
    
    	ret = __sys_connect_file(req->file, &io->address,
    					req->connect.addr_len, file_flags);
    	if ((ret == -EAGAIN || ret == -EINPROGRESS) && force_nonblock) {
    		if (req->async_data)
    			return -EAGAIN;
    		if (io_alloc_async_data(req)) {
    			ret = -ENOMEM;
    			goto out;
    		}
    		io = req->async_data;
    		memcpy(req->async_data, &__io, sizeof(__io));
    		return -EAGAIN;
    	}
    	if (ret == -ERESTARTSYS)
    		ret = -EINTR;
    out:
    	if (ret < 0)
    		req_set_fail_links(req);
    	__io_req_complete(req, issue_flags, ret, 0);
    	return 0;
    }
    #else /* !CONFIG_NET */
    #define IO_NETOP_FN(op)							\
    static int io_##op(struct io_kiocb *req, unsigned int issue_flags)	\
    {									\
    	return -EOPNOTSUPP;						\
    }
    
    #define IO_NETOP_PREP(op)						\
    IO_NETOP_FN(op)								\
    static int io_##op##_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) \
    {									\
    	return -EOPNOTSUPP;						\
    }									\
    
    #define IO_NETOP_PREP_ASYNC(op)						\
    IO_NETOP_PREP(op)							\
    static int io_##op##_prep_async(struct io_kiocb *req)			\
    {									\
    	return -EOPNOTSUPP;						\
    }
    
    IO_NETOP_PREP_ASYNC(sendmsg);
    IO_NETOP_PREP_ASYNC(recvmsg);
    IO_NETOP_PREP_ASYNC(connect);
    IO_NETOP_PREP(accept);
    IO_NETOP_FN(send);
    IO_NETOP_FN(recv);
    #endif /* CONFIG_NET */
    
    struct io_poll_table {
    	struct poll_table_struct pt;
    	struct io_kiocb *req;
    	int error;
    };
    
    static int __io_async_wake(struct io_kiocb *req, struct io_poll_iocb *poll,
    			   __poll_t mask, task_work_func_t func)
    {
    	int ret;
    
    	/* for instances that support it check for an event match first: */
    	if (mask && !(mask & poll->events))
    		return 0;
    
    	trace_io_uring_task_add(req->ctx, req->opcode, req->user_data, mask);
    
    	list_del_init(&poll->wait.entry);
    
    	req->result = mask;
    	req->task_work.func = func;
    	percpu_ref_get(&req->ctx->refs);
    
    	/*
    	 * If this fails, then the task is exiting. When a task exits, the
    	 * work gets canceled, so just cancel this request as well instead
    	 * of executing it. We can't safely execute it anyway, as we may not
    	 * have the needed state needed for it anyway.
    	 */
    	ret = io_req_task_work_add(req);
    	if (unlikely(ret)) {
    		WRITE_ONCE(poll->canceled, true);
    		io_req_task_work_add_fallback(req, func);
    	}
    	return 1;
    }
    
    static bool io_poll_rewait(struct io_kiocb *req, struct io_poll_iocb *poll)
    	__acquires(&req->ctx->completion_lock)
    {
    	struct io_ring_ctx *ctx = req->ctx;
    
    	if (!req->result && !READ_ONCE(poll->canceled)) {
    		struct poll_table_struct pt = { ._key = poll->events };
    
    		req->result = vfs_poll(req->file, &pt) & poll->events;
    	}
    
    	spin_lock_irq(&ctx->completion_lock);
    	if (!req->result && !READ_ONCE(poll->canceled)) {
    		add_wait_queue(poll->head, &poll->wait);
    		return true;
    	}
    
    	return false;
    }
    
    static struct io_poll_iocb *io_poll_get_double(struct io_kiocb *req)
    {
    	/* pure poll stashes this in ->async_data, poll driven retry elsewhere */
    	if (req->opcode == IORING_OP_POLL_ADD)
    		return req->async_data;
    	return req->apoll->double_poll;
    }
    
    static struct io_poll_iocb *io_poll_get_single(struct io_kiocb *req)
    {
    	if (req->opcode == IORING_OP_POLL_ADD)
    		return &req->poll;
    	return &req->apoll->poll;
    }
    
    static void io_poll_remove_double(struct io_kiocb *req)
    {
    	struct io_poll_iocb *poll = io_poll_get_double(req);
    
    	lockdep_assert_held(&req->ctx->completion_lock);
    
    	if (poll && poll->head) {
    		struct wait_queue_head *head = poll->head;
    
    		spin_lock(&head->lock);
    		list_del_init(&poll->wait.entry);
    		if (poll->wait.private)
    			refcount_dec(&req->refs);
    		poll->head = NULL;
    		spin_unlock(&head->lock);
    	}
    }
    
    static void io_poll_complete(struct io_kiocb *req, __poll_t mask, int error)
    {
    	struct io_ring_ctx *ctx = req->ctx;
    
    	io_poll_remove_double(req);
    	req->poll.done = true;
    	io_cqring_fill_event(req, error ? error : mangle_poll(mask));
    	io_commit_cqring(ctx);
    }
    
    static void io_poll_task_func(struct callback_head *cb)
    {
    	struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
    	struct io_ring_ctx *ctx = req->ctx;
    	struct io_kiocb *nxt;
    
    	if (io_poll_rewait(req, &req->poll)) {
    		spin_unlock_irq(&ctx->completion_lock);
    	} else {
    		hash_del(&req->hash_node);
    		io_poll_complete(req, req->result, 0);
    		spin_unlock_irq(&ctx->completion_lock);
    
    		nxt = io_put_req_find_next(req);
    		io_cqring_ev_posted(ctx);
    		if (nxt)
    			__io_req_task_submit(nxt);
    	}
    
    	percpu_ref_put(&ctx->refs);
    }
    
    static int io_poll_double_wake(struct wait_queue_entry *wait, unsigned mode,
    			       int sync, void *key)
    {
    	struct io_kiocb *req = wait->private;
    	struct io_poll_iocb *poll = io_poll_get_single(req);
    	__poll_t mask = key_to_poll(key);
    
    	/* for instances that support it check for an event match first: */
    	if (mask && !(mask & poll->events))
    		return 0;
    
    	list_del_init(&wait->entry);
    
    	if (poll && poll->head) {
    		bool done;
    
    		spin_lock(&poll->head->lock);
    		done = list_empty(&poll->wait.entry);
    		if (!done)
    			list_del_init(&poll->wait.entry);
    		/* make sure double remove sees this as being gone */
    		wait->private = NULL;
    		spin_unlock(&poll->head->lock);
    		if (!done) {
    			/* use wait func handler, so it matches the rq type */
    			poll->wait.func(&poll->wait, mode, sync, key);
    		}
    	}
    	refcount_dec(&req->refs);
    	return 1;
    }
    
    static void io_init_poll_iocb(struct io_poll_iocb *poll, __poll_t events,
    			      wait_queue_func_t wake_func)
    {
    	poll->head = NULL;
    	poll->done = false;
    	poll->canceled = false;
    	poll->events = events;
    	INIT_LIST_HEAD(&poll->wait.entry);
    	init_waitqueue_func_entry(&poll->wait, wake_func);
    }
    
    static void __io_queue_proc(struct io_poll_iocb *poll, struct io_poll_table *pt,
    			    struct wait_queue_head *head,
    			    struct io_poll_iocb **poll_ptr)
    {
    	struct io_kiocb *req = pt->req;
    
    	/*
    	 * If poll->head is already set, it's because the file being polled
    	 * uses multiple waitqueues for poll handling (eg one for read, one
    	 * for write). Setup a separate io_poll_iocb if this happens.
    	 */
    	if (unlikely(poll->head)) {
    		struct io_poll_iocb *poll_one = poll;
    
    		/* already have a 2nd entry, fail a third attempt */
    		if (*poll_ptr) {
    			pt->error = -EINVAL;
    			return;
    		}
    		/* double add on the same waitqueue head, ignore */
    		if (poll->head == head)
    			return;
    		poll = kmalloc(sizeof(*poll), GFP_ATOMIC);
    		if (!poll) {
    			pt->error = -ENOMEM;
    			return;
    		}
    		io_init_poll_iocb(poll, poll_one->events, io_poll_double_wake);
    		refcount_inc(&req->refs);
    		poll->wait.private = req;
    		*poll_ptr = poll;
    	}
    
    	pt->error = 0;
    	poll->head = head;
    
    	if (poll->events & EPOLLEXCLUSIVE)
    		add_wait_queue_exclusive(head, &poll->wait);
    	else
    		add_wait_queue(head, &poll->wait);
    }
    
    static void io_async_queue_proc(struct file *file, struct wait_queue_head *head,
    			       struct poll_table_struct *p)
    {
    	struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
    	struct async_poll *apoll = pt->req->apoll;
    
    	__io_queue_proc(&apoll->poll, pt, head, &apoll->double_poll);
    }
    
    static void io_async_task_func(struct callback_head *cb)
    {
    	struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
    	struct async_poll *apoll = req->apoll;
    	struct io_ring_ctx *ctx = req->ctx;
    
    	trace_io_uring_task_run(req->ctx, req->opcode, req->user_data);
    
    	if (io_poll_rewait(req, &apoll->poll)) {
    		spin_unlock_irq(&ctx->completion_lock);
    		percpu_ref_put(&ctx->refs);
    		return;
    	}
    
    	/* If req is still hashed, it cannot have been canceled. Don't check. */
    	if (hash_hashed(&req->hash_node))
    		hash_del(&req->hash_node);
    
    	io_poll_remove_double(req);
    	spin_unlock_irq(&ctx->completion_lock);
    
    	if (!READ_ONCE(apoll->poll.canceled))
    		__io_req_task_submit(req);
    	else
    		__io_req_task_cancel(req, -ECANCELED);
    
    	percpu_ref_put(&ctx->refs);
    	kfree(apoll->double_poll);
    	kfree(apoll);
    }
    
    static int io_async_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
    			void *key)
    {
    	struct io_kiocb *req = wait->private;
    	struct io_poll_iocb *poll = &req->apoll->poll;
    
    	trace_io_uring_poll_wake(req->ctx, req->opcode, req->user_data,
    					key_to_poll(key));
    
    	return __io_async_wake(req, poll, key_to_poll(key), io_async_task_func);
    }
    
    static void io_poll_req_insert(struct io_kiocb *req)
    {
    	struct io_ring_ctx *ctx = req->ctx;
    	struct hlist_head *list;
    
    	list = &ctx->cancel_hash[hash_long(req->user_data, ctx->cancel_hash_bits)];
    	hlist_add_head(&req->hash_node, list);
    }
    
    static __poll_t __io_arm_poll_handler(struct io_kiocb *req,
    				      struct io_poll_iocb *poll,
    				      struct io_poll_table *ipt, __poll_t mask,
    				      wait_queue_func_t wake_func)
    	__acquires(&ctx->completion_lock)
    {
    	struct io_ring_ctx *ctx = req->ctx;
    	bool cancel = false;
    
    	INIT_HLIST_NODE(&req->hash_node);
    	io_init_poll_iocb(poll, mask, wake_func);
    	poll->file = req->file;
    	poll->wait.private = req;
    
    	ipt->pt._key = mask;
    	ipt->req = req;
    	ipt->error = -EINVAL;
    
    	mask = vfs_poll(req->file, &ipt->pt) & poll->events;
    
    	spin_lock_irq(&ctx->completion_lock);
    	if (likely(poll->head)) {
    		spin_lock(&poll->head->lock);
    		if (unlikely(list_empty(&poll->wait.entry))) {
    			if (ipt->error)
    				cancel = true;
    			ipt->error = 0;
    			mask = 0;
    		}
    		if (mask || ipt->error)
    			list_del_init(&poll->wait.entry);
    		else if (cancel)
    			WRITE_ONCE(poll->canceled, true);
    		else if (!poll->done) /* actually waiting for an event */
    			io_poll_req_insert(req);
    		spin_unlock(&poll->head->lock);
    	}
    
    	return mask;
    }
    
    static bool io_arm_poll_handler(struct io_kiocb *req)
    {
    	const struct io_op_def *def = &io_op_defs[req->opcode];
    	struct io_ring_ctx *ctx = req->ctx;
    	struct async_poll *apoll;
    	struct io_poll_table ipt;
    	__poll_t mask, ret;
    	int rw;
    
    	if (!req->file || !file_can_poll(req->file))
    		return false;
    	if (req->flags & REQ_F_POLLED)
    		return false;
    	if (def->pollin)
    		rw = READ;
    	else if (def->pollout)
    		rw = WRITE;
    	else
    		return false;
    	/* if we can't nonblock try, then no point in arming a poll handler */
    	if (!io_file_supports_async(req->file, rw))
    		return false;
    
    	apoll = kmalloc(sizeof(*apoll), GFP_ATOMIC);
    	if (unlikely(!apoll))
    		return false;
    	apoll->double_poll = NULL;
    
    	req->flags |= REQ_F_POLLED;
    	req->apoll = apoll;
    
    	mask = 0;
    	if (def->pollin)
    		mask |= POLLIN | POLLRDNORM;
    	if (def->pollout)
    		mask |= POLLOUT | POLLWRNORM;
    
    	/* If reading from MSG_ERRQUEUE using recvmsg, ignore POLLIN */
    	if ((req->opcode == IORING_OP_RECVMSG) &&
    	    (req->sr_msg.msg_flags & MSG_ERRQUEUE))
    		mask &= ~POLLIN;
    
    	mask |= POLLERR | POLLPRI;
    
    	ipt.pt._qproc = io_async_queue_proc;
    
    	ret = __io_arm_poll_handler(req, &apoll->poll, &ipt, mask,
    					io_async_wake);
    	if (ret || ipt.error) {
    		io_poll_remove_double(req);
    		spin_unlock_irq(&ctx->completion_lock);
    		kfree(apoll->double_poll);
    		kfree(apoll);
    		return false;
    	}
    	spin_unlock_irq(&ctx->completion_lock);
    	trace_io_uring_poll_arm(ctx, req->opcode, req->user_data, mask,
    					apoll->poll.events);
    	return true;
    }
    
    static bool __io_poll_remove_one(struct io_kiocb *req,
    				 struct io_poll_iocb *poll)
    {
    	bool do_complete = false;
    
    	spin_lock(&poll->head->lock);
    	WRITE_ONCE(poll->canceled, true);
    	if (!list_empty(&poll->wait.entry)) {
    		list_del_init(&poll->wait.entry);
    		do_complete = true;
    	}
    	spin_unlock(&poll->head->lock);
    	hash_del(&req->hash_node);
    	return do_complete;
    }
    
    static bool io_poll_remove_one(struct io_kiocb *req)
    {
    	bool do_complete;
    
    	io_poll_remove_double(req);
    
    	if (req->opcode == IORING_OP_POLL_ADD) {
    		do_complete = __io_poll_remove_one(req, &req->poll);
    	} else {
    		struct async_poll *apoll = req->apoll;
    
    		/* non-poll requests have submit ref still */
    		do_complete = __io_poll_remove_one(req, &apoll->poll);
    		if (do_complete) {
    			io_put_req(req);
    			kfree(apoll->double_poll);
    			kfree(apoll);
    		}
    	}
    
    	if (do_complete) {
    		io_cqring_fill_event(req, -ECANCELED);
    		io_commit_cqring(req->ctx);
    		req_set_fail_links(req);
    		io_put_req_deferred(req, 1);
    	}
    
    	return do_complete;
    }
    
    /*
     * Returns true if we found and killed one or more poll requests
     */
    static bool io_poll_remove_all(struct io_ring_ctx *ctx, struct task_struct *tsk,
    			       struct files_struct *files)
    {
    	struct hlist_node *tmp;
    	struct io_kiocb *req;
    	int posted = 0, i;
    
    	spin_lock_irq(&ctx->completion_lock);
    	for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
    		struct hlist_head *list;
    
    		list = &ctx->cancel_hash[i];
    		hlist_for_each_entry_safe(req, tmp, list, hash_node) {
    			if (io_match_task(req, tsk, files))
    				posted += io_poll_remove_one(req);
    		}
    	}
    	spin_unlock_irq(&ctx->completion_lock);
    
    	if (posted)
    		io_cqring_ev_posted(ctx);
    
    	return posted != 0;
    }
    
    static int io_poll_cancel(struct io_ring_ctx *ctx, __u64 sqe_addr)
    {
    	struct hlist_head *list;
    	struct io_kiocb *req;
    
    	list = &ctx->cancel_hash[hash_long(sqe_addr, ctx->cancel_hash_bits)];
    	hlist_for_each_entry(req, list, hash_node) {
    		if (sqe_addr != req->user_data)
    			continue;
    		if (io_poll_remove_one(req))
    			return 0;
    		return -EALREADY;
    	}
    
    	return -ENOENT;
    }
    
    static int io_poll_remove_prep(struct io_kiocb *req,
    			       const struct io_uring_sqe *sqe)
    {
    	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
    		return -EINVAL;
    	if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index ||
    	    sqe->poll_events)
    		return -EINVAL;
    
    	req->poll_remove.addr = READ_ONCE(sqe->addr);
    	return 0;
    }
    
    /*
     * Find a running poll command that matches one specified in sqe->addr,
     * and remove it if found.
     */
    static int io_poll_remove(struct io_kiocb *req, unsigned int issue_flags)
    {
    	struct io_ring_ctx *ctx = req->ctx;
    	int ret;
    
    	spin_lock_irq(&ctx->completion_lock);
    	ret = io_poll_cancel(ctx, req->poll_remove.addr);
    	spin_unlock_irq(&ctx->completion_lock);
    
    	if (ret < 0)
    		req_set_fail_links(req);
    	io_req_complete(req, ret);
    	return 0;
    }
    
    static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
    			void *key)
    {
    	struct io_kiocb *req = wait->private;
    	struct io_poll_iocb *poll = &req->poll;
    
    	return __io_async_wake(req, poll, key_to_poll(key), io_poll_task_func);
    }
    
    static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
    			       struct poll_table_struct *p)
    {
    	struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
    
    	__io_queue_proc(&pt->req->poll, pt, head, (struct io_poll_iocb **) &pt->req->async_data);
    }
    
    static int io_poll_add_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
    {
    	struct io_poll_iocb *poll = &req->poll;
    	u32 events;
    
    	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
    		return -EINVAL;
    	if (sqe->addr || sqe->ioprio || sqe->off || sqe->len || sqe->buf_index)
    		return -EINVAL;
    
    	events = READ_ONCE(sqe->poll32_events);
    #ifdef __BIG_ENDIAN
    	events = swahw32(events);
    #endif
    	poll->events = demangle_poll(events) | EPOLLERR | EPOLLHUP |
    		       (events & EPOLLEXCLUSIVE);
    	return 0;
    }
    
    static int io_poll_add(struct io_kiocb *req, unsigned int issue_flags)
    {
    	struct io_poll_iocb *poll = &req->poll;
    	struct io_ring_ctx *ctx = req->ctx;
    	struct io_poll_table ipt;
    	__poll_t mask;
    
    	ipt.pt._qproc = io_poll_queue_proc;
    
    	mask = __io_arm_poll_handler(req, &req->poll, &ipt, poll->events,
    					io_poll_wake);
    
    	if (mask) { /* no async, we'd stolen it */
    		ipt.error = 0;
    		io_poll_complete(req, mask, 0);
    	}
    	spin_unlock_irq(&ctx->completion_lock);
    
    	if (mask) {
    		io_cqring_ev_posted(ctx);
    		io_put_req(req);
    	}
    	return ipt.error;
    }
    
    static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
    {
    	struct io_timeout_data *data = container_of(timer,
    						struct io_timeout_data, timer);
    	struct io_kiocb *req = data->req;
    	struct io_ring_ctx *ctx = req->ctx;
    	unsigned long flags;
    
    	spin_lock_irqsave(&ctx->completion_lock, flags);
    	list_del_init(&req->timeout.list);
    	atomic_set(&req->ctx->cq_timeouts,
    		atomic_read(&req->ctx->cq_timeouts) + 1);
    
    	io_cqring_fill_event(req, -ETIME);
    	io_commit_cqring(ctx);
    	spin_unlock_irqrestore(&ctx->completion_lock, flags);
    
    	io_cqring_ev_posted(ctx);
    	req_set_fail_links(req);
    	io_put_req(req);
    	return HRTIMER_NORESTART;
    }
    
    static struct io_kiocb *io_timeout_extract(struct io_ring_ctx *ctx,
    					   __u64 user_data)
    {
    	struct io_timeout_data *io;
    	struct io_kiocb *req;
    	int ret = -ENOENT;
    
    	list_for_each_entry(req, &ctx->timeout_list, timeout.list) {
    		if (user_data == req->user_data) {
    			ret = 0;
    			break;
    		}
    	}
    
    	if (ret == -ENOENT)
    		return ERR_PTR(ret);
    
    	io = req->async_data;
    	ret = hrtimer_try_to_cancel(&io->timer);
    	if (ret == -1)
    		return ERR_PTR(-EALREADY);
    	list_del_init(&req->timeout.list);
    	return req;
    }
    
    static int io_timeout_cancel(struct io_ring_ctx *ctx, __u64 user_data)
    {
    	struct io_kiocb *req = io_timeout_extract(ctx, user_data);
    
    	if (IS_ERR(req))
    		return PTR_ERR(req);
    
    	req_set_fail_links(req);
    	io_cqring_fill_event(req, -ECANCELED);
    	io_put_req_deferred(req, 1);
    	return 0;
    }
    
    static int io_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
    			     struct timespec64 *ts, enum hrtimer_mode mode)
    {
    	struct io_kiocb *req = io_timeout_extract(ctx, user_data);
    	struct io_timeout_data *data;
    
    	if (IS_ERR(req))
    		return PTR_ERR(req);
    
    	req->timeout.off = 0; /* noseq */
    	data = req->async_data;
    	list_add_tail(&req->timeout.list, &ctx->timeout_list);
    	hrtimer_init(&data->timer, CLOCK_MONOTONIC, mode);
    	data->timer.function = io_timeout_fn;
    	hrtimer_start(&data->timer, timespec64_to_ktime(*ts), mode);
    	return 0;
    }
    
    static int io_timeout_remove_prep(struct io_kiocb *req,
    				  const struct io_uring_sqe *sqe)
    {
    	struct io_timeout_rem *tr = &req->timeout_rem;
    
    	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
    		return -EINVAL;
    	if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
    		return -EINVAL;
    	if (sqe->ioprio || sqe->buf_index || sqe->len)
    		return -EINVAL;
    
    	tr->addr = READ_ONCE(sqe->addr);
    	tr->flags = READ_ONCE(sqe->timeout_flags);
    	if (tr->flags & IORING_TIMEOUT_UPDATE) {
    		if (tr->flags & ~(IORING_TIMEOUT_UPDATE|IORING_TIMEOUT_ABS))
    			return -EINVAL;
    		if (get_timespec64(&tr->ts, u64_to_user_ptr(sqe->addr2)))
    			return -EFAULT;
    	} else if (tr->flags) {
    		/* timeout removal doesn't support flags */
    		return -EINVAL;
    	}
    
    	return 0;
    }
    
    static inline enum hrtimer_mode io_translate_timeout_mode(unsigned int flags)
    {
    	return (flags & IORING_TIMEOUT_ABS) ? HRTIMER_MODE_ABS
    					    : HRTIMER_MODE_REL;
    }
    
    /*
     * Remove or update an existing timeout command
     */
    static int io_timeout_remove(struct io_kiocb *req, unsigned int issue_flags)
    {
    	struct io_timeout_rem *tr = &req->timeout_rem;
    	struct io_ring_ctx *ctx = req->ctx;
    	int ret;
    
    	spin_lock_irq(&ctx->completion_lock);
    	if (!(req->timeout_rem.flags & IORING_TIMEOUT_UPDATE))
    		ret = io_timeout_cancel(ctx, tr->addr);
    	else
    		ret = io_timeout_update(ctx, tr->addr, &tr->ts,
    					io_translate_timeout_mode(tr->flags));
    
    	io_cqring_fill_event(req, ret);
    	io_commit_cqring(ctx);
    	spin_unlock_irq(&ctx->completion_lock);
    	io_cqring_ev_posted(ctx);
    	if (ret < 0)
    		req_set_fail_links(req);
    	io_put_req(req);
    	return 0;
    }
    
    static int io_timeout_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
    			   bool is_timeout_link)
    {
    	struct io_timeout_data *data;
    	unsigned flags;
    	u32 off = READ_ONCE(sqe->off);
    
    	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
    		return -EINVAL;
    	if (sqe->ioprio || sqe->buf_index || sqe->len != 1)
    		return -EINVAL;
    	if (off && is_timeout_link)
    		return -EINVAL;
    	flags = READ_ONCE(sqe->timeout_flags);
    	if (flags & ~IORING_TIMEOUT_ABS)
    		return -EINVAL;
    
    	req->timeout.off = off;
    
    	if (!req->async_data && io_alloc_async_data(req))
    		return -ENOMEM;
    
    	data = req->async_data;
    	data->req = req;
    
    	if (get_timespec64(&data->ts, u64_to_user_ptr(sqe->addr)))
    		return -EFAULT;
    
    	data->mode = io_translate_timeout_mode(flags);
    	hrtimer_init(&data->timer, CLOCK_MONOTONIC, data->mode);
    	io_req_track_inflight(req);
    	return 0;
    }
    
    static int io_timeout(struct io_kiocb *req, unsigned int issue_flags)
    {
    	struct io_ring_ctx *ctx = req->ctx;
    	struct io_timeout_data *data = req->async_data;
    	struct list_head *entry;
    	u32 tail, off = req->timeout.off;
    
    	spin_lock_irq(&ctx->completion_lock);
    
    	/*
    	 * sqe->off holds how many events that need to occur for this
    	 * timeout event to be satisfied. If it isn't set, then this is
    	 * a pure timeout request, sequence isn't used.
    	 */
    	if (io_is_timeout_noseq(req)) {
    		entry = ctx->timeout_list.prev;
    		goto add;
    	}
    
    	tail = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
    	req->timeout.target_seq = tail + off;
    
    	/* Update the last seq here in case io_flush_timeouts() hasn't.
    	 * This is safe because ->completion_lock is held, and submissions
    	 * and completions are never mixed in the same ->completion_lock section.
    	 */
    	ctx->cq_last_tm_flush = tail;
    
    	/*
    	 * Insertion sort, ensuring the first entry in the list is always
    	 * the one we need first.
    	 */
    	list_for_each_prev(entry, &ctx->timeout_list) {
    		struct io_kiocb *nxt = list_entry(entry, struct io_kiocb,
    						  timeout.list);
    
    		if (io_is_timeout_noseq(nxt))
    			continue;
    		/* nxt.seq is behind @tail, otherwise would've been completed */
    		if (off >= nxt->timeout.target_seq - tail)
    			break;
    	}
    add:
    	list_add(&req->timeout.list, entry);
    	data->timer.function = io_timeout_fn;
    	hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode);
    	spin_unlock_irq(&ctx->completion_lock);
    	return 0;
    }
    
    static bool io_cancel_cb(struct io_wq_work *work, void *data)
    {
    	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
    
    	return req->user_data == (unsigned long) data;
    }
    
    static int io_async_cancel_one(struct io_uring_task *tctx, void *sqe_addr)
    {
    	enum io_wq_cancel cancel_ret;
    	int ret = 0;
    
    	if (!tctx->io_wq)
    		return -ENOENT;
    
    	cancel_ret = io_wq_cancel_cb(tctx->io_wq, io_cancel_cb, sqe_addr, false);
    	switch (cancel_ret) {
    	case IO_WQ_CANCEL_OK:
    		ret = 0;
    		break;
    	case IO_WQ_CANCEL_RUNNING:
    		ret = -EALREADY;
    		break;
    	case IO_WQ_CANCEL_NOTFOUND:
    		ret = -ENOENT;
    		break;
    	}
    
    	return ret;
    }
    
    static void io_async_find_and_cancel(struct io_ring_ctx *ctx,
    				     struct io_kiocb *req, __u64 sqe_addr,
    				     int success_ret)
    {
    	unsigned long flags;
    	int ret;
    
    	ret = io_async_cancel_one(req->task->io_uring,
    					(void *) (unsigned long) sqe_addr);
    	if (ret != -ENOENT) {
    		spin_lock_irqsave(&ctx->completion_lock, flags);
    		goto done;
    	}
    
    	spin_lock_irqsave(&ctx->completion_lock, flags);
    	ret = io_timeout_cancel(ctx, sqe_addr);
    	if (ret != -ENOENT)
    		goto done;
    	ret = io_poll_cancel(ctx, sqe_addr);
    done:
    	if (!ret)
    		ret = success_ret;
    	io_cqring_fill_event(req, ret);
    	io_commit_cqring(ctx);
    	spin_unlock_irqrestore(&ctx->completion_lock, flags);
    	io_cqring_ev_posted(ctx);
    
    	if (ret < 0)
    		req_set_fail_links(req);
    	io_put_req(req);
    }
    
    static int io_async_cancel_prep(struct io_kiocb *req,
    				const struct io_uring_sqe *sqe)
    {
    	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
    		return -EINVAL;
    	if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
    		return -EINVAL;
    	if (sqe->ioprio || sqe->off || sqe->len || sqe->cancel_flags)
    		return -EINVAL;
    
    	req->cancel.addr = READ_ONCE(sqe->addr);
    	return 0;
    }
    
    static int io_async_cancel(struct io_kiocb *req, unsigned int issue_flags)
    {
    	struct io_ring_ctx *ctx = req->ctx;
    
    	io_async_find_and_cancel(ctx, req, req->cancel.addr, 0);
    	return 0;
    }
    
    static int io_rsrc_update_prep(struct io_kiocb *req,
    				const struct io_uring_sqe *sqe)
    {
    	if (unlikely(req->ctx->flags & IORING_SETUP_SQPOLL))
    		return -EINVAL;
    	if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
    		return -EINVAL;
    	if (sqe->ioprio || sqe->rw_flags)
    		return -EINVAL;
    
    	req->rsrc_update.offset = READ_ONCE(sqe->off);
    	req->rsrc_update.nr_args = READ_ONCE(sqe->len);
    	if (!req->rsrc_update.nr_args)
    		return -EINVAL;
    	req->rsrc_update.arg = READ_ONCE(sqe->addr);
    	return 0;
    }
    
    static int io_files_update(struct io_kiocb *req, unsigned int issue_flags)
    {
    	struct io_ring_ctx *ctx = req->ctx;
    	struct io_uring_rsrc_update up;
    	int ret;
    
    	if (issue_flags & IO_URING_F_NONBLOCK)
    		return -EAGAIN;
    
    	up.offset = req->rsrc_update.offset;
    	up.data = req->rsrc_update.arg;
    
    	mutex_lock(&ctx->uring_lock);
    	ret = __io_sqe_files_update(ctx, &up, req->rsrc_update.nr_args);
    	mutex_unlock(&ctx->uring_lock);
    
    	if (ret < 0)
    		req_set_fail_links(req);
    	__io_req_complete(req, issue_flags, ret, 0);
    	return 0;
    }
    
    static int io_req_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
    {
    	switch (req->opcode) {
    	case IORING_OP_NOP:
    		return 0;
    	case IORING_OP_READV:
    	case IORING_OP_READ_FIXED:
    	case IORING_OP_READ:
    		return io_read_prep(req, sqe);
    	case IORING_OP_WRITEV:
    	case IORING_OP_WRITE_FIXED:
    	case IORING_OP_WRITE:
    		return io_write_prep(req, sqe);
    	case IORING_OP_POLL_ADD:
    		return io_poll_add_prep(req, sqe);
    	case IORING_OP_POLL_REMOVE:
    		return io_poll_remove_prep(req, sqe);
    	case IORING_OP_FSYNC:
    		return io_fsync_prep(req, sqe);
    	case IORING_OP_SYNC_FILE_RANGE:
    		return io_sfr_prep(req, sqe);
    	case IORING_OP_SENDMSG:
    	case IORING_OP_SEND:
    		return io_sendmsg_prep(req, sqe);
    	case IORING_OP_RECVMSG:
    	case IORING_OP_RECV:
    		return io_recvmsg_prep(req, sqe);
    	case IORING_OP_CONNECT:
    		return io_connect_prep(req, sqe);
    	case IORING_OP_TIMEOUT:
    		return io_timeout_prep(req, sqe, false);
    	case IORING_OP_TIMEOUT_REMOVE:
    		return io_timeout_remove_prep(req, sqe);
    	case IORING_OP_ASYNC_CANCEL:
    		return io_async_cancel_prep(req, sqe);
    	case IORING_OP_LINK_TIMEOUT:
    		return io_timeout_prep(req, sqe, true);
    	case IORING_OP_ACCEPT:
    		return io_accept_prep(req, sqe);
    	case IORING_OP_FALLOCATE:
    		return io_fallocate_prep(req, sqe);
    	case IORING_OP_OPENAT:
    		return io_openat_prep(req, sqe);
    	case IORING_OP_CLOSE:
    		return io_close_prep(req, sqe);
    	case IORING_OP_FILES_UPDATE:
    		return io_rsrc_update_prep(req, sqe);
    	case IORING_OP_STATX:
    		return io_statx_prep(req, sqe);
    	case IORING_OP_FADVISE:
    		return io_fadvise_prep(req, sqe);
    	case IORING_OP_MADVISE:
    		return io_madvise_prep(req, sqe);
    	case IORING_OP_OPENAT2:
    		return io_openat2_prep(req, sqe);
    	case IORING_OP_EPOLL_CTL:
    		return io_epoll_ctl_prep(req, sqe);
    	case IORING_OP_SPLICE:
    		return io_splice_prep(req, sqe);
    	case IORING_OP_PROVIDE_BUFFERS:
    		return io_provide_buffers_prep(req, sqe);
    	case IORING_OP_REMOVE_BUFFERS:
    		return io_remove_buffers_prep(req, sqe);
    	case IORING_OP_TEE:
    		return io_tee_prep(req, sqe);
    	case IORING_OP_SHUTDOWN:
    		return io_shutdown_prep(req, sqe);
    	case IORING_OP_RENAMEAT:
    		return io_renameat_prep(req, sqe);
    	case IORING_OP_UNLINKAT:
    		return io_unlinkat_prep(req, sqe);
    	}
    
    	printk_once(KERN_WARNING "io_uring: unhandled opcode %d\n",
    			req->opcode);
    	return-EINVAL;
    }
    
    static int io_req_prep_async(struct io_kiocb *req)
    {
    	switch (req->opcode) {
    	case IORING_OP_READV:
    	case IORING_OP_READ_FIXED:
    	case IORING_OP_READ:
    		return io_rw_prep_async(req, READ);
    	case IORING_OP_WRITEV:
    	case IORING_OP_WRITE_FIXED:
    	case IORING_OP_WRITE:
    		return io_rw_prep_async(req, WRITE);
    	case IORING_OP_SENDMSG:
    	case IORING_OP_SEND:
    		return io_sendmsg_prep_async(req);
    	case IORING_OP_RECVMSG:
    	case IORING_OP_RECV:
    		return io_recvmsg_prep_async(req);
    	case IORING_OP_CONNECT:
    		return io_connect_prep_async(req);
    	}
    	return 0;
    }
    
    static int io_req_defer_prep(struct io_kiocb *req)
    {
    	if (!io_op_defs[req->opcode].needs_async_data)
    		return 0;
    	/* some opcodes init it during the inital prep */
    	if (req->async_data)
    		return 0;
    	if (__io_alloc_async_data(req))
    		return -EAGAIN;
    	return io_req_prep_async(req);
    }
    
    static u32 io_get_sequence(struct io_kiocb *req)
    {
    	struct io_kiocb *pos;
    	struct io_ring_ctx *ctx = req->ctx;
    	u32 total_submitted, nr_reqs = 0;
    
    	io_for_each_link(pos, req)
    		nr_reqs++;
    
    	total_submitted = ctx->cached_sq_head - ctx->cached_sq_dropped;
    	return total_submitted - nr_reqs;
    }
    
    static int io_req_defer(struct io_kiocb *req)
    {
    	struct io_ring_ctx *ctx = req->ctx;
    	struct io_defer_entry *de;
    	int ret;
    	u32 seq;
    
    	/* Still need defer if there is pending req in defer list. */
    	if (likely(list_empty_careful(&ctx->defer_list) &&
    		!(req->flags & REQ_F_IO_DRAIN)))
    		return 0;
    
    	seq = io_get_sequence(req);
    	/* Still a chance to pass the sequence check */
    	if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list))
    		return 0;
    
    	ret = io_req_defer_prep(req);
    	if (ret)
    		return ret;
    	io_prep_async_link(req);
    	de = kmalloc(sizeof(*de), GFP_KERNEL);
    	if (!de)
    		return -ENOMEM;
    
    	spin_lock_irq(&ctx->completion_lock);
    	if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
    		spin_unlock_irq(&ctx->completion_lock);
    		kfree(de);
    		io_queue_async_work(req);
    		return -EIOCBQUEUED;
    	}
    
    	trace_io_uring_defer(ctx, req, req->user_data);
    	de->req = req;
    	de->seq = seq;
    	list_add_tail(&de->list, &ctx->defer_list);
    	spin_unlock_irq(&ctx->completion_lock);
    	return -EIOCBQUEUED;
    }
    
    static void __io_clean_op(struct io_kiocb *req)
    {
    	if (req->flags & REQ_F_BUFFER_SELECTED) {
    		switch (req->opcode) {
    		case IORING_OP_READV:
    		case IORING_OP_READ_FIXED:
    		case IORING_OP_READ:
    			kfree((void *)(unsigned long)req->rw.addr);
    			break;
    		case IORING_OP_RECVMSG:
    		case IORING_OP_RECV:
    			kfree(req->sr_msg.kbuf);
    			break;
    		}
    		req->flags &= ~REQ_F_BUFFER_SELECTED;
    	}
    
    	if (req->flags & REQ_F_NEED_CLEANUP) {
    		switch (req->opcode) {
    		case IORING_OP_READV:
    		case IORING_OP_READ_FIXED:
    		case IORING_OP_READ:
    		case IORING_OP_WRITEV:
    		case IORING_OP_WRITE_FIXED:
    		case IORING_OP_WRITE: {
    			struct io_async_rw *io = req->async_data;
    			if (io->free_iovec)
    				kfree(io->free_iovec);
    			break;
    			}
    		case IORING_OP_RECVMSG:
    		case IORING_OP_SENDMSG: {
    			struct io_async_msghdr *io = req->async_data;
    
    			kfree(io->free_iov);
    			break;
    			}
    		case IORING_OP_SPLICE:
    		case IORING_OP_TEE:
    			io_put_file(req, req->splice.file_in,
    				    (req->splice.flags & SPLICE_F_FD_IN_FIXED));
    			break;
    		case IORING_OP_OPENAT:
    		case IORING_OP_OPENAT2:
    			if (req->open.filename)
    				putname(req->open.filename);
    			break;
    		case IORING_OP_RENAMEAT:
    			putname(req->rename.oldpath);
    			putname(req->rename.newpath);
    			break;
    		case IORING_OP_UNLINKAT:
    			putname(req->unlink.filename);
    			break;
    		}
    		req->flags &= ~REQ_F_NEED_CLEANUP;
    	}
    }
    
    static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
    {
    	struct io_ring_ctx *ctx = req->ctx;
    	const struct cred *creds = NULL;
    	int ret;
    
    	if (req->work.personality) {
    		const struct cred *new_creds;
    
    		if (!(issue_flags & IO_URING_F_NONBLOCK))
    			mutex_lock(&ctx->uring_lock);
    		new_creds = idr_find(&ctx->personality_idr, req->work.personality);
    		if (!(issue_flags & IO_URING_F_NONBLOCK))
    			mutex_unlock(&ctx->uring_lock);
    		if (!new_creds)
    			return -EINVAL;
    		creds = override_creds(new_creds);
    	}
    
    	switch (req->opcode) {
    	case IORING_OP_NOP:
    		ret = io_nop(req, issue_flags);
    		break;
    	case IORING_OP_READV:
    	case IORING_OP_READ_FIXED:
    	case IORING_OP_READ:
    		ret = io_read(req, issue_flags);
    		break;
    	case IORING_OP_WRITEV:
    	case IORING_OP_WRITE_FIXED:
    	case IORING_OP_WRITE:
    		ret = io_write(req, issue_flags);
    		break;
    	case IORING_OP_FSYNC:
    		ret = io_fsync(req, issue_flags);
    		break;
    	case IORING_OP_POLL_ADD:
    		ret = io_poll_add(req, issue_flags);
    		break;
    	case IORING_OP_POLL_REMOVE:
    		ret = io_poll_remove(req, issue_flags);
    		break;
    	case IORING_OP_SYNC_FILE_RANGE:
    		ret = io_sync_file_range(req, issue_flags);
    		break;
    	case IORING_OP_SENDMSG:
    		ret = io_sendmsg(req, issue_flags);
    		break;
    	case IORING_OP_SEND:
    		ret = io_send(req, issue_flags);
    		break;
    	case IORING_OP_RECVMSG:
    		ret = io_recvmsg(req, issue_flags);
    		break;
    	case IORING_OP_RECV:
    		ret = io_recv(req, issue_flags);
    		break;
    	case IORING_OP_TIMEOUT:
    		ret = io_timeout(req, issue_flags);
    		break;
    	case IORING_OP_TIMEOUT_REMOVE:
    		ret = io_timeout_remove(req, issue_flags);
    		break;
    	case IORING_OP_ACCEPT:
    		ret = io_accept(req, issue_flags);
    		break;
    	case IORING_OP_CONNECT:
    		ret = io_connect(req, issue_flags);
    		break;
    	case IORING_OP_ASYNC_CANCEL:
    		ret = io_async_cancel(req, issue_flags);
    		break;
    	case IORING_OP_FALLOCATE:
    		ret = io_fallocate(req, issue_flags);
    		break;
    	case IORING_OP_OPENAT:
    		ret = io_openat(req, issue_flags);
    		break;
    	case IORING_OP_CLOSE:
    		ret = io_close(req, issue_flags);
    		break;
    	case IORING_OP_FILES_UPDATE:
    		ret = io_files_update(req, issue_flags);
    		break;
    	case IORING_OP_STATX:
    		ret = io_statx(req, issue_flags);
    		break;
    	case IORING_OP_FADVISE:
    		ret = io_fadvise(req, issue_flags);
    		break;
    	case IORING_OP_MADVISE:
    		ret = io_madvise(req, issue_flags);
    		break;
    	case IORING_OP_OPENAT2:
    		ret = io_openat2(req, issue_flags);
    		break;
    	case IORING_OP_EPOLL_CTL:
    		ret = io_epoll_ctl(req, issue_flags);
    		break;
    	case IORING_OP_SPLICE:
    		ret = io_splice(req, issue_flags);
    		break;
    	case IORING_OP_PROVIDE_BUFFERS:
    		ret = io_provide_buffers(req, issue_flags);
    		break;
    	case IORING_OP_REMOVE_BUFFERS:
    		ret = io_remove_buffers(req, issue_flags);
    		break;
    	case IORING_OP_TEE:
    		ret = io_tee(req, issue_flags);
    		break;
    	case IORING_OP_SHUTDOWN:
    		ret = io_shutdown(req, issue_flags);
    		break;
    	case IORING_OP_RENAMEAT:
    		ret = io_renameat(req, issue_flags);
    		break;
    	case IORING_OP_UNLINKAT:
    		ret = io_unlinkat(req, issue_flags);
    		break;
    	default:
    		ret = -EINVAL;
    		break;
    	}
    
    	if (creds)
    		revert_creds(creds);
    
    	if (ret)
    		return ret;
    
    	/* If the op doesn't have a file, we're not polling for it */
    	if ((ctx->flags & IORING_SETUP_IOPOLL) && req->file) {
    		const bool in_async = io_wq_current_is_worker();
    
    		/* workqueue context doesn't hold uring_lock, grab it now */
    		if (in_async)
    			mutex_lock(&ctx->uring_lock);
    
    		io_iopoll_req_issued(req, in_async);
    
    		if (in_async)
    			mutex_unlock(&ctx->uring_lock);
    	}
    
    	return 0;
    }
    
    static void io_wq_submit_work(struct io_wq_work *work)
    {
    	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
    	struct io_kiocb *timeout;
    	int ret = 0;
    
    	timeout = io_prep_linked_timeout(req);
    	if (timeout)
    		io_queue_linked_timeout(timeout);
    
    	if (work->flags & IO_WQ_WORK_CANCEL)
    		ret = -ECANCELED;
    
    	if (!ret) {
    		do {
    			ret = io_issue_sqe(req, 0);
    			/*
    			 * We can get EAGAIN for polled IO even though we're
    			 * forcing a sync submission from here, since we can't
    			 * wait for request slots on the block side.
    			 */
    			if (ret != -EAGAIN)
    				break;
    			cond_resched();
    		} while (1);
    	}
    
    	/* avoid locking problems by failing it from a clean context */
    	if (ret) {
    		/* io-wq is going to take one down */
    		refcount_inc(&req->refs);
    		io_req_task_queue_fail(req, ret);
    	}
    }
    
    static inline struct file *io_file_from_index(struct io_ring_ctx *ctx,
    					      int index)
    {
    	struct fixed_rsrc_table *table;
    
    	table = &ctx->file_data->table[index >> IORING_FILE_TABLE_SHIFT];
    	return table->files[index & IORING_FILE_TABLE_MASK];
    }
    
    static struct file *io_file_get(struct io_submit_state *state,
    				struct io_kiocb *req, int fd, bool fixed)
    {
    	struct io_ring_ctx *ctx = req->ctx;
    	struct file *file;
    
    	if (fixed) {
    		if (unlikely((unsigned int)fd >= ctx->nr_user_files))
    			return NULL;
    		fd = array_index_nospec(fd, ctx->nr_user_files);
    		file = io_file_from_index(ctx, fd);
    		io_set_resource_node(req);
    	} else {
    		trace_io_uring_file_get(ctx, fd);
    		file = __io_file_get(state, fd);
    	}
    
    	if (file && unlikely(file->f_op == &io_uring_fops))
    		io_req_track_inflight(req);
    	return file;
    }
    
    static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer)
    {
    	struct io_timeout_data *data = container_of(timer,
    						struct io_timeout_data, timer);
    	struct io_kiocb *prev, *req = data->req;
    	struct io_ring_ctx *ctx = req->ctx;
    	unsigned long flags;
    
    	spin_lock_irqsave(&ctx->completion_lock, flags);
    	prev = req->timeout.head;
    	req->timeout.head = NULL;
    
    	/*
    	 * We don't expect the list to be empty, that will only happen if we
    	 * race with the completion of the linked work.
    	 */
    	if (prev && refcount_inc_not_zero(&prev->refs))
    		io_remove_next_linked(prev);
    	else
    		prev = NULL;
    	spin_unlock_irqrestore(&ctx->completion_lock, flags);
    
    	if (prev) {
    		req_set_fail_links(prev);
    		io_async_find_and_cancel(ctx, req, prev->user_data, -ETIME);
    		io_put_req_deferred(prev, 1);
    	} else {
    		io_req_complete_post(req, -ETIME, 0);
    		io_put_req_deferred(req, 1);
    	}
    	return HRTIMER_NORESTART;
    }
    
    static void __io_queue_linked_timeout(struct io_kiocb *req)
    {
    	/*
    	 * If the back reference is NULL, then our linked request finished
    	 * before we got a chance to setup the timer
    	 */
    	if (req->timeout.head) {
    		struct io_timeout_data *data = req->async_data;
    
    		data->timer.function = io_link_timeout_fn;
    		hrtimer_start(&data->timer, timespec64_to_ktime(data->ts),
    				data->mode);
    	}
    }
    
    static void io_queue_linked_timeout(struct io_kiocb *req)
    {
    	struct io_ring_ctx *ctx = req->ctx;
    
    	spin_lock_irq(&ctx->completion_lock);
    	__io_queue_linked_timeout(req);
    	spin_unlock_irq(&ctx->completion_lock);
    
    	/* drop submission reference */
    	io_put_req(req);
    }
    
    static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
    {
    	struct io_kiocb *nxt = req->link;
    
    	if (!nxt || (req->flags & REQ_F_LINK_TIMEOUT) ||
    	    nxt->opcode != IORING_OP_LINK_TIMEOUT)
    		return NULL;
    
    	nxt->timeout.head = req;
    	nxt->flags |= REQ_F_LTIMEOUT_ACTIVE;
    	req->flags |= REQ_F_LINK_TIMEOUT;
    	return nxt;
    }
    
    static void __io_queue_sqe(struct io_kiocb *req)
    {
    	struct io_kiocb *linked_timeout = io_prep_linked_timeout(req);
    	int ret;
    
    	ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
    
    	/*
    	 * We async punt it if the file wasn't marked NOWAIT, or if the file
    	 * doesn't support non-blocking read/write attempts
    	 */
    	if (ret == -EAGAIN && !(req->flags & REQ_F_NOWAIT)) {
    		if (!io_arm_poll_handler(req)) {
    			/*
    			 * Queued up for async execution, worker will release
    			 * submit reference when the iocb is actually submitted.
    			 */
    			io_queue_async_work(req);
    		}
    	} else if (likely(!ret)) {
    		/* drop submission reference */
    		if (req->flags & REQ_F_COMPLETE_INLINE) {
    			struct io_ring_ctx *ctx = req->ctx;
    			struct io_comp_state *cs = &ctx->submit_state.comp;
    
    			cs->reqs[cs->nr++] = req;
    			if (cs->nr == ARRAY_SIZE(cs->reqs))
    				io_submit_flush_completions(cs, ctx);
    		} else {
    			io_put_req(req);
    		}
    	} else {
    		req_set_fail_links(req);
    		io_put_req(req);
    		io_req_complete(req, ret);
    	}
    	if (linked_timeout)
    		io_queue_linked_timeout(linked_timeout);
    }
    
    static void io_queue_sqe(struct io_kiocb *req)
    {
    	int ret;
    
    	ret = io_req_defer(req);
    	if (ret) {
    		if (ret != -EIOCBQUEUED) {
    fail_req:
    			req_set_fail_links(req);
    			io_put_req(req);
    			io_req_complete(req, ret);
    		}
    	} else if (req->flags & REQ_F_FORCE_ASYNC) {
    		ret = io_req_defer_prep(req);
    		if (unlikely(ret))
    			goto fail_req;
    		io_queue_async_work(req);
    	} else {
    		__io_queue_sqe(req);
    	}
    }
    
    /*
     * Check SQE restrictions (opcode and flags).
     *
     * Returns 'true' if SQE is allowed, 'false' otherwise.
     */
    static inline bool io_check_restriction(struct io_ring_ctx *ctx,
    					struct io_kiocb *req,
    					unsigned int sqe_flags)
    {
    	if (!ctx->restricted)
    		return true;
    
    	if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
    		return false;
    
    	if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
    	    ctx->restrictions.sqe_flags_required)
    		return false;
    
    	if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
    			  ctx->restrictions.sqe_flags_required))
    		return false;
    
    	return true;
    }
    
    static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
    		       const struct io_uring_sqe *sqe)
    {
    	struct io_submit_state *state;
    	unsigned int sqe_flags;
    	int ret = 0;
    
    	req->opcode = READ_ONCE(sqe->opcode);
    	/* same numerical values with corresponding REQ_F_*, safe to copy */
    	req->flags = sqe_flags = READ_ONCE(sqe->flags);
    	req->user_data = READ_ONCE(sqe->user_data);
    	req->async_data = NULL;
    	req->file = NULL;
    	req->ctx = ctx;
    	req->link = NULL;
    	req->fixed_rsrc_refs = NULL;
    	/* one is dropped after submission, the other at completion */
    	refcount_set(&req->refs, 2);
    	req->task = current;
    	req->result = 0;
    
    	/* enforce forwards compatibility on users */
    	if (unlikely(sqe_flags & ~SQE_VALID_FLAGS)) {
    		req->flags = 0;
    		return -EINVAL;
    	}
    
    	if (unlikely(req->opcode >= IORING_OP_LAST))
    		return -EINVAL;
    
    	if (unlikely(!io_check_restriction(ctx, req, sqe_flags)))
    		return -EACCES;
    
    	if ((sqe_flags & IOSQE_BUFFER_SELECT) &&
    	    !io_op_defs[req->opcode].buffer_select)
    		return -EOPNOTSUPP;
    
    	req->work.list.next = NULL;
    	req->work.flags = 0;
    	req->work.personality = READ_ONCE(sqe->personality);
    	state = &ctx->submit_state;
    
    	/*
    	 * Plug now if we have more than 1 IO left after this, and the target
    	 * is potentially a read/write to block based storage.
    	 */
    	if (!state->plug_started && state->ios_left > 1 &&
    	    io_op_defs[req->opcode].plug) {
    		blk_start_plug(&state->plug);
    		state->plug_started = true;
    	}
    
    	if (io_op_defs[req->opcode].needs_file) {
    		bool fixed = req->flags & REQ_F_FIXED_FILE;
    
    		req->file = io_file_get(state, req, READ_ONCE(sqe->fd), fixed);
    		if (unlikely(!req->file))
    			ret = -EBADF;
    	}
    
    	state->ios_left--;
    	return ret;
    }
    
    static int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
    			 const struct io_uring_sqe *sqe)
    {
    	struct io_submit_link *link = &ctx->submit_state.link;
    	int ret;
    
    	ret = io_init_req(ctx, req, sqe);
    	if (unlikely(ret)) {
    fail_req:
    		io_put_req(req);
    		io_req_complete(req, ret);
    		if (link->head) {
    			/* fail even hard links since we don't submit */
    			link->head->flags |= REQ_F_FAIL_LINK;
    			io_put_req(link->head);
    			io_req_complete(link->head, -ECANCELED);
    			link->head = NULL;
    		}
    		return ret;
    	}
    	ret = io_req_prep(req, sqe);
    	if (unlikely(ret))
    		goto fail_req;
    
    	/* don't need @sqe from now on */
    	trace_io_uring_submit_sqe(ctx, req->opcode, req->user_data,
    				true, ctx->flags & IORING_SETUP_SQPOLL);
    
    	/*
    	 * If we already have a head request, queue this one for async
    	 * submittal once the head completes. If we don't have a head but
    	 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
    	 * submitted sync once the chain is complete. If none of those
    	 * conditions are true (normal request), then just queue it.
    	 */
    	if (link->head) {
    		struct io_kiocb *head = link->head;
    
    		/*
    		 * Taking sequential execution of a link, draining both sides
    		 * of the link also fullfils IOSQE_IO_DRAIN semantics for all
    		 * requests in the link. So, it drains the head and the
    		 * next after the link request. The last one is done via
    		 * drain_next flag to persist the effect across calls.
    		 */
    		if (req->flags & REQ_F_IO_DRAIN) {
    			head->flags |= REQ_F_IO_DRAIN;
    			ctx->drain_next = 1;
    		}
    		ret = io_req_defer_prep(req);
    		if (unlikely(ret))
    			goto fail_req;
    		trace_io_uring_link(ctx, req, head);
    		link->last->link = req;
    		link->last = req;
    
    		/* last request of a link, enqueue the link */
    		if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
    			io_queue_sqe(head);
    			link->head = NULL;
    		}
    	} else {
    		if (unlikely(ctx->drain_next)) {
    			req->flags |= REQ_F_IO_DRAIN;
    			ctx->drain_next = 0;
    		}
    		if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
    			link->head = req;
    			link->last = req;
    		} else {
    			io_queue_sqe(req);
    		}
    	}
    
    	return 0;
    }
    
    /*
     * Batched submission is done, ensure local IO is flushed out.
     */
    static void io_submit_state_end(struct io_submit_state *state,
    				struct io_ring_ctx *ctx)
    {
    	if (state->link.head)
    		io_queue_sqe(state->link.head);
    	if (state->comp.nr)
    		io_submit_flush_completions(&state->comp, ctx);
    	if (state->plug_started)
    		blk_finish_plug(&state->plug);
    	io_state_file_put(state);
    }
    
    /*
     * Start submission side cache.
     */
    static void io_submit_state_start(struct io_submit_state *state,
    				  unsigned int max_ios)
    {
    	state->plug_started = false;
    	state->ios_left = max_ios;
    	/* set only head, no need to init link_last in advance */
    	state->link.head = NULL;
    }
    
    static void io_commit_sqring(struct io_ring_ctx *ctx)
    {
    	struct io_rings *rings = ctx->rings;
    
    	/*
    	 * Ensure any loads from the SQEs are done at this point,
    	 * since once we write the new head, the application could
    	 * write new data to them.
    	 */
    	smp_store_release(&rings->sq.head, ctx->cached_sq_head);
    }
    
    /*
     * Fetch an sqe, if one is available. Note that sqe_ptr will point to memory
     * that is mapped by userspace. This means that care needs to be taken to
     * ensure that reads are stable, as we cannot rely on userspace always
     * being a good citizen. If members of the sqe are validated and then later
     * used, it's important that those reads are done through READ_ONCE() to
     * prevent a re-load down the line.
     */
    static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
    {
    	u32 *sq_array = ctx->sq_array;
    	unsigned head;
    
    	/*
    	 * The cached sq head (or cq tail) serves two purposes:
    	 *
    	 * 1) allows us to batch the cost of updating the user visible
    	 *    head updates.
    	 * 2) allows the kernel side to track the head on its own, even
    	 *    though the application is the one updating it.
    	 */
    	head = READ_ONCE(sq_array[ctx->cached_sq_head++ & ctx->sq_mask]);
    	if (likely(head < ctx->sq_entries))
    		return &ctx->sq_sqes[head];
    
    	/* drop invalid entries */
    	ctx->cached_sq_dropped++;
    	WRITE_ONCE(ctx->rings->sq_dropped, ctx->cached_sq_dropped);
    	return NULL;
    }
    
    static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
    {
    	int submitted = 0;
    
    	/* if we have a backlog and couldn't flush it all, return BUSY */
    	if (test_bit(0, &ctx->sq_check_overflow)) {
    		if (!__io_cqring_overflow_flush(ctx, false, NULL, NULL))
    			return -EBUSY;
    	}
    
    	/* make sure SQ entry isn't read before tail */
    	nr = min3(nr, ctx->sq_entries, io_sqring_entries(ctx));
    
    	if (!percpu_ref_tryget_many(&ctx->refs, nr))
    		return -EAGAIN;
    
    	percpu_counter_add(&current->io_uring->inflight, nr);
    	refcount_add(nr, &current->usage);
    	io_submit_state_start(&ctx->submit_state, nr);
    
    	while (submitted < nr) {
    		const struct io_uring_sqe *sqe;
    		struct io_kiocb *req;
    
    		req = io_alloc_req(ctx);
    		if (unlikely(!req)) {
    			if (!submitted)
    				submitted = -EAGAIN;
    			break;
    		}
    		sqe = io_get_sqe(ctx);
    		if (unlikely(!sqe)) {
    			kmem_cache_free(req_cachep, req);
    			break;
    		}
    		/* will complete beyond this point, count as submitted */
    		submitted++;
    		if (io_submit_sqe(ctx, req, sqe))
    			break;
    	}
    
    	if (unlikely(submitted != nr)) {
    		int ref_used = (submitted == -EAGAIN) ? 0 : submitted;
    		struct io_uring_task *tctx = current->io_uring;
    		int unused = nr - ref_used;
    
    		percpu_ref_put_many(&ctx->refs, unused);
    		percpu_counter_sub(&tctx->inflight, unused);
    		put_task_struct_many(current, unused);
    	}
    
    	io_submit_state_end(&ctx->submit_state, ctx);
    	 /* Commit SQ ring head once we've consumed and submitted all SQEs */
    	io_commit_sqring(ctx);
    
    	return submitted;
    }
    
    static inline void io_ring_set_wakeup_flag(struct io_ring_ctx *ctx)
    {
    	/* Tell userspace we may need a wakeup call */
    	spin_lock_irq(&ctx->completion_lock);
    	ctx->rings->sq_flags |= IORING_SQ_NEED_WAKEUP;
    	spin_unlock_irq(&ctx->completion_lock);
    }
    
    static inline void io_ring_clear_wakeup_flag(struct io_ring_ctx *ctx)
    {
    	spin_lock_irq(&ctx->completion_lock);
    	ctx->rings->sq_flags &= ~IORING_SQ_NEED_WAKEUP;
    	spin_unlock_irq(&ctx->completion_lock);
    }
    
    static int __io_sq_thread(struct io_ring_ctx *ctx, bool cap_entries)
    {
    	unsigned int to_submit;
    	int ret = 0;
    
    	to_submit = io_sqring_entries(ctx);
    	/* if we're handling multiple rings, cap submit size for fairness */
    	if (cap_entries && to_submit > 8)
    		to_submit = 8;
    
    	if (!list_empty(&ctx->iopoll_list) || to_submit) {
    		unsigned nr_events = 0;
    
    		mutex_lock(&ctx->uring_lock);
    		if (!list_empty(&ctx->iopoll_list))
    			io_do_iopoll(ctx, &nr_events, 0);
    
    		if (to_submit && likely(!percpu_ref_is_dying(&ctx->refs)))
    			ret = io_submit_sqes(ctx, to_submit);
    		mutex_unlock(&ctx->uring_lock);
    	}
    
    	if (!io_sqring_full(ctx) && wq_has_sleeper(&ctx->sqo_sq_wait))
    		wake_up(&ctx->sqo_sq_wait);
    
    	return ret;
    }
    
    static void io_sqd_update_thread_idle(struct io_sq_data *sqd)
    {
    	struct io_ring_ctx *ctx;
    	unsigned sq_thread_idle = 0;
    
    	list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
    		if (sq_thread_idle < ctx->sq_thread_idle)
    			sq_thread_idle = ctx->sq_thread_idle;
    	}
    
    	sqd->sq_thread_idle = sq_thread_idle;
    }
    
    static void io_sqd_init_new(struct io_sq_data *sqd)
    {
    	struct io_ring_ctx *ctx;
    
    	while (!list_empty(&sqd->ctx_new_list)) {
    		ctx = list_first_entry(&sqd->ctx_new_list, struct io_ring_ctx, sqd_list);
    		list_move_tail(&ctx->sqd_list, &sqd->ctx_list);
    		complete(&ctx->sq_thread_comp);
    	}
    
    	io_sqd_update_thread_idle(sqd);
    }
    
    static bool io_sq_thread_should_stop(struct io_sq_data *sqd)
    {
    	return test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
    }
    
    static bool io_sq_thread_should_park(struct io_sq_data *sqd)
    {
    	return test_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
    }
    
    static void io_sq_thread_parkme(struct io_sq_data *sqd)
    {
    	for (;;) {
    		/*
    		 * TASK_PARKED is a special state; we must serialize against
    		 * possible pending wakeups to avoid store-store collisions on
    		 * task->state.
    		 *
    		 * Such a collision might possibly result in the task state
    		 * changin from TASK_PARKED and us failing the
    		 * wait_task_inactive() in kthread_park().
    		 */
    		set_special_state(TASK_PARKED);
    		if (!test_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state))
    			break;
    
    		/*
    		 * Thread is going to call schedule(), do not preempt it,
    		 * or the caller of kthread_park() may spend more time in
    		 * wait_task_inactive().
    		 */
    		preempt_disable();
    		complete(&sqd->completion);
    		schedule_preempt_disabled();
    		preempt_enable();
    	}
    	__set_current_state(TASK_RUNNING);
    }
    
    static int io_sq_thread(void *data)
    {
    	struct io_sq_data *sqd = data;
    	struct io_ring_ctx *ctx;
    	unsigned long timeout = 0;
    	char buf[TASK_COMM_LEN];
    	DEFINE_WAIT(wait);
    
    	sprintf(buf, "iou-sqp-%d", sqd->task_pid);
    	set_task_comm(current, buf);
    	current->pf_io_worker = NULL;
    
    	if (sqd->sq_cpu != -1)
    		set_cpus_allowed_ptr(current, cpumask_of(sqd->sq_cpu));
    	else
    		set_cpus_allowed_ptr(current, cpu_online_mask);
    	current->flags |= PF_NO_SETAFFINITY;
    
    	wait_for_completion(&sqd->startup);
    
    	while (!io_sq_thread_should_stop(sqd)) {
    		int ret;
    		bool cap_entries, sqt_spin, needs_sched;
    
    		/*
    		 * Any changes to the sqd lists are synchronized through the
    		 * thread parking. This synchronizes the thread vs users,
    		 * the users are synchronized on the sqd->ctx_lock.
    		 */
    		if (io_sq_thread_should_park(sqd)) {
    			io_sq_thread_parkme(sqd);
    			continue;
    		}
    		if (unlikely(!list_empty(&sqd->ctx_new_list))) {
    			io_sqd_init_new(sqd);
    			timeout = jiffies + sqd->sq_thread_idle;
    		}
    		if (fatal_signal_pending(current))
    			break;
    		sqt_spin = false;
    		cap_entries = !list_is_singular(&sqd->ctx_list);
    		list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
    			ret = __io_sq_thread(ctx, cap_entries);
    			if (!sqt_spin && (ret > 0 || !list_empty(&ctx->iopoll_list)))
    				sqt_spin = true;
    		}
    
    		if (sqt_spin || !time_after(jiffies, timeout)) {
    			io_run_task_work();
    			cond_resched();
    			if (sqt_spin)
    				timeout = jiffies + sqd->sq_thread_idle;
    			continue;
    		}
    
    		needs_sched = true;
    		prepare_to_wait(&sqd->wait, &wait, TASK_INTERRUPTIBLE);
    		list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
    			if ((ctx->flags & IORING_SETUP_IOPOLL) &&
    			    !list_empty_careful(&ctx->iopoll_list)) {
    				needs_sched = false;
    				break;
    			}
    			if (io_sqring_entries(ctx)) {
    				needs_sched = false;
    				break;
    			}
    		}
    
    		if (needs_sched && !io_sq_thread_should_park(sqd)) {
    			list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
    				io_ring_set_wakeup_flag(ctx);
    
    			schedule();
    			try_to_freeze();
    			list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
    				io_ring_clear_wakeup_flag(ctx);
    		}
    
    		finish_wait(&sqd->wait, &wait);
    		timeout = jiffies + sqd->sq_thread_idle;
    	}
    
    	list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
    		io_uring_cancel_sqpoll(ctx);
    
    	io_run_task_work();
    
    	if (io_sq_thread_should_park(sqd))
    		io_sq_thread_parkme(sqd);
    
    	/*
    	 * Clear thread under lock so that concurrent parks work correctly
    	 */
    	complete(&sqd->completion);
    	mutex_lock(&sqd->lock);
    	sqd->thread = NULL;
    	list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
    		ctx->sqo_exec = 1;
    		io_ring_set_wakeup_flag(ctx);
    	}
    
    	complete(&sqd->exited);
    	mutex_unlock(&sqd->lock);
    	do_exit(0);
    }
    
    struct io_wait_queue {
    	struct wait_queue_entry wq;
    	struct io_ring_ctx *ctx;
    	unsigned to_wait;
    	unsigned nr_timeouts;
    };
    
    static inline bool io_should_wake(struct io_wait_queue *iowq)
    {
    	struct io_ring_ctx *ctx = iowq->ctx;
    
    	/*
    	 * Wake up if we have enough events, or if a timeout occurred since we
    	 * started waiting. For timeouts, we always want to return to userspace,
    	 * regardless of event count.
    	 */
    	return io_cqring_events(ctx) >= iowq->to_wait ||
    			atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
    }
    
    static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
    			    int wake_flags, void *key)
    {
    	struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
    							wq);
    
    	/*
    	 * Cannot safely flush overflowed CQEs from here, ensure we wake up
    	 * the task, and the next invocation will do it.
    	 */
    	if (io_should_wake(iowq) || test_bit(0, &iowq->ctx->cq_check_overflow))
    		return autoremove_wake_function(curr, mode, wake_flags, key);
    	return -1;
    }
    
    static int io_run_task_work_sig(void)
    {
    	if (io_run_task_work())
    		return 1;
    	if (!signal_pending(current))
    		return 0;
    	if (test_tsk_thread_flag(current, TIF_NOTIFY_SIGNAL))
    		return -ERESTARTSYS;
    	return -EINTR;
    }
    
    /* when returns >0, the caller should retry */
    static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
    					  struct io_wait_queue *iowq,
    					  signed long *timeout)
    {
    	int ret;
    
    	/* make sure we run task_work before checking for signals */
    	ret = io_run_task_work_sig();
    	if (ret || io_should_wake(iowq))
    		return ret;
    	/* let the caller flush overflows, retry */
    	if (test_bit(0, &ctx->cq_check_overflow))
    		return 1;
    
    	*timeout = schedule_timeout(*timeout);
    	return !*timeout ? -ETIME : 1;
    }
    
    /*
     * Wait until events become available, if we don't already have some. The
     * application must reap them itself, as they reside on the shared cq ring.
     */
    static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
    			  const sigset_t __user *sig, size_t sigsz,
    			  struct __kernel_timespec __user *uts)
    {
    	struct io_wait_queue iowq = {
    		.wq = {
    			.private	= current,
    			.func		= io_wake_function,
    			.entry		= LIST_HEAD_INIT(iowq.wq.entry),
    		},
    		.ctx		= ctx,
    		.to_wait	= min_events,
    	};
    	struct io_rings *rings = ctx->rings;
    	signed long timeout = MAX_SCHEDULE_TIMEOUT;
    	int ret;
    
    	do {
    		io_cqring_overflow_flush(ctx, false, NULL, NULL);
    		if (io_cqring_events(ctx) >= min_events)
    			return 0;
    		if (!io_run_task_work())
    			break;
    	} while (1);
    
    	if (sig) {
    #ifdef CONFIG_COMPAT
    		if (in_compat_syscall())
    			ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
    						      sigsz);
    		else
    #endif
    			ret = set_user_sigmask(sig, sigsz);
    
    		if (ret)
    			return ret;
    	}
    
    	if (uts) {
    		struct timespec64 ts;
    
    		if (get_timespec64(&ts, uts))
    			return -EFAULT;
    		timeout = timespec64_to_jiffies(&ts);
    	}
    
    	iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
    	trace_io_uring_cqring_wait(ctx, min_events);
    	do {
    		/* if we can't even flush overflow, don't wait for more */
    		if (!io_cqring_overflow_flush(ctx, false, NULL, NULL)) {
    			ret = -EBUSY;
    			break;
    		}
    		prepare_to_wait_exclusive(&ctx->wait, &iowq.wq,
    						TASK_INTERRUPTIBLE);
    		ret = io_cqring_wait_schedule(ctx, &iowq, &timeout);
    		finish_wait(&ctx->wait, &iowq.wq);
    		cond_resched();
    	} while (ret > 0);
    
    	restore_saved_sigmask_unless(ret == -EINTR);
    
    	return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
    }
    
    static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
    {
    #if defined(CONFIG_UNIX)
    	if (ctx->ring_sock) {
    		struct sock *sock = ctx->ring_sock->sk;
    		struct sk_buff *skb;
    
    		while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
    			kfree_skb(skb);
    	}
    #else
    	int i;
    
    	for (i = 0; i < ctx->nr_user_files; i++) {
    		struct file *file;
    
    		file = io_file_from_index(ctx, i);
    		if (file)
    			fput(file);
    	}
    #endif
    }
    
    static void io_rsrc_data_ref_zero(struct percpu_ref *ref)
    {
    	struct fixed_rsrc_data *data;
    
    	data = container_of(ref, struct fixed_rsrc_data, refs);
    	complete(&data->done);
    }
    
    static inline void io_rsrc_ref_lock(struct io_ring_ctx *ctx)
    {
    	spin_lock_bh(&ctx->rsrc_ref_lock);
    }
    
    static inline void io_rsrc_ref_unlock(struct io_ring_ctx *ctx)
    {
    	spin_unlock_bh(&ctx->rsrc_ref_lock);
    }
    
    static void io_sqe_rsrc_set_node(struct io_ring_ctx *ctx,
    				 struct fixed_rsrc_data *rsrc_data,
    				 struct fixed_rsrc_ref_node *ref_node)
    {
    	io_rsrc_ref_lock(ctx);
    	rsrc_data->node = ref_node;
    	list_add_tail(&ref_node->node, &ctx->rsrc_ref_list);
    	io_rsrc_ref_unlock(ctx);
    	percpu_ref_get(&rsrc_data->refs);
    }
    
    static void io_sqe_rsrc_kill_node(struct io_ring_ctx *ctx, struct fixed_rsrc_data *data)
    {
    	struct fixed_rsrc_ref_node *ref_node = NULL;
    
    	io_rsrc_ref_lock(ctx);
    	ref_node = data->node;
    	data->node = NULL;
    	io_rsrc_ref_unlock(ctx);
    	if (ref_node)
    		percpu_ref_kill(&ref_node->refs);
    }
    
    static int io_rsrc_ref_quiesce(struct fixed_rsrc_data *data,
    			       struct io_ring_ctx *ctx,
    			       void (*rsrc_put)(struct io_ring_ctx *ctx,
    			                        struct io_rsrc_put *prsrc))
    {
    	struct fixed_rsrc_ref_node *backup_node;
    	int ret;
    
    	if (data->quiesce)
    		return -ENXIO;
    
    	data->quiesce = true;
    	do {
    		ret = -ENOMEM;
    		backup_node = alloc_fixed_rsrc_ref_node(ctx);
    		if (!backup_node)
    			break;
    		backup_node->rsrc_data = data;
    		backup_node->rsrc_put = rsrc_put;
    
    		io_sqe_rsrc_kill_node(ctx, data);
    		percpu_ref_kill(&data->refs);
    		flush_delayed_work(&ctx->rsrc_put_work);
    
    		ret = wait_for_completion_interruptible(&data->done);
    		if (!ret)
    			break;
    
    		percpu_ref_resurrect(&data->refs);
    		io_sqe_rsrc_set_node(ctx, data, backup_node);
    		backup_node = NULL;
    		reinit_completion(&data->done);
    		mutex_unlock(&ctx->uring_lock);
    		ret = io_run_task_work_sig();
    		mutex_lock(&ctx->uring_lock);
    	} while (ret >= 0);
    	data->quiesce = false;
    
    	if (backup_node)
    		destroy_fixed_rsrc_ref_node(backup_node);
    	return ret;
    }
    
    static struct fixed_rsrc_data *alloc_fixed_rsrc_data(struct io_ring_ctx *ctx)
    {
    	struct fixed_rsrc_data *data;
    
    	data = kzalloc(sizeof(*data), GFP_KERNEL);
    	if (!data)
    		return NULL;
    
    	if (percpu_ref_init(&data->refs, io_rsrc_data_ref_zero,
    			    PERCPU_REF_ALLOW_REINIT, GFP_KERNEL)) {
    		kfree(data);
    		return NULL;
    	}
    	data->ctx = ctx;
    	init_completion(&data->done);
    	return data;
    }
    
    static void free_fixed_rsrc_data(struct fixed_rsrc_data *data)
    {
    	percpu_ref_exit(&data->refs);
    	kfree(data->table);
    	kfree(data);
    }
    
    static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
    {
    	struct fixed_rsrc_data *data = ctx->file_data;
    	unsigned nr_tables, i;
    	int ret;
    
    	/*
    	 * percpu_ref_is_dying() is to stop parallel files unregister
    	 * Since we possibly drop uring lock later in this function to
    	 * run task work.
    	 */
    	if (!data || percpu_ref_is_dying(&data->refs))
    		return -ENXIO;
    	ret = io_rsrc_ref_quiesce(data, ctx, io_ring_file_put);
    	if (ret)
    		return ret;
    
    	__io_sqe_files_unregister(ctx);
    	nr_tables = DIV_ROUND_UP(ctx->nr_user_files, IORING_MAX_FILES_TABLE);
    	for (i = 0; i < nr_tables; i++)
    		kfree(data->table[i].files);
    	free_fixed_rsrc_data(data);
    	ctx->file_data = NULL;
    	ctx->nr_user_files = 0;
    	return 0;
    }
    
    static void io_sq_thread_unpark(struct io_sq_data *sqd)
    	__releases(&sqd->lock)
    {
    	if (!sqd->thread)
    		return;
    	if (sqd->thread == current)
    		return;
    	clear_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
    	wake_up_state(sqd->thread, TASK_PARKED);
    	mutex_unlock(&sqd->lock);
    }
    
    static bool io_sq_thread_park(struct io_sq_data *sqd)
    	__acquires(&sqd->lock)
    {
    	if (sqd->thread == current)
    		return true;
    	mutex_lock(&sqd->lock);
    	if (!sqd->thread) {
    		mutex_unlock(&sqd->lock);
    		return false;
    	}
    	set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
    	wake_up_process(sqd->thread);
    	wait_for_completion(&sqd->completion);
    	return true;
    }
    
    static void io_sq_thread_stop(struct io_sq_data *sqd)
    {
    	if (test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state))
    		return;
    	mutex_lock(&sqd->lock);
    	if (sqd->thread) {
    		set_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
    		WARN_ON_ONCE(test_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state));
    		wake_up_process(sqd->thread);
    		mutex_unlock(&sqd->lock);
    		wait_for_completion(&sqd->exited);
    		WARN_ON_ONCE(sqd->thread);
    	} else {
    		mutex_unlock(&sqd->lock);
    	}
    }
    
    static void io_put_sq_data(struct io_sq_data *sqd)
    {
    	if (refcount_dec_and_test(&sqd->refs)) {
    		io_sq_thread_stop(sqd);
    		kfree(sqd);
    	}
    }
    
    static void io_sq_thread_finish(struct io_ring_ctx *ctx)
    {
    	struct io_sq_data *sqd = ctx->sq_data;
    
    	if (sqd) {
    		complete(&sqd->startup);
    		if (sqd->thread) {
    			wait_for_completion(&ctx->sq_thread_comp);
    			io_sq_thread_park(sqd);
    		}
    
    		mutex_lock(&sqd->ctx_lock);
    		list_del(&ctx->sqd_list);
    		io_sqd_update_thread_idle(sqd);
    		mutex_unlock(&sqd->ctx_lock);
    
    		if (sqd->thread)
    			io_sq_thread_unpark(sqd);
    
    		io_put_sq_data(sqd);
    		ctx->sq_data = NULL;
    	}
    }
    
    static struct io_sq_data *io_attach_sq_data(struct io_uring_params *p)
    {
    	struct io_ring_ctx *ctx_attach;
    	struct io_sq_data *sqd;
    	struct fd f;
    
    	f = fdget(p->wq_fd);
    	if (!f.file)
    		return ERR_PTR(-ENXIO);
    	if (f.file->f_op != &io_uring_fops) {
    		fdput(f);
    		return ERR_PTR(-EINVAL);
    	}
    
    	ctx_attach = f.file->private_data;
    	sqd = ctx_attach->sq_data;
    	if (!sqd) {
    		fdput(f);
    		return ERR_PTR(-EINVAL);
    	}
    
    	refcount_inc(&sqd->refs);
    	fdput(f);
    	return sqd;
    }
    
    static struct io_sq_data *io_get_sq_data(struct io_uring_params *p)
    {
    	struct io_sq_data *sqd;
    
    	if (p->flags & IORING_SETUP_ATTACH_WQ)
    		return io_attach_sq_data(p);
    
    	sqd = kzalloc(sizeof(*sqd), GFP_KERNEL);
    	if (!sqd)
    		return ERR_PTR(-ENOMEM);
    
    	refcount_set(&sqd->refs, 1);
    	INIT_LIST_HEAD(&sqd->ctx_list);
    	INIT_LIST_HEAD(&sqd->ctx_new_list);
    	mutex_init(&sqd->ctx_lock);
    	mutex_init(&sqd->lock);
    	init_waitqueue_head(&sqd->wait);
    	init_completion(&sqd->startup);
    	init_completion(&sqd->completion);
    	init_completion(&sqd->exited);
    	return sqd;
    }
    
    #if defined(CONFIG_UNIX)
    /*
     * Ensure the UNIX gc is aware of our file set, so we are certain that
     * the io_uring can be safely unregistered on process exit, even if we have
     * loops in the file referencing.
     */
    static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
    {
    	struct sock *sk = ctx->ring_sock->sk;
    	struct scm_fp_list *fpl;
    	struct sk_buff *skb;
    	int i, nr_files;
    
    	fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
    	if (!fpl)
    		return -ENOMEM;
    
    	skb = alloc_skb(0, GFP_KERNEL);
    	if (!skb) {
    		kfree(fpl);
    		return -ENOMEM;
    	}
    
    	skb->sk = sk;
    
    	nr_files = 0;
    	fpl->user = get_uid(current_user());
    	for (i = 0; i < nr; i++) {
    		struct file *file = io_file_from_index(ctx, i + offset);
    
    		if (!file)
    			continue;
    		fpl->fp[nr_files] = get_file(file);
    		unix_inflight(fpl->user, fpl->fp[nr_files]);
    		nr_files++;
    	}
    
    	if (nr_files) {
    		fpl->max = SCM_MAX_FD;
    		fpl->count = nr_files;
    		UNIXCB(skb).fp = fpl;
    		skb->destructor = unix_destruct_scm;
    		refcount_add(skb->truesize, &sk->sk_wmem_alloc);
    		skb_queue_head(&sk->sk_receive_queue, skb);
    
    		for (i = 0; i < nr_files; i++)
    			fput(fpl->fp[i]);
    	} else {
    		kfree_skb(skb);
    		kfree(fpl);
    	}
    
    	return 0;
    }
    
    /*
     * If UNIX sockets are enabled, fd passing can cause a reference cycle which
     * causes regular reference counting to break down. We rely on the UNIX
     * garbage collection to take care of this problem for us.
     */
    static int io_sqe_files_scm(struct io_ring_ctx *ctx)
    {
    	unsigned left, total;
    	int ret = 0;
    
    	total = 0;
    	left = ctx->nr_user_files;
    	while (left) {
    		unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
    
    		ret = __io_sqe_files_scm(ctx, this_files, total);
    		if (ret)
    			break;
    		left -= this_files;
    		total += this_files;
    	}
    
    	if (!ret)
    		return 0;
    
    	while (total < ctx->nr_user_files) {
    		struct file *file = io_file_from_index(ctx, total);
    
    		if (file)
    			fput(file);
    		total++;
    	}
    
    	return ret;
    }
    #else
    static int io_sqe_files_scm(struct io_ring_ctx *ctx)
    {
    	return 0;
    }
    #endif
    
    static int io_sqe_alloc_file_tables(struct fixed_rsrc_data *file_data,
    				    unsigned nr_tables, unsigned nr_files)
    {
    	int i;
    
    	for (i = 0; i < nr_tables; i++) {
    		struct fixed_rsrc_table *table = &file_data->table[i];
    		unsigned this_files;
    
    		this_files = min(nr_files, IORING_MAX_FILES_TABLE);
    		table->files = kcalloc(this_files, sizeof(struct file *),
    					GFP_KERNEL);
    		if (!table->files)
    			break;
    		nr_files -= this_files;
    	}
    
    	if (i == nr_tables)
    		return 0;
    
    	for (i = 0; i < nr_tables; i++) {
    		struct fixed_rsrc_table *table = &file_data->table[i];
    		kfree(table->files);
    	}
    	return 1;
    }
    
    static void io_ring_file_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
    {
    	struct file *file = prsrc->file;
    #if defined(CONFIG_UNIX)
    	struct sock *sock = ctx->ring_sock->sk;
    	struct sk_buff_head list, *head = &sock->sk_receive_queue;
    	struct sk_buff *skb;
    	int i;
    
    	__skb_queue_head_init(&list);
    
    	/*
    	 * Find the skb that holds this file in its SCM_RIGHTS. When found,
    	 * remove this entry and rearrange the file array.
    	 */
    	skb = skb_dequeue(head);
    	while (skb) {
    		struct scm_fp_list *fp;
    
    		fp = UNIXCB(skb).fp;
    		for (i = 0; i < fp->count; i++) {
    			int left;
    
    			if (fp->fp[i] != file)
    				continue;
    
    			unix_notinflight(fp->user, fp->fp[i]);
    			left = fp->count - 1 - i;
    			if (left) {
    				memmove(&fp->fp[i], &fp->fp[i + 1],
    						left * sizeof(struct file *));
    			}
    			fp->count--;
    			if (!fp->count) {
    				kfree_skb(skb);
    				skb = NULL;
    			} else {
    				__skb_queue_tail(&list, skb);
    			}
    			fput(file);
    			file = NULL;
    			break;
    		}
    
    		if (!file)
    			break;
    
    		__skb_queue_tail(&list, skb);
    
    		skb = skb_dequeue(head);
    	}
    
    	if (skb_peek(&list)) {
    		spin_lock_irq(&head->lock);
    		while ((skb = __skb_dequeue(&list)) != NULL)
    			__skb_queue_tail(head, skb);
    		spin_unlock_irq(&head->lock);
    	}
    #else
    	fput(file);
    #endif
    }
    
    static void __io_rsrc_put_work(struct fixed_rsrc_ref_node *ref_node)
    {
    	struct fixed_rsrc_data *rsrc_data = ref_node->rsrc_data;
    	struct io_ring_ctx *ctx = rsrc_data->ctx;
    	struct io_rsrc_put *prsrc, *tmp;
    
    	list_for_each_entry_safe(prsrc, tmp, &ref_node->rsrc_list, list) {
    		list_del(&prsrc->list);
    		ref_node->rsrc_put(ctx, prsrc);
    		kfree(prsrc);
    	}
    
    	percpu_ref_exit(&ref_node->refs);
    	kfree(ref_node);
    	percpu_ref_put(&rsrc_data->refs);
    }
    
    static void io_rsrc_put_work(struct work_struct *work)
    {
    	struct io_ring_ctx *ctx;
    	struct llist_node *node;
    
    	ctx = container_of(work, struct io_ring_ctx, rsrc_put_work.work);
    	node = llist_del_all(&ctx->rsrc_put_llist);
    
    	while (node) {
    		struct fixed_rsrc_ref_node *ref_node;
    		struct llist_node *next = node->next;
    
    		ref_node = llist_entry(node, struct fixed_rsrc_ref_node, llist);
    		__io_rsrc_put_work(ref_node);
    		node = next;
    	}
    }
    
    static struct file **io_fixed_file_slot(struct fixed_rsrc_data *file_data,
    					unsigned i)
    {
    	struct fixed_rsrc_table *table;
    
    	table = &file_data->table[i >> IORING_FILE_TABLE_SHIFT];
    	return &table->files[i & IORING_FILE_TABLE_MASK];
    }
    
    static void io_rsrc_node_ref_zero(struct percpu_ref *ref)
    {
    	struct fixed_rsrc_ref_node *ref_node;
    	struct fixed_rsrc_data *data;
    	struct io_ring_ctx *ctx;
    	bool first_add = false;
    	int delay = HZ;
    
    	ref_node = container_of(ref, struct fixed_rsrc_ref_node, refs);
    	data = ref_node->rsrc_data;
    	ctx = data->ctx;
    
    	io_rsrc_ref_lock(ctx);
    	ref_node->done = true;
    
    	while (!list_empty(&ctx->rsrc_ref_list)) {
    		ref_node = list_first_entry(&ctx->rsrc_ref_list,
    					struct fixed_rsrc_ref_node, node);
    		/* recycle ref nodes in order */
    		if (!ref_node->done)
    			break;
    		list_del(&ref_node->node);
    		first_add |= llist_add(&ref_node->llist, &ctx->rsrc_put_llist);
    	}
    	io_rsrc_ref_unlock(ctx);
    
    	if (percpu_ref_is_dying(&data->refs))
    		delay = 0;
    
    	if (!delay)
    		mod_delayed_work(system_wq, &ctx->rsrc_put_work, 0);
    	else if (first_add)
    		queue_delayed_work(system_wq, &ctx->rsrc_put_work, delay);
    }
    
    static struct fixed_rsrc_ref_node *alloc_fixed_rsrc_ref_node(
    			struct io_ring_ctx *ctx)
    {
    	struct fixed_rsrc_ref_node *ref_node;
    
    	ref_node = kzalloc(sizeof(*ref_node), GFP_KERNEL);
    	if (!ref_node)
    		return NULL;
    
    	if (percpu_ref_init(&ref_node->refs, io_rsrc_node_ref_zero,
    			    0, GFP_KERNEL)) {
    		kfree(ref_node);
    		return NULL;
    	}
    	INIT_LIST_HEAD(&ref_node->node);
    	INIT_LIST_HEAD(&ref_node->rsrc_list);
    	ref_node->done = false;
    	return ref_node;
    }
    
    static void init_fixed_file_ref_node(struct io_ring_ctx *ctx,
    				     struct fixed_rsrc_ref_node *ref_node)
    {
    	ref_node->rsrc_data = ctx->file_data;
    	ref_node->rsrc_put = io_ring_file_put;
    }
    
    static void destroy_fixed_rsrc_ref_node(struct fixed_rsrc_ref_node *ref_node)
    {
    	percpu_ref_exit(&ref_node->refs);
    	kfree(ref_node);
    }
    
    
    static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
    				 unsigned nr_args)
    {
    	__s32 __user *fds = (__s32 __user *) arg;
    	unsigned nr_tables, i;
    	struct file *file;
    	int fd, ret = -ENOMEM;
    	struct fixed_rsrc_ref_node *ref_node;
    	struct fixed_rsrc_data *file_data;
    
    	if (ctx->file_data)
    		return -EBUSY;
    	if (!nr_args)
    		return -EINVAL;
    	if (nr_args > IORING_MAX_FIXED_FILES)
    		return -EMFILE;
    
    	file_data = alloc_fixed_rsrc_data(ctx);
    	if (!file_data)
    		return -ENOMEM;
    	ctx->file_data = file_data;
    
    	nr_tables = DIV_ROUND_UP(nr_args, IORING_MAX_FILES_TABLE);
    	file_data->table = kcalloc(nr_tables, sizeof(*file_data->table),
    				   GFP_KERNEL);
    	if (!file_data->table)
    		goto out_free;
    
    	if (io_sqe_alloc_file_tables(file_data, nr_tables, nr_args))
    		goto out_free;
    
    	for (i = 0; i < nr_args; i++, ctx->nr_user_files++) {
    		if (copy_from_user(&fd, &fds[i], sizeof(fd))) {
    			ret = -EFAULT;
    			goto out_fput;
    		}
    		/* allow sparse sets */
    		if (fd == -1)
    			continue;
    
    		file = fget(fd);
    		ret = -EBADF;
    		if (!file)
    			goto out_fput;
    
    		/*
    		 * Don't allow io_uring instances to be registered. If UNIX
    		 * isn't enabled, then this causes a reference cycle and this
    		 * instance can never get freed. If UNIX is enabled we'll
    		 * handle it just fine, but there's still no point in allowing
    		 * a ring fd as it doesn't support regular read/write anyway.
    		 */
    		if (file->f_op == &io_uring_fops) {
    			fput(file);
    			goto out_fput;
    		}
    		*io_fixed_file_slot(file_data, i) = file;
    	}
    
    	ret = io_sqe_files_scm(ctx);
    	if (ret) {
    		io_sqe_files_unregister(ctx);
    		return ret;
    	}
    
    	ref_node = alloc_fixed_rsrc_ref_node(ctx);
    	if (!ref_node) {
    		io_sqe_files_unregister(ctx);
    		return -ENOMEM;
    	}
    	init_fixed_file_ref_node(ctx, ref_node);
    
    	io_sqe_rsrc_set_node(ctx, file_data, ref_node);
    	return ret;
    out_fput:
    	for (i = 0; i < ctx->nr_user_files; i++) {
    		file = io_file_from_index(ctx, i);
    		if (file)
    			fput(file);
    	}
    	for (i = 0; i < nr_tables; i++)
    		kfree(file_data->table[i].files);
    	ctx->nr_user_files = 0;
    out_free:
    	free_fixed_rsrc_data(ctx->file_data);
    	ctx->file_data = NULL;
    	return ret;
    }
    
    static int io_sqe_file_register(struct io_ring_ctx *ctx, struct file *file,
    				int index)
    {
    #if defined(CONFIG_UNIX)
    	struct sock *sock = ctx->ring_sock->sk;
    	struct sk_buff_head *head = &sock->sk_receive_queue;
    	struct sk_buff *skb;
    
    	/*
    	 * See if we can merge this file into an existing skb SCM_RIGHTS
    	 * file set. If there's no room, fall back to allocating a new skb
    	 * and filling it in.
    	 */
    	spin_lock_irq(&head->lock);
    	skb = skb_peek(head);
    	if (skb) {
    		struct scm_fp_list *fpl = UNIXCB(skb).fp;
    
    		if (fpl->count < SCM_MAX_FD) {
    			__skb_unlink(skb, head);
    			spin_unlock_irq(&head->lock);
    			fpl->fp[fpl->count] = get_file(file);
    			unix_inflight(fpl->user, fpl->fp[fpl->count]);
    			fpl->count++;
    			spin_lock_irq(&head->lock);
    			__skb_queue_head(head, skb);
    		} else {
    			skb = NULL;
    		}
    	}
    	spin_unlock_irq(&head->lock);
    
    	if (skb) {
    		fput(file);
    		return 0;
    	}
    
    	return __io_sqe_files_scm(ctx, 1, index);
    #else
    	return 0;
    #endif
    }
    
    static int io_queue_rsrc_removal(struct fixed_rsrc_data *data, void *rsrc)
    {
    	struct io_rsrc_put *prsrc;
    	struct fixed_rsrc_ref_node *ref_node = data->node;
    
    	prsrc = kzalloc(sizeof(*prsrc), GFP_KERNEL);
    	if (!prsrc)
    		return -ENOMEM;
    
    	prsrc->rsrc = rsrc;
    	list_add(&prsrc->list, &ref_node->rsrc_list);
    
    	return 0;
    }
    
    static inline int io_queue_file_removal(struct fixed_rsrc_data *data,
    					struct file *file)
    {
    	return io_queue_rsrc_removal(data, (void *)file);
    }
    
    static int __io_sqe_files_update(struct io_ring_ctx *ctx,
    				 struct io_uring_rsrc_update *up,
    				 unsigned nr_args)
    {
    	struct fixed_rsrc_data *data = ctx->file_data;
    	struct fixed_rsrc_ref_node *ref_node;
    	struct file *file, **file_slot;
    	__s32 __user *fds;
    	int fd, i, err;
    	__u32 done;
    	bool needs_switch = false;
    
    	if (check_add_overflow(up->offset, nr_args, &done))
    		return -EOVERFLOW;
    	if (done > ctx->nr_user_files)
    		return -EINVAL;
    
    	ref_node = alloc_fixed_rsrc_ref_node(ctx);
    	if (!ref_node)
    		return -ENOMEM;
    	init_fixed_file_ref_node(ctx, ref_node);
    
    	fds = u64_to_user_ptr(up->data);
    	for (done = 0; done < nr_args; done++) {
    		err = 0;
    		if (copy_from_user(&fd, &fds[done], sizeof(fd))) {
    			err = -EFAULT;
    			break;
    		}
    		if (fd == IORING_REGISTER_FILES_SKIP)
    			continue;
    
    		i = array_index_nospec(up->offset + done, ctx->nr_user_files);
    		file_slot = io_fixed_file_slot(ctx->file_data, i);
    
    		if (*file_slot) {
    			err = io_queue_file_removal(data, *file_slot);
    			if (err)
    				break;
    			*file_slot = NULL;
    			needs_switch = true;
    		}
    		if (fd != -1) {
    			file = fget(fd);
    			if (!file) {
    				err = -EBADF;
    				break;
    			}
    			/*
    			 * Don't allow io_uring instances to be registered. If
    			 * UNIX isn't enabled, then this causes a reference
    			 * cycle and this instance can never get freed. If UNIX
    			 * is enabled we'll handle it just fine, but there's
    			 * still no point in allowing a ring fd as it doesn't
    			 * support regular read/write anyway.
    			 */
    			if (file->f_op == &io_uring_fops) {
    				fput(file);
    				err = -EBADF;
    				break;
    			}
    			*file_slot = file;
    			err = io_sqe_file_register(ctx, file, i);
    			if (err) {
    				*file_slot = NULL;
    				fput(file);
    				break;
    			}
    		}
    	}
    
    	if (needs_switch) {
    		percpu_ref_kill(&data->node->refs);
    		io_sqe_rsrc_set_node(ctx, data, ref_node);
    	} else
    		destroy_fixed_rsrc_ref_node(ref_node);
    
    	return done ? done : err;
    }
    
    static int io_sqe_files_update(struct io_ring_ctx *ctx, void __user *arg,
    			       unsigned nr_args)
    {
    	struct io_uring_rsrc_update up;
    
    	if (!ctx->file_data)
    		return -ENXIO;
    	if (!nr_args)
    		return -EINVAL;
    	if (copy_from_user(&up, arg, sizeof(up)))
    		return -EFAULT;
    	if (up.resv)
    		return -EINVAL;
    
    	return __io_sqe_files_update(ctx, &up, nr_args);
    }
    
    static struct io_wq_work *io_free_work(struct io_wq_work *work)
    {
    	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
    
    	req = io_put_req_find_next(req);
    	return req ? &req->work : NULL;
    }
    
    static struct io_wq *io_init_wq_offload(struct io_ring_ctx *ctx)
    {
    	struct io_wq_hash *hash;
    	struct io_wq_data data;
    	unsigned int concurrency;
    
    	hash = ctx->hash_map;
    	if (!hash) {
    		hash = kzalloc(sizeof(*hash), GFP_KERNEL);
    		if (!hash)
    			return ERR_PTR(-ENOMEM);
    		refcount_set(&hash->refs, 1);
    		init_waitqueue_head(&hash->wait);
    		ctx->hash_map = hash;
    	}
    
    	data.hash = hash;
    	data.free_work = io_free_work;
    	data.do_work = io_wq_submit_work;
    
    	/* Do QD, or 4 * CPUS, whatever is smallest */
    	concurrency = min(ctx->sq_entries, 4 * num_online_cpus());
    
    	return io_wq_create(concurrency, &data);
    }
    
    static int io_uring_alloc_task_context(struct task_struct *task,
    				       struct io_ring_ctx *ctx)
    {
    	struct io_uring_task *tctx;
    	int ret;
    
    	tctx = kmalloc(sizeof(*tctx), GFP_KERNEL);
    	if (unlikely(!tctx))
    		return -ENOMEM;
    
    	ret = percpu_counter_init(&tctx->inflight, 0, GFP_KERNEL);
    	if (unlikely(ret)) {
    		kfree(tctx);
    		return ret;
    	}
    
    	tctx->io_wq = io_init_wq_offload(ctx);
    	if (IS_ERR(tctx->io_wq)) {
    		ret = PTR_ERR(tctx->io_wq);
    		percpu_counter_destroy(&tctx->inflight);
    		kfree(tctx);
    		return ret;
    	}
    
    	xa_init(&tctx->xa);
    	init_waitqueue_head(&tctx->wait);
    	tctx->last = NULL;
    	atomic_set(&tctx->in_idle, 0);
    	tctx->sqpoll = false;
    	task->io_uring = tctx;
    	spin_lock_init(&tctx->task_lock);
    	INIT_WQ_LIST(&tctx->task_list);
    	tctx->task_state = 0;
    	init_task_work(&tctx->task_work, tctx_task_work);
    	return 0;
    }
    
    void __io_uring_free(struct task_struct *tsk)
    {
    	struct io_uring_task *tctx = tsk->io_uring;
    
    	WARN_ON_ONCE(!xa_empty(&tctx->xa));
    	WARN_ON_ONCE(tctx->io_wq);
    
    	percpu_counter_destroy(&tctx->inflight);
    	kfree(tctx);
    	tsk->io_uring = NULL;
    }
    
    static int io_sq_thread_fork(struct io_sq_data *sqd, struct io_ring_ctx *ctx)
    {
    	struct task_struct *tsk;
    	int ret;
    
    	clear_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
    	reinit_completion(&sqd->completion);
    	ctx->sqo_exec = 0;
    	sqd->task_pid = current->pid;
    	tsk = create_io_thread(io_sq_thread, sqd, NUMA_NO_NODE);
    	if (IS_ERR(tsk))
    		return PTR_ERR(tsk);
    	ret = io_uring_alloc_task_context(tsk, ctx);
    	if (ret)
    		set_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
    	sqd->thread = tsk;
    	wake_up_new_task(tsk);
    	return ret;
    }
    
    static int io_sq_offload_create(struct io_ring_ctx *ctx,
    				struct io_uring_params *p)
    {
    	int ret;
    
    	/* Retain compatibility with failing for an invalid attach attempt */
    	if ((ctx->flags & (IORING_SETUP_ATTACH_WQ | IORING_SETUP_SQPOLL)) ==
    				IORING_SETUP_ATTACH_WQ) {
    		struct fd f;
    
    		f = fdget(p->wq_fd);
    		if (!f.file)
    			return -ENXIO;
    		if (f.file->f_op != &io_uring_fops) {
    			fdput(f);
    			return -EINVAL;
    		}
    		fdput(f);
    	}
    	if (ctx->flags & IORING_SETUP_SQPOLL) {
    		struct task_struct *tsk;
    		struct io_sq_data *sqd;
    
    		ret = -EPERM;
    		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_NICE))
    			goto err;
    
    		sqd = io_get_sq_data(p);
    		if (IS_ERR(sqd)) {
    			ret = PTR_ERR(sqd);
    			goto err;
    		}
    
    		ctx->sq_data = sqd;
    		io_sq_thread_park(sqd);
    		mutex_lock(&sqd->ctx_lock);
    		list_add(&ctx->sqd_list, &sqd->ctx_new_list);
    		mutex_unlock(&sqd->ctx_lock);
    		io_sq_thread_unpark(sqd);
    
    		ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
    		if (!ctx->sq_thread_idle)
    			ctx->sq_thread_idle = HZ;
    
    		if (sqd->thread)
    			return 0;
    
    		if (p->flags & IORING_SETUP_SQ_AFF) {
    			int cpu = p->sq_thread_cpu;
    
    			ret = -EINVAL;
    			if (cpu >= nr_cpu_ids)
    				goto err;
    			if (!cpu_online(cpu))
    				goto err;
    
    			sqd->sq_cpu = cpu;
    		} else {
    			sqd->sq_cpu = -1;
    		}
    
    		sqd->task_pid = current->pid;
    		tsk = create_io_thread(io_sq_thread, sqd, NUMA_NO_NODE);
    		if (IS_ERR(tsk)) {
    			ret = PTR_ERR(tsk);
    			goto err;
    		}
    		ret = io_uring_alloc_task_context(tsk, ctx);
    		if (ret)
    			set_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
    		sqd->thread = tsk;
    		wake_up_new_task(tsk);
    		if (ret)
    			goto err;
    	} else if (p->flags & IORING_SETUP_SQ_AFF) {
    		/* Can't have SQ_AFF without SQPOLL */
    		ret = -EINVAL;
    		goto err;
    	}
    
    	return 0;
    err:
    	io_sq_thread_finish(ctx);
    	return ret;
    }
    
    static void io_sq_offload_start(struct io_ring_ctx *ctx)
    {
    	struct io_sq_data *sqd = ctx->sq_data;
    
    	ctx->flags &= ~IORING_SETUP_R_DISABLED;
    	if (ctx->flags & IORING_SETUP_SQPOLL)
    		complete(&sqd->startup);
    }
    
    static inline void __io_unaccount_mem(struct user_struct *user,
    				      unsigned long nr_pages)
    {
    	atomic_long_sub(nr_pages, &user->locked_vm);
    }
    
    static inline int __io_account_mem(struct user_struct *user,
    				   unsigned long nr_pages)
    {
    	unsigned long page_limit, cur_pages, new_pages;
    
    	/* Don't allow more pages than we can safely lock */
    	page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
    
    	do {
    		cur_pages = atomic_long_read(&user->locked_vm);
    		new_pages = cur_pages + nr_pages;
    		if (new_pages > page_limit)
    			return -ENOMEM;
    	} while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
    					new_pages) != cur_pages);
    
    	return 0;
    }
    
    static void io_unaccount_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
    {
    	if (ctx->user)
    		__io_unaccount_mem(ctx->user, nr_pages);
    
    	if (ctx->mm_account)
    		atomic64_sub(nr_pages, &ctx->mm_account->pinned_vm);
    }
    
    static int io_account_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
    {
    	int ret;
    
    	if (ctx->user) {
    		ret = __io_account_mem(ctx->user, nr_pages);
    		if (ret)
    			return ret;
    	}
    
    	if (ctx->mm_account)
    		atomic64_add(nr_pages, &ctx->mm_account->pinned_vm);
    
    	return 0;
    }
    
    static void io_mem_free(void *ptr)
    {
    	struct page *page;
    
    	if (!ptr)
    		return;
    
    	page = virt_to_head_page(ptr);
    	if (put_page_testzero(page))
    		free_compound_page(page);
    }
    
    static void *io_mem_alloc(size_t size)
    {
    	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP |
    				__GFP_NORETRY | __GFP_ACCOUNT;
    
    	return (void *) __get_free_pages(gfp_flags, get_order(size));
    }
    
    static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries,
    				size_t *sq_offset)
    {
    	struct io_rings *rings;
    	size_t off, sq_array_size;
    
    	off = struct_size(rings, cqes, cq_entries);
    	if (off == SIZE_MAX)
    		return SIZE_MAX;
    
    #ifdef CONFIG_SMP
    	off = ALIGN(off, SMP_CACHE_BYTES);
    	if (off == 0)
    		return SIZE_MAX;
    #endif
    
    	if (sq_offset)
    		*sq_offset = off;
    
    	sq_array_size = array_size(sizeof(u32), sq_entries);
    	if (sq_array_size == SIZE_MAX)
    		return SIZE_MAX;
    
    	if (check_add_overflow(off, sq_array_size, &off))
    		return SIZE_MAX;
    
    	return off;
    }
    
    static int io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
    {
    	int i, j;
    
    	if (!ctx->user_bufs)
    		return -ENXIO;
    
    	for (i = 0; i < ctx->nr_user_bufs; i++) {
    		struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
    
    		for (j = 0; j < imu->nr_bvecs; j++)
    			unpin_user_page(imu->bvec[j].bv_page);
    
    		if (imu->acct_pages)
    			io_unaccount_mem(ctx, imu->acct_pages);
    		kvfree(imu->bvec);
    		imu->nr_bvecs = 0;
    	}
    
    	kfree(ctx->user_bufs);
    	ctx->user_bufs = NULL;
    	ctx->nr_user_bufs = 0;
    	return 0;
    }
    
    static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
    		       void __user *arg, unsigned index)
    {
    	struct iovec __user *src;
    
    #ifdef CONFIG_COMPAT
    	if (ctx->compat) {
    		struct compat_iovec __user *ciovs;
    		struct compat_iovec ciov;
    
    		ciovs = (struct compat_iovec __user *) arg;
    		if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
    			return -EFAULT;
    
    		dst->iov_base = u64_to_user_ptr((u64)ciov.iov_base);
    		dst->iov_len = ciov.iov_len;
    		return 0;
    	}
    #endif
    	src = (struct iovec __user *) arg;
    	if (copy_from_user(dst, &src[index], sizeof(*dst)))
    		return -EFAULT;
    	return 0;
    }
    
    /*
     * Not super efficient, but this is just a registration time. And we do cache
     * the last compound head, so generally we'll only do a full search if we don't
     * match that one.
     *
     * We check if the given compound head page has already been accounted, to
     * avoid double accounting it. This allows us to account the full size of the
     * page, not just the constituent pages of a huge page.
     */
    static bool headpage_already_acct(struct io_ring_ctx *ctx, struct page **pages,
    				  int nr_pages, struct page *hpage)
    {
    	int i, j;
    
    	/* check current page array */
    	for (i = 0; i < nr_pages; i++) {
    		if (!PageCompound(pages[i]))
    			continue;
    		if (compound_head(pages[i]) == hpage)
    			return true;
    	}
    
    	/* check previously registered pages */
    	for (i = 0; i < ctx->nr_user_bufs; i++) {
    		struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
    
    		for (j = 0; j < imu->nr_bvecs; j++) {
    			if (!PageCompound(imu->bvec[j].bv_page))
    				continue;
    			if (compound_head(imu->bvec[j].bv_page) == hpage)
    				return true;
    		}
    	}
    
    	return false;
    }
    
    static int io_buffer_account_pin(struct io_ring_ctx *ctx, struct page **pages,
    				 int nr_pages, struct io_mapped_ubuf *imu,
    				 struct page **last_hpage)
    {
    	int i, ret;
    
    	for (i = 0; i < nr_pages; i++) {
    		if (!PageCompound(pages[i])) {
    			imu->acct_pages++;
    		} else {
    			struct page *hpage;
    
    			hpage = compound_head(pages[i]);
    			if (hpage == *last_hpage)
    				continue;
    			*last_hpage = hpage;
    			if (headpage_already_acct(ctx, pages, i, hpage))
    				continue;
    			imu->acct_pages += page_size(hpage) >> PAGE_SHIFT;
    		}
    	}
    
    	if (!imu->acct_pages)
    		return 0;
    
    	ret = io_account_mem(ctx, imu->acct_pages);
    	if (ret)
    		imu->acct_pages = 0;
    	return ret;
    }
    
    static int io_sqe_buffer_register(struct io_ring_ctx *ctx, struct iovec *iov,
    				  struct io_mapped_ubuf *imu,
    				  struct page **last_hpage)
    {
    	struct vm_area_struct **vmas = NULL;
    	struct page **pages = NULL;
    	unsigned long off, start, end, ubuf;
    	size_t size;
    	int ret, pret, nr_pages, i;
    
    	ubuf = (unsigned long) iov->iov_base;
    	end = (ubuf + iov->iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
    	start = ubuf >> PAGE_SHIFT;
    	nr_pages = end - start;
    
    	ret = -ENOMEM;
    
    	pages = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
    	if (!pages)
    		goto done;
    
    	vmas = kvmalloc_array(nr_pages, sizeof(struct vm_area_struct *),
    			      GFP_KERNEL);
    	if (!vmas)
    		goto done;
    
    	imu->bvec = kvmalloc_array(nr_pages, sizeof(struct bio_vec),
    				   GFP_KERNEL);
    	if (!imu->bvec)
    		goto done;
    
    	ret = 0;
    	mmap_read_lock(current->mm);
    	pret = pin_user_pages(ubuf, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
    			      pages, vmas);
    	if (pret == nr_pages) {
    		/* don't support file backed memory */
    		for (i = 0; i < nr_pages; i++) {
    			struct vm_area_struct *vma = vmas[i];
    
    			if (vma->vm_file &&
    			    !is_file_hugepages(vma->vm_file)) {
    				ret = -EOPNOTSUPP;
    				break;
    			}
    		}
    	} else {
    		ret = pret < 0 ? pret : -EFAULT;
    	}
    	mmap_read_unlock(current->mm);
    	if (ret) {
    		/*
    		 * if we did partial map, or found file backed vmas,
    		 * release any pages we did get
    		 */
    		if (pret > 0)
    			unpin_user_pages(pages, pret);
    		kvfree(imu->bvec);
    		goto done;
    	}
    
    	ret = io_buffer_account_pin(ctx, pages, pret, imu, last_hpage);
    	if (ret) {
    		unpin_user_pages(pages, pret);
    		kvfree(imu->bvec);
    		goto done;
    	}
    
    	off = ubuf & ~PAGE_MASK;
    	size = iov->iov_len;
    	for (i = 0; i < nr_pages; i++) {
    		size_t vec_len;
    
    		vec_len = min_t(size_t, size, PAGE_SIZE - off);
    		imu->bvec[i].bv_page = pages[i];
    		imu->bvec[i].bv_len = vec_len;
    		imu->bvec[i].bv_offset = off;
    		off = 0;
    		size -= vec_len;
    	}
    	/* store original address for later verification */
    	imu->ubuf = ubuf;
    	imu->len = iov->iov_len;
    	imu->nr_bvecs = nr_pages;
    	ret = 0;
    done:
    	kvfree(pages);
    	kvfree(vmas);
    	return ret;
    }
    
    static int io_buffers_map_alloc(struct io_ring_ctx *ctx, unsigned int nr_args)
    {
    	if (ctx->user_bufs)
    		return -EBUSY;
    	if (!nr_args || nr_args > UIO_MAXIOV)
    		return -EINVAL;
    
    	ctx->user_bufs = kcalloc(nr_args, sizeof(struct io_mapped_ubuf),
    					GFP_KERNEL);
    	if (!ctx->user_bufs)
    		return -ENOMEM;
    
    	return 0;
    }
    
    static int io_buffer_validate(struct iovec *iov)
    {
    	/*
    	 * Don't impose further limits on the size and buffer
    	 * constraints here, we'll -EINVAL later when IO is
    	 * submitted if they are wrong.
    	 */
    	if (!iov->iov_base || !iov->iov_len)
    		return -EFAULT;
    
    	/* arbitrary limit, but we need something */
    	if (iov->iov_len > SZ_1G)
    		return -EFAULT;
    
    	return 0;
    }
    
    static int io_sqe_buffers_register(struct io_ring_ctx *ctx, void __user *arg,
    				   unsigned int nr_args)
    {
    	int i, ret;
    	struct iovec iov;
    	struct page *last_hpage = NULL;
    
    	ret = io_buffers_map_alloc(ctx, nr_args);
    	if (ret)
    		return ret;
    
    	for (i = 0; i < nr_args; i++) {
    		struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
    
    		ret = io_copy_iov(ctx, &iov, arg, i);
    		if (ret)
    			break;
    
    		ret = io_buffer_validate(&iov);
    		if (ret)
    			break;
    
    		ret = io_sqe_buffer_register(ctx, &iov, imu, &last_hpage);
    		if (ret)
    			break;
    
    		ctx->nr_user_bufs++;
    	}
    
    	if (ret)
    		io_sqe_buffers_unregister(ctx);
    
    	return ret;
    }
    
    static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
    {
    	__s32 __user *fds = arg;
    	int fd;
    
    	if (ctx->cq_ev_fd)
    		return -EBUSY;
    
    	if (copy_from_user(&fd, fds, sizeof(*fds)))
    		return -EFAULT;
    
    	ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
    	if (IS_ERR(ctx->cq_ev_fd)) {
    		int ret = PTR_ERR(ctx->cq_ev_fd);
    		ctx->cq_ev_fd = NULL;
    		return ret;
    	}
    
    	return 0;
    }
    
    static int io_eventfd_unregister(struct io_ring_ctx *ctx)
    {
    	if (ctx->cq_ev_fd) {
    		eventfd_ctx_put(ctx->cq_ev_fd);
    		ctx->cq_ev_fd = NULL;
    		return 0;
    	}
    
    	return -ENXIO;
    }
    
    static int __io_destroy_buffers(int id, void *p, void *data)
    {
    	struct io_ring_ctx *ctx = data;
    	struct io_buffer *buf = p;
    
    	__io_remove_buffers(ctx, buf, id, -1U);
    	return 0;
    }
    
    static void io_destroy_buffers(struct io_ring_ctx *ctx)
    {
    	idr_for_each(&ctx->io_buffer_idr, __io_destroy_buffers, ctx);
    	idr_destroy(&ctx->io_buffer_idr);
    }
    
    static void io_req_cache_free(struct list_head *list, struct task_struct *tsk)
    {
    	struct io_kiocb *req, *nxt;
    
    	list_for_each_entry_safe(req, nxt, list, compl.list) {
    		if (tsk && req->task != tsk)
    			continue;
    		list_del(&req->compl.list);
    		kmem_cache_free(req_cachep, req);
    	}
    }
    
    static void io_req_caches_free(struct io_ring_ctx *ctx)
    {
    	struct io_submit_state *submit_state = &ctx->submit_state;
    	struct io_comp_state *cs = &ctx->submit_state.comp;
    
    	mutex_lock(&ctx->uring_lock);
    
    	if (submit_state->free_reqs) {
    		kmem_cache_free_bulk(req_cachep, submit_state->free_reqs,
    				     submit_state->reqs);
    		submit_state->free_reqs = 0;
    	}
    
    	spin_lock_irq(&ctx->completion_lock);
    	list_splice_init(&cs->locked_free_list, &cs->free_list);
    	cs->locked_free_nr = 0;
    	spin_unlock_irq(&ctx->completion_lock);
    
    	io_req_cache_free(&cs->free_list, NULL);
    
    	mutex_unlock(&ctx->uring_lock);
    }
    
    static void io_ring_ctx_free(struct io_ring_ctx *ctx)
    {
    	/*
    	 * Some may use context even when all refs and requests have been put,
    	 * and they are free to do so while still holding uring_lock, see
    	 * __io_req_task_submit(). Wait for them to finish.
    	 */
    	mutex_lock(&ctx->uring_lock);
    	mutex_unlock(&ctx->uring_lock);
    
    	io_sq_thread_finish(ctx);
    	io_sqe_buffers_unregister(ctx);
    
    	if (ctx->mm_account) {
    		mmdrop(ctx->mm_account);
    		ctx->mm_account = NULL;
    	}
    
    	mutex_lock(&ctx->uring_lock);
    	io_sqe_files_unregister(ctx);
    	mutex_unlock(&ctx->uring_lock);
    	io_eventfd_unregister(ctx);
    	io_destroy_buffers(ctx);
    	idr_destroy(&ctx->personality_idr);
    
    #if defined(CONFIG_UNIX)
    	if (ctx->ring_sock) {
    		ctx->ring_sock->file = NULL; /* so that iput() is called */
    		sock_release(ctx->ring_sock);
    	}
    #endif
    
    	io_mem_free(ctx->rings);
    	io_mem_free(ctx->sq_sqes);
    
    	percpu_ref_exit(&ctx->refs);
    	free_uid(ctx->user);
    	io_req_caches_free(ctx);
    	if (ctx->hash_map)
    		io_wq_put_hash(ctx->hash_map);
    	kfree(ctx->cancel_hash);
    	kfree(ctx);
    }
    
    static __poll_t io_uring_poll(struct file *file, poll_table *wait)
    {
    	struct io_ring_ctx *ctx = file->private_data;
    	__poll_t mask = 0;
    
    	poll_wait(file, &ctx->cq_wait, wait);
    	/*
    	 * synchronizes with barrier from wq_has_sleeper call in
    	 * io_commit_cqring
    	 */
    	smp_rmb();
    	if (!io_sqring_full(ctx))
    		mask |= EPOLLOUT | EPOLLWRNORM;
    
    	/*
    	 * Don't flush cqring overflow list here, just do a simple check.
    	 * Otherwise there could possible be ABBA deadlock:
    	 *      CPU0                    CPU1
    	 *      ----                    ----
    	 * lock(&ctx->uring_lock);
    	 *                              lock(&ep->mtx);
    	 *                              lock(&ctx->uring_lock);
    	 * lock(&ep->mtx);
    	 *
    	 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
    	 * pushs them to do the flush.
    	 */
    	if (io_cqring_events(ctx) || test_bit(0, &ctx->cq_check_overflow))
    		mask |= EPOLLIN | EPOLLRDNORM;
    
    	return mask;
    }
    
    static int io_uring_fasync(int fd, struct file *file, int on)
    {
    	struct io_ring_ctx *ctx = file->private_data;
    
    	return fasync_helper(fd, file, on, &ctx->cq_fasync);
    }
    
    static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
    {
    	const struct cred *creds;
    
    	creds = idr_remove(&ctx->personality_idr, id);
    	if (creds) {
    		put_cred(creds);
    		return 0;
    	}
    
    	return -EINVAL;
    }
    
    static int io_remove_personalities(int id, void *p, void *data)
    {
    	struct io_ring_ctx *ctx = data;
    
    	io_unregister_personality(ctx, id);
    	return 0;
    }
    
    static bool io_run_ctx_fallback(struct io_ring_ctx *ctx)
    {
    	struct callback_head *work, *next;
    	bool executed = false;
    
    	do {
    		work = xchg(&ctx->exit_task_work, NULL);
    		if (!work)
    			break;
    
    		do {
    			next = work->next;
    			work->func(work);
    			work = next;
    			cond_resched();
    		} while (work);
    		executed = true;
    	} while (1);
    
    	return executed;
    }
    
    static void io_ring_exit_work(struct work_struct *work)
    {
    	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
    					       exit_work);
    
    	/*
    	 * If we're doing polled IO and end up having requests being
    	 * submitted async (out-of-line), then completions can come in while
    	 * we're waiting for refs to drop. We need to reap these manually,
    	 * as nobody else will be looking for them.
    	 */
    	do {
    		io_uring_try_cancel_requests(ctx, NULL, NULL);
    	} while (!wait_for_completion_timeout(&ctx->ref_comp, HZ/20));
    	io_ring_ctx_free(ctx);
    }
    
    static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
    {
    	mutex_lock(&ctx->uring_lock);
    	percpu_ref_kill(&ctx->refs);
    	/* if force is set, the ring is going away. always drop after that */
    	ctx->cq_overflow_flushed = 1;
    	if (ctx->rings)
    		__io_cqring_overflow_flush(ctx, true, NULL, NULL);
    	idr_for_each(&ctx->personality_idr, io_remove_personalities, ctx);
    	mutex_unlock(&ctx->uring_lock);
    
    	io_kill_timeouts(ctx, NULL, NULL);
    	io_poll_remove_all(ctx, NULL, NULL);
    
    	/* if we failed setting up the ctx, we might not have any rings */
    	io_iopoll_try_reap_events(ctx);
    
    	INIT_WORK(&ctx->exit_work, io_ring_exit_work);
    	/*
    	 * Use system_unbound_wq to avoid spawning tons of event kworkers
    	 * if we're exiting a ton of rings at the same time. It just adds
    	 * noise and overhead, there's no discernable change in runtime
    	 * over using system_wq.
    	 */
    	queue_work(system_unbound_wq, &ctx->exit_work);
    }
    
    static int io_uring_release(struct inode *inode, struct file *file)
    {
    	struct io_ring_ctx *ctx = file->private_data;
    
    	file->private_data = NULL;
    	io_ring_ctx_wait_and_kill(ctx);
    	return 0;
    }
    
    struct io_task_cancel {
    	struct task_struct *task;
    	struct files_struct *files;
    };
    
    static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
    {
    	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
    	struct io_task_cancel *cancel = data;
    	bool ret;
    
    	if (cancel->files && (req->flags & REQ_F_LINK_TIMEOUT)) {
    		unsigned long flags;
    		struct io_ring_ctx *ctx = req->ctx;
    
    		/* protect against races with linked timeouts */
    		spin_lock_irqsave(&ctx->completion_lock, flags);
    		ret = io_match_task(req, cancel->task, cancel->files);
    		spin_unlock_irqrestore(&ctx->completion_lock, flags);
    	} else {
    		ret = io_match_task(req, cancel->task, cancel->files);
    	}
    	return ret;
    }
    
    static void io_cancel_defer_files(struct io_ring_ctx *ctx,
    				  struct task_struct *task,
    				  struct files_struct *files)
    {
    	struct io_defer_entry *de = NULL;
    	LIST_HEAD(list);
    
    	spin_lock_irq(&ctx->completion_lock);
    	list_for_each_entry_reverse(de, &ctx->defer_list, list) {
    		if (io_match_task(de->req, task, files)) {
    			list_cut_position(&list, &ctx->defer_list, &de->list);
    			break;
    		}
    	}
    	spin_unlock_irq(&ctx->completion_lock);
    
    	while (!list_empty(&list)) {
    		de = list_first_entry(&list, struct io_defer_entry, list);
    		list_del_init(&de->list);
    		req_set_fail_links(de->req);
    		io_put_req(de->req);
    		io_req_complete(de->req, -ECANCELED);
    		kfree(de);
    	}
    }
    
    static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
    					 struct task_struct *task,
    					 struct files_struct *files)
    {
    	struct io_task_cancel cancel = { .task = task, .files = files, };
    	struct task_struct *tctx_task = task ?: current;
    	struct io_uring_task *tctx = tctx_task->io_uring;
    
    	while (1) {
    		enum io_wq_cancel cret;
    		bool ret = false;
    
    		if (tctx && tctx->io_wq) {
    			cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
    					       &cancel, true);
    			ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
    		}
    
    		/* SQPOLL thread does its own polling */
    		if (!(ctx->flags & IORING_SETUP_SQPOLL) && !files) {
    			while (!list_empty_careful(&ctx->iopoll_list)) {
    				io_iopoll_try_reap_events(ctx);
    				ret = true;
    			}
    		}
    
    		ret |= io_poll_remove_all(ctx, task, files);
    		ret |= io_kill_timeouts(ctx, task, files);
    		ret |= io_run_task_work();
    		ret |= io_run_ctx_fallback(ctx);
    		io_cqring_overflow_flush(ctx, true, task, files);
    		if (!ret)
    			break;
    		cond_resched();
    	}
    }
    
    static int io_uring_count_inflight(struct io_ring_ctx *ctx,
    				   struct task_struct *task,
    				   struct files_struct *files)
    {
    	struct io_kiocb *req;
    	int cnt = 0;
    
    	spin_lock_irq(&ctx->inflight_lock);
    	list_for_each_entry(req, &ctx->inflight_list, inflight_entry)
    		cnt += io_match_task(req, task, files);
    	spin_unlock_irq(&ctx->inflight_lock);
    	return cnt;
    }
    
    static void io_uring_cancel_files(struct io_ring_ctx *ctx,
    				  struct task_struct *task,
    				  struct files_struct *files)
    {
    	while (!list_empty_careful(&ctx->inflight_list)) {
    		DEFINE_WAIT(wait);
    		int inflight;
    
    		inflight = io_uring_count_inflight(ctx, task, files);
    		if (!inflight)
    			break;
    
    		io_uring_try_cancel_requests(ctx, task, files);
    
    		if (ctx->sq_data)
    			io_sq_thread_unpark(ctx->sq_data);
    		prepare_to_wait(&task->io_uring->wait, &wait,
    				TASK_UNINTERRUPTIBLE);
    		if (inflight == io_uring_count_inflight(ctx, task, files))
    			schedule();
    		finish_wait(&task->io_uring->wait, &wait);
    		if (ctx->sq_data)
    			io_sq_thread_park(ctx->sq_data);
    	}
    }
    
    /*
     * We need to iteratively cancel requests, in case a request has dependent
     * hard links. These persist even for failure of cancelations, hence keep
     * looping until none are found.
     */
    static void io_uring_cancel_task_requests(struct io_ring_ctx *ctx,
    					  struct files_struct *files)
    {
    	struct task_struct *task = current;
    	bool did_park = false;
    
    	if ((ctx->flags & IORING_SETUP_SQPOLL) && ctx->sq_data) {
    		/* never started, nothing to cancel */
    		if (ctx->flags & IORING_SETUP_R_DISABLED) {
    			io_sq_offload_start(ctx);
    			return;
    		}
    		did_park = io_sq_thread_park(ctx->sq_data);
    		if (did_park) {
    			task = ctx->sq_data->thread;
    			atomic_inc(&task->io_uring->in_idle);
    		}
    	}
    
    	io_cancel_defer_files(ctx, task, files);
    
    	io_uring_cancel_files(ctx, task, files);
    	if (!files)
    		io_uring_try_cancel_requests(ctx, task, NULL);
    
    	if (did_park) {
    		atomic_dec(&task->io_uring->in_idle);
    		io_sq_thread_unpark(ctx->sq_data);
    	}
    }
    
    /*
     * Note that this task has used io_uring. We use it for cancelation purposes.
     */
    static int io_uring_add_task_file(struct io_ring_ctx *ctx, struct file *file)
    {
    	struct io_uring_task *tctx = current->io_uring;
    	int ret;
    
    	if (unlikely(!tctx)) {
    		ret = io_uring_alloc_task_context(current, ctx);
    		if (unlikely(ret))
    			return ret;
    		tctx = current->io_uring;
    	}
    	if (tctx->last != file) {
    		void *old = xa_load(&tctx->xa, (unsigned long)file);
    
    		if (!old) {
    			get_file(file);
    			ret = xa_err(xa_store(&tctx->xa, (unsigned long)file,
    						file, GFP_KERNEL));
    			if (ret) {
    				fput(file);
    				return ret;
    			}
    		}
    		tctx->last = file;
    	}
    
    	/*
    	 * This is race safe in that the task itself is doing this, hence it
    	 * cannot be going through the exit/cancel paths at the same time.
    	 * This cannot be modified while exit/cancel is running.
    	 */
    	if (!tctx->sqpoll && (ctx->flags & IORING_SETUP_SQPOLL))
    		tctx->sqpoll = true;
    
    	return 0;
    }
    
    /*
     * Remove this io_uring_file -> task mapping.
     */
    static void io_uring_del_task_file(struct file *file)
    {
    	struct io_uring_task *tctx = current->io_uring;
    
    	if (tctx->last == file)
    		tctx->last = NULL;
    	file = xa_erase(&tctx->xa, (unsigned long)file);
    	if (file)
    		fput(file);
    }
    
    static void io_uring_clean_tctx(struct io_uring_task *tctx)
    {
    	struct file *file;
    	unsigned long index;
    
    	xa_for_each(&tctx->xa, index, file)
    		io_uring_del_task_file(file);
    	if (tctx->io_wq) {
    		io_wq_put_and_exit(tctx->io_wq);
    		tctx->io_wq = NULL;
    	}
    }
    
    void __io_uring_files_cancel(struct files_struct *files)
    {
    	struct io_uring_task *tctx = current->io_uring;
    	struct file *file;
    	unsigned long index;
    
    	/* make sure overflow events are dropped */
    	atomic_inc(&tctx->in_idle);
    	xa_for_each(&tctx->xa, index, file)
    		io_uring_cancel_task_requests(file->private_data, files);
    	atomic_dec(&tctx->in_idle);
    
    	if (files)
    		io_uring_clean_tctx(tctx);
    }
    
    static s64 tctx_inflight(struct io_uring_task *tctx)
    {
    	return percpu_counter_sum(&tctx->inflight);
    }
    
    static void io_uring_cancel_sqpoll(struct io_ring_ctx *ctx)
    {
    	struct io_sq_data *sqd = ctx->sq_data;
    	struct io_uring_task *tctx;
    	s64 inflight;
    	DEFINE_WAIT(wait);
    
    	if (!sqd)
    		return;
    	if (!io_sq_thread_park(sqd))
    		return;
    	tctx = ctx->sq_data->thread->io_uring;
    	/* can happen on fork/alloc failure, just ignore that state */
    	if (!tctx) {
    		io_sq_thread_unpark(sqd);
    		return;
    	}
    
    	atomic_inc(&tctx->in_idle);
    	do {
    		/* read completions before cancelations */
    		inflight = tctx_inflight(tctx);
    		if (!inflight)
    			break;
    		io_uring_cancel_task_requests(ctx, NULL);
    
    		prepare_to_wait(&tctx->wait, &wait, TASK_UNINTERRUPTIBLE);
    		/*
    		 * If we've seen completions, retry without waiting. This
    		 * avoids a race where a completion comes in before we did
    		 * prepare_to_wait().
    		 */
    		if (inflight == tctx_inflight(tctx))
    			schedule();
    		finish_wait(&tctx->wait, &wait);
    	} while (1);
    	atomic_dec(&tctx->in_idle);
    	io_sq_thread_unpark(sqd);
    }
    
    /*
     * Find any io_uring fd that this task has registered or done IO on, and cancel
     * requests.
     */
    void __io_uring_task_cancel(void)
    {
    	struct io_uring_task *tctx = current->io_uring;
    	DEFINE_WAIT(wait);
    	s64 inflight;
    
    	/* make sure overflow events are dropped */
    	atomic_inc(&tctx->in_idle);
    
    	if (tctx->sqpoll) {
    		struct file *file;
    		unsigned long index;
    
    		xa_for_each(&tctx->xa, index, file)
    			io_uring_cancel_sqpoll(file->private_data);
    	}
    
    	do {
    		/* read completions before cancelations */
    		inflight = tctx_inflight(tctx);
    		if (!inflight)
    			break;
    		__io_uring_files_cancel(NULL);
    
    		prepare_to_wait(&tctx->wait, &wait, TASK_UNINTERRUPTIBLE);
    
    		/*
    		 * If we've seen completions, retry without waiting. This
    		 * avoids a race where a completion comes in before we did
    		 * prepare_to_wait().
    		 */
    		if (inflight == tctx_inflight(tctx))
    			schedule();
    		finish_wait(&tctx->wait, &wait);
    	} while (1);
    
    	atomic_dec(&tctx->in_idle);
    
    	io_uring_clean_tctx(tctx);
    	/* all current's requests should be gone, we can kill tctx */
    	__io_uring_free(current);
    }
    
    static void *io_uring_validate_mmap_request(struct file *file,
    					    loff_t pgoff, size_t sz)
    {
    	struct io_ring_ctx *ctx = file->private_data;
    	loff_t offset = pgoff << PAGE_SHIFT;
    	struct page *page;
    	void *ptr;
    
    	switch (offset) {
    	case IORING_OFF_SQ_RING:
    	case IORING_OFF_CQ_RING:
    		ptr = ctx->rings;
    		break;
    	case IORING_OFF_SQES:
    		ptr = ctx->sq_sqes;
    		break;
    	default:
    		return ERR_PTR(-EINVAL);
    	}
    
    	page = virt_to_head_page(ptr);
    	if (sz > page_size(page))
    		return ERR_PTR(-EINVAL);
    
    	return ptr;
    }
    
    #ifdef CONFIG_MMU
    
    static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
    {
    	size_t sz = vma->vm_end - vma->vm_start;
    	unsigned long pfn;
    	void *ptr;
    
    	ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
    	if (IS_ERR(ptr))
    		return PTR_ERR(ptr);
    
    	pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
    	return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
    }
    
    #else /* !CONFIG_MMU */
    
    static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
    {
    	return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
    }
    
    static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
    {
    	return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
    }
    
    static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
    	unsigned long addr, unsigned long len,
    	unsigned long pgoff, unsigned long flags)
    {
    	void *ptr;
    
    	ptr = io_uring_validate_mmap_request(file, pgoff, len);
    	if (IS_ERR(ptr))
    		return PTR_ERR(ptr);
    
    	return (unsigned long) ptr;
    }
    
    #endif /* !CONFIG_MMU */
    
    static int io_sqpoll_wait_sq(struct io_ring_ctx *ctx)
    {
    	int ret = 0;
    	DEFINE_WAIT(wait);
    
    	do {
    		if (!io_sqring_full(ctx))
    			break;
    		prepare_to_wait(&ctx->sqo_sq_wait, &wait, TASK_INTERRUPTIBLE);
    
    		if (!io_sqring_full(ctx))
    			break;
    		schedule();
    	} while (!signal_pending(current));
    
    	finish_wait(&ctx->sqo_sq_wait, &wait);
    	return ret;
    }
    
    static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
    			  struct __kernel_timespec __user **ts,
    			  const sigset_t __user **sig)
    {
    	struct io_uring_getevents_arg arg;
    
    	/*
    	 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
    	 * is just a pointer to the sigset_t.
    	 */
    	if (!(flags & IORING_ENTER_EXT_ARG)) {
    		*sig = (const sigset_t __user *) argp;
    		*ts = NULL;
    		return 0;
    	}
    
    	/*
    	 * EXT_ARG is set - ensure we agree on the size of it and copy in our
    	 * timespec and sigset_t pointers if good.
    	 */
    	if (*argsz != sizeof(arg))
    		return -EINVAL;
    	if (copy_from_user(&arg, argp, sizeof(arg)))
    		return -EFAULT;
    	*sig = u64_to_user_ptr(arg.sigmask);
    	*argsz = arg.sigmask_sz;
    	*ts = u64_to_user_ptr(arg.ts);
    	return 0;
    }
    
    SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
    		u32, min_complete, u32, flags, const void __user *, argp,
    		size_t, argsz)
    {
    	struct io_ring_ctx *ctx;
    	long ret = -EBADF;
    	int submitted = 0;
    	struct fd f;
    
    	io_run_task_work();
    
    	if (flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
    			IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG))
    		return -EINVAL;
    
    	f = fdget(fd);
    	if (!f.file)
    		return -EBADF;
    
    	ret = -EOPNOTSUPP;
    	if (f.file->f_op != &io_uring_fops)
    		goto out_fput;
    
    	ret = -ENXIO;
    	ctx = f.file->private_data;
    	if (!percpu_ref_tryget(&ctx->refs))
    		goto out_fput;
    
    	ret = -EBADFD;
    	if (ctx->flags & IORING_SETUP_R_DISABLED)
    		goto out;
    
    	/*
    	 * For SQ polling, the thread will do all submissions and completions.
    	 * Just return the requested submit count, and wake the thread if
    	 * we were asked to.
    	 */
    	ret = 0;
    	if (ctx->flags & IORING_SETUP_SQPOLL) {
    		io_cqring_overflow_flush(ctx, false, NULL, NULL);
    
    		if (unlikely(ctx->sqo_exec)) {
    			ret = io_sq_thread_fork(ctx->sq_data, ctx);
    			if (ret)
    				goto out;
    			ctx->sqo_exec = 0;
    		}
    		ret = -EOWNERDEAD;
    		if (flags & IORING_ENTER_SQ_WAKEUP)
    			wake_up(&ctx->sq_data->wait);
    		if (flags & IORING_ENTER_SQ_WAIT) {
    			ret = io_sqpoll_wait_sq(ctx);
    			if (ret)
    				goto out;
    		}
    		submitted = to_submit;
    	} else if (to_submit) {
    		ret = io_uring_add_task_file(ctx, f.file);
    		if (unlikely(ret))
    			goto out;
    		mutex_lock(&ctx->uring_lock);
    		submitted = io_submit_sqes(ctx, to_submit);
    		mutex_unlock(&ctx->uring_lock);
    
    		if (submitted != to_submit)
    			goto out;
    	}
    	if (flags & IORING_ENTER_GETEVENTS) {
    		const sigset_t __user *sig;
    		struct __kernel_timespec __user *ts;
    
    		ret = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
    		if (unlikely(ret))
    			goto out;
    
    		min_complete = min(min_complete, ctx->cq_entries);
    
    		/*
    		 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
    		 * space applications don't need to do io completion events
    		 * polling again, they can rely on io_sq_thread to do polling
    		 * work, which can reduce cpu usage and uring_lock contention.
    		 */
    		if (ctx->flags & IORING_SETUP_IOPOLL &&
    		    !(ctx->flags & IORING_SETUP_SQPOLL)) {
    			ret = io_iopoll_check(ctx, min_complete);
    		} else {
    			ret = io_cqring_wait(ctx, min_complete, sig, argsz, ts);
    		}
    	}
    
    out:
    	percpu_ref_put(&ctx->refs);
    out_fput:
    	fdput(f);
    	return submitted ? submitted : ret;
    }
    
    #ifdef CONFIG_PROC_FS
    static int io_uring_show_cred(int id, void *p, void *data)
    {
    	const struct cred *cred = p;
    	struct seq_file *m = data;
    	struct user_namespace *uns = seq_user_ns(m);
    	struct group_info *gi;
    	kernel_cap_t cap;
    	unsigned __capi;
    	int g;
    
    	seq_printf(m, "%5d\n", id);
    	seq_put_decimal_ull(m, "\tUid:\t", from_kuid_munged(uns, cred->uid));
    	seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->euid));
    	seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->suid));
    	seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->fsuid));
    	seq_put_decimal_ull(m, "\n\tGid:\t", from_kgid_munged(uns, cred->gid));
    	seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->egid));
    	seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->sgid));
    	seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->fsgid));
    	seq_puts(m, "\n\tGroups:\t");
    	gi = cred->group_info;
    	for (g = 0; g < gi->ngroups; g++) {
    		seq_put_decimal_ull(m, g ? " " : "",
    					from_kgid_munged(uns, gi->gid[g]));
    	}
    	seq_puts(m, "\n\tCapEff:\t");
    	cap = cred->cap_effective;
    	CAP_FOR_EACH_U32(__capi)
    		seq_put_hex_ll(m, NULL, cap.cap[CAP_LAST_U32 - __capi], 8);
    	seq_putc(m, '\n');
    	return 0;
    }
    
    static void __io_uring_show_fdinfo(struct io_ring_ctx *ctx, struct seq_file *m)
    {
    	struct io_sq_data *sq = NULL;
    	bool has_lock;
    	int i;
    
    	/*
    	 * Avoid ABBA deadlock between the seq lock and the io_uring mutex,
    	 * since fdinfo case grabs it in the opposite direction of normal use
    	 * cases. If we fail to get the lock, we just don't iterate any
    	 * structures that could be going away outside the io_uring mutex.
    	 */
    	has_lock = mutex_trylock(&ctx->uring_lock);
    
    	if (has_lock && (ctx->flags & IORING_SETUP_SQPOLL)) {
    		sq = ctx->sq_data;
    		if (!sq->thread)
    			sq = NULL;
    	}
    
    	seq_printf(m, "SqThread:\t%d\n", sq ? task_pid_nr(sq->thread) : -1);
    	seq_printf(m, "SqThreadCpu:\t%d\n", sq ? task_cpu(sq->thread) : -1);
    	seq_printf(m, "UserFiles:\t%u\n", ctx->nr_user_files);
    	for (i = 0; has_lock && i < ctx->nr_user_files; i++) {
    		struct file *f = *io_fixed_file_slot(ctx->file_data, i);
    
    		if (f)
    			seq_printf(m, "%5u: %s\n", i, file_dentry(f)->d_iname);
    		else
    			seq_printf(m, "%5u: <none>\n", i);
    	}
    	seq_printf(m, "UserBufs:\t%u\n", ctx->nr_user_bufs);
    	for (i = 0; has_lock && i < ctx->nr_user_bufs; i++) {
    		struct io_mapped_ubuf *buf = &ctx->user_bufs[i];
    
    		seq_printf(m, "%5u: 0x%llx/%u\n", i, buf->ubuf,
    						(unsigned int) buf->len);
    	}
    	if (has_lock && !idr_is_empty(&ctx->personality_idr)) {
    		seq_printf(m, "Personalities:\n");
    		idr_for_each(&ctx->personality_idr, io_uring_show_cred, m);
    	}
    	seq_printf(m, "PollList:\n");
    	spin_lock_irq(&ctx->completion_lock);
    	for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
    		struct hlist_head *list = &ctx->cancel_hash[i];
    		struct io_kiocb *req;
    
    		hlist_for_each_entry(req, list, hash_node)
    			seq_printf(m, "  op=%d, task_works=%d\n", req->opcode,
    					req->task->task_works != NULL);
    	}
    	spin_unlock_irq(&ctx->completion_lock);
    	if (has_lock)
    		mutex_unlock(&ctx->uring_lock);
    }
    
    static void io_uring_show_fdinfo(struct seq_file *m, struct file *f)
    {
    	struct io_ring_ctx *ctx = f->private_data;
    
    	if (percpu_ref_tryget(&ctx->refs)) {
    		__io_uring_show_fdinfo(ctx, m);
    		percpu_ref_put(&ctx->refs);
    	}
    }
    #endif
    
    static const struct file_operations io_uring_fops = {
    	.release	= io_uring_release,
    	.mmap		= io_uring_mmap,
    #ifndef CONFIG_MMU
    	.get_unmapped_area = io_uring_nommu_get_unmapped_area,
    	.mmap_capabilities = io_uring_nommu_mmap_capabilities,
    #endif
    	.poll		= io_uring_poll,
    	.fasync		= io_uring_fasync,
    #ifdef CONFIG_PROC_FS
    	.show_fdinfo	= io_uring_show_fdinfo,
    #endif
    };
    
    static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
    				  struct io_uring_params *p)
    {
    	struct io_rings *rings;
    	size_t size, sq_array_offset;
    
    	/* make sure these are sane, as we already accounted them */
    	ctx->sq_entries = p->sq_entries;
    	ctx->cq_entries = p->cq_entries;
    
    	size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset);
    	if (size == SIZE_MAX)
    		return -EOVERFLOW;
    
    	rings = io_mem_alloc(size);
    	if (!rings)
    		return -ENOMEM;
    
    	ctx->rings = rings;
    	ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
    	rings->sq_ring_mask = p->sq_entries - 1;
    	rings->cq_ring_mask = p->cq_entries - 1;
    	rings->sq_ring_entries = p->sq_entries;
    	rings->cq_ring_entries = p->cq_entries;
    	ctx->sq_mask = rings->sq_ring_mask;
    	ctx->cq_mask = rings->cq_ring_mask;
    
    	size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
    	if (size == SIZE_MAX) {
    		io_mem_free(ctx->rings);
    		ctx->rings = NULL;
    		return -EOVERFLOW;
    	}
    
    	ctx->sq_sqes = io_mem_alloc(size);
    	if (!ctx->sq_sqes) {
    		io_mem_free(ctx->rings);
    		ctx->rings = NULL;
    		return -ENOMEM;
    	}
    
    	return 0;
    }
    
    static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)
    {
    	int ret, fd;
    
    	fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
    	if (fd < 0)
    		return fd;
    
    	ret = io_uring_add_task_file(ctx, file);
    	if (ret) {
    		put_unused_fd(fd);
    		return ret;
    	}
    	fd_install(fd, file);
    	return fd;
    }
    
    /*
     * Allocate an anonymous fd, this is what constitutes the application
     * visible backing of an io_uring instance. The application mmaps this
     * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
     * we have to tie this fd to a socket for file garbage collection purposes.
     */
    static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
    {
    	struct file *file;
    #if defined(CONFIG_UNIX)
    	int ret;
    
    	ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
    				&ctx->ring_sock);
    	if (ret)
    		return ERR_PTR(ret);
    #endif
    
    	file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
    					O_RDWR | O_CLOEXEC);
    #if defined(CONFIG_UNIX)
    	if (IS_ERR(file)) {
    		sock_release(ctx->ring_sock);
    		ctx->ring_sock = NULL;
    	} else {
    		ctx->ring_sock->file = file;
    	}
    #endif
    	return file;
    }
    
    static int io_uring_create(unsigned entries, struct io_uring_params *p,
    			   struct io_uring_params __user *params)
    {
    	struct io_ring_ctx *ctx;
    	struct file *file;
    	int ret;
    
    	if (!entries)
    		return -EINVAL;
    	if (entries > IORING_MAX_ENTRIES) {
    		if (!(p->flags & IORING_SETUP_CLAMP))
    			return -EINVAL;
    		entries = IORING_MAX_ENTRIES;
    	}
    
    	/*
    	 * Use twice as many entries for the CQ ring. It's possible for the
    	 * application to drive a higher depth than the size of the SQ ring,
    	 * since the sqes are only used at submission time. This allows for
    	 * some flexibility in overcommitting a bit. If the application has
    	 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
    	 * of CQ ring entries manually.
    	 */
    	p->sq_entries = roundup_pow_of_two(entries);
    	if (p->flags & IORING_SETUP_CQSIZE) {
    		/*
    		 * If IORING_SETUP_CQSIZE is set, we do the same roundup
    		 * to a power-of-two, if it isn't already. We do NOT impose
    		 * any cq vs sq ring sizing.
    		 */
    		if (!p->cq_entries)
    			return -EINVAL;
    		if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
    			if (!(p->flags & IORING_SETUP_CLAMP))
    				return -EINVAL;
    			p->cq_entries = IORING_MAX_CQ_ENTRIES;
    		}
    		p->cq_entries = roundup_pow_of_two(p->cq_entries);
    		if (p->cq_entries < p->sq_entries)
    			return -EINVAL;
    	} else {
    		p->cq_entries = 2 * p->sq_entries;
    	}
    
    	ctx = io_ring_ctx_alloc(p);
    	if (!ctx)
    		return -ENOMEM;
    	ctx->compat = in_compat_syscall();
    	if (!capable(CAP_IPC_LOCK))
    		ctx->user = get_uid(current_user());
    
    	/*
    	 * This is just grabbed for accounting purposes. When a process exits,
    	 * the mm is exited and dropped before the files, hence we need to hang
    	 * on to this mm purely for the purposes of being able to unaccount
    	 * memory (locked/pinned vm). It's not used for anything else.
    	 */
    	mmgrab(current->mm);
    	ctx->mm_account = current->mm;
    
    	ret = io_allocate_scq_urings(ctx, p);
    	if (ret)
    		goto err;
    
    	ret = io_sq_offload_create(ctx, p);
    	if (ret)
    		goto err;
    
    	if (!(p->flags & IORING_SETUP_R_DISABLED))
    		io_sq_offload_start(ctx);
    
    	memset(&p->sq_off, 0, sizeof(p->sq_off));
    	p->sq_off.head = offsetof(struct io_rings, sq.head);
    	p->sq_off.tail = offsetof(struct io_rings, sq.tail);
    	p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
    	p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
    	p->sq_off.flags = offsetof(struct io_rings, sq_flags);
    	p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
    	p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
    
    	memset(&p->cq_off, 0, sizeof(p->cq_off));
    	p->cq_off.head = offsetof(struct io_rings, cq.head);
    	p->cq_off.tail = offsetof(struct io_rings, cq.tail);
    	p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
    	p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
    	p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
    	p->cq_off.cqes = offsetof(struct io_rings, cqes);
    	p->cq_off.flags = offsetof(struct io_rings, cq_flags);
    
    	p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
    			IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
    			IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
    			IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
    			IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS;
    
    	if (copy_to_user(params, p, sizeof(*p))) {
    		ret = -EFAULT;
    		goto err;
    	}
    
    	file = io_uring_get_file(ctx);
    	if (IS_ERR(file)) {
    		ret = PTR_ERR(file);
    		goto err;
    	}
    
    	/*
    	 * Install ring fd as the very last thing, so we don't risk someone
    	 * having closed it before we finish setup
    	 */
    	ret = io_uring_install_fd(ctx, file);
    	if (ret < 0) {
    		/* fput will clean it up */
    		fput(file);
    		return ret;
    	}
    
    	trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
    	return ret;
    err:
    	io_ring_ctx_wait_and_kill(ctx);
    	return ret;
    }
    
    /*
     * Sets up an aio uring context, and returns the fd. Applications asks for a
     * ring size, we return the actual sq/cq ring sizes (among other things) in the
     * params structure passed in.
     */
    static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
    {
    	struct io_uring_params p;
    	int i;
    
    	if (copy_from_user(&p, params, sizeof(p)))
    		return -EFAULT;
    	for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
    		if (p.resv[i])
    			return -EINVAL;
    	}
    
    	if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
    			IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
    			IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
    			IORING_SETUP_R_DISABLED))
    		return -EINVAL;
    
    	return  io_uring_create(entries, &p, params);
    }
    
    SYSCALL_DEFINE2(io_uring_setup, u32, entries,
    		struct io_uring_params __user *, params)
    {
    	return io_uring_setup(entries, params);
    }
    
    static int io_probe(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args)
    {
    	struct io_uring_probe *p;
    	size_t size;
    	int i, ret;
    
    	size = struct_size(p, ops, nr_args);
    	if (size == SIZE_MAX)
    		return -EOVERFLOW;
    	p = kzalloc(size, GFP_KERNEL);
    	if (!p)
    		return -ENOMEM;
    
    	ret = -EFAULT;
    	if (copy_from_user(p, arg, size))
    		goto out;
    	ret = -EINVAL;
    	if (memchr_inv(p, 0, size))
    		goto out;
    
    	p->last_op = IORING_OP_LAST - 1;
    	if (nr_args > IORING_OP_LAST)
    		nr_args = IORING_OP_LAST;
    
    	for (i = 0; i < nr_args; i++) {
    		p->ops[i].op = i;
    		if (!io_op_defs[i].not_supported)
    			p->ops[i].flags = IO_URING_OP_SUPPORTED;
    	}
    	p->ops_len = i;
    
    	ret = 0;
    	if (copy_to_user(arg, p, size))
    		ret = -EFAULT;
    out:
    	kfree(p);
    	return ret;
    }
    
    static int io_register_personality(struct io_ring_ctx *ctx)
    {
    	const struct cred *creds;
    	int ret;
    
    	creds = get_current_cred();
    
    	ret = idr_alloc_cyclic(&ctx->personality_idr, (void *) creds, 1,
    				USHRT_MAX, GFP_KERNEL);
    	if (ret < 0)
    		put_cred(creds);
    	return ret;
    }
    
    static int io_register_restrictions(struct io_ring_ctx *ctx, void __user *arg,
    				    unsigned int nr_args)
    {
    	struct io_uring_restriction *res;
    	size_t size;
    	int i, ret;
    
    	/* Restrictions allowed only if rings started disabled */
    	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
    		return -EBADFD;
    
    	/* We allow only a single restrictions registration */
    	if (ctx->restrictions.registered)
    		return -EBUSY;
    
    	if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
    		return -EINVAL;
    
    	size = array_size(nr_args, sizeof(*res));
    	if (size == SIZE_MAX)
    		return -EOVERFLOW;
    
    	res = memdup_user(arg, size);
    	if (IS_ERR(res))
    		return PTR_ERR(res);
    
    	ret = 0;
    
    	for (i = 0; i < nr_args; i++) {
    		switch (res[i].opcode) {
    		case IORING_RESTRICTION_REGISTER_OP:
    			if (res[i].register_op >= IORING_REGISTER_LAST) {
    				ret = -EINVAL;
    				goto out;
    			}
    
    			__set_bit(res[i].register_op,
    				  ctx->restrictions.register_op);
    			break;
    		case IORING_RESTRICTION_SQE_OP:
    			if (res[i].sqe_op >= IORING_OP_LAST) {
    				ret = -EINVAL;
    				goto out;
    			}
    
    			__set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
    			break;
    		case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
    			ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
    			break;
    		case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
    			ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
    			break;
    		default:
    			ret = -EINVAL;
    			goto out;
    		}
    	}
    
    out:
    	/* Reset all restrictions if an error happened */
    	if (ret != 0)
    		memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
    	else
    		ctx->restrictions.registered = true;
    
    	kfree(res);
    	return ret;
    }
    
    static int io_register_enable_rings(struct io_ring_ctx *ctx)
    {
    	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
    		return -EBADFD;
    
    	if (ctx->restrictions.registered)
    		ctx->restricted = 1;
    
    	io_sq_offload_start(ctx);
    	return 0;
    }
    
    static bool io_register_op_must_quiesce(int op)
    {
    	switch (op) {
    	case IORING_UNREGISTER_FILES:
    	case IORING_REGISTER_FILES_UPDATE:
    	case IORING_REGISTER_PROBE:
    	case IORING_REGISTER_PERSONALITY:
    	case IORING_UNREGISTER_PERSONALITY:
    		return false;
    	default:
    		return true;
    	}
    }
    
    static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
    			       void __user *arg, unsigned nr_args)
    	__releases(ctx->uring_lock)
    	__acquires(ctx->uring_lock)
    {
    	int ret;
    
    	/*
    	 * We're inside the ring mutex, if the ref is already dying, then
    	 * someone else killed the ctx or is already going through
    	 * io_uring_register().
    	 */
    	if (percpu_ref_is_dying(&ctx->refs))
    		return -ENXIO;
    
    	if (io_register_op_must_quiesce(opcode)) {
    		percpu_ref_kill(&ctx->refs);
    
    		/*
    		 * Drop uring mutex before waiting for references to exit. If
    		 * another thread is currently inside io_uring_enter() it might
    		 * need to grab the uring_lock to make progress. If we hold it
    		 * here across the drain wait, then we can deadlock. It's safe
    		 * to drop the mutex here, since no new references will come in
    		 * after we've killed the percpu ref.
    		 */
    		mutex_unlock(&ctx->uring_lock);
    		do {
    			ret = wait_for_completion_interruptible(&ctx->ref_comp);
    			if (!ret)
    				break;
    			ret = io_run_task_work_sig();
    			if (ret < 0)
    				break;
    		} while (1);
    
    		mutex_lock(&ctx->uring_lock);
    
    		if (ret) {
    			percpu_ref_resurrect(&ctx->refs);
    			goto out_quiesce;
    		}
    	}
    
    	if (ctx->restricted) {
    		if (opcode >= IORING_REGISTER_LAST) {
    			ret = -EINVAL;
    			goto out;
    		}
    
    		if (!test_bit(opcode, ctx->restrictions.register_op)) {
    			ret = -EACCES;
    			goto out;
    		}
    	}
    
    	switch (opcode) {
    	case IORING_REGISTER_BUFFERS:
    		ret = io_sqe_buffers_register(ctx, arg, nr_args);
    		break;
    	case IORING_UNREGISTER_BUFFERS:
    		ret = -EINVAL;
    		if (arg || nr_args)
    			break;
    		ret = io_sqe_buffers_unregister(ctx);
    		break;
    	case IORING_REGISTER_FILES:
    		ret = io_sqe_files_register(ctx, arg, nr_args);
    		break;
    	case IORING_UNREGISTER_FILES:
    		ret = -EINVAL;
    		if (arg || nr_args)
    			break;
    		ret = io_sqe_files_unregister(ctx);
    		break;
    	case IORING_REGISTER_FILES_UPDATE:
    		ret = io_sqe_files_update(ctx, arg, nr_args);
    		break;
    	case IORING_REGISTER_EVENTFD:
    	case IORING_REGISTER_EVENTFD_ASYNC:
    		ret = -EINVAL;
    		if (nr_args != 1)
    			break;
    		ret = io_eventfd_register(ctx, arg);
    		if (ret)
    			break;
    		if (opcode == IORING_REGISTER_EVENTFD_ASYNC)
    			ctx->eventfd_async = 1;
    		else
    			ctx->eventfd_async = 0;
    		break;
    	case IORING_UNREGISTER_EVENTFD:
    		ret = -EINVAL;
    		if (arg || nr_args)
    			break;
    		ret = io_eventfd_unregister(ctx);
    		break;
    	case IORING_REGISTER_PROBE:
    		ret = -EINVAL;
    		if (!arg || nr_args > 256)
    			break;
    		ret = io_probe(ctx, arg, nr_args);
    		break;
    	case IORING_REGISTER_PERSONALITY:
    		ret = -EINVAL;
    		if (arg || nr_args)
    			break;
    		ret = io_register_personality(ctx);
    		break;
    	case IORING_UNREGISTER_PERSONALITY:
    		ret = -EINVAL;
    		if (arg)
    			break;
    		ret = io_unregister_personality(ctx, nr_args);
    		break;
    	case IORING_REGISTER_ENABLE_RINGS:
    		ret = -EINVAL;
    		if (arg || nr_args)
    			break;
    		ret = io_register_enable_rings(ctx);
    		break;
    	case IORING_REGISTER_RESTRICTIONS:
    		ret = io_register_restrictions(ctx, arg, nr_args);
    		break;
    	default:
    		ret = -EINVAL;
    		break;
    	}
    
    out:
    	if (io_register_op_must_quiesce(opcode)) {
    		/* bring the ctx back to life */
    		percpu_ref_reinit(&ctx->refs);
    out_quiesce:
    		reinit_completion(&ctx->ref_comp);
    	}
    	return ret;
    }
    
    SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
    		void __user *, arg, unsigned int, nr_args)
    {
    	struct io_ring_ctx *ctx;
    	long ret = -EBADF;
    	struct fd f;
    
    	f = fdget(fd);
    	if (!f.file)
    		return -EBADF;
    
    	ret = -EOPNOTSUPP;
    	if (f.file->f_op != &io_uring_fops)
    		goto out_fput;
    
    	ctx = f.file->private_data;
    
    	io_run_task_work();
    
    	mutex_lock(&ctx->uring_lock);
    	ret = __io_uring_register(ctx, opcode, arg, nr_args);
    	mutex_unlock(&ctx->uring_lock);
    	trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs,
    							ctx->cq_ev_fd != NULL, ret);
    out_fput:
    	fdput(f);
    	return ret;
    }
    
    static int __init io_uring_init(void)
    {
    #define __BUILD_BUG_VERIFY_ELEMENT(stype, eoffset, etype, ename) do { \
    	BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
    	BUILD_BUG_ON(sizeof(etype) != sizeof_field(stype, ename)); \
    } while (0)
    
    #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
    	__BUILD_BUG_VERIFY_ELEMENT(struct io_uring_sqe, eoffset, etype, ename)
    	BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
    	BUILD_BUG_SQE_ELEM(0,  __u8,   opcode);
    	BUILD_BUG_SQE_ELEM(1,  __u8,   flags);
    	BUILD_BUG_SQE_ELEM(2,  __u16,  ioprio);
    	BUILD_BUG_SQE_ELEM(4,  __s32,  fd);
    	BUILD_BUG_SQE_ELEM(8,  __u64,  off);
    	BUILD_BUG_SQE_ELEM(8,  __u64,  addr2);
    	BUILD_BUG_SQE_ELEM(16, __u64,  addr);
    	BUILD_BUG_SQE_ELEM(16, __u64,  splice_off_in);
    	BUILD_BUG_SQE_ELEM(24, __u32,  len);
    	BUILD_BUG_SQE_ELEM(28,     __kernel_rwf_t, rw_flags);
    	BUILD_BUG_SQE_ELEM(28, /* compat */   int, rw_flags);
    	BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
    	BUILD_BUG_SQE_ELEM(28, __u32,  fsync_flags);
    	BUILD_BUG_SQE_ELEM(28, /* compat */ __u16,  poll_events);
    	BUILD_BUG_SQE_ELEM(28, __u32,  poll32_events);
    	BUILD_BUG_SQE_ELEM(28, __u32,  sync_range_flags);
    	BUILD_BUG_SQE_ELEM(28, __u32,  msg_flags);
    	BUILD_BUG_SQE_ELEM(28, __u32,  timeout_flags);
    	BUILD_BUG_SQE_ELEM(28, __u32,  accept_flags);
    	BUILD_BUG_SQE_ELEM(28, __u32,  cancel_flags);
    	BUILD_BUG_SQE_ELEM(28, __u32,  open_flags);
    	BUILD_BUG_SQE_ELEM(28, __u32,  statx_flags);
    	BUILD_BUG_SQE_ELEM(28, __u32,  fadvise_advice);
    	BUILD_BUG_SQE_ELEM(28, __u32,  splice_flags);
    	BUILD_BUG_SQE_ELEM(32, __u64,  user_data);
    	BUILD_BUG_SQE_ELEM(40, __u16,  buf_index);
    	BUILD_BUG_SQE_ELEM(42, __u16,  personality);
    	BUILD_BUG_SQE_ELEM(44, __s32,  splice_fd_in);
    
    	BUILD_BUG_ON(ARRAY_SIZE(io_op_defs) != IORING_OP_LAST);
    	BUILD_BUG_ON(__REQ_F_LAST_BIT >= 8 * sizeof(int));
    	req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC |
    				SLAB_ACCOUNT);
    	return 0;
    };
    __initcall(io_uring_init);